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Abstract. We derive the stochastic master equations which describe the evolution of open quantum systems
in contact with a heat bath and undergoing indirect measurements. These equations are obtained as a limit of
a quantum repeated measurement model where we consider a small system in contact with an infinite chain at
positive temperature. At zero temperature it is well-known that one obtains stochastic differential equations
of jump-diffusion type. At strictly positive temperature, we show that only pure diffusion type equations are
relevant.

1. Introduction

The theory of Open Quantum Systems aims to study the time evolution of a small system
H0 interacting with an environment E , cf [1, 2, 24, 26]. Starting from an Hamiltonian de-
scription of the coupled system [2, 24, 26], the evolution of the reduced system H0 is obtained
by tracing over the degree of freedom of the environment.

In the Markovian approach of open systems, the time evolution of the state of the reduced
system is characterized by a semigroup of completely positive maps, with a typical generator
called Lindblad generator, which gives rise to an ordinary differential equation called master
equation [2, 24, 28].

In this framework, an active line of research, motivated by recent experimental applications
in quantum optics and quantum communications, is focused on the description of quantum
measurement [7, 8, 9, 10, 11, 12, 13, 14, 24, 27, 28, 26]. Basically, in order to avoid Zeno
effect [24], the measurement is performed on the environment. According to the postulates of
quantum mechanics, this involves a random perturbation of the evolution of the state of H0.
The dynamics of H0 is then described by classical stochastic differential equations, which are
perturbations of the master equation in terms of white noise [7, 22, 23, 8, 9, 10, 11, 12, 21, 30,
32, 37, 38]. Usually, these equations are called Stochastic Schrödinger Equations or Stochastic
Master Equations and their solutions are called Quantum Trajectories (the name “stochastic
Schrödinger equation” is usually reserved for the evolution of the state of H0 in terms of pure
states whereas stochastic master equations concerns evolution of density matrices).
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In the literature, most of the results concern models where the environment is at zero
temperature and a lot of investments are still in progress to get right descriptions for model
at positive temperature (even without measurement). Typically, at zero temperature, for the
random evolution of density matrices we get two typical stochastic master equations of the
following form.

1. A diffusive equation

dρt = L(ρt) dt+
(

Cρt + ρtC
⋆ − Tr

[

ρt(C + C⋆)
]

ρt

)

dWt, (1)

where Wt is a one dimensional Brownian motion.

2. A jump equation

dρt = L(ρt) dt+
(

C ρt C
⋆

Tr
[

C ρt C⋆
] − ρt

)

(

dÑt − Tr
[

C ρtC
⋆
]

dt
)

, (2)

where (Ñt) is a counting process with stochastic intensity t →
∫ t

0 Tr
[

C ρsC
⋆
]

ds.

In the above expressions L is the Lindblad operator, the operator C is an arbitrary operator
(which depends actually on the interaction between the system and the environment, see
Section 2.4). Note that we can recognize from the form of these equations that they all are
simulations of the master equation, for they are stochastic differential equations valued in the
set of states of H0 and on average they satisfy the master equation.

More complicated models use jump-diffusion stochastic differential equations which are
mixing of equations (1) and (2) [9, 11, 38] (see Section 2.).

Mathematically, there are three usual ways to justify these equations. A first approach
is based on Instrumental Operator Processes connected with the notion of Operator Valued
Measures and Quantum Markov Semi-groups analogy [2, 7]. The second one is based on
classical stochastic differential equation theory and on the concept of a posteriori state [7, 8,
9, 10, 11, 30]. The third approach often called Quantum Filtering is based on the formalism
of Quantum Stochastic Calculus and the notion of input and output field in quantum optics
[2, 12, 13, 14, 21, 22, 23]. In this last setup, the evolution of the small system and the
environment is modeled by Quantum Langevin Equations (also called Quantum Stochastic
Differential Equations or Hudson-Parthasarathy Equations) [1, 2, 31]. These equations are
namely driven by Quantum Noises [1, 2]. Next, by adapting the classical framework of
stochastic filtering, one can obtain appropriate stochastic differential equations driven by
classical noises, which take into account the “incomplete” information of indirect observations.

In [32, 37, 38], an alternative discrete way has been developed. The approach is based on
the model of Quantum Repeated Interactions which provides a “useful” discrete approximation
model of quantum Langevin equations [3, 4] . The setup of quantum repeated interactions is
the one of the interaction of a small system H0 with an environment represented by an infinite
chain

⊗∞
k=0Hk . Moreover, the pieces of the chain are identical and independent quantum

system, that is Hk = H for all k. Each copy H interacts with H0, one after the other, during
a time τ . In this framework, an appropriate language of discrete quantum noise and dis-
crete quantum stochastic differential equations is constructed. Next, it is shown that the time
continuous limit (τ → 0) gives rise to continuous models of quantum Langevin equations
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and continuous quantum noises. In this context, a discrete time model of indirect quan-
tum measurements, called model of Quantum Repeated Measurements has been developed in
[32, 37, 38]. It consists in performing a measurement of an observable of Hk after each interac-
tion with H0 (similar models of successive measurements has been considered in [16, 34]). As
in the continuous case, the measurement introduces a random perturbation of the evolution
of H0, described by discrete stochastic master equations and discrete quantum trajectories.
In the same spirit as [4], by considering the continuous time limit (τ → 0), the continuous
models of stochastic master equations and quantum trajectories are recovered. Much beyond
the approximation result, these discrete time models (without measurement [4] and with mea-
surement [32, 37, 38]) provide a concrete and intuitive physical justification of the continuous
models of quantum Langevin and stochastic master equations. For other applications and
results regarding quantum repeated interactions, we refer to [17, 18, 19, 20, 35, 36, 39] where
‘return to equilibrium”, “large time behaviour” or “thermalization” problems are considered.
We refer also to [25, 29, 42, 43, 44] for an approach based on collision-like models in physics,
where properties such as “entanglement” and ‘decoherence” are studied.

It is important to notice that these four different approaches of stochastic master equations
are crucially based on the “zero temperature” assumption. For example in the approach based
on quantum stochastic calculus, one the main obstacle to consider positive temperature model
is to describe the action of the heat bath on the small system and to derive adequate Langevin
equations.

Recently, in [5], the discrete approach of quantum repeated interactions [4] has been
adapted to models with heat bath at positive temperature. This way, thermal quantum
Langevin equations have been obtained and a clear justification of the action of the thermal
bath has been presented. It is then natural to combine this approach with quantum repeated
measurements in order to derive stochastic master equations for heat baths.

In order to introduce temperature, we consider that each copyH is in a thermal Gibbs state
at inverse temperature β. The crucial point in all the different approaches at zero temperature
is the fact the state of the environment is a pure state. This is clearly not the case for a Gibbs
state. In order to get around this difficulty, we apply the G.N.S. representation of that state.
This way, the Gibbs state of each copy H can be considered as a pure state in an enlarged
Hilbert space. Hence, with this representation, the convergence result of [38] can be applied
and stochastic master equations for heat bath are derived. Surprisingly, models of the form
(2) with counting processes disappears and only diffusive models remains.

This article is structured as follows.
In Section 2., we remind the discrete models of quantum repeated interactions and then

quantum repeated measurements. Next, we recall the main result of [38] which gives the
stochastic Master equations as continuous limits of these discrete models.

In Section 3., we adapt the result of [38] for model with positive temperature. This
is achieved by describing the G.N.S representation of the heat bath. Hence we obtain the
complete description of stochastic master equations for a small system in contact with a heat
bath and undergoing indirect quantum measurements.

2. From Discrete to Continuous Quantum Trajectories at Zero Temperature

In this section we recall the mathematical description of the quantum repeated measure-
ment model, as developed in [38].
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2.1. Quantum Repeated Interactions

The model of quantum repeated interactions consists in studying the interaction of a
finite dimensional quantum system H0 in contact with an infinite chain TΦ =

⊗

N⋆ Hk,
where Hk = H = C

N+1 for all k. One can imagine that the pieces H represent for example
“a measurement apparatus” or an “incoming photon”...

We first need to make precise the definition of the countable tensor product TΦ. To
this end, let us define an explicit orthonormal basis of TΦ. Let {X0,X1, . . . ,XN} be an
orthonormal basis of H = C

N+1. Actually note that only the choice of X0 is relevant in our
construction: it represents a reference state of H (for example a ground state). Put Xn

i to be
the copy of the basis vector Xi but acting on the n-th copy of H. The orthonormal basis of
TΦ is then made of those tensor products

X1
i1
⊗ . . .⊗Xn

in
⊗ . . .

such that all the in’s, but a finite number, are all equal to 0.
On H consider the basic operators aij , i, j = 0, . . . , N defined by aijXk = δikXj (in Dirac

notation aij = |Xj〉〈Xi|). We dilate them as operators aij(k) on TΦ by asking them to act as

aij on the k-th copy of H and as the identity operator on the rest of the chain.

The model of repeated interactions [4] is now described as follows. Each copy of H is
supposed to interact, one after the other, with H0 during a time duration τ . Each elementary
interaction between H0 and H is described by a total Hamiltonian

Htot = H0 ⊗ I + I ⊗HR + λHI . (3)

The operator H0 corresponds to the free Hamiltonian of the system H0, the operator HR is
the free Hamiltonian of the system H, the operator HI is the interaction Hamiltonian and λ
is the coupling constant.

The basis {X0, . . . ,Xn} is chosen to be the basis of eigenvectors of HR, that is, with our
notations:

HR =

N
∑

i=1

γi a
0
i a

i
0 . (4)

The interaction Hamiltonian HI is chosen to be of so-called “dipole-type”:

HI =

N
∑

i=1

(

Ci ⊗ a0i + C⋆
i ⊗ ai0

)

. (5)

After a time duration τ of interaction, the evolution of H0 ⊗ H is governed by the unitary
operator

U = e−iτHtot .

That is, in the Schrödinger picture, the evolution of states on H0 ⊗H is given by

ρ 7→ UρU⋆

and in the Heisenberg picture, the observables evolve as

X 7→ U⋆ρU .
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Now, in order to describe the repeated interactions on the whole space H0⊗TΦ, we consider,
for each k ∈ N

∗, the unitary operator Uk which acts like the operator U on the tensor product
H0⊗Hk and like the identity operator on the rest of the space. For k being fixed, the operator
Uk describes the k-th interaction. The whole procedure is then described by the sequence of
unitary operators (Vk) defined by Vk = UkUk−1 . . . U1. For example the evolution of an initial
state ρ on H0 ⊗ TΦ after k interactions is given by

ρ 7→ VkρV
⋆
k .

2.2. Quantum Repeated Measurements

Now, we are in position to describe the model of quantum repeated measurements [32].
To this end, we need to specify the reference states of H0 and H. Let ρ denote the initial state
of H0. For each copy of H, we consider the usual thermal Gibbs state at inverse temperature
β:

ρβ =
e−βHR

Tr [e−βHR ]
, (6)

where HR is defined in expression (4). In particular ρβ is diagonal, with diagonal elements
that we shall denote by {β0, β1, . . . , βN}.

In order to describe the indirect measurement of an observable A of H, we come back to
the description of the first interaction in the space H0 ⊗ H. After the interaction the new
state of H0 ⊗H is µ = U(ρ⊗ ρβ)U

⋆. Now if A owns the spectral decomposition

A =

p
∑

i=0

λiPi ,

the measurement of A gives a random result in the set of eigenvalues λ0, . . . , λp. In particular,
the value λi is obtained with probability

P
[

to observe λi

]

= Tr
[

µ I ⊗ Pi

]

. (7)

After having observed the eigenvalue λi, the state µ is projected and becomes

ρ̃1(i) =
(I ⊗ Pi)µ (I ⊗ Pi)

Tr
[

µ (I ⊗ Pi)
] .

For i being fixed, the state ρ̃1(i) represents the new state of H0⊗H after the first interaction
and the first measurement. Usually, we are only interested in the reduced system H0, that is,
we shall consider only the partial trace

ρ1(i) = TrH (ρ̃1(i)) .

The state ρ1 is a random state which takes the values

Li(ρ)

Tr
[

Li(ρ)]

with probability Tr
[

Li(ρ)] respectively, where

Li(ρ) = TrH
[

(I ⊗ Pi)U(ρ⊗ ρβ)U
⋆ (I ⊗ Pi)

]

.
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This way, the state ρ1 is the new reference state of H0 and we can consider a new interaction
with a copy of H and a new measurement of A. By reducing on H0, we then get a new random
state ρ2 which satisfies similar properties as ρ1. Iterating this procedure we obtain a random
sequence of state (ρk) on H0. This sequence, called discrete quantum trajectory describes
the random modifications of the state of H0 undergoing quantum repeated interactions and
measurements. More precisely, we have the following proposition (cf [32]).

PROPOSITION 1. The sequence (ρk) is a Markov chain. More precisely, if ρk = θ, the state
ρk+1 can take the values

Li(θ)

Tr
[

Li(θ)]
, i = 0, . . . , p

with probability pi(θ) = Tr
[

Li(θ)], where Li(θ) = TrH
[

I ⊗ Pi U(θ ⊗ ρβ)U
⋆ I ⊗ Pi

]

.

In other words, the above proposition can be summarized as follows. Let 1ki denote the
random variable which takes the value 1 if we observe the eigenvalue λi during the k-th
measurement and 0 otherwise, we then have

ρk+1 =

p
∑

i=0

Li(ρk)

pi(ρk)
1k+1
i . (8)

2.3. Quantum Trajectories at Zero Temperature

The equation above is a discrete-time stochastic master equation. In the articles [32, 37, 38]
the author computes explicitely the continuous-time limit of (8) at zero temperature. In the
limit, he obtains the usual stochastic master equations describing continuous measurement
experiments. In general, these equations are stochastic differential equations mixing diffusive
and jump noises. We shall now recall these results.

We now focus on the case where the temperature is zero, that is β = +∞. This way, we
have βi = 0 for all i = 1, . . . , N and ρβ = a00 = |X0〉〈X0|.

If K is an operator on H0 ⊗H and for the choice {X0, . . . ,XN} of an orthonormal basis
for H, the operator K can be written as a (N + 1)× (N + 1)-block-matrix, with coefficients

Ki
j = TrH

[

(

I ⊗ |Xj〉〈Xi|
)

K
]

,

being operators on H0. With these notations, we have

TrH[K] =

N
∑

i=0

Ki
i .

In particular the Li(ρ) are easy to compute explicitely: let U = (U l
k)0≤k,l≤N be the block-

matrix representation of the unitary evolution U and let Pi = (pikl)0≤k,l≤N in the basis
{X0, . . . ,X1} (in block form we have I ⊗ Pi = (pikl I)0≤k,l≤N ), we get

Li(ρ) = TrH
[

I ⊗ Pi U(ρ⊗ ρβ)U
⋆ I ⊗ Pi

]

=

N
∑

k,l=0

pikl U
0
k ρ (U

0
l )

⋆ . (9)

The convergence result of discrete quantum trajectories is based on the asymptotic as-
sumptions described in [4]. These assumptions concern the unitary operator U . If we consider
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the time of interaction τ being τ = 1/n, the unitary operator U depends on the parameter
n, that is, U = U(n) = (U l

k(n))0≤k,l≤N . In [4], it is shown that the operator process (V[nt])
satisfying

V[nt] = U[nt](n) . . . U1(n)

converges, non trivially, to a process (Vt), only if the coefficients U i
j(n) obey certain normal-

izations. The limit process (Vt) then satisfies a quantum Langevin equation describing the
evolution of a small system coupled with a Fock space.

Their asymptotic conditions concern the existence of operators Li
j such that for all (i, j) ∈

{0, . . . , N}2 we have
lim
n→∞

nǫij(U i
j(n)− δijI) = Li

j , (10)

where ǫij =
1
2 (δ0i + δ0j).

In the context of measurement, the expression (9) implies that only the asymptotic of
the terms U0

j (n) are relevant. In terms of total Hamiltonian (3), in [4] it is shown that these

asymptotics for the U i
j ’s can be obtained by considering interaction Hamiltonian HI of type

(5) and by considering the coupling constant λ =
√
n. In that case, they obtain

L0
k = −iCk .

Remark In other words, this corresponds to a renormalization in
√
n of the field operator a0i

and ai0 in order to strengthen the force of the interaction while the interaction-time τ = 1/n
decreases (when n goes to infinity). Such normalization is essential in order to obtain non
trivial limit (see discussion in Section 4.2 in [4] and [6]). We refer also to [34], where scaling
time and appearance of noises are discussed.

Now with (10), we are in position to express the main result of [38] which links discrete
and continuous quantum trajectories. To this end, we introduce functions (when it has a
meaning) defined on the set of states:

gi(ρ) =

N
∑

k,l=1

pikl L
0
kρ(L

0
l )

⋆

Tr





N
∑

k,l=1

pikl L
0
kρ(L

0
l )

⋆





− ρ

vi(ρ) = Tr





N
∑

k,l=1

pikl L
0
kρ(L

0
l )

⋆





hi(ρ) =
1

√

pi00

[

N
∑

k=1

(

pik0 L
0
kρ+ pi0k ρ(L

0
k)

⋆
)

−Tr

[

N
∑

k=1

(

pik0 L
0
kρ+ pi0k ρ(L

0
k)

⋆
)

]

ρ

]

L(ρ) = L0
0ρ+ ρ(L0

0)
⋆ +

N
∑

k=1

L0
k ρ (L

0
k)

⋆.

THEOREM 2. Let A =
∑p

i=0 λiPi be an observable of H. As
∑

i Pi = I, without restriction,
we can assume that p000 6= 0. Let I = {i ∈ {1, . . . , p}/pi00 = 0} and J = {1, . . . , p} \ I. Let ρ0
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be a state on H0 and let (ρn(t)) be the stochastic process defined from the discrete quantum
trajectory (ρk) by ρn(t) = ρ[nt]. We then have the following convergence result.

• If J = ∅, the process (ρn(t)) converges in distribution to the solution of the stochastic
differential equation

ρt = ρ0 +

∫ t

0
L(ρs−) ds +

p
∑

i=1

∫ t

0

∫

R

gi(ρs−)10<x<vi(ρs−)

[

Ni(dx, ds) − dx ds
]

, (11)

where (Ni)1≤i≤N are N independent Poisson processes on R
2.

• If J 6= ∅, the process (ρn(t)) converges in distribution to the solution of the stochastic
differential equation

ρt = ρ0 +

∫ t

0
L(ρs−) ds +

∑

i∈J
⋃
{0}

∫ t

0
hi(ρs−)dWi(s)

+
∑

i∈I

∫ t

0

∫

R

gi(ρs−)10<x<vi(ρs−)

[

Ni(dx, ds)− dx ds
]

(12)

where (Wi(t))0≤i≤N are N+1 independent Brownian motions independent of the Poisson
processes (Ni)1≤i≤N .

Remark: In Theorem 2, the notion of convergence in distribution concerns the convergence
in distribution for stochastic processes, that is, in the Skorohod topology (this corresponds
also to the notion of the weak convergence, see [15, 33] for a complete introduction on this
theory).
Remark: Let us stress that Theorem 2 concerns model in finite dimension. In infinite
dimension, there exist results concerning stochastic Schrödinger equations, we refer to [11]
for Lindblad bounded operators and [30] for non-bounded operators. We refer also to [20]
for quantum repeated interactions setup in infinite dimension related to ”one-atom maser”
model.

2.4. The 2-Dimensional Case

In order to illustrate this theorem, we investigate the case whereH = C
2. In this situation,

we get two different behaviours depending on the fact that p000 = 1 or not.

Indeed, in the case p000 = 1 we have J = ∅ and the case p000 6= 1 corresponds to J 6= ∅.
Furthermore the case p000 = 1 corresponds to a case where the observable A is diagonal in the
basis {X0,X1}, that is, of the form

A = λ0 a
0
0 + λ1 a

1
1 .

The limit equation is then

ρt = ρ0 +

∫ t

0
L(ρs−) ds+

∫ t

0

∫

R

(

L0
1 ρs− (L0

1)
⋆

Tr[L0
1ρs−(L

0
1)

⋆]
− ρs−

)

×

× 10<x<Tr[L0
1
ρs−(L0

1
)⋆]

[

N(dx, ds) − dx ds
]

. (13)
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By putting L0
1 = C and by considering the process Ñt =

∫ t

0

∫

R
10<x<Tr[L0

1
ρs−(L0

1
)⋆]N(dx, ds),

we obtain the jump equation (2) mentioned in Introduction. Indeed, the process (Ñt) is a
counting process with stochastic intensity

∫ t

0 Tr[L
0
1ρs−(L

0
1)

⋆] ds. Actually, the expression (13)
is a rigorous way to consider jump stochastic Schrödinger equations (see [37]). Typically this
equation describes the experiment of photon-detection in quantum optics [24, 27, 40, 41, 12].

The other case p000 6= 1 gives rise to a diffusive equation. For example, consider the case
p000 = 1/2 (the other situations are similar). The observable A has then to be of the form

A =
λ0

2
(a00 + a01 + a10 + a11) +

λ1

2
(a00 − a01 − a10 + a11) .

Hence, we get the limit equation

ρt = ρ0 +

∫ t

0
L0(ρs) ds +

∫ t

0

(

L0
1ρs + ρs(L

0
1)

⋆ − Tr[L0
1ρs + ρs(L

0
1)

⋆]ρs

)

√
2

2
dW1(s)

+

∫ t

0

(

L0
1ρs + ρs(L

0
1)

⋆ − Tr[L0
1ρs + ρs(L

0
1)

⋆]ρs

)−
√
2

2
dW2(s) . (14)

Note that by defining a Brownian motion Wt = (
√
2/2)W1(t) − (

√
2/2)W2(t), we recover

the diffusive equation (1). In quantum optics, this equation describes heterodyne/homodyne
detection experiments [7, 40, 41].

In [32, 37], the equations (13, 14) are studied in details and the convergence from discrete
to continuous trajectories is obtained (with different techniques than the more general result
[38]).

3. From Discrete to Continuous Quantum Trajectories at Positive Temperature

All the results mentioned in previous section are based on the construction of [4] which
makes heavy use of the fact that the reference state of H is a pure state. Indeed, this condition
is strongly needed in order to define the countable tensor product ⊗n∈N∗H and its continuous
limit, the continuous tensor product ⊗t∈R+H.

When considering that the environment is made of a chain of systems H each of which in
thermal equilibrium state

ρβ =
1

Zβ

e−βHR

we cannot directly apply their results. The idea here follows the one developed in [5], that
is, we take the G.N.S. representation of the state ρβ. This way, the state ρβ becomes a pure
state, but on a larger state space.

3.1. The G.N.S Representation of the Heat Bath

The G.N.S representation of (H, ρβ), also called cyclic representation, is described as
follows. At positive temperature, since the state ρβ is faithfull, it defines a scalar product on
H′ = B(H) by

〈A,B〉 = Tr
[

ρβ A
⋆B
]

, (15)

for all (A,B) ∈ H′.
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For all A ∈ H′, we denote by π(A) the linear map from H′ to H′ defined by

π(A)B = AB,

for all B ∈ H′. The linear map π from H′ into B(H′) is a representation of (H, ρβ), the
so-called “G.N.S. representation”. In particular we have

〈I, π(A)I〉 = Tr
[

ρβA
]

,

for all A ∈ H′. This means that transported by π the action of the state ρβ on a observable
A is the same that the one of the pure state |I〉〈I| on π(A).

In order to compute the matrix coefficients of the operator π(U), we need to specify an
orthonormal basis of H′. The only restriction on this basis is that it has to contain the
reference state |I〉〈I|.

The Hilbert space H′ is a (N + 1)2 dimensional space. We denote by X0
0 the identity

operator. Next for i = 1, . . . , N , we denote by Xi
i the diagonal matrix with diagonal elements

{ν0i , . . . , νNi } such that

〈Xi
i ,X

j
j 〉 = δij ,

for all i, j = 0, . . . , N . Such operators can be constructed by extending the vector (1, . . . , 1)
into an orthonormal basis of CN+1 for the scalar product

N
∑

i=0

βi xiyi .

In order to complete the basis, we define Xi
j for i 6= j ∈ {0, . . . , N} by

Xi
j =

1√
βi

aij .

Thus, we have construct an orthonormal basis {Xi
j , i, j = 0, . . . , N} of H′ for the scalar

product (15).
In this basis an operator K on H0 ⊗ H is transported by π as an operator π(K) =

(Kij
kl)0≤i,j,k,l≤N where the coefficients Kij

kl are operator on H0. These coefficients are given by

Kij
kl = TrH

[

(I ⊗ ρβ)(I ⊗Xk
l )

⋆K(I ⊗Xi
j)
]

. (16)

3.2. Asymptotics of U in the G.N.S. Representation

Recall that we have defined the basic unitary interaction U as

U = exp

(

−i
1

n

(

H0 ⊗ I + I ⊗HR +
√
nHI

)

)

. (17)

We are in position to describe π(U) in the asymptotic way. Here, the translation of condition
(10) is the existence of operators Lij

kl such that

lim
n→∞

nǫ
ij
kl

(

U ij
kl − δ(i,j),(k,l)I

)

= Lij
kl , (18)

where ǫ0000 = 1, ǫ00kl = ǫkl00 = 1/2 and the others are equal to zero.

We need to check that the unitary operator (17) provides good asymptotic. Actually in
our context of indirect quantum measurement, according to Theorem 2.3., we only need the
expression of L00

kl .
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PROPOSITION 3. The expression of the final relevant limit operators L00
kl is given by

L00
00 = iH0 +

N
∑

i=1

βiγiI +
1

2

N
∑

i=0

(

β0C
⋆
i Ci + βiCiC

⋆
i

)

,

L00
k0 = −i

√

βkC
⋆
k , L00

0l = −i
√

β0Cl (19)

Proof: In block form we have

Htot =































H0
√
nC⋆

1

√
nC⋆

2 . . .
√
nC⋆

N

√
nC1 H0 + γ1I 0 . . . 0

√
nC2 0 H0 + γ2I . . . 0

...
... . . .

. . .
...

√
nCN 0 0 . . . H0 + γNI































and hence the operator U(n) can be shown to be of the form (cf [4])









































I − 1
n
iH0 − i 1

n
γ0I −i 1√

n
C⋆
1 + ◦

(

1
n3/2

)

. . . −i 1√
n
C⋆
1 + ◦

(

1
n3/2

)

−1
2
1
n

∑N
i=1C

⋆
i Ci + ◦

(

1
n2

)

−i 1√
n
C1 + ◦

(

1
n3/2

)

I − 1
n
iH0 − i 1

n
γ1I . . . −1

2
1
n
C1C

⋆
N

−1
2
1
n
C1C

⋆
1 + ◦

(

1
n2

)

...
...

. . .
...

−i 1√
n
CN + ◦

(

1
n3/2

)

−1
2
1
n
CNC⋆

1 . . . I − 1
n
iH0 − i 1

n
γN I

−1
2
1
n
CNC⋆

N + ◦
(

1
n2

)









































.

Now we can compute the asymptotic form of U00
kl (n). Keeping in mind that in the ap-

propriate basis B̃, the partial trace of an operator is the operator obtained by summing the
diagonal blocks, we get

U00
00 (n) = TrH[I ⊗ ρβ X

0
0UX0

0 ] = TrH[I ⊗ ρβ U ]

= β0

(

I − 1

n

(

iH0 +
1

2

N
∑

i=1

C⋆
i Ci

))

+

N
∑

i=1

βk

(

I − 1

n

(

iH0 + γiI +
1

2
CiC

⋆
i

))

+ ◦
(

1

n

)

= I − 1

n

(

iH0 +
N
∑

i=1

βiγiI +
1

2

N
∑

i=0

(

β0C
⋆
i Ci + βiCiC

⋆
i

)

)

+ ◦
(

1

n

)

. (20)
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Let us stress that we have used
∑N

i=0 βi = 1 to get the expression (20). Now if k = 0 and
l 6= 0, we have

U00
0,l =

1√
βl

TrH
[

(I ⊗ ρβ) (I ⊗ al0)U
]

= −i
1√
n

√

β0Cl + ◦
(

1√
n

)

. (21)

In the same way if l = 0 and k 6= 0, we get

U00
k,0 = −i

1√
n

√

βkC
⋆
k + ◦

(

1√
n

)

. (22)

Actually the terms (20, 21, 22) are the only terms which remain when considering the limit
by applying (18). Indeed the other terms are expressed as

U00
kk = − 1

n

(

N
∑

i=1

βiνik(γI +
1

2
CiC

⋆
i ) + β0ν0k

(

iγ0I +
1

2

N
∑

i=1

CiC
⋆
i

))

+ ◦
(

1

n

)

and if k 6= 0, l 6= 0 and k 6= l

U00
kl = − 1

n

1

2

√

βkClC
⋆
k + ◦

(

1

n

)

.

Hence, by (18), they do not contribute in the limit. �

3.3. Quantum Trajectories at Positive Temperature

Before stating the equivalent of Theorem 2.3. with positive temperature, we need to be
clear on how observables are transformed by the G.N.S representation. In particular, we have
to describe π(I ⊗P ) when P is a projector. By the rule (16), the coefficients P ij

kl of π(I ⊗P )
are given by

P ij
kl = TrH

[

I ⊗ ρβ (I ⊗Xk
l )

⋆ I ⊗ P (I ⊗Xi
j)
]

= TrH
[

I ⊗ (ρβ
(

Xk
l )

⋆ P Xi
j

)]

= Tr
[

ρβ
(

Xk
l )

⋆ P Xi
j

]

I . (23)

Define pijkl = Tr
[

ρβ
(

Xk
l )

⋆ P Xi
j

]

and P ′ = (pijkl). Equation (23) means

π(P ) = I ⊗ P ′ . (24)

We are then in a similar situation as for zero temperature, but one has to notice a very
important fact: the first coefficient p0000 is now always strictly positive. Indeed, we have

p0000 = Tr
[

ρβ
(

X0
0 )

⋆ P X0
0

]

= Tr
[

ρβ P
]

= Tr
[

ρβ P
⋆P
]

= 〈P,P 〉 > 0 . (25)

This simple remark has an important consequence: there will be no jump contribution

in the stochastic master equation for a heat bath.
Indeed, let us consider an observable A =

∑p
i=0 λiPi and π(A) =

∑p
i=0 λi I ⊗ P ′

i . In
Theorem 2.3., the jump contribution is directly connected to the set I = {i ∈ {1, . . . , p}/pi00 =
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0}. In positive temperature, with the notation P ′
m = (pijkl(m)) the analogue of set I is the set

I ′ = {i ∈ {1, . . . , p}/p0000(i) = 0}. Hence, the property (25) implies that I ′ = ∅, which implies
that there is no jump contribution.

Consider the following functions defined on the set of the states:

h̃i(ρ) =
1

√

p0000(i)

[

N
∑

k=1

(

p00k0(i)L
00
k0ρ+ p000k(i)L

00
0kρ+ pk000(i) ρ(L

00
k0)

⋆ + p0k00(i) ρ(L
00
0k)

⋆
)

−Tr
[

p00k0(i)L
00
k0ρ+ p000k(i)L

00
0kρ+ pk000(i) ρ(L

00
k0)

⋆ + p0k00(i) ρ(L
00
0k)

⋆
]

ρ

]

, (26)

L̃(ρ) = L00
00ρ+ ρL00

00 +

N
∑

k=1

(

L00
k0ρ+ ρ(L00

k0)
⋆ + L00

0kρ+ ρ(L00
0k)

⋆
)

. (27)

THEOREM 4. Let A =
∑p

i=0 λiPi be an observable. Let ρ0 be a state on H0. Let (ρk)
be the discrete quantum trajectory describing the quantum repeated measurements at positive
temperature. Let (ρn(t)) be the sequence of stochastic processes defined for all t and all n
by ρn(t) = ρ[nt](t). Then (ρn(t)) converges in distribution, when n goes to infinity, to the
solution of the stochastic differential equation

ρt = ρ0 +

∫ t

0
L̃(ρs) ds +

p
∑

i=0

∫ t

0
h̃i(ρs) dWi(s) , (28)

where (Wi(t)) are N + 1 independent Brownian motions.

Proof: With the expression (24), with the fact that the state ρβ is a pure state in the G.N.S.
representation, we can apply directly Theorem 2.3., with the particular restriction we have
mentioned above. This gives easily Equation (28). �

With the explicit expression of the coefficients L00
kl , Equation (28) can be made more

explicit:

ρt = ρ0 +

∫ t

0

(

− i[H0, ρs]−
1

2

N
∑

k=0

(

β0(C
⋆
kCk ρs + ρsC

⋆
kCk − 2Ck ρsC

⋆
k)
)

− 1

2

N
∑

k=0

(

βk(CkC
⋆
k ρs + ρsCkC

⋆
k − 2C⋆

k ρsCk)
)

)

ds

−
p
∑

m=0

∫ t

0

1
√

p0000(m)

[

N
∑

k=1

i
√

β0

(

p000k(m)Ckρs−p0k00(m)ρsC
⋆
k−Tr

[

p000k(m)Ckρs−p0k00(m)ρsC
⋆
k

]

ρs

+
N
∑

k=1

i
√

βk

(

p00k0(m)C⋆
kρs − pk000(m)ρsCk − Tr

[

p00k0(m)C⋆
kρs − pk000(m)ρsCk

]

ρs

]

dWm(s) . (29)
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In this equation the expression

L̃(ρ) = −i[H0, ρ]−
1

2

N
∑

k=0

(

β0(C
⋆
kCk ρ+ ρC⋆

kCk − 2Ck ρC
⋆
k)
)

− 1

2

N
∑

k=0

(

βk(CkC
⋆
k ρ+ ρCkC

⋆
k − 2C⋆

k ρCk)
)

(30)

corresponds to the usual Lindblad operator describing the evolution of a small system in
contact with a heat bath at positive temperature.

3.4. The 2-Dimensional Case

As in Section 2.4., we want now to specialize the equation (29) when H = C
2 and when

considering particular observables.

The first case is when the observable is diagonal, that is A = λ0a
0
0 + λ1a

1
1. In this case

we have to compute π(a00) and π(a11). As we have a00 + a11 = I and π(I) = I, we just have

to compute π(a00). Since p0100(0) = p0001(0) and p1000(0) = p0010(0), we have only three terms to
determine: p0000(0), p

00
01(0) and p0010(0).

We get

p0000(0) = Tr[ρβ a
0
0] = β0

p0001(0) = Tr[ρβ(X
0
1 )

⋆a00X
0
0 ] =

1√
β0

Tr[ρβa
1
0a

0
0] = 0

p0010(0) = Tr[ρβ(X
1
0 )

⋆a00X
0
0 ] =

1√
β1

Tr[ρβa
0
1a

0
0] = 0 . (31)

As a consequence the equation (29) for a diagonal observable becomes

ρt = ρ0 +

∫ t

0
L̃(ρs) ds

which is just the master equation for a heat bath, with no noise contribution. Hence, at posi-
tive temperature, the repeated measurements of the observable A gives rise to a deterministic
limit behavior. Recall that at zero temperature, the limit behavior was described by a jump
equation.

At positive temperature, we had already seen that the limit behavior should not involve
jump contribution, but here, in addition we have no randomness at all in the limit.

Let us now consider the observable A = λ0/2(a
0
0 + a01 + a10+ a11)+λ1/2(a

0
0 − a01− a10+ a11).

As we have 1/2(a00 + a01 + a10 + a11) + 1/2(a00 − a01 − a10 + a11) = I, we just need to compute
π
(

1/2(a00 + a01+ a10+ a11)
)

. With the previous computations, we only have to determine π(a01)
and π(a10). In order to simplify the notations put R = a01 and S = a10. We have

R00
00 = R00

10 = S00
00 = S00

01 = 0

R00
01 =

√

β0, S00
10 =

√

β1 . (32)

Hence by (31, 32), for P0 = 1/2(a00 + a01 + a10 + a11), we get

p0000(0) =
1

2
, p0001(0) =

√
β0
2

, p0010(0) =

√
β1
2

. (33)
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The equation (29) becomes

ρt = ρ0 +

∫ t

0
L̃(ρs) ds −

∫ t

0

i
√
2

2

(

β0

(

C1ρs − ρsC
⋆
1 − Tr[C1ρs − ρsC

⋆
1 ]ρs

)

+

+ β1

(

C⋆
1ρs − ρsC1 − Tr[C⋆

1ρs − ρsC1]ρs

)

)

dW0(s)

+

∫ t

0

i
√
2

2

(

β0

(

C1ρs − ρsC
⋆
1 − Tr[C1ρs − ρsC

⋆
1 ]ρs

)

+

+ β1

(

C⋆
1ρs − ρsC1 − Tr[C⋆

1ρs − ρsC1]ρs

)

)

dW1(s) . (34)

By defining a new Brownian motion Wt =
√
2/2(W0(t) −W1(t)) and by putting C = −iC1,

the above equation becomes

ρt = ρ0 +

∫ t

0
L̃(ρs) ds +

∫ t

0

(

β0

(

Cρs + ρsC
⋆ −Tr[Cρs + ρsC

⋆]ρs

)

+

+ β1

(

C⋆ρs + ρsC − Tr[C⋆ρs − ρsC]ρs

)

)

dWs . (35)

The equation (35) is then the equivalent of diffusive equation (1) (see Introduction) for the
model with positive temperature.
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