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Abstract

This article analyses the possibility of firms learning collusive solutions in a Cournot
quantity game. Starting from the results of Vallée and Yildizoglu (2009) and of Alés-Ferrer
(2004), we study the role of random experimenting, social learning (imitation), and (up-
dated) memory in helping firms to discover more collusive market configurations than those
of the Cournot equilibrium (CE). We show that long memory and its update is necessary to
achieve such configurations.

JEL codes: L130; L200; D430; C630; C730.

Keywords: Cournot oligopoly; Learning; Evolution; Selection; Evolutionary stability;
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Introduction

Recent debate (Vriend (2000) and Arifovic and Maschek (2006), Vallée and Yildizoglu (2009))
has once again questioned the convergence to specific equilibria in the Cournot oligopoly game!.
This debate is a consequence of assumptions on the nature of the firms’ learning in the game,
contrasting individual and social learning. The underlying determinants of convergence are
the necessary conditions for the emergence, in the game, of an evolutionary stable equilibrium
(ESE). It is now accepted that, under the definition of ESE given by Maynard Smith (1982), the
convergence to a specific equilibrium in a finite population game can be quite sensitive to the
specifics of the selection process, (see, for example, Ficici and Polack (2000)).

An evolutionary process combines two basic elements: a mutation mechanism that brings
diversity in the population and a selection mechanism that favors particular individuals in the
population. The recent debate on individual vs social learning concerns the nature of the se-
lection mechanism in the evolutionary Cournot game. The distinction between the individual
and the social dimensions of learning implies a distinction between the different sources of fitness
taken into account by the selection mechanism: selection solely based on individual performance,
or selection that considers the performance of others, i.e. relative performance. Only in the lat-
ter case does Hamilton’s spite effect (1970) play a role in the evolution of the strategies: will a
firm adopt a strategy that increases its performance, if it improves competitors’ performances
even more 7 The consequences of the spite effect can only be accurately taken into account
in a one-to-one game based on relative performances. Morgan and Steiglitz (2003) develop the
concept of ‘spiteful replicator dynamics’ using such a modeling strategy: replicator dynamics
are no longer only based on a comparison of individual performance with average performance,
but also on the comparison of the relative performance of the competing individuals. They show
that such a selection mechanism can yield new dynamics that differ from those of the standard
replicator equation. For example, it becomes possible to show that the spite effect can explain
why an ESE is not necessarily a Nash equilibrium in a finite population.

Vallée and Yildizoglu (2009) use the framework of the Cournot oligopoly to study the impor-
tance of spiteful behavior and its determinants: mutation (innovation) and imitation (selection).

1See Ania (2008) and Hehenkamp et al. (2010) for similar questions in Bertrand oligopoly games.



They show that the Walras equilibrium (WE) is quite robustly stable under general conditions,
when learning is based on imitation and random experimenting (mutations) (see also Vega-
Redondo (1997)). This result stems from the spite effect, which appears when learning possess a
social dimension (imitation), and when dynamics are based on selection, hence on relative perfor-
mance of firms. Using Genetic Algorithms (GA), they show that, when the GA represent social
learning, convergence can only occur to WE. In the case of individual learning, convergence to
Cournot equilibrium (CE) is only possible if the interactions of the firms allow them to discover
the decreasing relationship between the market price and their quantities. This is, for example,
impossible with learning based on hypothetical profits (as discussed by Arifovic and Maaschek
(2006)).

These results clarify the conditions of convergence to equilibria under imitation and mutation
based learning. One of the shortcomings of this learning mechanism is the absence of memory.
In fact, we could not even consider the mutation based learning as a ’trial and error’ process,
because the agents cannot compare their performance obtained through the experiment with
their previous results, and decide if the trial corresponds to an error or not. To be able to make
this comparison, they must possess at least a one period memory of their previous strategy and
performance.

Starting from this observation, other recent articles extend the initial model of Vega-Redondo
(1997) by assuming that agents can remember their past strategies and corresponding perfor-
mances. Alés-Ferrer (2004) considers a collective memory by assuming that agents can imitate
past best strategies of the industry (composing the set that contains, for each period, the strate-
gies that gave firms the highest profits). He shows that the learning process will converge,
under this assumption, to any symmetrical quantity vector with ¢; € [¢“%,¢"WF]. Bergin and
Bernhardt (2004) show, on the other hand, that learning with individual memory implies con-
vergence to CE. These results indicate that the only absorbing states of the learning dynamics
with memory are [qCE , qWE].

It is interesting to note that these conclusions are not always confirmed by experiments on
Cournot oligopolies. The results of Huck, Normann, Oechssler (1999) and of Apesteguia, Huck,
Oechssler (2007) conform with these conclusions (convergence to CE or WE as a function of
the information given to the players). But, the initial oligopoly experiments of Fouraker and
Siegel (1963) and later ones of Offerman, Potters, Sonnemans (2002) observe more collusive
quantities than CE and, even a convergence towards the collusive solution (CS). In these latter
experiments, the informational conditions and the possibility of memorizing past observations
plays an important role in the possibility of beating the CE.

In consequence, we can ask if other solution can also be attained under alternative assump-
tions about the learning of firms with memory. One important point in the use of memory is
the selection rule that is used by the players, when the same quantity appears in the memory
with profits obtained in different periods. Alds-Ferrer adopts an imitate the best rule where
the players adopt the quantity that gives the highest profit. In addition, when the memory
is collective, there is a confusion between imitation and memory (since the player can adopt,
from the memory, other firms’ strategies). We know that imitation imposes a strong pressure
towards the Walrasian equilibrium on the firms’ strategies, even if the memory introduces a best
reply orientation on the selection of strategies, through the trial and error process. The tension
between these forces drives learning towards any symmetric solution between [¢“, ¢V ¥]. It is
necessary to check if under alternative assumptions about memory, convergence to other solu-
tions is possible. Huck, Normann and Oechssler (2004) show that in the absence of imitation,
with individual learning based purely on a trial and error process, the only absorbing state is the
collusive solution. For the trial and error process, and the corresponding results, memory is again
necessary, but it is individual in this case. The absence of imitation (social learning yielding the



spite effect) eliminates the pressure towards WE and the system can converge below CE. Using
again a discrete strategy space, but a different learning mechanism (Q-learning), Waltman and
Kaymak (2008) show that the agents can converge towards more collusive solutions than CE.
Q-learning is a mechanism that includes implicit individual memory (the strategies are selected
on the base of the average of past performances)?. These results point to the importance of indi-
vidual memory, with some updating mechanism on the efficacy of the strategies in the memory,
as an important mechanism for convergence to more collusive solutions. Our results below will
aim to clarify these mechanisms in a more general framework with continuous strategies.

In this article, we use computational experiments with a continuous strategy space to show
that:

e Under Alés-Ferrer’s original assumptions with collective memory, the convergence is to-
wards WE.

e If we allow the updating in the collective memory of the profits associated with the quan-
tities using the most recent observations, the Alds-Ferrer’s results are conserved. Hence,
updating is not sufficient for deviating from WE under collective memory

o If the firms can only benefit from an individual memory, convergence to the CE is observed
in accordance with Bergin and Bernhardt (2004).

e Convergence to more collusive solutions, in conformity with the experiments, can be ob-
served only with individual memory, when the memory is updated with most recent obser-
vations. It is hence possible, for the firms, to beat the CE.

We also formalize the mechanisms behind these results and check the validity of our intuitions
through a finer analysis of the simulation results.

The article is organized as following. The first section presents the framework of our analysis
(the model, the equilibria and the simulation protocol). The main simulation results are discussed
in the second section. The third section is dedicated to the formalization of the mechanisms
driving these results. The results of the thirs section are compared with a finer analysis of the
simulation results in the fourth section and the last section concludes the article.

1 Experimental setup and protocol

In this section, we first present a general Cournot oligopoly game and its equilibria. Learning of
the agents will then be introduced. Finally, we summarize the simulation protocol.

1.1 A simple oligopoly game

We consider a standard symmetrical n—firms oligopoly model of quantity competition where all
firms produce a homogeneous product. The inverse demand function for this good is given by
p =p(Q), where Q@ = " ; ¢; and dp/dQ < 0. The common cost function for the firms is
C (g;), with C’ > 0 and C” > 0. The profit function of a firm is: 7;(g;, ..., ¢,) = p(Q)g — C(q;).
Since the interaction between the strategies (quantities) chosen by the firms only takes place
through the common inverse demand function (and hence, through the sum of these quantities),

2 In Waltman and Kaymak (2008), the updating is also different from the one used here. With Q-learning,
the probability of mutation is updated by taking in account the fitness of the strategies that have been used in
the past. In the present article, the probability of mutation remains constant over time, but the fitness of each
adopted strategy is updated according to new market information.



a quantity profile (¢1, ..., q,) can be represented, from the point of view of a firm i, as (¢;, @—;),

where Q_; = Zj# q;-
In this oligopoly, three different solutions can be defined: the Cournot-Nash equilibrium
(CE), the Walrasian equilibrium (WE) and the Collective solution (CS).

Definition 1 A Cournot-Nash equilibrium (CE) is given by a quantity profile ¢°F and a market
price pF such as

1. Each firm mazximizes its profit at this equilibrium

¢“F = argmaq, m; (qi,QCE) =p (QCE) +q“Fp (QCE) =C' (qCE) ,Vi=1,...n (1)

2. The market clears: p°F =p (QCE),

Definition 2 A Walrasian equilibrium (WE) is given by a quantity profile ¢"'¥ and a market
price pVF such as
1. Each firm uses marginal cost pricing (it is a price-taker)

¢VE = argmazg, m; (qi;pWE) =’ (qWE) =pWE Vi=1,...n (2)

2. The market clears : pV'¥ =p (QWE)

Definition 3 A Collusive solution (CS) is given by a quantity profile ¢¢° and a market price

p©S such as

1. Quantities ¢°° mazimize total profit 1 = m;

quS = argmazg,ll (3)
= p(QY) +p (Q7F) (¢7* + Q) => C' (¢F%), Vi=1,..n (4)

2. The market clears: p©° =p (QCS)-

Since dp/dQ < 0 and C” > 0, conditions (1), (2) and (3) imply the standard results on the
comparison of these solutions:

QWE > QCE > QCS

pWE < pCE < pCS

HVVE < HCE < HCS

The collusive solution pareto-dominates other solutions for the firms.

1.2 Agent learning

The mechanisms that we consider for agent learning cover those discussed in the introduction:
random experiments, imitation of others, collective or individual memory and the possibility of
updating the memory. The firm can learn from others (imitation) or from the memory (collec-
tive/individual). It can also benefit from random experiments, which is the starting point of this
article.



1.2.1 Random experiments

In each period, with a probability p™, the quantity of each firm is changed using a truncated
normal draw from N (¢, o) constrained to the interval [¢“% (1 — 8),¢" ¥ (1 + 8)] . This interval
contains all potential solutions of the Cournot game.

1.2.2 Imitation
In each period, with a probability p!, each firm can imitate the best strategy in the present
population:
I
q" = maxg, {T (qj)}jzlmn
1.2.3 Memory and updating

The memory contains observations (g, 7) for the last K periods (size of the memory). When the
memory is collective, it contains best strategies observed in each past period. When the memory
is individual, the values only come from the observations of each individual firm (g;, ;) .

When update is possible, the data in the memory (qo, 772) is replaced by (qo, ﬂ'g) when the
firm reuses the quantity ¢" in a period t > 7.

In each period, each firm can use memory with a probability p™. When the imitations is also
present, the firm adopts the best strategy between imitation and memory.

" = maz,, {r ()} o,

qt+1 = max {qI»qM} .

Random experiments take place after imitation and memory.

1.3 Simulation protocol

We use the standard quadratic cost Cournot oligopoly with linear demand and quadratic costs:

P(QiaQ—i =a— b(Ql + Q—i)a (Z,b >0

In the experiments, we adopt the following numerical values and the corresponding symmetric
solutions: n = 10 firms, a =256, b=1,d =1, ¢ =56

e WE: ¢""# =16.7, pV*=89.3
e CE: ¢“F =154, pF =102
e CS: ¢¥9=9.09, p““= 165

In order to analyze the convergence of the learning dynamics, and the role of different learning
parameters in this convergence, we run Monte Carlo simulations with 500 runs of 10000 periods
for each configuration. In each run the following parameters are randomly draw:

e the probability of imitation,

e the probability of mutation,



e the probability of memory being used,
e the size of the firms’ memory;

Appendix A.1 gives the numerical values of other parameters of the model used in the simu-
lations.

At the end of each run, we record the last period values for the relevant variables (market
price, quantities, variance of quantities, etc.) and we compare these values with the theoretical
values of the potential solutions given above. We use standard statistical techniques (plots,
econometrics, regression trees and statistical tests) to establish our results and the influence of
the parameters. All statistical tests are conducted using R-Project 2.8.1.

2 Computational results

Convergence under different assumptions about firms’learning is successively checked. For social
imitation and mutation based learning alone, the results of Vallée and Yildizoglu (2009) directly
apply and they are not reproduced here. This type of learning systematically converge to WE, in
accordance with the theoretical literature, because of the spite effect: a firm deviating from the
WE, in the direction of CE, increases its profit but it increases the profits of firms who remained
on the WE even more, and imitation pulls the population back to WE. For the CE, we have the
opposite result: a firm deviating from CE to WE decreases its profits but it decreases the profits
of other firms even more, and these other firms will imitate it and migrate towards WE. This
mechanism is very robust in theoretical terms, and imitation is a strong force that pushes the
firms towards higher quantities. We consequently begin our analysis with the test of the results
from Alés-Ferrer (2004) (AF henceforth). The main computational results are summarized here.
The following two sections will explore the mechanisms that drive these results.

(a) Var(qi) (b) Market price

n pWE 5 pCE pCS

300
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|
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Figure 1: Convergence with collective memory (¢ = 1000)

2.1 Convergence with collective memory

AF proves, with discrete strategies and collective memory that the absorbing states correspond
to the interval [CE,WE]. Our results with continuous strategies, given in Figure 1, mainly



confirm this conclusion (Graph (b)), but with a clearly higher rate of convergence to WE. In
a very significant proportion of the runs, the strategies converged towards the WE, since the
variance of the quantities is very small (Graph (a)) and the resulting market price is p'V' £. But,
we a convergence to above this interval is also observed in some marginal cases.

Result 1 Convergence is observed even when the mutations are maintained during the whole
history: the variance in the quantities is very small (Figure 1-(a)).

Result 2 Convergence is mainly to the WE price, and also to prices between p™' Z and p©F, but
only in 46% of cases. Convergence to prices above p°F can even be observed in 4.4% of the cases.
As a consequence, our results do not strictly confirm the main result of AF. (Figure 1-(b)).

What forces drive firms from the WE, towards higher prices? In order to check this, a probit
estimation is carried out on the probability of observing p > p"¥ in the data. Following the
standard convention for the significance of the explanatory variables (for o : x = 0.1,%x =
0.05, % %% = 0.01, % * %k = 0.001), a weaker imitation is shown to be the main driving force. This
result confirms the very robust role of the spite effect in the convergence towards WE.

Result 3 The probability of attaining prices higher than the WE price is increasing with the size
of the memory (xx) and the probability of using memory (x * *x), decreasing with the probability
of mutation (x x xx) and the size of the mutations (xx). The probability of attaining prices higher
than the CE price (p > p©F) only depends on the size of the memory (x x xx), and the influence
18 positive.

Result 4 The probability of having a final market price that does not verify the result of AF
is increasing with the probability of mutation (x x xx) and the size of the mutations (xx), and
decreasing with the probability of using the memory (x x *x).

(a) Var(qi) (b) Market price
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Figure 2: Results with individual memory (¢ = 1000)



2.2 Individual memory

When each agent is able to keep an individual memory of past strategies, Bergin and Bernhardt
(2004, p.449) asserts that the industry should converge to the CE, assuming that the strategy
space is continuous, the inverse demand function is linear and the cost function is strictly convex
(the present experiment complies with all these conditions).

The results indeed change significantly in comparison with the preceding case, but a conver-
gence towards the CE is not observed (Figure 2). A very large majority of cases, 99%, end with
a market price higher than the p©¥: The firms arc able to attain more collusive solutions.

Result 5 Convergence is weaker with individual memory: the variances in the quantities of the
firms are quite significant in the majority of the simulations (Figure 2-(a)).
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Figure 3: Absence of convergence with individual memory: Distribution of the variances in the
individual quantities

An absence of convergence can be observed in Figure 3 where we represent the distribution
of the variances in quantities over the last 50 periods. A significant decrease in the variances
with the passage of time is not observed. Moreover, this non-convergence is quite robust and
still exists even when the simulations run 10000 periods.

Result 6 The industry finds the CE and even more collusive solutions (in 99% of cases (Fig-
ure 2-(b)). This is quite different from the original AF case. Only in 1% of cases is convergence
to the region between the WE and CFE prices.



These results are clearly in contradiction with Bergin and Bernhardt (2004). The observed
average price is clearly higher than p©F, and Student’s t-test rejects the null-hypotheses Hy : p =
pCE | against Hy : p > p©F. This negative result clearly questions the practical consequences of
the stochastic stability concept.

Least square analysis of the determinants of the market price, in this case, gives the following
results (for a we have * = 0.1, %% = 0.05, % * * = 0.01, % % *x = 0.001):

Result 7 The final market price decreases with the probability of using memory (xx), and with
the probability of mutation (x x %x).

A standard source of convergence in evolutionary learning is imitation that favours the dif-
fusion of successful strategies in the population (¢f. Vallée and Yildizoglu (2009)). Since pure
individual memory does not assure convergence, we can check if an imitation mechanism can
allow firms to coordinate their production levels.
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Figure 4: Convergence with individual memory and imitation of the best. Absorbing states
emerge in [WE,CE]|

2.3 Convergence with individual memory and imitation

We add to the preceding market framework by giving the firms the possibility of imitating the
quantities of their competitors. We introduce this possibility in a very simple and standard (see
above): In each period, each firm imitates the quantity of the competitor with the highest profit
in the preceding period, with a probability p’. This possibility introduces a restricted collective
memory in the individual learning of the firms, and it should make the coordination between the
firms casier.

Figure 4 shows that convergence can now be observed in many runs, where the variance in
the quantities approaches zero. But, as shown in Vallée and Yildizoglu (2009), and discussed

10
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Figure 5: Convergence and efficiency as a function of p’

below, imitation is a very strong source of spite effect and this pushes the firms toward the WE.
Hence, convergence comes with a cost, firms have lower profits than with individual learning.

Figure 5 shows that the convergence is stronger with higher probabilities of imitation (the
variances are clearly decreasing in the right hand diagram), but the market price is compressed
toward the WE price at the same time: convergence takes place on lower prices and it yields
lower profits for the firms. Hence imitation cannot allow the firms to consistently beat the
CE. Another learning mechanism is necessary in order to obtain this outcome: the updating of
individual memory.

2.4 Beating the CE: Convergence with individual memory and updat-
ing

A new result, a convergence towards more collusive solutions, emerges when firms can also
update the performances in the memory, by substituting the most recent profit observed using
one quantity for the older profit associated with this quantity (Figure 6).

Firms can only move towards the Pareto optimum (CS) by discovering that they must refrain
from playing their best response against lower quantities of their competitors. This is only
possible if the memory is long enough, since the temptation to play the best response is very
strong. Even in this case, this effect is, in the end, neutralized by the best reply effect and firms
stop before attaining CS.

Memory updating nevertheless displaces the zone of convergence to also cover a subset of
[pC E , pC S] .

Result 8 Convergence: the variances in the quantities are considerably smaller than in the
preceding cases (Figure 6-(a)). In many cases, the firms do converge to a unique production
level.

Result 9 Conwvergence is not toward a unique market solution. We also observe that the industry

11
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Figure 6: Convergence with individual memory and update. Absorbing states emerge in [CE, CS]

can robustly convergence towards prices higher than the CE price in this case (in 95% of the cases,
Figure 6-(b)).

We can check if the cases with prices higher than p“* do effectively correspond to more
collusive situations. Figure 7 gives the profits of the firms in these cases, and we observe that
the distribution of the quantities also perfectly corresponds to more collusive situations and to
profits higher than the CE profits. Consequently firms can attain more collusive situations under
individual learning with updating. How is this result possible? To answer this question, we now
analyse explore the mechanisms that produce these results.

3 Theoretical analysis of the learning mechanisms

In order to understand better the general mechanisms behind the new results with individual
memory and update, we first analyze these forces in a simple, two player, one mutation per
period, version of the oligopoly game. We also consider the impact of higher numbers of players
and mutations. If we assume that firms start from an initial symmetric point (g, ¢) and if they
have the possibility of deviating, from this initial position, with a given perturbation ¢, in both
directions, their situation can be schematically represented by the corresponding 3 x 3 normal
form game given in Table 1.

q—c¢ q qg+e

g—€| (AA) | (FE) | (B,C)
g | (B,F)]|(GG)]| (H]I)
qg+¢| (C,B) | (I,H) | (D,D)

Table 1: Normal Form of the 3 x 3 game

12
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Figure 7: Emergence of more collusive absorptive states

The structure of the game depends on the relation between the pay-offs A, B, C, ... The values
of the initial position (g, ¢) will determine this relation. The relevant pay-offs in the simple game
analyzed in this article are given in Appendix A.2. For example, if initially ¢ = ¢“F, and
assuming that € > 0 is sufficiently small to have ¢ — ¢ > ¢©% and ¢+ ¢ < ¢, the following
inequalities hold:

e G>Fand G >1:(q°F ¢F)is a Nash equilibrium.

e FE>A>G>Fand G>1>H > D : first, CE is the unique Nash equilibrium and,
second, the best reply dynamics will necessarily imply a movement from (¢ —¢,q —€) (e.g.
CS) and from (¢ +€,q + €) (e.g. WE) towards CE.

Using this matrix, we can analyze the impact of different learning mechanisms (memory, imi-
tation, random experiment). We focus in the following sections on three mechanisms: mutation,
imitation and individual memory with or without update. We will mainly discuss mainly the
effects of these mechanisms in the zone [¢¢, ¢“F] since our new results concern convergence in

this interval.

3.1 Pure evolutionary social learning: experimentation and imitation

Consider that, in every period, strategies can be modified (random experimentation), and that
each firm can imitate any other, on the basis of the performance of this competitor in the
previous period. Figure 8 represents the forces of convergence created by these two simple
mechanisms. Notice that the imitation force can only play in an initially asymmetric state, and
in this case, it necessarily pushes towards CE since, when ¢ € [¢“%,¢®F], we necessarily have
mi(q7%, g5 ) < mi(qfF,qF%), i £ j =12

Figure 8 shows that, if the probability of imitation is not zero, the direction of learning
is towards (¢©F,q“F), , and that symmetrically, starting from (¢“F,¢®F), these forces push
the learning process towards (¢ ¥, ¢"WF). These results can be generalized in the following
proposition.

13
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Figure 8: Forces: mutation (m) and imitation (i) and double simultaneous mutations(mm)

Proposition 1 Imitation will favor an increase of the quantities, if the initial state before mu-
tation corresponds to q > qWE + < > qCE.

Proof. The strategy population will evolve towards lower quantities if the initial state favors the
imitations of any individual mutation from ¢ to ¢ — €, and forbids the imitation of an individual
mutation from g to ¢ + €. These properties are observed if the initial allocation, ¢, respects the
following two conditions:

F>F=m(q—¢€4q) >m(q—c¢€4q) (5)
H>1= m(q+eq) <m(q+eq) (6)
It is easily verified that condition (5) requires that ¢ > ¢"V'F + % while Condition ((6)) requires

that ¢ > ¢ F — % In the interval [¢©%, ¢“F], both conditions are false and the corresponding

forces increase the quantities towards ¢“%. m

The effects of these mechanisms, representing the forces that result from imitation and random
experiments, are summarized in Figure 9. These forces directly stem from Proposition 1. This
figure shows how these forces play as a function of the initial quantity ¢ and the mutation e.
Conditions (5) — (6) divide the quantity space into three zones.

In Zone I11, we have F' > E and H > I. Any mutation from ¢ to ¢ — ¢ will thus be imitated,
while any move from ¢ to ¢ + ¢ will not. In Zone I, we have F' < E and H < I, and only a
mutation from ¢ to ¢ + € will be imitated. Finally, in Zone I1 we have two opposing forces.
However, if WE is reached, any mutation from ¢ to ¢ — ¢ will leave Zone II, since its
width is €. Once in Zone I imitation will push the quantities towards Zone II as a result of
Proposition 1 (given that we have A > G, a lower collective quantity is associated with lower
pay-offs, while, G > D implies that a higher collective quantity is associated with lower pay-offs).

A direct consequence of Figure 9 is that imitation will enforce stabilization around the Wal-
rasian equilibrium: the set of the absorbing states is in Zone II and convergence to WE will be
observed when € — 0.

3.2 Experimentation and short individual memory (K = 1)

We now consider that agents are able to recall their most recent strategy and its result. We
have an individual memory of size K = 1. The agents are now able to fully benefit from a trial

14
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Figure 9: Imitation force

and error process in order to learn. Convergence forces that can result from such a memory are
represented in Figure 10. The impact of memory depends both on the probability of using the
memory, and on the previous state of the population. Consequently, we represent transitions
that are possible with memory, only if the previous state allows their possibility.

m m

5 ///’/’Mem T-a -7 Mem "~~~
v //// (qCE’qCS) \\\ \
Mem / K*
< (4“%,4°%) m m (@“",¢“")
- m m
AR /,v
\\\ (qCS7qCE) ///
“~<_ Mem T S~ Mem _--~

Figure 10: Forces: mutation (m) and memory (Mem) of size one

First, with a memory of size one, the information concerning strategy ¢“¥ (resp. ¢©°) will
disappear if strategy ¢©° (resp. ¢“F) was used in the previous period. Second, a move from
(¢©%,¢°®) to an asymmetric state cannot result from the use of memory, if the previous state
was (¢¢F ¢©F), followed by double simultaneous mutations. Memory will incite the firms to
switch back to (¢¢%,¢%%) as a result of A > G. Moving from (¢©,¢“?) thanks to memory is
only possible, if the previous state was asymmetric. Figure 10 indicates that using a memory of
size one will encourage convergence towards (¢“F, ¢“F), if the probability of using the memory
is not zero. Similar reasoning can be used to show that, starting from (¢"V¥,¢"'¥), the learning

process converges towards (¢“F, ¢¢F). The following proposition generalizes this result.

Proposition 2 An individual memory of size one will favor movement towards the CE, if ¢ >
d d b+d b+d
CE ; CE CE CE
< - : wh € — ——¢, ,
U gt ST gy when g € 10T - gme a5y
memory pushes any mutant to return to CE after mutation.

mndividual
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Proof. With an individual memory of size one, the mutant firm will compare its actual pay-off
with the pay-off before mutation (trial and error). Starting from any production level g, this
mutant will move towards g—e, if its pay-off is increasing by unilaterally decreasing its production
and, if its pay-off is decreasing by unilaterally increasing its production. Memory will encourage
it to stay at ¢ if and only if the two following conditions hold:

F>G=m(qg—¢€4q) >mlqq) (7)
I <G=m(q,q)>m(g+eq) (8)
: : " o CE d : " B
It is easy to verify that Condition (7) requires ¢ > ¢“* + 312 de, while Condition (8) requires
b+d
g < qCF — +

3b+2d°

Figure 11 represents these results. In Zone I, F' < G and G < I, therefore there is no incentive
to reduce production and any increase in production will be recorded as a good solution in the
memory. In Zone III, we have F > G and G > I. This is the inverse of Zone I: there is
no incentive to increase production, and any decrease will be recorded as a good solution in
the memory. In Zone II, both F' < G and I < G, which is equivalent to the standard Nash
equilibrium conditions. Any increase of ¢ widens the zone and, any deviation of size € will put

. : : . . b+d
the quantity outside of Zone I1, since its width is 2 +

€ < €. However in this case, memor
3b + 2d Y

will encourage a return to this zone.

feai— e
i b+d 1
i 235194¢ o
i i
Zones: (0] ! (I1) i (I11)
! 1
i i _
-cs T CE b+d C-‘E !'CE_,’_ +d € 'WE > a
q 1977 = 3pt2a€ ¢ 4 3b+2d q
Condition F > G: ! False ! True
__________ D T B R e
! i
Condition G > I: ! True i True
————————— e R R e

Figure 11: Forces with individual memory of size one

We now consider the case of longer memory.

3.3 Experimentation and long memory (K > 1) with updating

What are the consequences of a greater memory size 7 A direct consequence is that any strategy
¢; may have a variety of values in the memory. In our example, ¢“° can both appear with profit
7:(q9%,¢%%) = A and 7;(¢°°,¢“F) = F. Moreover, if the memory is very long, some of the
performances could correspond to a very old population state and encourage decisions that are
ill-adapted for the present state. These problems can be avoided if the agents can update the
memory, in such a way that only the most recent information is associated to each strategy.
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Our simulation results prove that only such an update can yield more collusive states that are
statistically significant.

We can underline a condition that is necessary, but not sufficient, in order to move towards
collusive solutions using a long memory. To move from (g, ¢) to (¢—e, g—e) will require at least two
moves, either the transition (¢,q) = (¢—¢,q9) — (¢g—€,9—¢€) or (¢,q9) — (q,q—¢€) = (q—€,q—€).
As a consequence, in order to compare results (payoffs) of the initial situation m;(q, ¢) and of
the final situation m;(q¢ — €, ¢ — €), one must have a sufficiently long memory. This long memory
facilitates a move towards the collusive situation, since, if it has been occurred in the past,
the agents can remember that it was a favorable situation for a long time, including from an
individual point of view. This would encourage the agent to return to more collusive quantities.

Proposition 3 If the memory is long enough, a necessary condition for the memory to push the
cs €
+ -

quantities towards the collusive solution is q > q 5

Proof. We need to check that there is a diagonal convergence D <« G — A that lowers the
quantities. We need to check under which conditions on initial quantities ¢ we can observe
A > G and G > D for both players, and, since the game is symmetric, the initial quantity must
be compatible with following two conditions:

A>G=m(q—€q—¢€) >ml(q,q) (9)
G>D=m(q,q) >m(qg+eqte) (10)
It is easy to verify that Condition (9) requires ¢ > ¢ + %, while Condition (10) requires

> -<. m

Figure 12 shows the results. In Zone I, A < G and G < D at all times. Consequently, since
the lowest quantities are associated in the memory to the lowest pay-offs, there is an incentive to
leave this area by increasing the quantities. In Zone I11, since A > G and G > D, any collective
decrease of quantities is associated with higher payoffs. This creates an incentive to collectively
move towards zone 1. In Zone I1 the mechanisms are again more complex. Given that A < G in
this zone, a lower collective quantity is associated with lower pay-offs, while, because of G > D,
a higher collective quantity is associated with lower pay-offs. Notice that the width of area IT is
€, SO again, any mutation will leave this zone.

i € !
] 1
(1) i (I1) i (111)
I
i i
¢ o * . L »
iqcs_% qCS iqCS_'_% qCE qW’E
Condition A > G: : ! True
S >:< ————————————————
Condition G > D: i True i True
————————— Ll e e e e i
I

Figure 12: Long Memory Force with updating
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3.4 Three main forces: a synthesis

The forces and mechanisms that drive the learning dynamics in accordance with propositions
2-3 are summarized in Figure 13. Whether or not the learning dynamics converge towards a
particular equilibrium will depend on the relative strength of these forces. With short memory
and a systematic use of imitation, convergence to WE is inevitable. With long memory, and very
rare use of imitation, firms may overcome WE and CE, and converge to a more collusive solution.
However, we observe that these forces will not allow firms to fully attain the CS solution. In
fact, it is not possible for the firms to stabilize on quantities below ¢ + g > ¢©9, since all the

forces except long memory clearly favor higher quantities below this threshold.

i
Memory Size one (Best Reply):

e

Imitation: !
T

i

1

1

!

Long Memory: ! :
I

T

I

Figure 13: Forces: a synthesis

3.5 Increasing the number of players and updating

Recall that, if there is only one mutation per period, a move from (g, ¢q) to (¢ — €,qg — ¢) will
require at least two moves, that is either the transition (¢,q) — (¢ —€,q) — (¢ — €,¢ — €) or
(q,9) = (¢,q — €) = (g — €,q — €). This gives rise to the next proposition.

Proposition 4 In a two player game, a long memory by itself cannot allow convergence towards
collusive equilibrium.

Proof. Let first assume that only one mutation per period is possible. In order to converge to,
and to stay at, the collusive equilibrium, the following conditions must be satisfied:

e A > G: diagonal convergence occurs (through imitation).

e A> F and F > G: an individual incentive to move towards ¢ — e exists (Condition F' > G)
and no incentive to return to ¢ (Condition A > E). If A > E the updated memory will
contain, for strategy ¢, a profit equal to E, which will be lower than the profit associated
to strategy ¢ — €, A. This will stabilize decreasing quantities towards ¢,

b+d

These two conditions are satisfied if ¢ > ¢©F €.
w LR A T

Assume now that the oligopoly is composed of more than 2 firms, (n > 2). Would this signif-
icantly change the results? If yes, can we qualify the impact of increasing n? The impact would
indeed be quite strong. The main impact would be that the game would lose its ”symmetry” in
this case.
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Figure 14: Conditions when n; = 0, that is 1 mutant per period in the same direction, for
n € [3,10]

To illustrate this, consider a three player game, in which, at a given period, two firms mutate
from q to g — €, while the third one sticks to the initial quantity. The total quantity becomes
3q — 2¢. The game, from the point of view of the non mutant firm, is equivalent to a 2—players
game where the other firm is twice as big. We know, from proposition 4, that in a two player
symmetric game the mutant firm m will not reduce its quantity if m,(q¢ — €,q) < ™m(q, q), that

is, when ¢ > ¢“% +

12 7€ In a n—player asymmetric game, this condition must be modified,

and it now depends of the number of mutants.

Define 7;(g;, nn, q) as the profit of firm ¢ when playing ¢;, given that n,, firms are also playing
qi, and n — n,, — 1 firms are playing ¢q. Hence, in a 3—player game, if two firms make the same
move, from ¢ to ¢ — ¢, the new profit of each mutant firm i is m;(¢ — €, 1, q), while the profit of
the non mutant firm j is 7;(q,0,¢ — €). Using these definitions, we can now state a proposition
that considers the convergence to CS in this case.

Proposition 5 When multiple mutations are allowed, a long memory by itself can efficiently
provide for convergence towards a more collusive solution than the CE, but the industry cannot
attain the CS.

Proof. We need to verify the following conditions:
e '>G : = mi(q—e¢,n1,q) >mil(q,0,q) (Condition 1);
e A>FE : = mi(q—¢€0,9g—¢€) >mi(g,n1,q—€) (Condition 2);
e A>G : = m(q—¢€0,9g—¢) >m(qg0,q) (Condition 3).
These conditions are individually satisfied if:

a—c+ (b+bny +d)e
b+ bn+bny +2d

e ['>G :=qg>

a—c+ (bn+d)e
b+bn+bn +2d’

e A>FE : —q>
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Figure 15: Conditions when ny = 1, that is 2 mutants per period, for n € [3,10]

« A>G :=>q>a_c+(bn+d)e

2bn + 2d
_ bn -+ d _
and they are collectively satisfied if ¢ > ¢ = ;_'_ bcn+—|—(bzl+—|— ;; Since ¢“F = m’
and ¢ = 2;%22, one can check that if n; > 0 and n > 3 we have ¢“° < § < ¢“F. Also, for a
, n

given ny, lim, 400 § = € > lim,, o ¢“° = 0. As a consequence, Conditions (1-3) can necessarily
be satified in the interval ]qCS ,qCF [, but not when the industry becomes very close to CS. m

Figures (14 — 16) show the evolution of ¢ for n; = 0 (individual mutation only), ny = 1
(double mutations) and nqy = n — 2 (all the firms except one mutate) with 3 < n < 10. We
observe that ¢ decreases with n, but it remains in the interval ]qcs ,qCE[, and never passes
below ¢¢*.

4 Validation of analytical results through experiments

New results are presented in this section in order to confirm the role of the mechanisms dis-
cussed in the preceding section, in the global convergence results we have observed in Section 2.
Supplementary experiments inspired by these theoretical results are also introduced.

4.1 Convergence to collusive solutions

Is the memory the main driving force of the results of Section 2?7 Figure 17 displays the dis-
tribution of prices as a function of different learning mechanisms. The horizontal lines indicate
pVE < pCF < pS. The positive role played by the probability of using memory (a), and
by its size (b) clearly appear in these diagrams. When the memory is used very frequently
(pM €10.89, 1]), around 75% of the observations correspond to prices higher than the CE price,
which is a significant convergence towards prices more collusive than the CE. The negative im-

pact of imitation is also clearly shown in graph (d). When p! is very low, more than 75% of the
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Figure 16: Conditions when ny = n — 2, that is 2 mutants per period if n = 3 and 9 if n = 10 |
for n € [3,10]

cases converge to more collusive prices. Graph (c) shows that experimentation is necessary, but
not sufficient to secure convergence towards collusive prices.

These results can be confirmed using basic econometric analysis. The probit analysis of the
probability of convergence to a price higher than p“F confirms the role played by memory and
its size ( all factors are significative for a = 0.001):

Result 10 The probability of converging to a solution above the CE price increases with the
probability of mutation, the probability of using the memory and the size of the memory. It
decreases with the probability of imitation, and the size of the mutations. Memory and its size
definitely play an important role in the capacity of firms to attain prices above the CE price.

The regression tree® in Figure 18 gives some quantitative insights on the conditions for con-
vergence towards a price above p©F and on the interactions of different mechanisms.

The configurations in which the expected price is the highest are observed in the rightmost
branches of the tree (we have E[p] = 115 in these cases). They correspond to the following
simultaneous conditions: p! < 0.006408, K < 6. On the left of the tree, when p! > 0.02153,
the highest expected price (E[p] = 103.6 > p“F) is observed when K > 6,p™ > 0.4982,p™ >
0.03607, where random experimentation and memory compensate for the negative effects of
higher imitation.

4.2 Role of the memory size

The role of the memory size with different numbers of firms is analyzed in this subsection.
For this analysis, 3000 simulations of 1000 periods were run, where the number of firms was
also randomized: n € [2,5]. Changing the number of firms, changes the equilibrium prices, as
well as the distance between them. Figure 19 shows the distribution of the market prices for
different numbers of firms, and memory sizes. The horizontal lines give equilibrium prices in each

oligopoly type (p"V¥# < p©Fp©). When the number of firms increases, a short memory becomes

3Computed using the rpart library of R-Project, with a complexity parameter of cp = 1%.
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Figure 18: Determinants of the market price

insufficient to robustly attain prices higher than p©?. K = 1 becomes particularly inefficient
when n > 4. Only the two highest memory sizes warrant a convergence over CE in more than
75% of cases in all situations.

5 Conclusion

In this article, we have analyzed the possibility of firms learning collusive solutions in a Cournot
quantity game. Starting from the results of Vallée and Yildizoglu (2009) and of Alés-Ferrer
(2004), we study the role of random experimentation, social learning (imitation), and memory
in helping firms discover more collusive market configurations than those of Cournot equilibrium
(CE). We show that long memory and its update is necessary to attain such configurations.
First, we show these results using direct computational experiment. These experiments clearly
emphasize the necessity of memory update to beat the CE. We clarify the mechanisms that are
behind this global result, through an analytical exercise that establishes the conditions under
which different components of the firms’ learning can orient the convergence to the CE. This
analysis indicates that it is possible for firms to convergence towards more collusive solutions,
without being able to fully converge on the collusive solution (CS). Their capacity to beat the CE
decreases as their number increases, which could seem unworthy of note, but, here is explained
as resulting from the difficulty of discovering the CS in a system with a richer set of states. The
supplementary simulations introduced in the last section of the article show that convergence to
more collusive solutions becomes nearly impossible for firms as soon as their numbers is equal
to five. The econometric and statistical analysis of the results indicate that the probability of
converging to market prices higher then the CE price decreases with the probability of imitation,
and increases with the probabilities of mutation and using memory, and with memory size. The
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former confirms the tendency of social learning to push firms towards the Walrasian solution,
while the latter establish the necessity of experimentation and updated memory for collusion.
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A Appendix

A.1 Numerical specification

N = 500 ; number of runs

T = 1000 ; number of periods

p™ € [0,0.1] ; probability of mutation

pl e [0,0.05] ; probability of imitation

p™ € [0,1] ; probability of using memory

o € [0.01,0.5] ; standard deviation of perturbations before truncation
K €{1,10,20,50,100,7 — 1} ; size of the memory

n =10 and n € {2,3,4,5} ; number of firms

B8 = 0.05 ; parameter of mutation

A.2 Pay-offs in the two-players game matrices

Initial position corresponds to (qWE, qWE) :

i we wey _ (a—0)’d
=@ = (G ae
WE) _ a’d + 2d — 2be(b+ d)e — 4(b + d)3€* + 2a(—cd + b(b + d)e)
4(b + d)?
wEy _ a’d+ c*d+ 2bc(b+ d)e — 4(b+ d)*e® — 2a(cd + b(b + d)e)
4(b + d)?
WE o) = a’d+ c*d — 4be(b + d)e — 4(b+ d)*(2b + d)e* + a(—2cd + 4b(b + d)e)
4(b + d)?
a*d + c*d + 4be(b + d)e — 4(b + d)*(2b + d)e® — 2a(cd + 2b(b + d)e)
4(b+ d)?

WE

7 (q €.q

WE
+

7 (q €.q

WE _

7 (q €.q

™ (¢VF +eqd"F +e) =

Initial position corresponds to (qCE, CE) :

i ce cpy_ (a—c)?(b+d)
™ (@4 = T
CE) _ (b+d)(a® — 2ac+ ¢* — (3b+ 2d)?¢?)
(3b + 2d)?
CE) _ (b+d)(a® — 2ac+ ¢* — (3b+ 2d)?¢?)
(3b + 2d)?
cE _ e = a’(b+ d) — 18b%¢* — 3b%¢(c + 11de) + a(—2bc — 2¢d + 3b%e + 2bde)
(3b + 2d)?

q

. (,CE
’Lq _

™

( .q
1(qCE+€,q
( —64q

3

7

qCE

™
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b(c? — 2cde — 20d%€?) + d(c* — 4d*€?)

(3b + 2d)?
2 3 2 2 2 2 2
i/ CE CE _a”(b+d) — 18b"¢” + 3b”e(c — 11de) + b(c” + 2cde — 20d"€”)
m (@ Hed e = (3b+ 2d)?
+d(cz — 4d?€?) — a(2cd + 3b%e + 2b(c + de))
(3b + 2d)?
Initial position corresponds to (¢, ¢“*) :
7 (¢95,¢°%) = (a—o)?
’ 4(2b+d)
2, 2 2 2y 2
. ¢ + 2bce — 4(26% + 3bd + d?)e? — 2a(c+ b
. (qcs e qcs) _a+c ce ( )e a(c + be)
4(2b+ d)
2., 2 2 2y 2
i/ CS csy _ G~ 4 ¢ —2bce — 4(2b% 4 3bd + d”)e” — 2a(c — be)
T (@ +ed) = 4(2b + d)
2 2 2 2
i(cs  cs  y_ @ —2act+c” —4(2b+d)%e
™ (q €q €) = eI
2 2 2 2
i( CS cs _a”—2ac+c” — 420+ d)7e
7 (¢°% +¢,¢% +¢) = BT d
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