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Abstract – This paper deals with the problem of bearing failure detection and diagnosis in 

induction motors. The proposed approach is a sensor-based technique using the mains current and 

the rotor speed measurement. The proposed approach is based on the stator current Park patterns. 

Induction motor stator currents are measured, recorded and used for Park patterns computation. 

A Radial Basis Function (RBF) Artificial Neural Network (ANN) is then used to automate the fault 

detection and diagnosis process. Experimental tests with artificial bearing damages results show 

that the proposed method can be used for accurate bearing failures detection and diagnosis in 

induction motors. 
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I. Introduction 

In recent years, marked improvement has been 

achieved in the design and manufacture of stator 

winding. However, motors driven by solid-state 

inverters undergo severe voltage stresses due to rapid 

switch-on and switch-off of semiconductor switches. 

Also, induction motors are required to operate in highly 

corrosive and dusty environments. Requirements such 

as these have spurred the development of vastly 

improved insulation material and treatment processes. 

But cage rotor design has undergone little change. As a 

result, rotor failures now account for a larger percentage 

of total induction motor failures (Fig. 1) [1-2]. Bearings 

deterioration is now the main cause of rotor failures. 

I.1 Bearing Failures 

There are many reasons to trigger bearing faults. The 

main factor of bearing faults is dust and corrosion. 

Induction motors are often operated in hard conditions. 

That is why foreign materials, water, acid and humidity 

are the main reasons of bearing deteriorations. 

Contamination and corrosion frequently accelerate 

bearing failures because of the harsh environments 

present in most industrial settings. 
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Fig. 1. Induction motor component failing rate versus survey. 

 

Dirt and other foreign matter that is commonly present 

often contaminate the bearing lubrication. The abrasive 

nature of this minute particles, whose hardness can vary 

from relatively soft the diamond like, cause pitting and 

sanding actions that give way to measurable wear of the 

balls and raceways [3]. Bearing corrosion is produced 

by the presence of water, acids, deteriorated lubrication 

and even perspiration from careless handling during 

installations. Once, the chemical reaction has advanced 

sufficiently, particles are worn off resulting in the same 

abrasive action produced by bearing contamination. 

Improper lubrication includes both under and over 

lubrication. In either case, the rolling elements are not 

allowed to rotate on the designed oil film causing 

increased levels of heating. The excessive heating 

causes the grease to break down, which reduces its 

ability to lubricate the bearing elements and accelerates 

the failure process [3-5]. 

Bearing problems are also caused by improperly 

forcing the bearing onto the shaft or into the housing. 

This produces physical damage in the form of brinelling 

or false brinelling of the raceways, which leads to 

premature failure. Misalignment of the bearing, which 

occurs in the four ways depicted in Fig. 2, is also a 

common result of defective bearing installation. 
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Fig. 2. (a) Misalignment (out-of-line), (b) Shaft deflection, 

(c) Cocked or tilted outer race, (d) Cocked or tilted inner race. 

 

In a small fraction of induction motor applications, 

bearings prematurely fail due to electrical causes. 

Currents flowing through induction motor bearings have 

the potential of creating premature failure of these 

bearings. Figure 3 shows the typical fluting pattern in a 

bearing race due to metallurgical damage from 

interrupted electrical current flow. Increased noise and 

vibration are typical symptoms of bearing damage for a 

bearing such as this. Over time, lubrication fatigue and 

mechanical wear lead to ultimate bearing failure [6]. 

I.2 State of The Art 

There are many condition monitoring methods used 

for the detection and the diagnosis of bearing failure: 

vibration measurements, temperature measurement, 

shock pulse method (SPM) and acoustic emission (AE). 

Among these vibration measurements are most widely 

used [7]. A detailed review of different vibration and 

acoustic methods, such as vibration measurements in 

time and frequency domains, sound measurement, the 

SPM and the AE technique for condition monitoring of 

bearing failure is given in [8]. In fact, large induction 

motors are often equipped with mechanical sensors, 

which are primarily vibration sensors such as proximity 

probes. However, these are delicate and expensive. 

Moreover, it is not economically or physically feasible 

to provide the same for smaller induction motors. 

 

 
 

Fig. 3. Bearing fluting. 

Owing to the infeasibility of these traditional 

techniques because of the economical constraints in 

small and medium size induction motors, stator current 

harmonics measurement is appearing as an alternative to 

the vibration measurement methods. Indeed, various 

researchers have suggested that stator current 

monitoring can provide the same indications without 

requiring access to the motor. This technique utilizes 

results of spectral analysis of the stator current or supply 

current of an induction motor for the diagnosis [9-10]. 

Example techniques that have been also investigated to 

bearing failure detection and/or diagnosis include 

statistical methods [11], wavelets [12], and ANN [13]. 

According to the available literature and with the 

objective of diagnosing bearing failures in induction 

motors, without requiring access to the motor, this paper 

proposes an approach that is based on the stator current 

Park patterns processing. The global applicability of 

such an approach has been demonstrated in [14] for 

induction motor stator faults and in [15] for bearing 

failures. The originality of the proposed detection and 

diagnosis rely on the well-processing of the stator 

currents (using Park patterns associated to the induction 

motor rotor) and the use of RBF ANN to automate the 

fault detection and diagnosis process. 

II. Park Transform 

A two dimensional representation can be used for 

describing three-phase induction motor phenomena. A 

suitable one being based on the stator current Park 

vector [1]. Park transform reduces the number of current 

components and makes the calculation easier. It should 

be noted that Park and Concordia transforms are often 

mingled [16]. 

In a three-phase induction motor, stator current has 

three (a,b,c) components. When Concordia transform is 

applied to the mains, sD and sQ components of the 

stator current are obtained. This transform is governed 

by (1). 
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These components are stationary according to the stator. 

If Park transform (2) is applied to the sD-sQ system, 

D and Q components are obtained. 
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These components are stationary according to the rotor. 

Figure 4 summarizes the above transforms where Is is 

the stator current vector that rotates at the angular 

frequency ωs. 



 
 

Fig. 4. Representation of sD-sQ and D-Q axes. 

 

Transforming abc system to sD-sQ system is very 

simple. Park transform is more complicated than 

Concordia's. Indeed, rotor speed or position must be 

known. But stator current D and Q components have 

valuable information for bearing fault detection. Indeed, 

they contain the speed information that is obviously 

affected by bearings condition. 

Using this new Park transform, the obtained D and 

Q current trajectory is not a circle, as it is the case for 

sD and sQ current trajectory: It is an ellipse as 

schematically depicted by Fig. 5. It is also a simple 

reference figure that allows the detection of abnormal 

conditions by monitoring the deviations of acquired 

patterns: The occurrence of a bearing failures manifest 

itself in the deformation of the ellipse. 

III. The RBF Neural Network 

III.1 Why RBF Neural Networks 

Recent developments in diagnosis systems have led 

to extensive use of artificial intelligence (AI) techniques 

have been proposed for the noninvasive machine fault 

detection [17-18]. They have several advantages over 

the traditional model-based techniques. They require no 

detailed analysis of the different kinds of faults or 

modeling of the system. These AI-based techniques 

include expert systems, neural network, and fuzzy logic. 

Neural network approaches can be considered as 

“black-box” methods as they do not provide heuristic 

reasoning about the fault detection process. 
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Fig. 5. Current patterns for ideal conditions: 

(a) Concordia transform. (b) The new Park transform. 

In this paper ANN are used due to their numerous 

advantages over conventional diagnosis techniques. In 

general, when properly tuned, they could improve the 

diagnosis performance. They are easy to extend and 

modify, and they could be easily adapted by the 

incorporation of new data as they became available. 

RBF neural networks have been adopted because 

they are able to provide an accurate fault diagnostic 

classification. The advantages of using RBF neural 

networks are twofold. First, the best possible network 

architecture is determined according to the input data by 

a well-proposed training algorithm. It does not require 

the many trial tests to determine the appropriate network 

architecture. This feature is user friendly for general 

industrial applications. Second, the outputs of the neural 

network are able to not only perform fault detection, but 

also indicate the extent of the fault (diagnosis) [20]. 

III.2 The Adopted RBF Neural Network Architecture 

The RBF networks have feedforward structures, 

consisting of only one hidden layer with locally tuned 

neurons and are fully interconnected to the output layer. 

The general architecture of a RBF ANN is illustrated in 

Fig. 6a. A schematic of the RBF ANN with N inputs 

and a scalar output is given in Fig. 6b. The input layer 

has, as in many other network models, no calculating 

power and serves only to distribute the input data 

among the hidden neurons. 
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Fig. 6. RBF ANN: 
(a) Global architecture. (b) The adopted architecture. 



The hidden neurons show a non-linear transfer function 

which is derived from Gaussian bell curves (radial basis 

function units). The output neurons in turn have a linear 

transfer function which makes it possible to simply 

calculate the optimum weights associated with these 

neurons. With this architecture, the training process 

should be improved [19]. There are H neurons in the 

ANN hidden layer. The transfer function used is similar 

to the Gaussian density function. 
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Where ahk is the activation of the hth unit in the hidden 

layer given the input xk. Each neuron is associated with 

N + 1 parameters x̂ , N is the dimensional position of 

the center of the radial unit in the input space, and σ a 

distance scaling parameter which determines over what 

distance in the input space the unit will have a 

significant influence. The parameter σ has the same 

function as standard deviation in the standard normal 

probability distribution, although it is not estimated in 

the same way [19]. 

The connections in the second layer are weighted as 

usual in classical ANN. The ANN output is given by 
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The training data set is formulated in the same way 

as for a backpropagation ANN. The target output vector 

T has a single “l” in the position corresponding to the 

correct class and zeroes elsewhere. The training is done 

by minimizing the same objective function 

 

2

1

ˆ( , , )

K

k k

k

E x w y T



           (5) 

 

A single procedure, analogous to backpropagation, 

to optimize the error function would be difficult. 

However, the problem of training can be decomposed 

quite naturally. The parameters for radial basis function 

units are determined in three steps: unit centers x̂  

computation, scaling parameters σh computation and 

finally computation of the ANN second layer weighted 

connections [19]. 

IV. Experimental Tests 

IV.1 Test Facility Description 

Figure 7a describes the experimental setup. 
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Fig. 7. Test facility. 



It is composed of two parts: a mechanical part that has a 

tacho-generator, a three-phase squirrel cage induction 

motor and a car alternator. The tacho-generator is a DC 

machine that generates 90 V at 3000 rpm. It is used to 

measure system the speed. It produces linear voltage 

between 2500 and 3000 rpm. The alternator is a three-

phase synchronous machine with a regulator and a 

rectifier circuit that stabilize the output voltage at 12 

VDC. The advantage of using a car alternator instead of 

DC generator is obtaining constant output voltage at 

various speeds. The induction motor could be 

identically loaded at different speeds. 

Moreover, if the induction motor is supplied from 

the network, motor current will have time and space 

harmonic components as well as bearing fault sourced 

harmonics. This makes it harder to determine the 

bearing failure effect on the stator current and therefore 

complicates the fault detection process. For these 

reasons, the induction is fed by an alternator. By this 

way, supply harmonics effects are eliminated and only 

bearing failure effects could be observed on the stator 

current. Figure 7b is then given to illustrate the 

experimental test philosophy. 

The induction motor, that is installed in a test jig, 

has the following rated parameters: 0.75 kW, 220/380 

V, 1.95/3.4 A, 2780 rpm, 50 Hz, 2 poles, Y-connected. 

The induction motor has two 6204.2ZR type bearings. 

From the bearing data sheet following parameters 

are obtained. The outside diameter is 47 mm and inside 

one is 20 mm. Assuming that the inner and the outer 

races have the same thickness gives the pitch diameter 

DP = 31.85 mm. The bearing has eight balls (N = 8) 

with an approximate diameter of DB = 12 mm and a 

contact angle of θ = 0˚. These bearings are made to fail 

by drilling holes various radiuses with a diamond twist 

bit while controlling temperature by oil circulation in 

experiments. Some of the artificially deteriorated 

bearings are shown in Fig. 8. 

IV.2 Experimental Tests of the Proposed Approach 

The fault detection and diagnosis process could be 

summarized as: the occurrence of a bearing failures 

manifest itself in the deformation of the current pattern 

corresponding to a healthy condition (failure detection). 

The deformation analysis will lead to the failure 

diagnosis. 

Sampling frequency is chosen as 10 kHz. All the 

data obtained are used to compute stator sD-sQ and D-Q 

components to obtain D-Q patterns. The induction 

motor has been initially tested with healthy bearings in 

order to determine the reference current Park. 

Afterwards, it has been tested with the different 

artificially deteriorated bearings. These experiments are 

summarized by Fig. 9. It could be seen that bearing 

failures cause a clear deformation of the stator current 

D–Q trajectory. Moreover, an insight analysis of Fig. 9 

leads to an obvious classification of bearing failure 

according to a specific deformation of the initial ellipse: 

this clearly show the diagnosis capability of the 

proposed Park transform. 

The RBF ANN in then used o automate the fault 

detection process. The RBF network structure is 

realized and optimized (training and tests) using 

Matlab
®
. The RBF network has 400 input neurons, 50 

hidden neurons and 2 output neurons. 

The adopted structure is schematically shown in 

Figure 10. In this case, as the sampling frequency is 10 

kHz (there are 200 samples in a period), we have 200 D 

and 200 Q stator current components in a period (20 

msec). These components are the inputs of the network. 

For the ANN output side, if O1 is active, it means that 

the induction motor is healthy. If O2 is active, it means 

that the induction motor has bearing failures. It should 

be noticed that for test purposes, the scaling factor is 

manually chosen as 2.5. 

The RBF ANN has been successfully trained, giving 

100% correct prediction for the training data. When it 

was presented a set of Park patterns upon which it has 

not been trained, the RBF ANN guessed the bearing 

conditions with 96% accuracy. It should be noted that 

the testing performances have been evaluated using 

Chow approach [17]. 

V. Concluding Remarks and Perspectives 

This paper has introduced a specific application of 

the Park transform for bearing failure detection and 

diagnosis in induction motors. This transform has been 

coupled to a RBF neural network to automate the 

detection and diagnosis process. What could be stated as 

a drawback of the proposed approach is that it requires 

the speed information and therefore a speed sensor. This 

could be justified by the importance of bearing failures 

detection as they account for approximately 50% of 

total failures in induction motors. Otherwise, sensorless 

fault detection and diagnosis should be performed as in 

[21], where the speed is estimated from the motor 

current rotor slot harmonic. 

 

 
 

Fig. 8. Artificially deteriorated bearings: (a) outer race deterioration, (b) inner race deterioration, (c) cage deterioration, (d) ball deterioration. 



   
 

   
 

Fig. 9. Stator current D–Q components trajectory comparison: 
(a) Healthy and outer race defect, (b) Healthy and inner race defect, (c) Healthy and cage defect, (d) Healthy and ball defect. 
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Fig. 10. Structure of the ANN used in fault detection 

 

The generality of the proposed methodology has 

been experimentally tested on a 0.75-kW two-pole 

induction motor. Experimental tests have led to results 

with a level of accuracy of 96%, which is satisfactory 

and promising for an industrial application in the 

particular case of small induction motors. 

To improve the proposed fault detection and 

diagnosis approach, experimental aspects should be 

carried out carefully as it was recently pointed out in 

[22]: “When obtaining experimental data from bearings 

failed offline, the act of reassembling, remounting, and 

realigning the test machine significantly affects the 

stator current. If this phenomenon is not understood and 

acknowledged, it can have detrimental consequences 

when these data are used to develop or evaluate many 

bearing condition monitoring schemes”. 
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