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Abstract

Consistency, almost sure convergence and central limit theorems are provided for two nonparametric estimators of the

local Hurst function of Gaussian multifractional processes. In the case of multifractional Brownian motions, we correct

results of Coeurjolly (2005) [11] and Benassi et al. (1998a) [8].
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1. Introduction

In the sequel, BH = {BH(t), t ∈ R} is a normalized (EBH(t) = 0 and EBH(1) = 1) fractional Brownian motion

(FBM) with Hurst parameter H ∈ (0, 1) defined by the following harmonizable representation (see for instance [15] for

details)

BH(t) :=
(
K(2H)

)1/2
∫

R

eitx − 1

|x|H+1/2
W (dx), (1.1)

where W (dx) is a complex-valued Gaussian noise with variance dx and

K(z) :=
zΓ(z) sin(πz/2)

π
, z ∈ (0, 2). (1.2)

Note that K(·) is positive and analytic on (0, 2). It is well-known that local roughness of the path of a FBM is identical

everywhere and is completely determined by the parameter H . Several generalizations of this process were proposed in

the last decade (see for instance [1]), whose trajectories can display varying Hölder exponents and ”multifractional be-

havior”. In particular, [14] introduced the multifractional Brownian motion (MBM) X = {X(t), t ∈ R} by substituting

H in (1.1) by a function H(t), t ∈ R taking values in (0, 1):

X(t) := BH(t)(t) =
(
K(2H(t))

)1/2
∫

R

eitx − 1

|x|H(t)+1/2
W (dx), (1.3)

Below, we call H(·) the local Hurst function of MBM. Under some regularity condition on H(·) (see Assumption C(η)

below) the MBM is locally asymptotically self-similar at each point t ∈ R having a fBm BH(t) as its tangent process at

t [10] and its pointwise Hlder exponent coincides with H(t) [3]. Note EX2(t) = |t|2H(t) for t ∈ R.

A natural generalization of MBM is

Y = {Y (t), t ∈ R} with Y (t) := σ(t)X(t) for t ∈ R (1.4)

and σ(·) a function on R taking values in R+ := (0,∞). In the sequel, we shall assume the following conditions on H(·)
and σ(·).
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Assumption C(η): H(·) and σ(·) are Cη functions with exponent η > 0, inft∈R σ(t) > 0 and

0 < inf
t∈R

H(t) ≤ sup
t∈R

H(t) < min(1, η). (1.5)

Note, (1.5) excludes discontinuous function H(·) or H(·) /∈ (0, 1). [2] and [7] proposed generalizations of FBM (called

Generalized Multifractional Brownian Motion (GMBM) and Step Fractional Brownian Motion (SFBM), respectively)

which allow a discontinuous function H(·). [16] introduced another generalization of FBM from nonhomogeneous frac-

tional integration which allows H(·) /∈ (0, 1).

Several studies have been devoted to nonparametric estimation of the function H(·) of MBM from a sample
(
X(1/n),

X(2/n), · · · , X(n/n)
)
. [8] discussed an estimator based generalized quadratic variations and obtained its a.s. conver-

gence under Assumption C(1), together with some bounds on the convergence rate (but in Remark 3 below we prove

that an asymptotic expansion of quadratic variation covariance used in this paper is erroneous). [7] applied another

generalized quadratic variations estimator ĥn,α (see Remark 1 below) to estimate parameters of a piecewise constant

function H(·) of SFBM. [3] obtained the a.s. convergence of this estimator under weak assumptions allowing disconti-

nuity of H(·) in the case of GFBM. For MBM satisfying Assumption C(1) with supt∈[0,1]H(t) < 1/8, they also proved

asymptotic normality of ĥn,α, without specifying the exact convergence rate. For this estimator and a SFBM with a

piecewise constant H(·), [4] established a central limit theorem without the previous limitation on supt∈[0,1]H(t) but

with a 1/ logn bias depending on H(·) which does not allow to use this result for applications. Probably, the most

comprehensive results on nonparametric estimation of H(·) were obtained by [11], who used a generalized quadratic

variations estimator Ĥ
(QV )
n,α in (1.9) below and discussed its asymptotic normality under Assumption C(η), η ∈ (0, 1]

together with a convergence rate nη/(1+2η). [11] also proposed an adaptive procedure for selecting an optimal localiza-

tion parameter α for this estimator. However, Lemma 1 of [11] (the key point in the proof of his asymptotic results

for the generalized variations estimator) is erroneous, see Remark 2 below, leading to the necessity of a new study of

asymptotic properties of the estimator Ĥ
(QV )
n,α .

The present paper discusses two estimators of H(·) from observed sample
(
Y (1/n), Y (2/n), · · · , Y (n/n)

)
of Y in

(1.4), namely, the generalized quadratic variations estimator Ĥ
(QV )
n,α (t) of [11] and the estimator Ĥ

(IR)
n,α (t), based on

increment ratios and defined in [6]. The last estimator is a localized version of the estimator discussed in [17].

Let us define these estimators. Consider a filter a := (a0, · · · , aq) ∈ Rq+1 such that there exists m ∈ N∗ satisfying

q∑

ℓ=0

ℓpaℓ = 0 for p = 0, · · · , (m− 1) and

q∑

ℓ=0

ℓmaℓ 6= 0. (1.6)

For n ∈ N∗, t ∈ [0, 1− q/n] → Z(t) (= a random or nonrandom function on [0, 1)), define the generalized variations of

Z = {Z(t), t ∈ [0, 1)} by

V a
n Z(t) =

q∑

ℓ=0

aℓ Z(t+ ℓ/n). (1.7)

The main examples of generalized variations are the usual simple variations corresponding to a = (1,−1), m = 1, and

the second order variations corresponding to a = a∗ := (1,−2, 1), m = 2. More generally, for a filter a = (a0, · · · , aq),
for p ∈ N, p ≥ 2, and j = 1, · · · , p, define its jth dilatation by

a(j) := (a
(j)
0 , · · · , a(j)jq ), with a

(j)
ij = ai and a

(j)
k = 0 if k /∈ jN.

For α ∈ (0, 1), define a neighborhood of t and its cardinal by:

Vn,α(t) :=
{
k ∈ N, |k/n− t| ≤ n−α

}
and vn,α(t) := #Vn,α(t).
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Note that vn,α(t) = [2n1−α] or [2n1−α] + 1 depending on the parity of [2n1−α] = the integer part of 2n1−α. For

H ∈ (0, 1), define

ρ2(H) := Cor(V a∗

n BH(0), V a∗

n BH(1/n)) =
−32H + 22H+2 − 7

8− 22H+1
, (1.8)

Λ2(H) := E

∣∣V a∗

n BH(0) + V a∗

n BH(1/n)
∣∣

|V a∗

n BH(0)|+ |V a∗

n BH(1/n)| =
1

π
arccos(−ρ2(H)) +

1

π

√
1 + ρ2(H)

1− ρ2(H)
log

(
2

1 + ρ2(H)

)
.

The function Λ2 does not depend on n by self-similarity of FMB and is monotone increasing on (0, 1), see [6]. The

estimators Ĥ
(QV )
n and Ĥ

(IR)
n are defined for t ∈ (0, 1) as follows:

Ĥ(QV )
n,α (t) :=

1

2

A

AA⊺

(
log
( 1

vn,α(t)

∑

k∈Vn,α(t)

∣∣V a(i)

n Y (k/n)
∣∣2)
)⊺
1≤i≤p

, (1.9)

Ĥ(IR)
n,α (t) := Λ−1

2

( 1

vn,α(t)

∑

k∈Vn,α(t)

∣∣V a∗

n Y (k/n) + V a∗

n Y ((k + 1)/n)
∣∣

|V a∗

n Y (k/n)|+ |V a∗

n Y ((k + 1)/n)|
)
, (1.10)

where A :=
(
log i − 1

p

∑p
j=1 log j

)
1≤i≤p

∈ Rp is a row vector, A⊺ is the transposed vector (vector-column), and Λ−1
2 is

the inverse function of Λ2. Thus, Ĥ
(QV )
n,α (t) is defined from a log-regression of generalized quadratic variations, see also

[11], whereas Ĥ
(IR)
n,α (t) is defined from a mean of ratios of second order variations.

Remark 1. [3] and [1, 4] studied the estimator ĥn,α(t) :=
1

2

(
1−α−

log
∑

k∈Vn,α(t)

(
V a∗

n Y (k/n)
)2

logn

)
.We do not discuss

this estimator because it is a simpler and less robust version of Ĥ
(QV )
n,α (t) in (1.9). However, limit theorems from the

present paper can be extended to ĥn,α as well.

Below, strong consistency and asymptotic normality of Ĥ
(QV )
n,α (t) and Ĥ

(IR)
n,α (t) are obtained following conditions on

the bandwidth parameter α and the smoothness parameter η in Assumption C(η). The conditions on α and η in

this paper are more restrictive as compared with those in [8] and [11] because of the reasons explained above (see

also Remark 2 and Remark 3). The proofs of our results crucially depend on precise decorrelation inequalities for

generalized variations of MBM which correct the previous decorrelation inequalities in the above mentioned papers.

The inequalities for covariances of generalized variations are derived from asymptotic expansions in Section 2. Section

3 is devoted to the limit theorems satisfied by Ĥ
(QV )
n,α (t) and Ĥ

(IR)
n,α (t). The empirical performance of the estimators is

illustrated in Section 4 (Simulations) under different smoothness assumptions on H(·). Section 5 contains the proofs.

In what follows, C stands for a constant whose precise value is unimportant and which may change from line to line.

Also, we write
P−→

n→∞
,

a.s.−→
n→∞

,
D−→

n→∞
for convergence in probability, almost sure (a.s.) convergence and the (weak)

convergence of probability distributions, respectively.

2. Expansions and inequalities for covariances of generalized variations of MBM

In this section we assume that Y is given as in (1.4) and Assumption C(η) holds.

Property 1. For any t0 ∈ (0, 1), p ∈ N∗, there exists a constant C(p) > 0 such that for all n ≥ 1,

max
k∈Vn,α(t0)

∣∣∣∣∣
E
(
Y (k+p

n )− Y ( kn )
)2

(
p
n

)2H(t0)
− σ2(t0)

∣∣∣∣∣ ≤ C(p)
( logn

n(η∧1)α
+

1

n2(η−H(t0))

)
. (2.1)

Property 2. Let a = (a0, · · · , aq) ∈ Rq+1 satisfy property (1.6) with m ≥ 1. For any t0 ∈ (0, 1), α ∈ (0, 1) there exist
C > 0, n0 such that for any n ≥ n0 and any k, k′ ∈ Vn,α(t0),

∣∣∣E
[
V a
n Y (

k

n
)V a

n Y (
k′

n
)
]∣∣∣ ≤ C

1

n2H(t0)

( 1

(|k′ − k|+ 1)m−H(t0)
+

1

n(η∧m)−H(t0)

)2
. (2.2)
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Property 1 provides the rate of convergence of Y to its tangent process, which is a FBM. Properties 1 and 2 imply that

correlation Cor (V a
nX(k/n), V a

nX(k′/n)) for k, k′ ∈ Vn,α(t0) decays as O(|k′−k|2H(t0)−2m−2) when |k′−k| ≤ n
η∧m−H(t0)

m−H(t0)

and as O(n−2(η∧m−H(t0))) otherwise (see Figure 4.1 for an illustration of this property).

Properties 1 and 2 follow from the asymptotic expansion of the covariance of generalized variations given in Lemma 2

(see Section 5). In (2.7) below we present this expansion for simple variations with a = (1,−2, 1), m = 2 but for general

m ≥ 0 the formulation of Lemma 2 is more involved.

Let Y be defined as in (1.4). Note, for t, t′ ∈ [0, 1]

EY (t)Y (t′) = Q(σ(t), σ(t′), H(t), H(t′), t, t′), (2.3)

where Q is a function of 6 variables t, t′ ∈ [0, 1], H,H ′ ∈ (0, 1), σ, σ′ ∈ (0,∞) defined by

Q(σ, σ′, H,H ′, t, t′) :=
1

2
σ σ′L(H,H ′)

(
tH+H′

+ t′H+H′ − |t− t′|H+H′

)
, (2.4)

and L(H,H ′) :=

(
K(2H)K(2H ′)

)1/2

K(H +H ′)
(2.5)

with K(·) defined in (1.2).

For 0 < t < t′ < 1, introduce the 3× 3-matrix of the second order partial derivatives:

R(2)(t, t′) :=



R

(2)
H,H′ (t, t′) R

(2)
H,σ′(t, t′) R

(2)
H,t′(t, t

′)

R
(2)
σ,H′(t, t′) R

(2)
σ,σ′(t, t′) R

(2)
σ,t′(t, t

′)

R
(2)
t,H′(t, t′) R

(2)
t,σ′(t, t′) R

(2)
t,t′(t, t

′)


 , (2.6)

whose elements are the corresponding partial derivatives of the function Q computed at H := H(t), H ′ := H(t′), σ :=

σ(t), σ′ := σ(t′),

R
(2)
H,H′ (t, t

′) :=
∂2Q

∂H∂H ′
(σ(t), σ(t′), H(t), H(t′), t, t′), · · · , R(2)

t,t′(t, t
′) :=

∂2Q

∂t∂t′
(σ(t), σ(t′), H(t), H(t′), t, t′).

In particular,

R
(2)
t,t′(t, t

′) =
1

2
σ(t)σ(t′)L(H(t), H(t′))(H(t) +H(t′))(H(t) +H(t′)− 1)(t′ − t)H(t)+H(t′)−2,

R
(2)
H,H′(t, t

′) =
σ(t)σ(t′)

2

{
L(H(t), H(t′))

[
tH(t)+H(t′) log2 t+ t′H(t)+H(t′) log2 t′ − (t′ − t)H(t)+H(t′) log2(t′ − t)

]

+ 2
∂L

∂H
(H(t), H(t′))

[
tH(t)+H(t′) log t+ t′H(t)+H(t′) log t′ − (t′ − t)H(t)+H(t′) log(t′ − t)

]

+
∂2L

∂H∂H ′
(H(t), H(t′))

[
tH(t)+H(t′) + t′H(t)+H(t′) − (t′ − t)H(t)+H(t′)

]}
.

Then, from Lemma 2, since a = (1,−2, 1), m = 2, for k, k′ ∈ Vn,α(t), when n, k, k
′ − k → ∞,

E
[
V a
n Y (

k

n
)V a

n Y (
k′

n
)
]

=
(
V a
nH(

k

n
), V a

n σ(
k

n
), V a

n

k

n

)
×R(2)

(k
n
,
k′

n

)
×
(
V a
nH(

k′

n
), V a

n σ(
k′

n
), V a

n

k′

n

)⊺

+
1

2
σ2(t)

( 3∏

i=0

(2H(t)− i)
) |k − k′|2H(t)−4

n2H(t)
+ O

(
1

n(3η)∧5
+

∣∣k′ − k|2H(t)−5

n2H(t)

)
, (2.7)

where
(
V a
nH( kn ), V

a
n σ(

k
n ), V

a
n

k
n

)
=
(
H(k+2

n )−2H(k+1
n )+H( kn ), σ(

k+2
n )−2σ(k+1

n )+σ( kn ), 0
)
∈ R3 following the definition

in (1.7) with a = (1,−2, 1). Next, let σ(·) ≡ 1, then V a
n σ(

k
n ) = 0 and the terms involving partial derivatives with respect

to σ, σ′, t, t′ in the quadratic form on the r.h.s. of (2.7) disappear. We see from the above expressions of partial derivatives

that R
(2)
HH′

(
k
n ,

k′

n

)
= O(1) and hence the main term of the expansion on the r.h.s. of (2.7) decays as

O
(∣∣V a

nH(
k

n
)V a

nH(
k′

n
)
∣∣ + |k′ − k|2H(t)−4n−2H(t)

)
= O

(
n−2(η∧2) + |k′ − k|2H(t)−4n−2H(t)

)
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which agrees with the bound in (2.2) for m = 2. The above argument suggests that (2.2) is an optimal or nearly optimal

decay rate of covariance of generalized variations of MBM which can be achieved e.g. by taking for H(·) a “typical”

trajectory of FBM with Hurst parameter η ∈ (0, 1).

Remark 2. According to [11] (Lemma 1), for any α, t0 ∈ (0, 1), k, k′ ∈ Vn,α(t0) and n large enough,

E
[
V a
nX(

k

n
)V a

nX(
k′

n
)
]

= E
[
V a
nBH(t0)(

k

n
)V a

n BH(t0)(
k′

n
)
] (

1 +O
(
n−αη logn

) )
. (2.8)

For m = 2, a = (1,−2, 1) we have

E
[
V a
nBH(t0)(

k

n
)V a

nBH(t0)(
k′

n
)
]

= − 1

2n2H(t0)

(
|k − k′ + 2|2H(t0) − 4|k − k′ + 1|2H(t0) + 6|k − k′|2H(t0)

−4|k − k′ − 1|2H(t0) + |k − k′ − 2|2H(t0)
)

∼ − 1

2n2H(t0)
(2H(t0))(2H(t0)− 1)(2H(t0)− 2)(2H(t0)− 3)|k − k′|2H(t0)−4 (2.9)

and hence according to (2.8) the decay rate is

∣∣∣E
[
V a
nX(

k

n
)V a

nX(
k′

n
)
]∣∣∣ ≤ C

∣∣k′ − k|2H(t0)−4n−2H(t0). (2.10)

Note the bound in (2.10) does not depend on η ∈ (0, 1] and therefore (2.10) is much better than our bound (2.2).
However, (2.8) and (2.10) are erroneous, which fact easily follows from our expansion in (2.7). Indeed, let σ(·) ≡ 1 and

H(t) :=

{
H0, 0 ≤ t ≤ 1/2,

H0 + (t− 1
2 )

η, 1/2 < t ≤ 1
(2.11)

for some 0 < H0 < 1/2 < η < 1. Let k = [n/2], k′ > k, k, k′ ∈ Vn,α(1/2). Then for even n

V a
nH(

k

n
) = n−η, V a

nH(
k′

n
) = H(

k′ + 2

n
)− 2H(

k′ + 1

n
) +H(

k′

n
) ∼ η(η − 1)(k′ − k)η−2n−η.

From (2.7), and since L(H0, H0) = 1, ∂L
∂H (H0, H0) = 0 and one obtains





R
(2)
H,H′

(k
n
,
k′

n

)
−→
n→∞

c0 := 2−2H0
[
log2 2− 2

∂L

∂H
(H0, H0) log 2 +

∂2L

∂H∂H ′
(H0, H0)

]
6= 0,

R
(2)
t,H′

(k
n
,
k′

n

)
= O

((k′ − k

n

)2H0−1
logn

)
,

R
(2)
t,t′

(k
n
,
k′

n

)
= O

((k′ − k

n

)2H0−2)
.

Therefore, for k′ − k = [n1−α] and α such as 1− α > 2(η−H0)
2−2H0+η i.e. 0 < α < 2−η

2+η−2H0
< 1, from (2.7) we obtain

E
[
V a
nX(

k

n
)V a

nX(
k′

n
)
]

= (c0 + o(1))V a
nH(

k

n
)V a

nH(
k′

n
) +O

(
(k′ − k)2H0−4n−2H0

)

= c0η(η − 1)n−(2−η)(1−α)−2η(1 + o(1)) (2.12)

which contradicts (2.10).

Remark 3. [8] consider the case of a MBM where Xt = a∞(t)
∫

eitx−1
|x|H(t)+1/2W (dx), where a∞(·) ∈ C1, H(·) ∈ C1. Note

that with our notations a∞(t) = σ(t)
(
K(2H(t))

)1/2
. Lemma 2 in Benassi et al. (1998a), based on more general results

published in [9], gives an expansion for

I(S, S)k,k′ =

q∑

i,j=0

aiajEX(
k + i

n
)X(

k′ + j

n
) = EV aX(

k

n
)V aX(

k′

n
)

for k, k′ ∈ Vn,α(t). This expansion is

EV a
nX(

k

n
)V a

nX(
k′

n
) = a∞(

k

n
)a∞(

k′

n
)n−H(k/n)−H(k′/n)FH(k/n)+H(k′/n)(k − k′) +O(

1

n2δ+1|k − k′|2 ), (2.13)
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where δ < H(t) is arbitrarily close to H(t) and Fγ(k) = 2
∑q

i,j=0 aiaj
∫
eikx sin2((i−j)x/2)

|x|γ+1 dx. Remark that the lower

bounds δ > max(H(t) − 1/2, 0) and sup(H(s), s ∈ Vt) < δ + 1/2 in [8] are not necessary since in (2.13) it makes sense
to choose δ as large as possible.
Let us clarify the notation Fγ and (2.13). We have 2 sin2(jx/2) = 1− cos(jx) = (1/2)|eijx − 1|2 and therefore

FH(k/n)+H(k′/n)(k − k′) =
1

2

q∑

i,j=0

aiaj

∫
ei(k−k′)x |ei(i−j)x − 1|2

|x|H(k/n)+H(k′/n)+1
dx

=
1

2

q∑

i,j=0

aiaj

∫
2(ei(k−k′)x − 1) + (1− ei(k−k′+i−j)x) + (1− ei(k−k′+i−j)x)

|x|H(k/n)+H(k′/n)+1
dx

=

q∑

i,j=0

aiaj

∫
1− ei(k−k′+i−j)x

|x|H(k/n)+H(k′/n)+1
dx using relation (1.6)

= − 1

K(H(k/n) +H(k′/n))

q∑

i,j=0

aiaj |k + i− k′ − j|H(k/n)+H(k′/n)

=
2√

K(H(k/n))K(H(k′/n))
EV a

1 BH(k/n)(k)V
a
1 BH(k′/n)(k

′).

Hence and because of a∞(t) = σ(t)
(
K(2H(t))

)1/2
,

a∞(
k

n
)a∞(

k′

n
)n−H(k/n)−H(k′/n)FH(k/n)+H(k′/n)(k − k′) = 2 σ(

k

n
)σ(

k′

n
)EV a

nBH(k/n)(
k

n
)V a

n BH(k′/n)(
k′

n
).

In the particular case q = 2, a0 = a2 = 1, a1 = −2, with H := H(k/n), H ′ := H(k′/n), using (2.9) we obtain

EV a
nBH(k/n)(

k

n
)V a

n BH(k′/n)(
k′

n
) ∼ − 1

2nH+H′
(H +H ′)(H +H ′ − 1)(H +H ′ − 2)(H +H ′ − 3)|k − k′|H+H′−4.

Therefore, with C an identifiable quantity, for k, k′ ∈ Vn,α(t), relation (2.13) becomes

EV a
nX(

k

n
)V a

nX(
k′

n
) ∼ C

nH(k/n)+H(k′/n)|k′ − k|4−H(k/n)−H(k′/n)
+O

( 1

n2H(t)+1−ε|k − k′|2
)
. (2.14)

On the other hand from our Lemma 2 under the same conditions (notably η = 1) we should have

EV a
nX(

k

n
)V a

nX(
k′

n
) ∼ C

nH(k/n)+H(k′/n)|k′ − k|4−H(k/n)−H(k′/n)
+
C1

n2
+O

( 1

n3
+

1

n2H(t)|k − k′|5−2H(t)

)
. (2.15)

To obtain a contradiction between (2.14) and (2.15), it suffices to take |k′ − k| large enough so that the main term in
(2.15) is C1n

−2, and at the same time to take |k′−k| so that the remainder term in (2.14) is negligible. For concreteness,
let H(t) = 5/6, |k′ − k| = n1/4, then since H(·) ∈ C1, so nH(k/n)+H(k′/n) ∼ n2H(t) ∼ n5/3,

n2H(t)|k′ − k|4−2H(t) = n5/3n7/12 = n27/12 ≫ n2; n2H(t)+1|k′ − k|2 = n8/3n1/2 = n19/6.≫ n27/12

Therefore and since C1 6= 0, we see that EV a
nX( kn )V

a
nX(k

′

n ) ∼ C1 n
−2 and therefore (2.14) [= the expansion in [8]

(Lemma 2)] is incorrect.

3. Limit theorems satisfied by the estimators of the Hurst function

For a general Gaussian process Z = {Z(t), t ∈ [0, 1]} and a filter a = (a0, · · · , aq) ∈ Rq+1 satisfying the property

(1.6) with m ≥ 1 and α ∈ (0, 1), we introduce the following assumptions adopted from [6].

(A.1) There exist continuous functions 0 < H(t) < 1 and c(t) > 0 for t ∈ [0, 1] satisfying H(·) ∈ Cη([0, 1]) and

c(·) ∈ Cη([0, 1]), η > 0 such that for any p ∈ N∗ and t0 ∈ (0, 1),

lim
n→∞

max
k∈Vn,α(t0)

∣∣∣
E
(
Z(k+p

n )− Z( kn )
)2

(
p
n

)2H(t0)
− c
(
t0
)∣∣∣ = 0. (3.1)
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(A.1’) There exist continuous functions 0 < H(t) < 1 and c(t) > 0 for t ∈ [0, 1] satisfying H(·) ∈ Cη([0, 1]) and

c(·) ∈ Cη([0, 1]) with η > 0, max(0, 1− 2η) < α < 1 such that for any p ∈ N∗ and t0 ∈ (0, 1),

lim
n→∞

n(1−α)/2 max
k∈Vn,α(t0)

∣∣∣
E
(
Z(k+p

n )− Z( kn )
)2

(
p
n

)2H(t0)
− c
(
t0
)∣∣∣ = 0. (3.2)

(A.2) For any t0 ∈ (0, 1) there exist C > 0, γ > 1/2 and 0 ≤ θ < γ/2 such that for any n ∈ N∗ and k, k′ ∈ Vn,α(t0),

∣∣∣Cor
(
V a
n Z(

k

n
), V a

n Z(
k′

n
)
)∣∣∣ ≤ C n(1−α)θ(|k′ − k|+ 1)−γ . (3.3)

If condition (A.1) or (A.1’) is satisfied then Z admits a tangent process which is a FBM (with (A.1’), the rate of

convergence of Z to its tangent process is controlled). Condition (A.2) provides a bound for the correlation of the

process {V a
nZ(

k
n ), k ∈ Vn,α(t0)}. Under such conditions, the strong consistency and a CLT for Ĥ

(QV )
n,α (t0) and Ĥ

(IR)
n,α (t0)

can be established.

Theorem 1. Let Z = {Z(t), t ∈ [0, 1]} be a Gaussian process, and a = (a0, · · · , aq) ∈ Rq+1 be such that (1.6) is
satisfied with m ≥ 1.

(i) If Z satisfies condition (A.1) then for all t0 ∈ (0, 1) and any α ∈ (0, 1)

Ĥ(QV )
n,α (t0)

P−→
n→∞

H(t0) and Ĥ(IR)
n,α (t0)

P−→
n→∞

H(t0).

(ii) If Z satisfies conditions (A.1) and (A.2) with 0 < α < γ−2θ
2(γ−θ) , then for all t0 ∈ (0, 1)

Ĥ(QV )
n,α (t0)

a.s.−→
n→∞

H(t0) and Ĥ(IR)
n,α (t0)

a.s.−→
n→∞

H(t0).

Theorem 2. Let Z = {Z(t), t ∈ [0, 1]} be a Gaussian process satisfying (A.1’) and (A.2) with and a = (a0, · · · , aq) ∈
Rq+1 be such that (1.6) is satisfied with m ≥ 1. Then for all t0 ∈ (0, 1)

n(1−α)/2
(
Ĥ(QV )

n,α (t0)−H(t0)
) D−→

n→∞
N
(
0,
AΓ(H(t0))A

⊺

4(AA⊺)2
)

(3.4)

and n(1−α)/2
(
Ĥ(IR)

n,α (t0)−H(t0)
) D−→

n→∞
N
(
0 , Σ2(H(t0))

)
(3.5)

with A as in (1.9), Γ(H) as in (5.34) and H → Σ2(H) provided and drawn in [6].

Remark 4. Note that the conditions for the strong consistency or the asymptotic normality of Ĥ
(QV )
n,α (t0) and Ĥ

(IR)
n,α (t0)

are the same for both estimators. A key point in the proofs of these limit theorems is the fact that these estimators are
written as sums of functions of Gaussian vectors and these functions have the same Hermite rank 2 in both cases.

Corollary 1. Let a = (a0, · · · , aq) ∈ Rq+1 satisfy property (1.6) with m ≥ 1 and Assumption C(η) holds with some
η > 0. Then for all t0 ∈ (0, 1),

1. For all α ∈ (0, 1), Ĥ
(QV )
n,α (t0)

P−→
n→∞

H(t0) and Ĥ
(IR)
n,α (t0)

P−→
n→∞

H(t0).

2. Ĥ
(QV )
n,α (t0)

a.s.−→
n→∞

H(t0) and Ĥ
(IR)
n,α (t0)

a.s.−→
n→∞

H(t0) when

η ∧m > H(t0) +
1

8
and 0 < α < min

{1
2
, 1− 1

8(m−H(t0))

}
. (3.6)

3. If max
{ 1

1 + 2(η ∧ 1)
, 1−4

(
(η∧m)−H(t0)

)}
< α < 1, then the CLTs (3.4) and (3.5) hold when H(t0) < m−1/4.

Remark 5. ¿From the proofs of Properties 2 and 1 and Theorems 1 and 2, it is clear that if Hlderian properties of
H(·) and σ(·) are provided in a neighborhood of t0, then results of Corollary 1 are also valid when η is replaced by η(t0).
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Note that if m ≥ 2 the last inequality in (3.6) simplifies to 0 < α < 1/2 while condition H(t0) < m − 1/4 for the

CLTs is automatically satisfied. If m = 1, we find again the condition H(t0) < 3/4 for the statement of the CLTs,

condition already obtained for Ĥ
(QV )
n,0 (t0) in [12] or [13].

Since α may depend on η and H(t0) that are not available, it is a problem to apply the CLTs (3.4) and (3.5) of

Corollary 1 in concrete situations. However, when η ≥ 1 and H(t0) < 5/6 it is possible to select any α > 1/3 and even

to use n1/3 log2 n instead of nα and then the convergence rate of the CLT is n1/3 up to a logarithm term. Note that

[11] proposed a procedure by minimization of the MISE to select an optimal α̂ and then an adaptive estimator of H(t0)

is Ĥ
(QV )
n,α̂ (t0).

4. Simulations

4.1. Simulations concerning Property 2

This property is essential for proving the CLTs satisfied by the estimators Ĥ
(QV )
n,α (·) and Ĥ(IR)

n,α (·). As it was said in

Remark 2, Property 2 also indicates that Lemma 1 of [11] or Lemma 2 of [8] are erroneous. It is easy to obtain the

explicit expression of the covariance
∣∣E
[
V a
n Y ( kn )V

a
n Y (k

′

n )
]∣∣. Thus it is possible to obtain by deterministic computations

the convergence rate of
∣∣E
[
V a
n Y ( kn )V

a
n Y (k

′

n )
]∣∣ when n → ∞. The concrete numerical experiment procedure is the

following:

• m = 2, a = (1,−2, 1);

• α is chosen to be 0.1, 0.11, 0.12, · · · , 0.89, 0.9;

• we have chosen k = [nt0]− 0.5n1−α and k′ = [nt0] + n1−α with t0 = 0.5;

• for each α, the log-log regression of
∣∣E
[
V a
n Y ( kn )V

a
n Y (k

′

n )
]∣∣ onto n is realized, where n = 100× i, i = 1, 2, · · · , 104.

The slope of the log-log-regression line provides an approximation of the exponent of the power law in n (Remark

that even if this is a deterministic numerical experiment the convergence rate of
∣∣E
[
V a
n Y ( kn )V

a
n Y (k

′

n )
]∣∣ when

n→ ∞ could only be approximated because the sign of this covariance can change when n increases and a log-log

regression is sensitive to such a change).

The purpose of this simulation is to exhibit, with the chosen values |k′ − k| ≈ 3
2n

1−α, the covariance decay rate∣∣E
[
V a
n Y ( kn )V

a
n Y (k

′

n )
]∣∣ ≈ C(n−2(η∧2)+n−2H(t0)α−4(1−α)

)
as indicated by Property 2 (since m = 2), or the characteristic

exponent in (4.1), below, with a break of slope in α at α0 := 2−η∧2
2−H .

For the above task, the choice of the function H(·) is crucial. If H(·) is chosen a deterministic function as in (2.11)

which satisfies the Hölder condition with exponent η at a single point t0, the decay rate n−2(η∧2) will be not reached,

see (2.12). Hence, to achieve our goal, the function H(·) needs to be exactly a Cη function in a neighborhood of t0.

For this reason, we chose H(·) a trajectory of a FBM with Hurst parameter η ∈ (0, 1), and, similarly, a trajectory of

integrated FBM with Hurst parameter η − 1 ∈ (0, 1) for 1 < η < 2. It is well-known that such a trajectory is a.s.

η′-Hlderian for all η′ < η. Figure 1 contains the results of simulations for two different values of η, viz. η = 0.6 and

η = 1.5. This figure shows that with such a function H(·), the asymptotic behavior

log
(∣∣E
[
V a
n Y (

k

n
)V a

n Y (
k′

n
)
]∣∣)/ log(1/n) ∼ min(2η, 2H(t0)α+ 4(1− α)) (4.1)

is observed, including the change point at α0 of the behavior of the characteristic exponent in (4.1).
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Figure 1: Simulation of lim
n→∞

log
(∣∣E

[
V a
n Y (

k

n
)V a

n Y (
k′

n
)
]∣∣)/ log(1/n) when H(·) is a trajectory of a FBM with Hurst parameter η = 0.6 (left)

and a trajectory of integrated FBM with Hurst parameter η − 1 = 1.5− 1 (right) (in both cases, H(t0) = η/3). The theoretical asymptotic
rates as given by the r.h.s. of (4.1) are also drawn.

4.2. Simulations on the convergence rate of Ĥ
(QV )
n,α and Ĥ

(IR)
n,α

Since trajectories of MBM in our simulation study are generated (for a given Hurst function H(·)) using the Choleski

decomposition of the covariance matrix, the number of observation points limited to n = 5000. Although this data

length may appear rather small in the present context, some interesting features can nevertheless be noted. Three

cases are considered: Case 1: H(·) is a smooth function; Case 2: H(·) is a trajectory of an integrated FBM with Hurst

parameter 0 < H < 1 and independent of X , therefore H(·) ∈ Cη− with η = 1 + H ∈ (1, 2); and Case 3: H(·) is a

trajectory of a FBM with Hurst parameter 0 < η < 1, independent of X .

For each Hurst function H(·), Monte-Carlo experiments are realized from 100 independent replications of MBM trajec-

tories for the following choice of parameters:

• α = 0.2, 0.3, 0.4 and 0.5;

• p = 5 (= the number of dilatations) in all cases;

• a = (1,−2, 1) and therefore m = 2 in all cases.

For each estimator, the estimation of the function H(·) is done for t = {n−α, n−α+0.01, · · · ,min(1−n−α, n−α+0.99)}
and therefore an approximation of

√
MISE =

( ∫ 1

0
E(Ĥn(t)−H(t))2dt

)1/2
can be computed. Here there are the results

of simulations:

Case 1: H(·) ∈ C∞

We have chosen H(t) = 0.5(1+
√
t sin(20t)) in order that H(·) displays ample fluctuations. Figure 2 provides graphs

of the two estimators Ĥ
(QV )
n,α and Ĥ

(IR)
n,α for n = 5000 and three values of α (α = 0.3, 0.4 and 0.5). We can observe that

the first estimator is more biased at α = 0.3 vs. the second estimator and that both estimators become less stable as

α increases (in general, Ĥ
(IR)
n,α appears to be more sensitive to the choice of α than Ĥ

(QV )
n,α ). The corresponding MISE

are given in Table 1.

In agreement with the theory (see the remark at the end of section 3), our simulation suggests to select α close to 1/3

for optimal results, more precisely, α ≃ 0.3 for Ĥ
(IR)
n,α , and α ≃ 0.4 for Ĥ

(QV )
n,α . The above table also confirms that, with

the above choice of the bandwidth α, the accuracy of both estimators increases according to the theoretical convergence

rate n(1−α)/2 as n increases from n = 1000 to n = 5000. Our general impression from simulations with smooth Hurst

functions is that in the case when H(·) does not vary much (in particularly, when H(·) is a constant as in the case of

FBM), the estimator Ĥ
(QV )
n,α is more accurate compared to Ĥ

(IR)
n,α , while in the opposite case, the second estimator is

preferable to the first one.
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α 0.2 0.3 0.4 0.5

n = 1000
√
M̂ISE for Ĥ

(QV )
n,α 0.29 0.17 0.16 0.17√

M̂ISE for Ĥ
(IR)
n,α 0.13 0.15 0.17 0.23

n = 5000
√
M̂ISE for Ĥ

(QV )
n,α 0.21 0.13 0.09 0.10√

M̂ISE for Ĥ
(IR)
n,α 0.13 0.08 0.11 0.16

Table 1: Values of the (empirical) MISE for estimators Ĥ
(QV )
n,α and Ĥ

(IR)
n,α of the smooth Hurst function H(t) = 0.5(1+

√
t sin(20t)) in Figure

2, for n ∈ {1000, 5000}, α ∈ {0.2, 0.3, 0.4, 0.5} and a = (1,−2, 1).
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Figure 2: Estimations of the function H(t) = 0.5(1 +
√
t sin(20t)) with t ∈ (0, 1) for n = 5000 and α = 0.3, 0.4 and 0.5 (from left to right).

The top row represents the graphs of the sample means of Ĥ
(QV )
n,α (t) and Ĥ

(IR)
n,α (t) of 100 independent replications of MBM with the above

function H(·). The bottom row represents the graphs of Ĥ
(QV )
n,α (t) and Ĥ

(IR)
n,α (t) from a single trajectory of a MBM with the same function

H(·). The graphs of H(t), Ĥ
(QV )
n,α (t), and Ĥ

(IR)
n,α (t) are in blue, green, and red, respectively.
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α 0.2 0.3 0.4 0.5

n = 1000
√
M̂ISE for Ĥ

(QV )
n,α 0.17 0.16 0.16 0.18√

M̂ISE for Ĥ
(IR)
n,α 0.15 0.15 0.22 0.27

n = 5000
√
M̂ISE for Ĥ

(QV )
n,α 0.16 0.14 0.12 0.15√

M̂ISE for Ĥ
(IR)
n,α 0.12 0.12 0.20 0.26

Table 2: Values of the (empirical) MISE for estimators Ĥ
(QV )
n,α and Ĥ

(IR)
n,α of the differentiable Hurst function H(·) ∈ C1.5− in Figure 3, for

n ∈ {1000, 5000}, α ∈ {0.2, 0.3, 0.4, 0.5} and a = (1,−2, 1).
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Figure 3: Sample means of 100 independent replications of Ĥ
(QV )
n,α (t) and Ĥ

(IR)
n,α (t) of differentiable Hurst function H(·) ∈ C1.5− for n = 5000

and α = 0.3, 0.4, 0.5 (from left to right). The graphs of H(t), Ĥ
(QV )
n,α (t) and Ĥ

(IR)
n,α (t) are respectively in blue, green and red.

Case 2: H(·) ∈ Cη−, 1 < η < 2

We have chosen η = 1.5 but other simulations with different values of η lead to similar conclusions. Figure 3 provides

graphs of mean values (over 100 independent simulation) of both estimators for n = 5000 and α ∈ {0.3, 0.4, 0.5}. We

can see from this figure that both estimators are rather unbiased although their variances seem to increase with α,

especially for Ĥ
(IR)
n,α . The last fact can be also observed from Table 2, containing the empirical MISE.

Similarly as in Case 1, the choice of bandwidth α ≃ 0.3 for Ĥ
(IR)
n,α , and α ≃ 0.4 for Ĥ

(QV )
n,α appears to be optimal.

Case 3: H(·) ∈ Cη−, 0 < η < 1

We have chosen here η = 0.6. An example of a graph of a function H(·) ∈ C0.6− and both the estimators is drawn in

Figure 4. For such a function H(·), the following table provides the computations of
√
M̂ISE:

The relatively small values of the
√
M̂ISE in Table 3 with respect to Table 2 can be explained by the fact that the values

of H(·) in Table 3 are generally smaller than in Table 2 since the condition (1.5) had to be imposed in the simulations.

From Table 3 we can observe that an optimal choice of α is ≃ 0.2 for Ĥ
(IR)
n,α (t) and ≃ 0.3 or 0.4 for Ĥ

(QV )
n,α (t). It is not

possible to observe that there is a bias if α ≤ (1 + 2η)−1 = 1/2.2 ≃ 0.46 as the theory (Corollary 1) seems to indicate;

it perhaps requires to consider larger n than 5000. From Figure 4 and Table 3, it appears that in Case 3, Ĥ
(QV )
n,α (t) is

more accurate from the two estimators.
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α 0.2 0.3 0.4 0.5

n = 1000
√
M̂ISE for Ĥ

(QV )
n,α 0.15 0.13 0.13 0.17√

M̂ISE for Ĥ
(IR)
n,α 0.14 0.17 0.21 0.27

n = 5000
√
M̂ISE for Ĥ

(QV )
n,α 0.09 0.07 0.07 0.10√

M̂ISE for Ĥ
(IR)
n,α 0.07 0.10 0.14 0.17

Table 3: Values of the (empirical) MISE for estimators Ĥ
(QV )
n,α and Ĥ

(IR)
n,α of the nondifferentiable Hurst function H(·) ∈ C0.6− in Figure 4,

for n ∈ {1000, 5000}, α ∈ {0.2, 0.3, 0.4, 0.5} and a = (1,−2, 1).
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Figure 4: Sample means of 100 independent replications of Ĥ
(QV )
n,α (t) and Ĥ

(IR)
n,α (t) of nondifferentiable Hurst function H(·) ∈ C0.6− for

n = 5000 and α = 0.3, 0.4, 0.5 (from left to right). H(t), Ĥ
(QV )
n,α (t) and Ĥ

(IR)
n,α (t) are respectively in blue, green and red.
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5. Lemmas and proofs

In Lemmas 1 and 2, below, we assume that a = (a0, · · · , aq) ∈ Rq+1 satisfy property (1.6) and Assumption C(η)

holds, with some η > 0, m ≥ 1.

Lemma 1. There exists Cσ,H(q) ≥ 0 only depending on q, σ(·) and H(·) such that for any k ∈ {1, · · · , n− q},
∣∣∣∣∣

Var
(
V a
n Y ( kn )

)

σ2( kn )Var
(
V a
nBH( k

n )(
k
n )
) − 1

∣∣∣∣∣ ≤ Cσ,H(q)
logn

nη∧1
.

Proof of Lemma 1. For any k ∈ {0, 1, · · · , n− q},

Var
(
V a
n Y (

k

n
)
)

=
1

2

q∑

i,j=0

ai aj (σ(
k

n
) + βi) (σ(

k

n
) + βj)L(H(

k

n
) + δi, H(

k

n
) + δj)

×
(∣∣k + i

n

∣∣2H( k
n )+δi+δj

+
∣∣k + j

n

∣∣2H( k
n )+δi+δj −

∣∣ j − i

n

∣∣2H( k
n )+δi+δj

)

We know from the assumptions that there exists C ≥ 0 (not depending on k and n) such as max{|βi|, |βj |, |δi|, |δj |} ≤
C n−η∧1. But

∣∣ j − i

n

∣∣2H( k
n )+δi+δj

=
∣∣ j − i

n

∣∣2H( k
n )

exp
{
(δi + δj) log

∣∣ j − i

n

∣∣
}
=
∣∣ j − i

n

∣∣2H( k
n )
(
1 + O

( log n
nη∧1

))
. The same

expansion can also be obtained by replacing j − i by i or by j. Note that here O(·) is only depending on function H(·)
and q (and does not depend on k and n). Moreover since (x, x′) 7→ L(x, x′) is an analytic function on (0, 1)2, it is clear

that L(H( kn ) + δi, H( kn ) + δj) = L(H( kn ), H( kn )) + O
(
n−η∧1

)
and O(·) does not depend on k and n. Therefore one

obtains that

Var
(
V a
n Y (

k

n
)
)
=
{ q∑

i,j=0

ai aj σ(
k

n
)σ(

k

n
)L(H(

k

n
), H(

k

n
))
(∣∣k + i

n

∣∣2H( k
n )

+
∣∣k + j

n

∣∣2H( k
n ) −

∣∣ j − i

n

∣∣2H( k
n )
)}(

1 +O
( logn
nη∧1

))

=σ2(
k

n
)Var

(
V a
nBH( k

n )(
k

n
)
)(

1 +O
( logn
nη∧1

))
,

where the bounded function O(·) only depends on q, H(·) and σ(·). �

Proof of Property 1. Consider the filter sequence (a0, · · · , ap) = (−1, 0, · · · , 0, 1); therefore m = 1 and for all

k ∈ {1, · · · , n−p}, Var
(
V a
n Y ( kn )

)
= E

(
Y (k+p

n )−Y ( kn )
)2
. From Lemma 1, there exists Cσ,H(p) such that for k ∈ Vn,α(t0),

∣∣∣∣∣
Var

(
V a
n Y ( kn )

)

σ2( kn )Var
(
V a
nBH( k

n )(
k
n )
) − 1

∣∣∣∣∣ =

∣∣∣∣∣∣
E
(
Y (k+p

n )− Y ( kn )
)2

σ2( kn )
∣∣ p
n

∣∣2H( k
n )

− 1

∣∣∣∣∣∣
≤ Cσ,H(p)

log n

nη∧1
. (5.1)

But a Taylor expansion implies for k ∈ Vn,α(t0),

∣∣ p
n

∣∣2H( k
n )

=
∣∣ p
n

∣∣2H(t0)
exp

{
2(H(

k

n
)−H(t0)) log(p/n)

}
=
∣∣ p
n

∣∣2H(t0)
(
1 +O

( logn

nα(η∧1)

))

with O(·) depending only on p and H(·). Moreover, σ2( kn ) = σ2(t0) + O
(

1
nα(η∧1)

)
with O(·) depending only on σ(·).

Thus, the inequality (5.1) can be replaced by the inequality (2.1) and Property 1 is proved. �

Lemma 2. For any 0 < t ≤ t′ ≤ 1, (k, k′) ∈ Vn,α(t)× Vn,α(t
′), as |k′ − k|, n→ ∞,

E
[
V a
n Y (

k

n
)V a

n Y (
k′

n
)
]

=
(
V a
nH(

k

n
), V a

n σ(
k

n
), V a

n

k

n

)
×R(2)

(k
n
,
k′

n

)
×
(
V a
nH(

k′

n
), V a

n σ(
k′

n
), V a

n

k′

n

)⊺

+ 1{m≥2}

(∑q
i=1 i

mai
)2

2(m!)2
σ2(t)

( 2m−1∏

ℓ=0

(
H(t)+H(t′)−ℓ

))
∣∣k′ − k|H(t)+H(t′)−2m

nH(t)+H(t′)
+o
( 1

n2(η∧m)
+

∣∣k′ − k|H(t)+H(t′)−2m

nH(t)+H(t′)

)
.

(5.2)
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Remark 6 (and proof of Property 2). Assumptions H(·) ∈ Cη, σ(·) ∈ Cη imply

V a
nH

(k
n

)
= O(n−η∧m), V a

n σ
(k
n

)
= O(n−η∧m). (5.3)

If t = t′, from Lemma 1 and Cauchy-Schwarz Inequality, it is clear that there exists C(q) ≥ 0 (depending only on q)
such that for all k, k′ ∈ {1, · · · , n− q},

∣∣E
[
V a
n Y (

k

n
)V a

n Y (
k′

n
)
]∣∣ ≤ C(q)

nH( k
n )+H( k′

n )
, (5.4)

since Var
(
V a
nBH( k

n )(
k
n )
)
= −(1/2)n−2H( k

n )
∑

0≤i,j≤q aiaj |j − i|2H( k
n ) ≤ (1/2)

(
q
∑q

i=0 |ai|
)2
n−2H( k

n ).

From (5.2), (5.3) and (5.4) it follows that, if t = t′, there exists Cσ,H(t) > 0 such that for all k, k′ ∈ Vn,α(t)

∣∣E
[
V a
n Y (

k

n
)V a

n Y (
k′

n
)
]∣∣ ≤ Cσ,H(t)

( 1

n2(η∧m)
+

(1 + |k′ − k|)2H(t)−2m

n2H(t)

)
. (5.5)

The proof of Property 2 is achieved.

Proof of Lemma 2. Denote

• δi := H(
k

n
+
i

n
)−H(

k

n
), δ′j := H(

k′

n
+
j

n
)−H(

k′

n
), ‖δ‖ := max

1≤i≤q
|δi|, ‖δ′‖ := max

1≤j≤q
|δ′j |,

• βi := σ(
k

n
+
i

n
)− σ(

k

n
), β′

j := σ(
k′

n
+
j

n
)− σ(

k′

n
), ‖β‖ := max

1≤i≤q
|βi|, ‖β′‖ := max

1≤j≤q
|β′

j |.

By the definitions in (2.3)-(2.5),

E
[
V a
n Y (

k

n
)V a

n Y (
k′

n
)
]
=

q∑

i,j=0

ai aj Q
(
σ(
k + i

n
), σ(

k′ + j

n
), H(

k + i

n
), H(

k′ + j

n
),
k + i

n
,
k′ + j

n

)

=

q∑

i,j=0

ai aj Q
(
σ(
k

n
) + βi, σ(

k′

n
) + β′

j , H(
k

n
) + δi, H(

k′

n
) + δ′j ,

k

n
+
i

n
,
k′

n
+
j

n

)
,

Similarly to (2.6), for any collection p = (p1, · · · , p6) ∈ N6 of integers and s 6= s′, introduce partial derivatives of order

|p| := p1 + · · ·+ p6 of Q in (2.4):

R
(|p|)
σp1 ,σ′p2 ,··· ,s′p6 (s, s

′) :=
∂|p|Q

∂σp1 ∂σ′p2 · · · ∂s′p6
(σ(s), σ(s′), H(s), H(s′), s, s′); (5.6)

in particular, R
(1)
H (s, s′) = ∂Q

∂H (σ(s), σ(s′), H(s), H(s′), s, s′), · · · , R(1)
s′ (s, s′) = ∂Q

∂s′ (σ(s), σ(s
′), H(s), H(s′), s, s′). With-

out loss of generality, assume k′−k > 2q in the sequel. Using the Taylor expansion of order 2m of Q in (σ, σ′, H,H ′, s, s′),

one obtains:

E
[
V a
n Y (

k

n
)V a

n Y (
k′

n
)
]

=
∑

0≤|p|≤2m

Jn(p) +
∑

|p|=2m+1

J̃n(p), (5.7)

where

Jn(p) :=
1

p1! · · · p6!
R

(|p|)
σp1 ,··· ,s′p6 (

k

n
,
k′

n
)

q∑

i,j=0

aiajβ
p1

i (β′
j)

p2 · · ·
( j
n

)p6
,

J̃n(p) ≤ C sup
I( k

n , k
′

n )

∣∣R(|p|)
σp1 ,··· ,s′p6 (s, s

′)
∣∣

q∑

i,j=0

∣∣βp1

i (β′
j)

p2 · · ·
( j
n

)p6
∣∣

and where the set I( kn ,
k′

n ) ⊂ (0,∞)2 × (0,∞)2 × (0, 1)2 is defined by

I(
k

n
,
k′

n
) :=

{
(σ, σ′, H,H ′, s, s′) : |σ − σ(

k

n
)| ≤ ‖β‖, · · · , |H ′ −H(

k′

n
)| ≤ ‖δ′‖, |s− k

n
| ≤ q

n
, |s′ − k′

n
| ≤ q

n
, s < s′

}
.
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Note terms in (5.7) corresponding to |p| = 0 and |p| = 1 vanish because of the moment condition (1.6). In particular,

∑

|p|=1

Jn(p) =

q∑

i,j=0

ai aj

(
βiR

(1)
σ

(k
n
,
k′

n

)
+ · · ·+ j

n
R

(1)
s′

(k
n
,
k′

n

))
= 0.

In a similar way,

∑

|p|=2

Jn(p) =
1

2

(
2
( q∑

i=0

aiβi
)( q∑

j=0

ajβ
′
j

)
R

(2)
σ,σ′

(k
n
,
k′

n

)
+ · · ·+ 2

( q∑

i=0

ai
i

n

)( q∑

j=0

aj
j

n

)
R

(2)

s,s′

(k
n
,
k′

n

))

=
(
V a
nH(

k

n
), V a

n σ(
k

n
), V a

n

k

n

)
×R(2)

(k
n
,
k′

n

)
×
(
V a
nH(

k′

n
), V a

n σ(
k′

n
), V a

n

k′

n

)⊺
, (5.8)

since
∑q

i=0 aiβi = V a
nH( kn ), · · · ,

∑q
j=0 aj

j
n = V a

n
k
n . Note that the partial derivatives in (5.6) which do not involve

arguments s and s′ are bounded while each differentiation in s or s′ contributes a factor |k′−k
n

∣∣−1
; in other words,

sup
I( k

n ,k
′

n )

∣∣∣R(|p|)
σp1 ,··· ,s′p6 (s, s

′)
∣∣∣ ≤ C

(
1 +

∣∣k
′ − k

n

∣∣H( k
n )+H( k′

n )−p5−p6
)

≤ C
(
1 +

∣∣k
′ − k

n

∣∣H(t)+H(t′)−p5−p6
)

(5.9)

since (|H(t)−H(k/n)|+ |H(t′)−H(k′/n)|) log(|k′ − k|/n) = o(1). From (5.3) and (5.9) we obtain

∣∣ ∑

|p|=2

Jn(p)
∣∣ ≤ C

( 1

n2(η∧m)
+

|k′ − k|H(t)+H(t′)−2

nH(t)+H(t′)
1{m=1}

)
(5.10)

since V a
n

k
n = 0 for m > 1. We also have

Jn(0, 0, 0, 0,m,m) =
1

2(m!)2
( q∑

i=1

imai
)2
σ(
k

n
)σ(

k′

n
)L
(
H(

k

n
), H(

k′

n
)
)

×
2m−1∏

ℓ=0

(
H(

k

n
) +H(

k′

n
)− ℓ

)( |k − k′|
n

)H( k
n )+H( k′

n )−2m

=
1

2

( q∑

i=1

imai
)2
σ2(t)

2m−1∏

ℓ=0

(
H(t) +H(t′)− ℓ

)(
∣∣k′ − k|H(t)+H(t′)−2m

nH(t)+H(t′)

)(
1 + o(1)

)
. (5.11)

It remains to prove that all the other terms in the Taylor expansion (5.7) are negligible with respect to (5.11) or (5.8)

as estimated in (5.10). The above task is trivial in the case t 6= t′ so that we focus on the case t′ = t in the rest of the

proof. Define

Λn :=
1

n2(η∧m)
+

|k′ − k|2H(t)−2m

n2H(t)
.

We shall prove below that

Jn(p) = o(Λn), 2 < |p| ≤ 2m, (5.12)

J̃n(p) = o(Λn), |p| = 2m+ 1. (5.13)

Then the statement of the lemma for t = t′ follows from (5.7), (5.8) and (5.12), (5.13).

Let us prove (5.12). Define

Un(p) :=

q∑

i=0

aiβ
p1

i δp3

i

( i
n

)p5
, U ′

n(p) :=

q∑

j=0

aj(β
′
i)

p2(δ′j)
p3
( j
n

)p6
. (5.14)

We claim that for any η > 0 and m ≥ 1

|Un(p)| ≤ C
( 1

nm∨p5
+

1

nη+p5

)
(5.15)
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and a similar bound holds for U ′
n(p). Let us check that (5.15) and (5.9) imply (5.12). Indeed, from the above relations

and the definition of Jn(p) we obtain

|Jn(p)| ≤
∣∣R(|p|)

σp1 ,··· ,t′p6 (
k

n
,
k′

n
)
∣∣ |Un(p)| |U ′

n(p)|

≤ C
∣∣k

′ − k

n

∣∣2H(t)−p5−p6
( 1

nm∨p5
+

1

nη+p5

)( 1

nm∨p6
+

1

nη+p6

)
≤ I11 + I12 + I21 + I22,

where

I11 :=
∣∣k

′ − k

n

∣∣2H(t)−p5−p6 1

n2m
, I12 :=

∣∣k
′ − k

n

∣∣2H(t)−p5−p6 1

n(m∨p6)+η+p5
,

I21 :=
∣∣k

′ − k

n

∣∣2H(t)−p5−p6 1

n(m∨p5)+η+p6
, I22 :=

∣∣k
′ − k

n

∣∣2H(t)−p5−p6 1

n2η+p5+p6
.

It suffices to prove (5.12) for Iij , i, j = 1, 2.

Let H := H(t), p := p5 + p6. For I11, (5.12) follows from
∣∣k′−k

n

∣∣2H−p 1
n2m = o( |k

′−k|2H−2m

n2H ), which is immediate from

p < 2m and |k′ − k| = o(n).

Consider I22. Assume first that η < m. Observe that in this case,

Λn ≤ 2




n−2η, |k′ − k| ≥ n(η−H)/(m−H),

|k′ − k|2H−2mn−2H , |k′ − k| ≤ n(η−H)/(m−H).
(5.16)

Therefore in the case |k′ − k| ≥ n(η−H)/(m−H), the bound (5.12) for I22 translates to |k′ − k|2H−p = o(n2H) which is

obvious by p ≥ 0 and |k′ − k| = o(n). Next, let |k′ − k| ≤ n(η−H)/(m−H), p ≥ 1, then the bound (5.12) for I22 becomes

|k′ − k| = o(n2η/(2m−p)) which holds by (η−H)/(m−H) < 2η/(2m− p) since H < η < m. Next, let η ≥ m. Then the

first term in the definition of Λn is negligible with respect to the second term and the corresponding relation reduces to

|k′ − k|2H−p5−p6

n2η+2H
= o

( |k′ − k|2H−2m

n2H

)
, (5.17)

which is obvious by |k′ − k| = o(n) and η ≥ m. This proves (5.12) for I22.

Next, consider I12. Let η < m and |k′−k| ≥ n(η−H)/(m−H). Firstly, let p6 ≤ m. Then using (5.16) the bound (5.12) for

I12 translates to n
(η−m+p6−2H)/(p5+p6−2H) = o(|k′−k|) or inequality (η−m+p6−2H)/(p5+p6−2H) < (η−H)/(m−H),

which is equivalent to

0 < p5(η −H) + (m− η)(m +H − p6). (5.18)

The last inequality is immediate by m > η > H and p6 ≤ m. Secondly, let p6 > m. Then using (5.16) the bound (5.12)

for I12 follows from n(η−2H)/(p5+p6−2H) = o(|k′ − k|) or inequality (η− 2H)/(p5 + p6 − 2H) < (η−H)/(m−H). Using

p5 + p6 ≥ m+ 1, the previous inequality reduces to 0 < (η −H) + (m− η)H which is obvious by m > η > H .

Next, consider (5.12) for I12 and η < m, |k′ − k| ≤ n(η−H)/(m−H). Then using (5.16), relation (5.12) again reduces

to the same inequalities (5.18) (for p6 ≤ m) and 0 < (η −H) + (m− η)H (for p6 > m), as above.

It remains to show (5.12) for I12 and η ≥ m, it which case it reduces to

|k′ − k|2H−p5−p6

n(m∨p6)−p6+η+2H
= o

( |k′ − k|2H−2m

n2H

)

c.f. (5.17). The above relation verifies easily for η ≥ m and |k′ − k| = o(n). This proves (5.12) for J12. Since

consideration of I21 is completely analogous, the proof of (5.12) is now complete.

Let us prove the claim (5.15). Write δi = δ0i + Γi, βi = β0i +Σi, where

Γi :=

[η]∑

r=1

Hr

r!

( i
n

)r
, Σi :=

[η]∑

r=1

σr
r!

( i
n

)r
, Hr := H(r)(

k

n
), σr := σ(r)(

k

n
).

By Assumption C(η),

max(|δ0i|, |β0i|) ≤ C n−η, max(|Hr|, |σr|) ≤ C. (5.19)
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From binomial expansion,

Un(p) =
∑(

p1
τ01, · · · , τ[η]1

)(
p3

τ03, · · · , τ[η]3

)( [η]∏

r=1

στr1
r Hτr3

r

) q∑

i=0

aiβ
τ01
0i δ

τ03
0i

( i
n

)p5+
∑[η]

r=1 r(τr1+τr3)
,

where the first sum is taken over all decompositions

p1 = τ01 + · · ·+ τ[η]1, p3 = τ03 + · · ·+ τ[η]3

into nonnegative integers τij ∈ N, i = 0, 1 · · · , [η], j = 1, 3. Let τ := τ01 + τ03. According to (1.6), for any s = 0, 1, · · ·
∣∣∣

q∑

i=0

ai
( i
n

)s∣∣∣ ≤ C n−s1(s ≥ m).

Therefore from (5.19) it follows that

∣∣∣
q∑

i=0

aiβ
τ01
0i δ

τ03
0i

( i
n

)p5+
∑[η]

r=1 r(τr1+τr3)
∣∣∣ ≤ C





n−ητ−p5−
∑[η]

r=1 r(τr1+τr3), τ ≥ 1,

n−p5−
∑[η]

r=1 r(τr1+τr3), τ = 0, p5 +
∑[η]

r=1 r(τr1 + τr3) ≥ m,

0, otherwise.

Note that for τ = 0, we have
∑[η]

r=1 r(τr1 + τr3) ≥
∑[η]

r=0(τr1 + τr3) = p1 + p3. Hence,

n−p5−
∑[η]

r=1 r(τr1+τr3)1
(
τ = 0, p5 +

[η]∑

r=1

r(τr1 + τr3) ≥ m
)

≤ (n−m) ∧ (n−p1−p3−p5) ≤ n−(m∨p5).

Therefore

∣∣∣
q∑

i=0

aiβ
τ01
0i δ

τ03
0i

( i
n

)p5+
∑[η]

r=1 r(τr1+τr3)
∣∣∣ ≤ C

(
n−η−p5 + n−(m∨p5)

)
,

proving (5.15) and (5.12).

It remains to prove (5.13). Let Ũn(p) :=
∑q

i=0

∣∣aiβp1

i δp3

i

(
i
n

)p5
∣∣. Since ‖β‖+‖δ‖ ≤ Cn−(η∧1), see (5.19), it immediately

follows that

Ũn(p) ≤ Cn−(η∧1)(p1+p3)−p5 (5.20)

and a similar bound holds for Ũ ′
n(p) :=

∑q
j=0

∣∣aj(β′
j)

p2(δ′j)
p4
(
j
n

)p6
∣∣. Relations (5.20) and (5.9) imply

J̃n(p) ≤ C
(
1 +

∣∣k
′ − k

n

∣∣2H−p
)
n−(η∧1)(2m+1−p)−p (5.21)

where p = p5 + p6 ∈ {0, 1, · · · , 2m+ 1} and |p| = 2m+ 1. Relation (5.13) now can be verified directly, by inspecting

the cases η < 1, η ≥ 1, p = 0, 1, 2m, 2m+ 1 and 1 < p < 2m separately. This ends the proof of Lemma 2. �

Proof of Theorem 1. The proof is based on a moment bound (Lemma 1) established in [5]. First, for t0 ∈ (0, 1), consider

S(i)
n :=

1

vn,α(t0)

∑

k∈Vn,α(t0)

∣∣V a(i)

n Z(k/n)
∣∣2

n2H(t0)
and S∗

n :=
1

vn,α(t0)

∑

k∈Vn,α(t0)

∣∣V a∗

n Z(k/n) + V a∗

n Z((k + 1)/n)
∣∣

|V a∗

n Z(k/n)|+ |V a∗

n Z((k + 1)/n)| .

The study of the asymptotic properties of (S
(i)
n )1≤i≤p and S∗

n will induce the asymptotic properties of Ĥ
(QV )
n,α (t0) and

Ĥ
(IR)
n,α (t0). Now for k ∈ {0, 1, . . . , n− q − 1}, i = {1, . . . , p} define

(σ(i)
n (k))2 := Var

[
V a(i)

n Z(k/n)
]

and ρ(i,j)n (k) :=
Cov

[
V a(i)

n Z(k/n), V a(j)

n Z(k/n)
]

σ
(i)
n (k)σ

(j)
n (k)

and

σ∗2
n (k) := Var

[
V a∗

n Z(k/n)
]

and ρ∗n(k) :=
Cov

[
V a∗

n Z(k/n), V a∗

n Z((k + 1)/n)
]

σ∗
n(k)σ

∗
n(k + 1)

.

Now, with mn := vn,α(t0) ∼ 2n1−α (n→ ∞) and jn = [nt0 − n1−α],
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• S(i)
n =

1

mn

mn−1∑

j=0

f
(i)
j,mn

(
Y

(i)
mn

(j)
)
where





Y
(i)
mn

(j) :=
V a(i)

n Z((jn + j)/n)

σ
(i)
n (jn + j)

f
(i)
j,mn

(y) := n−2H(t0)(σ(i)
n (jn + j))2 y2

• S∗
n =

1

mn

mn−1∑

j=0

f∗
j,mn

(
Y ∗

mn
(j)
)
where Y ∗

mn
(j) :=

(
Y 1∗
mn

(j), Y 2∗
mn

(j)
)
∈ R2 and





Y 1∗
mn

(j) :=
V a∗

n Z((jn + j)/n)

σ∗
n(jn + j)

Y 2∗
mn

(j) := −V
a∗

n Z((jn + j)/n)

σ∗
n(jn + j)

ρ∗n(jn + j)√
1− ρ∗2n (jn + j)

+
V a∗

n Z((jn + j + 1)/n)

σ∗
n(jn + j + 1)

1√
1− ρ∗2n (jn + j)

f∗
j,mn

(
y(1), y(2)

)
:=

∣∣∣y(1) + σ∗

n(jn+j+1)
σ∗

n(jn+j)

(
ρ∗n(jn + j)y(1) +

√
1− ρ∗2n (jn + j)y(2)

)∣∣∣
∣∣y(1)

∣∣+ σ∗

n(jn+j+1)
σ∗

n(jn+j)

∣∣∣ρ∗n(jn + j)y(1) +
√
1− ρ∗2n (jn + j)y(2)

∣∣∣

.

Therefore, in both the case Y (i)
mn

(j) and Y ∗
mn

(j) are standardized Gaussian vectors and f
(i)
j,mn

and f∗
j,mn

are functions

with Hermite rank at least 2 for any j, mn. Now, we use the common notation Sn, Ymn(j) and fj,mn without specifying

the exponent (i) or ∗. Using the same method as in the proof of Theorem 1 in [5], under Assumptions (A1) and (A2),

one obtains that there exist C > 0 and κ > 0 such that E
(
Sn − ESn

)4 ≤ Cn−κ. Indeed, let ℓ = [m
θ/γ
n ]. Write

Sn − ESn =
1

mn

ℓ−1∑

j=0

T (ℓ)
n (j), where T (ℓ)

n (j) :=

[(mn−q−j)/ℓ]∑

k=0

ηmn(kℓ+ j)

and ηmn(i) := fi,mn

(
Ymn(i)

)
− E

[
fi,mn

(
Ymn(i)

)]
.

Then

E (Sn − ESn)
4 ≤

( ℓ

mn

)4
max
0≤j<ℓ

E
(
T (ℓ)
n (j)

)4
and E

(
T (ℓ)
n (j)

)4 ≤ C (Σ4 +Σ3 +Σ2,1 +Σ2,2), (5.22)

where

Σ4 :=
∑′ ∣∣E

[
ηmn(k1ℓ+ j) · · · ηmn(k4ℓ+ j)

]∣∣,

Σ3 :=
∑′ ∣∣E

[
ηmn(k1ℓ+ j)ηmn(k2ℓ+ j)η2mn

(k3ℓ+ j)
]∣∣,

Σ2,1 :=
∑′ ∣∣E

[
η3mn

(k1ℓ+ j)ηmn(k2ℓ+ j)
]∣∣,

Σ2,2 :=
∑

E
[
η2mn

(k1ℓ+ j)η2mn
(k2ℓ+ j)

]
,

where
∑′

(respectively,
∑

) stands for the sum over all different integers 0 ≤ ki < [mn/ℓ], ki 6= kj(i 6= j) (respectively,

over all 0 ≤ k1, k2 < [mn/ℓ]). But, since E|ηmn(k)|p ≤ Cp for all k,mn and p > 0,

Σ2,i ≤ C (mn/ℓ)
2 (i = 1, 2). (5.23)

Let us estimate Σ3,Σ4. Let Qmn,ℓ be defined such that:

Q(ℓ)
mn

(j) := max
1≤i≤[mn/ℓ]

[mn/ℓ]∑

k=1,k 6=i

ρ̄2mn
(kℓ+ j, iℓ+ j), (5.24)

where ρ̄mn(k, j) :=
∣∣E
[
Ymn(k)Ymn(j)

]∣∣ in the case of S
(i)
n and ρ̄mn(k, j) := maxu,v=1,2

∣∣E
[
Y

(u)
mn (k)Y

(v)
mn (j)

]∣∣ in the case

of S∗
n. But from Assumption (A.2) and since H(·) and c(·) are continuous functions such that 0 < H ≤ H(t) ≤ H < 1

and c(t) > 0 for all t ∈ [0, 1], then ρ̄mn(k, j) ≤ min
(
1 , C mθ

n|j − k|−γ
)
(the case of S∗

n is detailed in [5]). Therefore

max
0≤j<ℓ

Q(ℓ)
mn

(j) ≤ Cm2θ
n ℓ

−2γ max
0≤j<ℓ

max
1≤i≤[mn/ℓ]

[mn/ℓ]∑

k=1,k 6=i

|k − i|−2γ

≤ 2Cm2θ
n ℓ

−2γ
∞∑

k′=1

|k′|−2γ ≤ C (5.25)
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because ℓ = [m
θ/γ
n ] and γ > 1/2. Thus, since the Hermite rank of fj,mn is at least m = 2 for any j,mn, Σ4 and Σ3 can

be bounded using Lemma 1 of [5] with N = [mn/ℓ]. For Σ4, with p = α = 4, m = 2, QN = max0≤j<ℓQ
(ℓ)
mn(j), then

Σ4 ≤ C (mn/ℓ)
4− 4

2

(
max
0≤j<ℓ

Q(ℓ)
mn

(j)
) 4

2 ≤ C (mn/ℓ)
2. (5.26)

Similarly, for Σ3, with p = 3, α = 2 and m = 2,

Σ3 ≤ C (mn/ℓ)
3− 2

2

(
max
0≤j<ℓ

Q(ℓ)
mn

(j)
) 2

2 ≤ C (mn/ℓ)
2. (5.27)

Combining (5.23), (5.27) and (5.26) with (5.22), we obtain

E
(
T (ℓ)
n (j)

)4 ≤ C (mn/ℓ)
2 =⇒ E (Sn − ESn)

4 ≤ C
( ℓ

mn

)2
.

Now, since ℓ = [m
θ/γ
n ] and mn ∼ 2n1−α, then E (Sn − ESn)

4 ≤ C n2(1−α)(θ/γ−1). When θ < γ, it is clear that

Sn − ESn
P−→

n→∞
0.

With θ/γ < 1− 1
2(1−α) (Assumption (A.2)), which is equivalent to α < γ−2θ

2(γ−θ) , there exists κ = 2(1− α)(1− θ/γ) > 1

such that E (Sn − ESn)
4 ≤ C n−κ and Borel-Cantelli Lemma implies

Sn − ESn
a.s.−→

n→∞
0. (5.28)

Finally, it remains to evaluate ESn. But,

ESn =
1

mn

mn−1∑

j=0

E
[
fj,mn

(
Ymn(j)

)]
=

∫ 1

0

E
[
f[mnt],mn

(
Ymn([mnt])

)]
dt. (5.29)

Moreover, for all t ∈ [0, 1], from Assumption (A.1), it can be established that f
(i)
[mnt],mn

−→
n→∞

φ
(i)
t0 and f∗

[mnt],mn
−→
n→∞

φ∗t0

where,

φ
(i)
t0 (y) := lim

n→∞
f
(i)
[mnt],mn

(
y
)
=
(

lim
n→∞

n−2H(t0)
(
σ(i)
n ([nt0 − n1−α] + [mnt])

)2)
y2

= c(t0)
(
− 1

2

iq∑

k,k′=0

a
(i)
k a

(i)
k′ |k′ − k|2H(t0)

)
y2 = K(t0) i

2H(t0) y2 (5.30)

φ∗t0
(
y(1), y(2)

)
:= lim

n→∞
f∗
[mnt],mn

(
y(1), y(2)

)

=

∣∣y(1) +
(
ρ2(H(t0))y

(1) +
√
1− ρ22(H(t0))y

(2)
)∣∣

∣∣y(1)
∣∣+
∣∣ρ2(H(t0))y(1) +

√
1− ρ22(H(t0))y(2)

∣∣ (5.31)

(this last limit was established in the proof of Theorem 1 in [5]) with

K(t0) := −c(t0)
2

q∑

k,k′=0

a
(1)
k a

(1)
k′ |k′ − k|2H(t0) and ρ2(H) :=

−32H + 22H+2 − 7

8− 22H+1
.

Therefore from Lebesgue Theorem (in both the cases, f[mnt],mn
is bounded by a L1([0, 1])-function),

∫ 1

0

E
[
f
(i)
[mnt],mn

(
Ymn([mnt])

)]
dt −→

n→∞
K(t0) i

2H(t0)

∫ 1

0

1 dt = K(t0) i
2H(t0);

∫ 1

0

E
[
f∗
[mnt],mn

(
Ymn([mnt])

)]
dt −→

n→∞

∫ 1

0

Λ2(H(t0)) dt = Λ2(H(t0)),

with Λ2(H) = E
[
φ∗t0
(
Z1, Z2

)]
where (Z1, Z2) is a standardized Gaussian vector, i.e. with the expression of ρ2(H)

provided above (see [5] for details),

Λ2(H) :=
1

π
arccos(−ρ2(H)) +

1

π

√
1 + ρ2(H)

1− ρ2(H)
log

(
2

1 + ρ2(H)

)
. (5.32)
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With (5.29) and (5.28), we deduce that for all t0 ∈ (0, 1) (here we only indicates the end of the proof for strong

consistency but the results are the same when
P−→

n→∞
replaces

a.s.−→
n→∞

),

S(i)
n

a.s.−→
n→∞

K(t0) i
2H(t0) and S∗

n
a.s.−→

n→∞
Λ2(H(t0)).

Now it is clear that since x→ log(x) and x→ (Λ2)
−1(x) are continuous functions,

(
logS(i)

n

)
1≤i≤p

a.s.−→
n→∞

(
2H(t0) log i+ logK(t0)

)
1≤i≤p

and (Λ2)
−1
(
S∗
n

) a.s.−→
n→∞

H(t0),

and the strong consistency of Ĥ
(QV )
n,α (t0) and Ĥ

(IR)
n,α (t0) follows (the expression of Ĥ

(QV )
n,α (t0) is obtained by the linear

regression of
(
log(n2H(t0)S

(i)
n )
)
1≤i≤p

onto
(
log i

)
1≤i≤p

and therefore the terms logK(t0) and logn2H(t0) disappear). �

Proof of Theorem 2. The proof is based on a CLT for multidimensional Gaussian triangular arrays (Theorem 1 of

[5]) and follows the same steps than the proof of Corollary 4.3. established in [6]. We are going to use the notation of

the proof of Theorem 1, except that in the case of
(
S
(i)
n

)
1≤i≤p

a multidimensional CLT has to be proved. For ease of

writing we will only consider the bidimensional case: let (i1, i2) ∈ {1, . . . , p}2, (ui1 , ui2) ∈ R2 and

S(i1,i2)
n := ui1 S

(i1)
n + ui2 S

(i2)
n =

1

mn

mn−1∑

j=0

f
(i1,i2)
j,mn

(
Y

(i1,i2)
mn

(j)
)

where Y (i1,i2)
mn

(j) :=
(
Y

1,(i1,i2)
mn (j), Y

2,(i1,i2)
mn (j)

)
∈ R2 and





Y 1,(i1,i2)
mn

(j) :=
V a(i1)

n Z((jn + j)/n)

σ
(i1)
n (jn + j)

Y 2,(i1,i2)
mn

(j) :=
1√

1− (ρ
(i1,i2)

n (jn + j))2

(
− ρ(i1,i2)n (jn + j)

V a(i1)

n Z((jn + j)/n)

σ
(i1)
n (jn + j)

+
V a(i2)

n Z((jn + j)/n)

σ
(i2)
n (jn + j)

)

f∗
j,mn

(
y(1), y(2)

)
:= n−2H(t0)

(
ui1
(
σ(i1)
n (jn + j)

)2
(y(1))2

+ui2
(
σ
(i2)
n (jn + j)

)2(
ρ
(i1,i2)
n (jn + j) y(1) +

√
1− (ρ

(i1,i2)

n (jn + j))2 y(2)
)2)

Now we use the common notation Sn, Ymn(j) and fj,mn . First, as in the previous proof, the asymptotic behavior of

f[mnt],mn
when n→ ∞ has to be studied. This requires to study the following asymptotic behaviors of σ

(i)
n (jn+[mnt]),

ρ
(i1,i2)
n (jn + [mnt]), σ

∗
n(jn + [mnt]) and ρ∗n(jn + [mnt]). Using Assumption (A.1’), since H(·) and c(·) are Cη([0, 1])

functions and n(1−α)/2n−η logn −→
n→∞

0 since α is supposed to be such that α > (1+2(η∧1))−1, technical computations

imply that:

n(1−α)/2 sup
τ∈[t0−n−α,t0+n−α]

∣∣∣n2H(τ)(σ(i)
n )2([nτ ])−K(τ)i2H(τ)

∣∣∣ −→
n→∞

0

n(1−α)/2 sup
τ∈[t0−n−α,t0+n−α]

∣∣∣ρ(i1,i2)n ([nτ ]) − ρ(i1,i2)(τ)
∣∣∣ −→

n→∞
0

n(1−α)/2 sup
τ∈[t0−n−α,t0+n−α]

∣∣∣σ
∗
n([nτ ] + 1)

σ∗
n([nτ ])

− 1
∣∣∣ −→

n→∞
0

n(1−α)/2 sup
τ∈[t0−n−α,t0+n−α]

∣∣∣ρ∗n([nτ ])− ρ2(H(τ))
)∣∣∣ −→

n→∞
0

with ρ(i1,i2)(τ) := − 1
2

∑q
k1,k2=0 a

(1)
k1
a
(1)
k2

|k1i1 − k2i2|2H(τ). Moreover we have n(1−α)/2n−αη logn −→
n→∞

0 since α >

(1 + 2(η ∧ 1))−1 and therefore

n(1−α)/2 sup
τ∈[t0−n−α,t0+n−α]

∣∣∣K(τ)−K(t0)
∣∣∣ −→

n→∞
0

n(1−α)/2 sup
τ∈[t0−n−α,t0+n−α]

∣∣∣ρ(i1,i2)(τ) − ρ(i1,i2)(t0)
∣∣∣ −→

n→∞
0

n(1−α)/2 sup
τ∈[t0−n−α,t0+n−α]

∣∣∣ρ2(H(τ)) − ρ2(H(t0))
)∣∣∣ −→

n→∞
0
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Finally, for all y ∈ R2,

n(1−α)/2 sup
t∈[0,1]

∣∣f[mnt],mn
(y)− φt0(y)

∣∣ −→
n→∞

0 (5.33)

with φ∗t0 specified in (5.31) and

φ
(i1,i2)
t0 (y(1), y(2)) := K(t0)

(
ui1 i

2H(t0)
1 (y(1))2 + ui2 i

2H(t0)
2

(
ρ(i1,i2)(t0) y

(1) +
√
1− (ρ(i1,i2)(t0))2 y

(2)
)2)

.

Now the CLT for multidimensional triangular arrays of [5] can be applied to the sample means of f̃k,mn

(
Ymn(j)

)
:=

fk,mn

(
Ymn(j)

)
−E

[
fk,mn(Y )

]
with Y a R2 standardized Gaussian vector. Since θ = 0, then condition (6.3) is satisfied

and Lemme 6.1 part (iii) can be applied, with the Hermite rank of f̃k,mn and ψt0 at least 2. It is clear from its definition in

both the cases that for all J ∈ N, and with Assumption (A.1’), that (Ymn([mnt] + j))−J≤j≤J

f.d.d.−→
n→∞

(Wt(j))−J≤j≤J

where (Wt(j))j∈Z
is a stationary Gaussian process, and therefore condition (6.8) is satisfied. Thus,

n(1−α)/2
(
Sn − ESn)

D−→
n→∞

N
(
0 γ2(t0)

)
,

with γ2(t0) :=

∫ 1

0

dt
(∑

j∈Z

E
[
φt0 (Wt(0))φt0 (Wt(j))

])
. Finally, using (5.33), it is clear that

n(1−α)/2
(
ESn −

∫ 1

0

E
[
φt0(Y )

]
dt
)

−→
n→∞

0,

and therefore

n(1−α)/2
(
Sn −

∫ 1

0

E
[
φt0(Y )

]
dt
) D−→

n→∞
N
(
0 γ2(t0)

)
.

Then with the expression of γ2(t0) in both the cases and the Delta-Method, it follows that:

n(1−α)/2
(
logS(i)

n −
(
2H(t0) log i+ logK(t0)

))
1≤i≤p

D−→
n→∞

N
(
0 , Γ(H(t0))

)

n(1−α)/2
(
(Λ2)

−1
(
S∗
n

)
−H(t0)

) D−→
n→∞

N
(
0 Σ2(H(t0))

)

with H → Σ2(H) provided and drawn in [6] and Γ(H(t0)) such that

Γ(H) := 2


∑

j∈Z

(∑q
k1,k2=0 a

(1)
k1
a
(1)
k2

|i1k1 − i2k2 + j|2H
∑q

k1,k2=0 a
(1)
k1
a
(1)
k2

|i1k1 − i2k2|2H
)2



1≤i1,i2≤p

. (5.34)

In the case of Ĥ
(QV )
n,α (t0), using again the linear regression of (log S

(i)
n ) onto (log i) which is the same as the linear

regression of (log(n2H(t0)S
(i)
n )) onto (log i) concerning the estimation of the slope, Theorem 2 is proved. �

Proof of Corollary 1. From Property 1, one obtains that under Assumption C(η), for all t0 ∈ (0, 1), and all p ∈ N,

max
k∈Vn,α(t0)

∣∣∣∣∣
E
(
Y (k+p

n )− Y ( kn )
)2

(
p
n

)2H(t0)
− σ2(t0)

∣∣∣∣∣ ≤ CH,σ(p)
logn

nα(η∧1)

Therefore, Assumption (A.1) is satisfied for all α ∈ (0, 1) while Assumption (A.1’) is satisfied when

α >
1

1 + 2(η ∧ 1)
. (5.35)

In the other hand, Assumption (A.2) can be deduced from Property 2. Indeed, Property 2 induces that there exists

C > 0 not depending on k, k′ and n such that for all k, k′ ∈ Vn,α(t0),

∣∣∣Cor
[
V a
n Y (

k

n
)V a

n Y (
k′

n
)
]∣∣∣ ≤ C

( 1

(|k′ − k|+ 1)m−H(t0)
+

1

n(η∧m)−H(t0)

)2
. (5.36)
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(i) Assumption (A.1) is satisfied for all α ∈ (0, 1).

(ii) Let us check conditions of Theorem 1 (ii) for Z = Y . As previously, Assumption (A.1) is satisfied for all α ∈ (0, 1).

To verify (A.2), for α satisfying (3.6), choose

max
(1
2
, 2min

( (η ∧m)−H(t0)

1− α
, m−H(t0)

))
< γ < 4min

(
(η ∧m)−H(t0) , (m−H(t0))(1 − α)

)
(5.37)

(note that from (3.6), 4((η ∧ 1) − H(t0)) >
1
2 , 4(m − H(t0))(1 − α) > 1

2 and 4((η ∧m) − H(t0)) >
2((η∧m)−H(t0))

1−α ,

4(m−H(t0))(1 − α) > 2m− 2H(t0) since α < 1/2 so that the interval in (5.37) is nonempty) and then define

θ := γ − 2min
( (η ∧m)−H(t0)

1− α
, m−H(t0)

)
. (5.38)

This choice (5.37)-(5.38) satisfies 0 ≤ θ < γ/2, γ > 1/2 required by (A.2). Moreover, α < γ−2θ
2(γ−θ) as it is required in

Theorem 1, part (ii). It remains to check that the inequality (5.36) induced by Property 2 satisfies (3.3), i.e. that

1

k2m−2H(t0)
≤ C

n(1−α)θ

kγ
and

1

n2((η∧m)−H(t0))
≤ C

n(1−α)θ

kγ
(5.39)

hold for all 1 ≤ k ≤ n1−α. These inequalities hold if they hold for k = n1−α; then this is obvious from the definition of

γ − θ in (5.38).

(iii) Let us check conditions of Theorem 2 for Z = Y . Condition α > 1 − 2(η ∧ 1) is included in the condition

α > (1 + 2(η ∧ 1))−1 of the corollary. Assumption (A.2) with θ = 0 and γ > 1/2 follows from Property 2 since

2m− 2H(t0) > 1/2 (valid for m = 1 since H(t0) < 3/4) and

1

n2((η∧m)−H(t0))
= o
( 1

n(1−α)γ

)

for γ > 1/2 sufficiently close to 1/2 in view of the condition α > 1 − 4((η ∧m) − H(t0)) of the corollary. Finally,

(A.2) is satisfied by Property 2 since (η ∧ 1) > 1−α
2 and 2((η ∧m) −H(t0)) >

1−α
2 follows from the conditions of

the corollary. �
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[2] A. Ayache and J. Lévy Véhel (2000) The generalized multifractional Brownian motion. Stat. Inference Stoch.

Process. 3, 7-18.
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[14] R. Peltier and J. Lvy Vhel (1995) Multifractional Brownian Motion: definition and preliminary results. Preprint

INRIA, available on http://hal.inria.fr/docs/00/07/40/45/PDF/RR-2645.pdf.

[15] G. Samorodnitsky and M. Taqqu (1994), Stable non-Gaussian random variables. Chapman and Hall, London.

[16] D. Surgailis (2008) Nonhomogeneous fractional integration and multifractional processes. Stochastic Process. Appl.

118, 171-198.
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