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Riemann hypothesis from the Dedekind psi function

Introduction

Riemann zeta function ζ(s) = n>1 n -s = p∈P 1 1-p -s (where the product is taken over the set P of all primes) converges for R(s) > 1. It has a analytic continuation to the complex plane with a simple pole at s = 1. The Riemann hypothesis (RH) states that non-real zeros all lie on the critical line R(s) = 1 2 . RH has equivalent formulations, many of them having to do with the distribution of prime numbers [START_REF] Edwards | Riemann's zeta function[END_REF][START_REF] Hardy | An introduction to the theory of numbers[END_REF].

Let d(n) be the divisor function. There exists a remarkable parallel between the error term ∆(x) = n≤x d(n)x(log x + 2γ -1) in the summatory function of d(n) (Dirichlet's divisor problem) and the corresponding mean-square estimates |ζ( 12 ) + it| of ζ(s) on the critical line, see [START_REF] Ivić | The Riemann zeta function. The theory of the Riemann zeta function with applications[END_REF] for a review. This may explain Ramanujan's interest for highly composite numbers [START_REF] Ramanujan | Highly composite numbers[END_REF]. A highly composite number is a positive integer n such that for any integer m < n, d(m) < d(n), i.e. it has more divisors than any positive integer smaller than itself.

This landmark work eventually led to Robin's formulation of RH in terms of the sum of divisor function σ(n) [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF][START_REF] Nicolas | Petites valeurs de la fonction d[END_REF][START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. More precisely, RH is true iff g(n) = σ(n) n e γ log log n < 0 for any n > 5040.

(

) 1 
The numbers that do not satisfy (1) are in the set A = {2, [START_REF] Ivić | The Riemann zeta function. The theory of the Riemann zeta function with applications[END_REF][START_REF] Ramanujan | Highly composite numbers[END_REF][START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF][START_REF] Nicolas | Petites valeurs de la fonction d[END_REF][START_REF] Aloglu | On higly composite and similar numbers[END_REF][START_REF] Akbary | Superabundant numbers and the Riemann hypothesis[END_REF][START_REF] Erdös | J L Répartition des nombres superabondants[END_REF][START_REF] Planat | Pauli graphs when the Hilbert space dimension contains a square: why the Dedekind psi function[END_REF][START_REF] Littlewood | Sur la distribution des nombres premiers[END_REF][START_REF] Déléglise | Le plus grand facteur premier de la fonction de Landau[END_REF][START_REF] Carella | A divisor function inequality[END_REF]24,30,36,48,60,72,84,120,180,240,360, 720, 840, 2520, 5040}.

If RH is false, the smallest value of n > 5040 that violates the inequality should be a superabundant number [START_REF] Aloglu | On higly composite and similar numbers[END_REF][START_REF] Akbary | Superabundant numbers and the Riemann hypothesis[END_REF][START_REF] Erdös | J L Répartition des nombres superabondants[END_REF], i.e. a positive number n satisfying

σ(m) m < σ(n) n for any m < n. (2) 
No counterexample has been found so far.

In the present paper, Robin's criterion is refined by replacing the sum of divisor function by the Dedekind psi function ψ(n) = p∈P,p|n (1 + 1 p ) ‡. Since ψ(n) ≤ σ(n), with equality when n is free of square, we establish the refined criterion

RH is true iff f (n) = ψ(n) n -e γ log log n < 0 for any n > 30. (3) 
The numbers that do not satisfy [START_REF] Ivić | The Riemann zeta function. The theory of the Riemann zeta function with applications[END_REF] 

ψ(m) m < ψ(n) n for any m < n, (4) 
and be a primorial number N n = n i=1 p i (the product of the first n primes) or one its multiples smaller than N n+1 (Sloane sequence A060735).

According to a Mertens theorem [START_REF] Hardy | An introduction to the theory of numbers[END_REF], one has lim n→∞ ψ(Nn) Nn = e γ ζ(2) log(p n ) and we show that none of the numbers larger than 30 in the sequence A060735 can violate (3). As a result, RH may only be true.

In the next section, we provide the proof of (3) and compare it with the Robin's criterion [START_REF] Edwards | Riemann's zeta function[END_REF]. Furthermore, we investigate the structure of numbers satisfying (4) and justify why they fail to provide counterexamples to RH.

Originally, Dedekind introduced ψ(n) as the index of the congruence subgroup Γ 0 (n) in the modular group (see [START_REF] Schoeneberg | Elliptic modular functions[END_REF], p. 79). In our recent work, the Dedekind psi function plays a role for understanding the commutation relations of quantum observables within the discrete Heisenberg/Pauli group [START_REF] Planat | Pauli graphs when the Hilbert space dimension contains a square: why the Dedekind psi function[END_REF]. In particular, it counts the cardinality of the projective line P 1 (Z n ) of the lattice Z n × Z n . The relevance of the Dedekind psi function ψ(n) in the context of RH is novel. For other works aiming at a refinement of Robin's inequality, we mention [START_REF] Lagarias | An elementary problem equivalent to Riemann hypothesis[END_REF], [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF] and [START_REF] Kupershmidt | Remarks on Robin's and Nicolas inequalities[END_REF].

A proof of the refined Robin's inequality

Let us compute the sequence S of all positive numbers satisfying (4). For 2 < n < 10 5 , one obtains S = {N 1 = 2, 4, N 2 = 6, 12, 18, 24, N 3 = 30, 60, 90, 120, 150, 180, N 4 = 210, 420, 630, 840, 1050, 1260, 1470, 1680, 1890, 2100, N 5 = 2310, 4620, 6930, 9240}, which are the first terms of Sloane sequence A060735, consisting of the primorials N n and their multiples up to the next primorial N n+1 .

It is straightforward to check that about half of the numbers in S are not superabundant (compare to Sloane sequence A004394).

Based on calculations performed on the numbers in the finite sequence S, we are led to three properties that the infinite sequence A060735 should satisfy Proposition 1:

For any l > 1 such that N n < lN n < N n+1 one has f (lN n ) < f (N n ). Proof: One may use f (n) = ψ(n) n log log n instead of f (n) to simplify the proof. When l is prime, one observes that lN n = p 1 p 2 • • • l 2 • • • p n
for some p j = l. The corresponding Dedekind psi function is evaluated as

ψ(lN n ) = (p 2 j + p j ) i =j ψ(p i ) = lψ(N n ). Then, with f (lN n ) = ψ(lN n ) lN n log log(lN n ) = ψ(N n ) N n log log(lN n ) , one concludes that f (lN n ) f (N n ) = log log N n log log(lN n ) < 1 in the required range 1 < l < p n+1 .
When l is not prime, a similar calculation is performed by decomposing l into a product of primes and by using the multiplicative property of ψ(n).

Proposition 2: Given l ≥ 1, for any m such that

lN n < m < (l + 1)N n < N n+1 one has f (m) < f (N n ).
Proof: This proposition is proved by using inequality ( 4 

f (m) < ψ(N n ) N n log log m = log log N n log log m f (N n ) < f (N n ) since m > N n .
Proposition 3: There exist infinitely many prime numbers p n such that f

(N n+1 ) > f (N n ).
Remarks on the proposition 3: Based on experimental evidence in table 1, one would expect that f (N n+1 ) < f (N n ) and that the proposition 3 is false.

Similarly, one would expect that θ(p n ) < p n for any n. For instance it is known [15] that θ(n) < n for 0 < n ≤ 10 11 .

Many oscillating functions were studied in the context of the prime number theorem. It was believed in the past that, for any real number x, the function ∆ 1 (x) = π(x)-li(x) (where li(x) is the logarithmic integral) is always negative. However, J E. Littlewood has shown that ∆ 1 (x) changes sign infinitely often at some large values x > x 0 [START_REF] Littlewood | Sur la distribution des nombres premiers[END_REF] smallest value x 0 such that for the first time π(x 0 ) > li(x 0 ) holds is called the Skewes number. The lowest present day value of the Skewes number is around 10 316 .

In what concerns the function ∆ 4 (x) = θ(x)x, according to theorem 1 in [START_REF] Kaczorowski | On sign-changes in the remainder-term of the prime-number formula[END_REF] (see also [START_REF] Déléglise | Le plus grand facteur premier de la fonction de Landau[END_REF], Lemme 10.1), there exists a positive constant c 4 such that for sufficiently large T , the number of sign changes of ∆ 4 (x) in the interval [2, T ] is

V 4 (T ) ≥ c 4 log T.

Justification of proposition 3

According to theorem 34 in [START_REF] Ingham | The distribution of prime numbers[END_REF] (also used in [START_REF] Déléglise | Le plus grand facteur premier de la fonction de Landau[END_REF])

θ(x) -x = Ω ± (x 1/2 log 3 x) when x → ∞,
where log 3 x = log log log x. The omega notation means that there exist infinitely many real numbers x satisfying

θ(x) ≥ x + 1 2 √ x log 3 x = k x , (5) 
and θ(x) ≤ x -

1 2 √ x log 3 x If x = p n , for some n then θ(p n ) ≥ p n + 1 2 √ p n log 3 p n = k n . (6) 
Otherwise, let us denote p n the first prime number preceeding x, one has

θ(p n ) = θ(x) ≥ k x ≥ k n ,
that is similar to [START_REF] Nicolas | Petites valeurs de la fonction d[END_REF].

At a primorial n = N n , ψ(N n ) = n i=1 (1 + p i ) so that ψ(N n+1 ) = (1 + p n+1 )ψ(p n ).
One would like to show that there are infinitely many prime numbers p n > 2 such that

f (N n+1 ) f (N n ) = (1 + 1 p n+1 ) log θ(p n ) log θ(p n+1 ) = 1 + 1 p n+1 1 + log(1 + log p n+1 θ(pn) )/ log θ(p n ) > 1.
By contradiction, let us assume that the reverse inequality holds for those prime numbers

x = p n satisfying (6) log θ(p n ) p n+1 < log(1 + log p n+1 θ(p n ) ) with θ(p n ) ≥ p n + 1 2 √ p n log 3 p n . (7) 
Taking the development of the logarithm in the first equation of ( 7) one obtains

log kp n p n+1 < log p n+1 kp n
, that is

k pn log k pn < p n+1 log p n+1 for k pn = p n + 1 2 √ p n log 3 p n . (8) 
The inequality (8) contradicts the calculations performed in table 1 for 10 < n < 10 7 . We conclude that our proposition 3 is correct in a finite range of p n 's. In addition, since there are infinitely many prime numbers satisfying (6), proposition 3 is also satisfied for a infinite range of values.

The Riemann hypothesis Propositions 1 and 2 show that the worst case for the inequality (3), if not satisfied, should occur at a primorial N n . Proposition 3 deals about the distribution of values of f (N n ) at large n. Propositions 1 and 2 are needed in the proof of RH, based on the refined Robin inequality.

Let us first show that RH ⇒ (3). This is easy because if RH is true, then Robin's inequality (1) is true, for any m > 5040, including at primorials m = N n , m = N n+1 and so on [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF], despite the result established in proposition 3 that there are infinitely many values of n such that f (N n+1 ) > f (N n ) §. Since N n is free of square, one has ψ(N n ) = σ(N n ) so that the refined inequality ( 3) is satisfied at any m = N n . This means that if RH is true then, according to proposition 1, (3) is satisfied at lN n , where N n < lN n < N n+1 and, according to proposition 2, it is also satisfied at any m between consecutive values lN n and (l + 1)N n of the sequence A060735.

The reverse implication (3) ⇒ RH is similar to that for the Robin's inequality (theorem 2 in [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF]). We observe that there exists an infinity of numbers n such that g(n) = σ(n) n log log n > e γ and the bound on ψ(n) n is such that

for n ≥ 3, ψ(n) n ≤ σ(n) n ≤ e γ log log n + 0.6482 log log n .
To prove that RH is true, it is sufficient to prove that no exception to the refined Robin's criterion may be found.

At large value of primorials N n , we use Mertens theorem about the density of primes log p

n n k=1 (1 -1 p k ) ∼ e -γ , or the equivalent relation 1 log p n ψ(N n ) N n ≡ 1 log p n n k=1 (1 + 1 p k ) ∼ e γ ζ(2) , (9) 
§ In the first version of this paper, it was expected that for any p n , one would have θ(p n ) < p n and as result f (N n+1 ) < f (N n ). But this property is unnecessary for showing that the refined Robin inequality is equivalent to RH.

A better approximation could be obtained from proposition 9 in [START_REF] Carella | A divisor function inequality[END_REF], i.e. from p≤x (1

+ 1 p ) = e γ ζ(2) log x + O(1/ log x).
and the lower bound given p. 206 of [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF] for p n ≥ 20000, log log N n > log p n -0.123 log p n .

Using ( 9) and ( 10), and with e γ (ζ(2) -1 -1) ≈ -0.698, one obtains a lower bound for p n ≥ 20000, f (N n ) < -0.698 log p n + 0.220 log p n ∼ -6.89.

For values of 2 ≤ n ≤ 100000, computer calculations can be performed. The calculation of f (N n ) = g(N n ) < 0 is fast using the multiplicative property of σ(n), i.e. using σ(N n ) = n i=1 (1 + p i ). One find a decreasing function g(N n ) that is negative if n > 3, i.e. N n > 30, as expected (and in agreement with the exceptions in the sets A and B). According to the calculations illustated in the table II and the bound established in [START_REF] Schoeneberg | Elliptic modular functions[END_REF], there are no exceptions to the refined Robin's criterion. Since Robin's criterion has been shown to be equivalent to RH hypothesis, RH may only be true.

  ) at n = (l + 1)N n ψ(m) m < ψ[(l + 1)N n ] (l + 1)N n for any m < (l + 1)N n and the relation ψ[(l + 1)N n ] = (l + 1)ψ(N n ). As a result

  n ) = g(N n ) 0.22 -1.67 -4.24 -6.23 -8.06 -9.83

Table 1 .

 1 . The An excerpt of values of θ(p n )/p n and f (Nn+1) f (Nn) versus the number of primes in the primorial N n .

	n	10	10 3	10 5	10 7
	θ(pn) pn f (N n+1 ) f (Nn) kn log kn p n+1 log p n+1	0.779 0.987 0.9999980 0.99999999921 0.99999999999975 0.986 0.99905 0.999958 0.938 1.00378 1.000447 1.0000423

Table 2 .

 2 The approximate value of the function f (N n ) = g(N n ) versus the number of primes in the primorial N n . The smallest primorial in the table is N n = 30 and the highest one is N 100000 ≈ 1.9 × 10 563920 .

‡ The Dedekind function ψ(n) should not be confused with the second Chebyshev function ψ T (n) = p k ≤n log p.
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