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Stochastic Master Equations in Thermal Environment

We derive the stochastic master equations which describe the evolution of open quantum systems in contact with a heat bath and undergoing indirect measurements. These equations are obtained as a limit of a quantum repeated measurement model where we consider a small system in contact with an infinite chain at positive temperature. At zero temperature it is well-known that one obtains stochastic differential equations of jump-diffusion type. At strictly positive temperature, we show that only pure diffusion type equations are relevant.

Introduction

The theory of Open Quantum Systems aims to study the time evolution of a small system H 0 interacting with an environment E, cf [START_REF] Pellegrini | Quantum Noise Theory[END_REF][START_REF] Attal | Open quantum systems. I[END_REF][START_REF] Breuer | The theory of open quantum systems[END_REF][START_REF] Carmichael | An Open systems Approach to Quantum Optics Lectures notes in Physics[END_REF]. Starting from an Hamiltonian description of the coupled system [START_REF] Attal | Open quantum systems. I[END_REF][START_REF] Breuer | The theory of open quantum systems[END_REF][START_REF] Carmichael | An Open systems Approach to Quantum Optics Lectures notes in Physics[END_REF], the evolution of the reduced system H 0 is obtained by tracing over the degree of freedom of the environment.

In the Markovian approach of open systems, the time evolution of the state of the reduced system is characterized by a semigroup of completely positive maps, with a typical generator called Lindblad generator, which gives rise to an ordinary differential equation called master equation [START_REF] Attal | Open quantum systems. I[END_REF][START_REF] Breuer | The theory of open quantum systems[END_REF][START_REF] Gardiner | A handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics Third edition Springer Series in Synergetics[END_REF].

In this framework, an active line of research, motivated by recent experimental applications in quantum optics and quantum communications, is focused on the description of quantum measurement [START_REF] Barchielli | Quantum Trajectories and Measurements in Continuous Time The Diffusive Case[END_REF][START_REF] Barchielli | Measurements continuous in time and a posteriori states in quantum mechanics[END_REF][START_REF] Barchielli | Stochastic differential equations for trace-class operators and quantum continual measurements[END_REF][START_REF] Barchielli | On a class of stochastic differential equations used in quantum optics[END_REF][START_REF] Barchielli | Constructing Quantum Measurement Processes via Classical stochastic Calculus[END_REF][START_REF] Barchielli | Direct and Heterodyne detection and other applications of quantum stochastic calculus to quantum optics[END_REF][START_REF] Belavkin | Quantum Stochastic Calculus and Quantum Nonlinear Filtering[END_REF][START_REF] Belavkin | Quantum Diffusion, Measurement and Filtering[END_REF][START_REF] Breuer | The theory of open quantum systems[END_REF][START_REF] Gleyzes | Quantum jumps of light recording the birth and death of a photon in a cavity[END_REF][START_REF] Gardiner | A handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics Third edition Springer Series in Synergetics[END_REF][START_REF] Carmichael | An Open systems Approach to Quantum Optics Lectures notes in Physics[END_REF]. Basically, in order to avoid Zeno effect [START_REF] Breuer | The theory of open quantum systems[END_REF], the measurement is performed on the environment. According to the postulates of quantum mechanics, this involves a random perturbation of the evolution of the state of H 0 . The dynamics of H 0 is then described by classical stochastic differential equations, which are perturbations of the master equation in terms of white noise [START_REF] Barchielli | Quantum Trajectories and Measurements in Continuous Time The Diffusive Case[END_REF][START_REF] Bouten | Quantum filtering: a reference probability approach[END_REF][START_REF] Bouten | An introduction to quantum filtering[END_REF][START_REF] Barchielli | Measurements continuous in time and a posteriori states in quantum mechanics[END_REF][START_REF] Barchielli | Stochastic differential equations for trace-class operators and quantum continual measurements[END_REF][START_REF] Barchielli | On a class of stochastic differential equations used in quantum optics[END_REF][START_REF] Barchielli | Constructing Quantum Measurement Processes via Classical stochastic Calculus[END_REF][START_REF] Barchielli | Direct and Heterodyne detection and other applications of quantum stochastic calculus to quantum optics[END_REF][START_REF] Bouten | Stochastic Schrödinger equations[END_REF][START_REF] Mora | Basic Properties of Non-linear Stochastic Schrödinger Equations Driven by Brownian Motions[END_REF][START_REF] Pellegrini | Existence, uniqueness and approximation for stochastic Schrödinger equation: the Diffusive case[END_REF][START_REF] Pellegrini | Existence, uniqueness and approximation of the jump-type stochastic Schrödinger equation for two-level systems[END_REF][START_REF] Pellegrini | Markov Chains Approximations of Jump-diffusion Stochastic Master Equations[END_REF]. Usually, these equations are called Stochastic Schrödinger Equations or Stochastic Master Equations and their solutions are called Quantum Trajectories (the name "stochastic Schrödinger equation" is usually reserved for the evolution of the state of H 0 in terms of pure states whereas stochastic master equations concerns evolution of density matrices).

In the literature, most of the results concern models where the environment is at zero temperature and a lot of investments are still in progress to get right descriptions for model at positive temperature (even without measurement). Typically, at zero temperature, for the random evolution of density matrices we get two typical stochastic master equations of the following form.

A diffusive equation

dρ t = L(ρ t ) dt + Cρ t + ρ t C ⋆ -Tr ρ t (C + C ⋆ ) ρ t dW t , (1) 
where W t is a one dimensional Brownian motion.

A jump equation

dρ t = L(ρ t ) dt + C ρ t C ⋆ Tr C ρ t C ⋆ -ρ t d Ñt -Tr C ρ t C ⋆ dt , (2) 
where ( Ñt ) is a counting process with stochastic intensity t → t 0 Tr C ρ s C ⋆ ds.

In the above expressions L is the Lindblad operator, the operator C is an arbitrary operator (which depends actually on the interaction between the system and the environment, see Section 2.4). Note that we can recognize from the form of these equations that they all are simulations of the master equation, for they are stochastic differential equations valued in the set of states of H 0 and on average they satisfy the master equation. More complicated models use jump-diffusion stochastic differential equations which are mixing of equations ( 1) and (2) [START_REF] Barchielli | Stochastic differential equations for trace-class operators and quantum continual measurements[END_REF][START_REF] Barchielli | Constructing Quantum Measurement Processes via Classical stochastic Calculus[END_REF][START_REF] Pellegrini | Markov Chains Approximations of Jump-diffusion Stochastic Master Equations[END_REF] (see Section 2.).

Mathematically, there are three usual ways to justify these equations. A first approach is based on Instrumental Operator Processes connected with the notion of Operator Valued Measures and Quantum Markov Semi-groups analogy [START_REF] Attal | Open quantum systems. I[END_REF][START_REF] Barchielli | Quantum Trajectories and Measurements in Continuous Time The Diffusive Case[END_REF]. The second one is based on classical stochastic differential equation theory and on the concept of a posteriori state [START_REF] Barchielli | Quantum Trajectories and Measurements in Continuous Time The Diffusive Case[END_REF][START_REF] Barchielli | Measurements continuous in time and a posteriori states in quantum mechanics[END_REF][START_REF] Barchielli | Stochastic differential equations for trace-class operators and quantum continual measurements[END_REF][START_REF] Barchielli | On a class of stochastic differential equations used in quantum optics[END_REF][START_REF] Barchielli | Constructing Quantum Measurement Processes via Classical stochastic Calculus[END_REF][START_REF] Mora | Basic Properties of Non-linear Stochastic Schrödinger Equations Driven by Brownian Motions[END_REF]. The third approach often called Quantum Filtering is based on the formalism of Quantum Stochastic Calculus and the notion of input and output field in quantum optics [START_REF] Attal | Open quantum systems. I[END_REF][START_REF] Barchielli | Direct and Heterodyne detection and other applications of quantum stochastic calculus to quantum optics[END_REF][START_REF] Belavkin | Quantum Stochastic Calculus and Quantum Nonlinear Filtering[END_REF][START_REF] Belavkin | Quantum Diffusion, Measurement and Filtering[END_REF][START_REF] Bouten | Stochastic Schrödinger equations[END_REF][START_REF] Bouten | Quantum filtering: a reference probability approach[END_REF][START_REF] Bouten | An introduction to quantum filtering[END_REF]. In this last setup, the evolution of the small system and the environment is modeled by Quantum Langevin Equations (also called Quantum Stochastic Differential Equations or Hudson-Parthasarathy Equations) [START_REF] Pellegrini | Quantum Noise Theory[END_REF][START_REF] Attal | Open quantum systems. I[END_REF][START_REF] Parthasarathy | An introduction to quantum stochastic calculus[END_REF]. These equations are namely driven by Quantum Noises [START_REF] Pellegrini | Quantum Noise Theory[END_REF][START_REF] Attal | Open quantum systems. I[END_REF]. Next, by adapting the classical framework of stochastic filtering, one can obtain appropriate stochastic differential equations driven by classical noises, which take into account the "incomplete" information of indirect observations.

In [START_REF] Pellegrini | Existence, uniqueness and approximation for stochastic Schrödinger equation: the Diffusive case[END_REF][START_REF] Pellegrini | Existence, uniqueness and approximation of the jump-type stochastic Schrödinger equation for two-level systems[END_REF][START_REF] Pellegrini | Markov Chains Approximations of Jump-diffusion Stochastic Master Equations[END_REF], an alternative discrete way has been developed. The approach is based on the model of Quantum Repeated Interactions which provides a "useful" discrete approximation model of quantum Langevin equations [START_REF] Attal | From (n + 1)-level atom chains to n-dimensional noises[END_REF][START_REF] Attal | From repeated to continuous quantum interactions[END_REF] . The setup of quantum repeated interactions is the one of the interaction of a small system H 0 with an environment represented by an infinite chain ∞ k=0 H k . Moreover, the pieces of the chain are identical and independent quantum system, that is H k = H for all k. Each copy H interacts with H 0 , one after the other, during a time τ . In this framework, an appropriate language of discrete quantum noise and discrete quantum stochastic differential equations is constructed. Next, it is shown that the time continuous limit (τ → 0) gives rise to continuous models of quantum Langevin equations and continuous quantum noises. In this context, a discrete time model of indirect quantum measurements, called model of Quantum Repeated Measurements has been developed in [START_REF] Pellegrini | Existence, uniqueness and approximation for stochastic Schrödinger equation: the Diffusive case[END_REF][START_REF] Pellegrini | Existence, uniqueness and approximation of the jump-type stochastic Schrödinger equation for two-level systems[END_REF][START_REF] Pellegrini | Markov Chains Approximations of Jump-diffusion Stochastic Master Equations[END_REF]. It consists in performing a measurement of an observable of H k after each interaction with H 0 (similar models of successive measurements has been considered in [START_REF] Brun | A simple model of quantum trajectories[END_REF][START_REF] Jacobs | Engineering Quantum States, Nonlinear Measurements, and Anomalous Diffusion by Imaging[END_REF]). As in the continuous case, the measurement introduces a random perturbation of the evolution of H 0 , described by discrete stochastic master equations and discrete quantum trajectories. In the same spirit as [START_REF] Attal | From repeated to continuous quantum interactions[END_REF], by considering the continuous time limit (τ → 0), the continuous models of stochastic master equations and quantum trajectories are recovered. Much beyond the approximation result, these discrete time models (without measurement [START_REF] Attal | From repeated to continuous quantum interactions[END_REF] and with measurement [START_REF] Pellegrini | Existence, uniqueness and approximation for stochastic Schrödinger equation: the Diffusive case[END_REF][START_REF] Pellegrini | Existence, uniqueness and approximation of the jump-type stochastic Schrödinger equation for two-level systems[END_REF][START_REF] Pellegrini | Markov Chains Approximations of Jump-diffusion Stochastic Master Equations[END_REF]) provide a concrete and intuitive physical justification of the continuous models of quantum Langevin and stochastic master equations. For other applications and results regarding quantum repeated interactions, we refer to [START_REF] Bruneau | Merkli Asymptotics of repeated interaction quantum systems[END_REF][START_REF] Bruneau | Merkli Random Repeated Interaction Quantum Systems[END_REF][START_REF] Bruneau | Merkli Repeated and Continuous Interactions in Open Quantum Systems Annales Henri Poincar[END_REF][START_REF] Bruneau | Thermal relaxation of a QED cavity[END_REF][START_REF] Karevski | Quantum Nonequilibrium Steady States Induced by Repeated Interactions[END_REF][START_REF] Nechita | Random Repeated Quantum Interactions and Random Invariant States accepted for publication in Probability Theory and Related Fields[END_REF][START_REF] Sudarshan | Evolution and decoherence in finite level systems[END_REF] where 'return to equilibrium", "large time behaviour" or "thermalization" problems are considered. We refer also to [START_REF] Burgarth | Mediated homogenization[END_REF][START_REF] Gennaro | Entanglement dynamics and relaxation in a few-qubit system interacting with random collisions[END_REF][START_REF] Yeo | Robustness of Multipartite Entanglement under Collisional Decoherence[END_REF][START_REF] Ziman | Description of quantum dynamics of open systems based on collision-like models Open systems and information dynamics[END_REF][START_REF] Ziman | All (qubit) decoherences: Complete characterization and physical implementation[END_REF] for an approach based on collision-like models in physics, where properties such as "entanglement" and 'decoherence" are studied.

It is important to notice that these four different approaches of stochastic master equations are crucially based on the "zero temperature" assumption. For example in the approach based on quantum stochastic calculus, one the main obstacle to consider positive temperature model is to describe the action of the heat bath on the small system and to derive adequate Langevin equations.

Recently, in [START_REF] Attal | The Langevin equation for a quantum heat bath[END_REF], the discrete approach of quantum repeated interactions [START_REF] Attal | From repeated to continuous quantum interactions[END_REF] has been adapted to models with heat bath at positive temperature. This way, thermal quantum Langevin equations have been obtained and a clear justification of the action of the thermal bath has been presented. It is then natural to combine this approach with quantum repeated measurements in order to derive stochastic master equations for heat baths.

In order to introduce temperature, we consider that each copy H is in a thermal Gibbs state at inverse temperature β. The crucial point in all the different approaches at zero temperature is the fact the state of the environment is a pure state. This is clearly not the case for a Gibbs state. In order to get around this difficulty, we apply the G.N.S. representation of that state. This way, the Gibbs state of each copy H can be considered as a pure state in an enlarged Hilbert space. Hence, with this representation, the convergence result of [START_REF] Pellegrini | Markov Chains Approximations of Jump-diffusion Stochastic Master Equations[END_REF] can be applied and stochastic master equations for heat bath are derived. Surprisingly, models of the form (2) with counting processes disappears and only diffusive models remains. This article is structured as follows. In Section 2., we remind the discrete models of quantum repeated interactions and then quantum repeated measurements. Next, we recall the main result of [START_REF] Pellegrini | Markov Chains Approximations of Jump-diffusion Stochastic Master Equations[END_REF] which gives the stochastic Master equations as continuous limits of these discrete models.

In Section 3., we adapt the result of [START_REF] Pellegrini | Markov Chains Approximations of Jump-diffusion Stochastic Master Equations[END_REF] for model with positive temperature. This is achieved by describing the G.N.S representation of the heat bath. Hence we obtain the complete description of stochastic master equations for a small system in contact with a heat bath and undergoing indirect quantum measurements.

From Discrete to Continuous Quantum Trajectories at Zero Temperature

In this section we recall the mathematical description of the quantum repeated measurement model, as developed in [START_REF] Pellegrini | Markov Chains Approximations of Jump-diffusion Stochastic Master Equations[END_REF].

Quantum Repeated Interactions

The model of quantum repeated interactions consists in studying the interaction of a finite dimensional quantum system H 0 in contact with an infinite chain T Φ = N ⋆ H k , where H k = H = C N +1 for all k. One can imagine that the pieces H represent for example "a measurement apparatus" or an "incoming photon"... We first need to make precise the definition of the countable tensor product T Φ. To this end, let us define an explicit orthonormal basis of T Φ. Let {X 0 , X 1 , . . . , X N } be an orthonormal basis of H = C N +1 . Actually note that only the choice of X 0 is relevant in our construction: it represents a reference state of H (for example a ground state). Put X n i to be the copy of the basis vector X i but acting on the n-th copy of H. The orthonormal basis of T Φ is then made of those tensor products

X 1 i 1 ⊗ . . . ⊗ X n in ⊗ . . .
such that all the i n 's, but a finite number, are all equal to 0. On H consider the basic operators a i j , i, j = 0, . . . , N defined by

a i j X k = δ ik X j (in Dirac notation a i j = |X j X i |).
We dilate them as operators a i j (k) on T Φ by asking them to act as a i j on the k-th copy of H and as the identity operator on the rest of the chain. The model of repeated interactions [START_REF] Attal | From repeated to continuous quantum interactions[END_REF] is now described as follows. Each copy of H is supposed to interact, one after the other, with H 0 during a time duration τ . Each elementary interaction between H 0 and H is described by a total Hamiltonian

H tot = H 0 ⊗ I + I ⊗ H R + λH I . (3) 
The operator H 0 corresponds to the free Hamiltonian of the system H 0 , the operator H R is the free Hamiltonian of the system H, the operator H I is the interaction Hamiltonian and λ is the coupling constant. The basis {X 0 , . . . , X n } is chosen to be the basis of eigenvectors of H R , that is, with our notations:

H R = N i=1 γ i a 0 i a i 0 . (4) 
The interaction Hamiltonian H I is chosen to be of so-called "dipole-type":

H I = N i=1 C i ⊗ a 0 i + C ⋆ i ⊗ a i 0 . (5) 
After a time duration τ of interaction, the evolution of H 0 ⊗ H is governed by the unitary operator U = e -iτ Htot .

That is, in the Schrödinger picture, the evolution of states on H 0 ⊗ H is given by

ρ → U ρU ⋆
and in the Heisenberg picture, the observables evolve as

X → U ⋆ ρU .
Now, in order to describe the repeated interactions on the whole space H 0 ⊗ T Φ, we consider, for each k ∈ N * , the unitary operator U k which acts like the operator U on the tensor product H 0 ⊗H k and like the identity operator on the rest of the space. For k being fixed, the operator U k describes the k-th interaction. The whole procedure is then described by the sequence of unitary operators (V k ) defined by

V k = U k U k-1 . . . U 1 .
For example the evolution of an initial state ρ on H 0 ⊗ T Φ after k interactions is given by

ρ → V k ρV ⋆ k .

Quantum Repeated Measurements

Now, we are in position to describe the model of quantum repeated measurements [START_REF] Pellegrini | Existence, uniqueness and approximation for stochastic Schrödinger equation: the Diffusive case[END_REF]. To this end, we need to specify the reference states of H 0 and H. Let ρ denote the initial state of H 0 . For each copy of H, we consider the usual thermal Gibbs state at inverse temperature β:

ρ β = e -βH R Tr [e -βH R ] , (6) 
where H R is defined in expression (4). In particular ρ β is diagonal, with diagonal elements that we shall denote by {β 0 , β 1 , . . . , β N }.

In order to describe the indirect measurement of an observable A of H, we come back to the description of the first interaction in the space H 0 ⊗ H. After the interaction the new state of

H 0 ⊗ H is µ = U (ρ ⊗ ρ β )U ⋆ . Now if A owns the spectral decomposition A = p i=0 λ i P i ,
the measurement of A gives a random result in the set of eigenvalues λ 0 , . . . , λ p . In particular, the value λ i is obtained with probability P to observe λ i = Tr µ I ⊗ P i .

After having observed the eigenvalue λ i , the state µ is projected and becomes

ρ1 (i) = (I ⊗ P i ) µ (I ⊗ P i ) T r µ (I ⊗ P i ) .
For i being fixed, the state ρ1 (i) represents the new state of H 0 ⊗ H after the first interaction and the first measurement. Usually, we are only interested in the reduced system H 0 , that is, we shall consider only the partial trace

ρ 1 (i) = Tr H (ρ 1 (i)) .
The state ρ 1 is a random state which takes the values

L i (ρ) Tr L i (ρ)]
with probability T r L i (ρ)] respectively, where

L i (ρ) = Tr H (I ⊗ P i ) U (ρ ⊗ ρ β )U ⋆ (I ⊗ P i ) .
This way, the state ρ 1 is the new reference state of H 0 and we can consider a new interaction with a copy of H and a new measurement of A. By reducing on H 0 , we then get a new random state ρ 2 which satisfies similar properties as ρ 1 . Iterating this procedure we obtain a random sequence of state (ρ k ) on H 0 . This sequence, called discrete quantum trajectory describes the random modifications of the state of H 0 undergoing quantum repeated interactions and measurements. More precisely, we have the following proposition (cf [START_REF] Pellegrini | Existence, uniqueness and approximation for stochastic Schrödinger equation: the Diffusive case[END_REF]). PROPOSITION 1. The sequence (ρ k ) is a Markov chain. More precisely, if ρ k = θ, the state ρ k+1 can take the values

L i (θ) Tr L i (θ)]
, i = 0, . . . , p

with probability p i (θ) = Tr L i (θ)], where L i (θ) = Tr H I ⊗ P i U (θ ⊗ ρ β )U ⋆ I ⊗ P i .
In other words, the above proposition can be summarized as follows. Let 1 k i denote the random variable which takes the value 1 if we observe the eigenvalue λ i during the k-th measurement and 0 otherwise, we then have

ρ k+1 = p i=0 L i (ρ k ) p i (ρ k ) 1 k+1 i . (8) 

Quantum Trajectories at Zero Temperature

The equation above is a discrete-time stochastic master equation. In the articles [START_REF] Pellegrini | Existence, uniqueness and approximation for stochastic Schrödinger equation: the Diffusive case[END_REF][START_REF] Pellegrini | Existence, uniqueness and approximation of the jump-type stochastic Schrödinger equation for two-level systems[END_REF][START_REF] Pellegrini | Markov Chains Approximations of Jump-diffusion Stochastic Master Equations[END_REF]] the author computes explicitely the continuous-time limit of (8) at zero temperature. In the limit, he obtains the usual stochastic master equations describing continuous measurement experiments. In general, these equations are stochastic differential equations mixing diffusive and jump noises. We shall now recall these results.

We now focus on the case where the temperature is zero, that is β = +∞. This way, we have β i = 0 for all i = 1, . . . , N and ρ β = a 0 0 = |X 0 X 0 |. If K is an operator on H 0 ⊗ H and for the choice {X 0 , . . . , X N } of an orthonormal basis for H, the operator K can be written as a (N + 1) × (N + 1)-block-matrix, with coefficients

K i j = Tr H I ⊗ |X j X i | K ,
being operators on H 0 . With these notations, we have

Tr H [K] = N i=0 K i i .
In particular the L i (ρ) are easy to compute explicitely: let U = (U l k ) 0≤k,l≤N be the blockmatrix representation of the unitary evolution U and let P i = (p i kl ) 0≤k,l≤N in the basis {X 0 , . . . , X 1 } (in block form we have I ⊗ P i = (p i kl I) 0≤k,l≤N ), we get

L i (ρ) = Tr H I ⊗ P i U (ρ ⊗ ρ β )U ⋆ I ⊗ P i = N k,l=0 p i kl U 0 k ρ (U 0 l ) ⋆ . (9) 
The convergence result of discrete quantum trajectories is based on the asymptotic assumptions described in [START_REF] Attal | From repeated to continuous quantum interactions[END_REF]. These assumptions concern the unitary operator U . If we consider the time of interaction τ being τ = 1/n, the unitary operator U depends on the parameter n, that is, U = U (n) = (U l k (n)) 0≤k,l≤N . In [START_REF] Attal | From repeated to continuous quantum interactions[END_REF], it is shown that the operator process (V

[nt] ) satisfying V [nt] = U [nt] (n) . . . U 1 (n)
converges, non trivially, to a process (V t ), only if the coefficients U i j (n) obey certain normalizations. The limit process (V t ) then satisfies a quantum Langevin equation describing the evolution of a small system coupled with a Fock space.

Their asymptotic conditions concern the existence of operators L i j such that for all (i, j) ∈ {0, . . . , N } 2 we have lim

n→∞ n ǫ ij (U i j (n) -δ ij I) = L i j , (10) 
where ǫ ij = 1 2 (δ 0i + δ 0j ). In the context of measurement, the expression (9) implies that only the asymptotic of the terms U 0 j (n) are relevant. In terms of total Hamiltonian (3), in [START_REF] Attal | From repeated to continuous quantum interactions[END_REF] it is shown that these asymptotics for the U i j 's can be obtained by considering interaction Hamiltonian H I of type (5) and by considering the coupling constant λ = √ n. In that case, they obtain

L 0 k = -iC k .
Remark In other words, this corresponds to a renormalization in √ n of the field operator a 0 i and a i 0 in order to strengthen the force of the interaction while the interaction-time τ = 1/n decreases (when n goes to infinity). Such normalization is essential in order to obtain non trivial limit (see discussion in Section 4.2 in [START_REF] Attal | From repeated to continuous quantum interactions[END_REF] and [START_REF] Attal | Weak coupling and continuous limits for repeated quantum interactions[END_REF]). We refer also to [START_REF] Jacobs | Engineering Quantum States, Nonlinear Measurements, and Anomalous Diffusion by Imaging[END_REF], where scaling time and appearance of noises are discussed. Now with [START_REF] Barchielli | On a class of stochastic differential equations used in quantum optics[END_REF], we are in position to express the main result of [START_REF] Pellegrini | Markov Chains Approximations of Jump-diffusion Stochastic Master Equations[END_REF] which links discrete and continuous quantum trajectories. To this end, we introduce functions (when it has a meaning) defined on the set of states:

g i (ρ) = N k,l=1 p i kl L 0 k ρ(L 0 l ) ⋆ Tr   N k,l=1 p i kl L 0 k ρ(L 0 l ) ⋆   -ρ v i (ρ) = Tr   N k,l=1 p i kl L 0 k ρ(L 0 l ) ⋆   h i (ρ) = 1 p i 00 N k=1 p i k0 L 0 k ρ + p i 0k ρ(L 0 k ) ⋆ -Tr N k=1 p i k0 L 0 k ρ + p i 0k ρ(L 0 k ) ⋆ ρ L(ρ) = L 0 0 ρ + ρ(L 0 0 ) ⋆ + N k=1 L 0 k ρ (L 0 k ) ⋆ .
THEOREM 2. Let A = p i=0 λ i P i be an observable of H. As i P i = I, without restriction, we can assume that p 0 00 = 0. Let I = {i ∈ {1, . . . , p}/p i 00 = 0} and J = {1, . . . , p} \ I. Let ρ 0 be a state on H 0 and let (ρ n (t)) be the stochastic process defined from the discrete quantum trajectory (ρ k ) by ρ n (t) = ρ [nt] . We then have the following convergence result.

• If J = ∅, the process (ρ n (t)) converges in distribution to the solution of the stochastic differential equation

ρ t = ρ 0 + t 0 L(ρ s-) ds + p i=1 t 0 R g i (ρ s-)1 0<x<v i (ρ s-) N i (dx, ds) -dx ds , (11) 
where (N i ) 1≤i≤N are N independent Poisson processes on R 2 .

• If J = ∅, the process (ρ n (t)) converges in distribution to the solution of the stochastic differential equation

ρ t = ρ 0 + t 0 L(ρ s-) ds + i∈J {0} t 0 h i (ρ s-)dW i (s) + i∈I t 0 R g i (ρ s-)1 0<x<v i (ρ s-) i (dx, ds) -dx ds ( 12 
)
where (W i (t)) 0≤i≤N are N +1 independent Brownian motions independent of the Poisson processes (N i ) 1≤i≤N .

Remark: In Theorem 2, the notion of convergence in distribution concerns the convergence in distribution for stochastic processes, that is, in the Skorohod topology (this corresponds also to the notion of the weak convergence, see [START_REF] Billingsley | Convergence of probability measures[END_REF][START_REF] Ethier | Markov processes[END_REF] for a complete introduction on this theory).

Remark: Let us stress that Theorem 2 concerns model in finite dimension. In infinite dimension, there exist results concerning stochastic Schrödinger equations, we refer to [START_REF] Barchielli | Constructing Quantum Measurement Processes via Classical stochastic Calculus[END_REF] for Lindblad bounded operators and [START_REF] Mora | Basic Properties of Non-linear Stochastic Schrödinger Equations Driven by Brownian Motions[END_REF] for non-bounded operators. We refer also to [START_REF] Bruneau | Thermal relaxation of a QED cavity[END_REF] for quantum repeated interactions setup in infinite dimension related to "one-atom maser" model.

The 2-Dimensional Case

In order to illustrate this theorem, we investigate the case where H = C 2 . In this situation, we get two different behaviours depending on the fact that p 0 00 = 1 or not. Indeed, in the case p 0 00 = 1 we have J = ∅ and the case p 0 00 = 1 corresponds to J = ∅. Furthermore the case p 0 00 = 1 corresponds to a case where the observable A is diagonal in the basis {X 0 , X 1 }, that is, of the form

A = λ 0 a 0 0 + λ 1 a 1 1 .
The limit equation is then

ρ t = ρ 0 + t 0 L(ρ s-) ds + t 0 R L 0 1 ρ s-(L 0 1 ) ⋆ Tr[L 0 1 ρ s-(L 0 1 ) ⋆ ] -ρ s-× × 1 0<x<Tr[L 0 1 ρ s-(L 0 1 ) ⋆ ] N (dx, ds) -dx ds . ( 13 
)
By putting L 0 1 = C and by considering the process Ñt =

t 0 R 1 0<x<Tr[L 0 1 ρ s-(L 0 1
) ⋆ ] N (dx, ds), we obtain the jump equation ( 2) mentioned in Introduction. Indeed, the process ( Ñt ) is a counting process with stochastic intensity t 0 Tr[L 0 1 ρ s-(L 0 1 ) ⋆ ] ds. Actually, the expression ( 13) is a rigorous way to consider jump stochastic Schrödinger equations (see [START_REF] Pellegrini | Existence, uniqueness and approximation of the jump-type stochastic Schrödinger equation for two-level systems[END_REF]). Typically this equation describes the experiment of photon-detection in quantum optics [START_REF] Breuer | The theory of open quantum systems[END_REF][START_REF] Gleyzes | Quantum jumps of light recording the birth and death of a photon in a cavity[END_REF][START_REF] Wiseman | Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere[END_REF][START_REF] Wiseman | Quantum trajectories and feedback Ph[END_REF][START_REF] Barchielli | Direct and Heterodyne detection and other applications of quantum stochastic calculus to quantum optics[END_REF].

The other case p 0 00 = 1 gives rise to a diffusive equation. For example, consider the case p 0 00 = 1/2 (the other situations are similar). The observable A has then to be of the form

A = λ 0 2 (a 0 0 + a 0 1 + a 1 0 + a 1 1 ) + λ 1 2 (a 0 0 -a 0 1 -a 1 0 + a 1 1 )
.

Hence, we get the limit equation

ρ t = ρ 0 + t 0 L 0 (ρ s ) ds + t 0 L 0 1 ρ s + ρ s (L 0 1 ) ⋆ -Tr[L 0 1 ρ s + ρ s (L 0 1 ) ⋆ ]ρ s √ 2 2 dW 1 (s) + t 0 L 0 1 ρ s + ρ s (L 0 1 ) ⋆ -Tr[L 0 1 ρ s + ρ s (L 0 1 ) ⋆ ]ρ s - √ 2 2 dW 2 (s) . (14) 
Note that by defining a Brownian motion

W t = ( √ 2/2) W 1 (t) -( √ 2/2) W 2 (t)
, we recover the diffusive equation [START_REF] Pellegrini | Quantum Noise Theory[END_REF]. In quantum optics, this equation describes heterodyne/homodyne detection experiments [START_REF] Barchielli | Quantum Trajectories and Measurements in Continuous Time The Diffusive Case[END_REF][START_REF] Wiseman | Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere[END_REF][START_REF] Wiseman | Quantum trajectories and feedback Ph[END_REF].

In [START_REF] Pellegrini | Existence, uniqueness and approximation for stochastic Schrödinger equation: the Diffusive case[END_REF][START_REF] Pellegrini | Existence, uniqueness and approximation of the jump-type stochastic Schrödinger equation for two-level systems[END_REF], the equations [START_REF] Belavkin | Quantum Stochastic Calculus and Quantum Nonlinear Filtering[END_REF][START_REF] Belavkin | Quantum Diffusion, Measurement and Filtering[END_REF] are studied in details and the convergence from discrete to continuous trajectories is obtained (with different techniques than the more general result [START_REF] Pellegrini | Markov Chains Approximations of Jump-diffusion Stochastic Master Equations[END_REF]).

From Discrete to Continuous Quantum Trajectories at Positive Temperature

All the results mentioned in previous section are based on the construction of [START_REF] Attal | From repeated to continuous quantum interactions[END_REF] which makes heavy use of the fact that the reference state of H is a pure state. Indeed, this condition is strongly needed in order to define the countable tensor product ⊗ n∈N * H and its continuous limit, the continuous tensor product ⊗ t∈R + H.

When considering that the environment is made of a chain of systems H each of which in thermal equilibrium state

ρ β = 1 Z β e -βH R
we cannot directly apply their results. The idea here follows the one developed in [START_REF] Attal | The Langevin equation for a quantum heat bath[END_REF], that is, we take the G.N.S. representation of the state ρ β . This way, the state ρ β becomes a pure state, but on a larger state space.

The G.N.S Representation of the Heat Bath

The G.N.S representation of (H, ρ β ), also called cyclic representation, is described as follows. At positive temperature, since the state ρ β is faithfull, it defines a scalar product on

H ′ = B(H) by A, B = Tr ρ β A ⋆ B , (15) 
for all (A, B) ∈ H ′ .

For all A ∈ H ′ , we denote by π(A) the linear map from H ′ to H ′ defined by

π(A)B = AB,
for all B ∈ H ′ . The linear map π from H ′ into B(H ′ ) is a representation of (H, ρ β ), the so-called "G.N.S. representation". In particular we have

I, π(A)I = Tr ρ β A ,
for all A ∈ H ′ . This means that transported by π the action of the state ρ β on a observable A is the same that the one of the pure state |I I| on π(A).

In order to compute the matrix coefficients of the operator π(U ), we need to specify an orthonormal basis of H ′ . The only restriction on this basis is that it has to contain the reference state |I I|.

The Hilbert space H ′ is a (N + 1) 2 dimensional space. We denote by X 0 0 the identity operator. Next for i = 1, . . . , N , we denote by X i i the diagonal matrix with diagonal elements {ν 0 i , . . . , ν N i } such that X i i , X j j = δ ij , for all i, j = 0, . . . , N . Such operators can be constructed by extending the vector (1, . . . , 1) into an orthonormal basis of C N +1 for the scalar product

N i=0 β i x i y i .
In order to complete the basis, we define X i j for i = j ∈ {0, . . . , N } by

X i j = 1 √ β i a i j .
Thus, we have construct an orthonormal basis {X i j , i, j = 0, . . . , N } of H ′ for the scalar product [START_REF] Billingsley | Convergence of probability measures[END_REF].

In this basis an operator K on H 0 ⊗ H is transported by π as an operator π(K) = (K ij kl ) 0≤i,j,k,l≤N where the coefficients K ij kl are operator on H 0 . These coefficients are given by

K ij kl = Tr H (I ⊗ ρ β )(I ⊗ X k l ) ⋆ K(I ⊗ X i j ) . (16) 
3.2. Asymptotics of U in the G.N.S. Representation

Recall that we have defined the basic unitary interaction U as

U = exp -i 1 n H 0 ⊗ I + I ⊗ H R + √ n H I . ( 17 
)
We are in position to describe π(U ) in the asymptotic way. Here, the translation of condition [START_REF] Barchielli | On a class of stochastic differential equations used in quantum optics[END_REF] is the existence of operators L ij kl such that

lim n→∞ n ǫ ij kl U ij kl -δ (i,j),(k,l) I = L ij kl , (18) 
where ǫ 00 00 = 1, ǫ 00 kl = ǫ kl 00 = 1/2 and the others are equal to zero. We need to check that the unitary operator [START_REF] Bruneau | Merkli Asymptotics of repeated interaction quantum systems[END_REF] provides good asymptotic. Actually in our context of indirect quantum measurement, according to Theorem 2.3., we only need the expression of L 00 kl .

PROPOSITION 3. The expression of the final relevant limit operators L 00 kl is given by

L 00 00 = iH 0 + N i=1 β i γ i I + 1 2 N i=0 β 0 C ⋆ i C i + β i C i C ⋆ i , L 00 k0 = -i β k C ⋆ k , L 00 0l = -i β 0 C l (19) 
Proof: In block form we have

H tot =                H 0 √ n C ⋆ 1 √ n C ⋆ 2 . . . √ n C ⋆ N √ n C 1 H 0 + γ 1 I 0 . . . 0 √ n C 2 0 H 0 + γ 2 I . . . 0 . . . . . . . . . . . . . . . √ n C N 0 0 . . . H 0 + γ N I               
and hence the operator U (n) can be shown to be of the form (cf [START_REF] Attal | From repeated to continuous quantum interactions[END_REF])

                    I -1 n iH 0 -i 1 n γ 0 I -i 1 √ n C ⋆ 1 + • 1 n 3/2 . . . -i 1 √ n C ⋆ 1 + • 1 n 3/2 -1 2 1 n N i=1 C ⋆ i C i + • 1 n 2 -i 1 √ n C 1 + • 1 n 3/2 I -1 n iH 0 -i 1 n γ 1 I . . . -1 2 1 n C 1 C ⋆ N -1 2 1 n C 1 C ⋆ 1 + • 1 n 2 . . . . . . . . . . . . -i 1 √ n C N + • 1 n 3/2 -1 2 1 n C N C ⋆ 1 . . . I -1 n iH 0 -i 1 n γ N I -1 2 1 n C N C ⋆ N + • 1 n 2                    
. Now we can compute the asymptotic form of U 00 kl (n). Keeping in mind that in the appropriate basis B, the partial trace of an operator is the operator obtained by summing the diagonal blocks, we get

U 00 00 (n) = Tr H [I ⊗ ρ β X 0 0 U X 0 0 ] = Tr H [I ⊗ ρ β U ] = β 0 I - 1 n iH 0 + 1 2 N i=1 C ⋆ i C i + N i=1 β k I - 1 n iH 0 + γ i I + 1 2 C i C ⋆ i + • 1 n = I - 1 n iH 0 + N i=1 β i γ i I + 1 2 N i=0 β 0 C ⋆ i C i + β i C i C ⋆ i + • 1 n . (20) 
Let us stress that we have used N i=0 β i = 1 to get the expression [START_REF] Bruneau | Thermal relaxation of a QED cavity[END_REF]. Now if k = 0 and l = 0, we have

U 00 0,l = 1 √ β l Tr H (I ⊗ ρ β ) (I ⊗ a l 0 ) U = -i 1 √ n β 0 C l + • 1 √ n . (21) 
In the same way if l = 0 and k = 0, we get

U 00 k,0 = -i 1 √ n β k C ⋆ k + • 1 √ n . (22) 
Actually the terms [START_REF] Bruneau | Thermal relaxation of a QED cavity[END_REF][START_REF] Bouten | Stochastic Schrödinger equations[END_REF][START_REF] Bouten | Quantum filtering: a reference probability approach[END_REF] are the only terms which remain when considering the limit by applying [START_REF] Bruneau | Merkli Random Repeated Interaction Quantum Systems[END_REF]. Indeed the other terms are expressed as

U 00 kk = - 1 n N i=1 β i ν i k (γI + 1 2 C i C ⋆ i ) + β 0 ν 0 k iγ 0 I + 1 2 N i=1 C i C ⋆ i + • 1 n and if k = 0, l = 0 and k = l U 00 kl = - 1 n 1 2 β k C l C ⋆ k + • 1 n .
Hence, by [START_REF] Bruneau | Merkli Random Repeated Interaction Quantum Systems[END_REF], they do not contribute in the limit.

Quantum Trajectories at Positive Temperature

Before stating the equivalent of Theorem 2.3. with positive temperature, we need to be clear on how observables are transformed by the G.N.S representation. In particular, we have to describe π(I ⊗ P ) when P is a projector. By the rule (16), the coefficients P ij kl of π(I ⊗ P ) are given by

P ij kl = Tr H I ⊗ ρ β (I ⊗ X k l ) ⋆ I ⊗ P (I ⊗ X i j ) = Tr H I ⊗ (ρ β X k l ) ⋆ P X i j = Tr ρ β X k l ) ⋆ P X i j I . (23) 
Define p ij kl = Tr ρ β X k l ) ⋆ P X i j and P ′ = (p ij kl ). Equation ( 23) means

π(P ) = I ⊗ P ′ . (24) 
We are then in a similar situation as for zero temperature, but one has to notice a very important fact: the first coefficient p 00 00 is now always strictly positive. Indeed, we have p 00 00 = Tr ρ β X 0 0 ) ⋆ P X 0 0 = Tr ρ β P = Tr ρ β P ⋆ P = P, P > 0 .

This simple remark has an important consequence: there will be no jump contribution in the stochastic master equation for a heat bath. Indeed, let us consider an observable A = p i=0 λ i P i and π(A) = p i=0 λ i I ⊗ P ′ i . In Theorem 2.3., the jump contribution is directly connected to the set I = {i ∈ {1, . . . , p}/p i 0}. In positive temperature, with the notation P ′ m = (p ij kl (m)) the analogue of set I is the set I ′ = {i ∈ {1, . . . , p}/p 00 00 (i) = 0}. Hence, the property [START_REF] Burgarth | Mediated homogenization[END_REF] implies that I ′ = ∅, which implies that there is no jump contribution.

Consider the following functions defined on the set of the states: hi (ρ) = 1 p 00 00 (i)

N k=1
p 00 k0 (i) L 00 k0 ρ + p 00 0k (i) L 00 0k ρ + p k0 00 (i) ρ(L 00 k0 ) ⋆ + p 0k 00 (i) ρ(L 00 0k ) ⋆ -Tr p 00 k0 (i) L 00 k0 ρ + p 00 0k (i) L 00 0k ρ + p k0 00 (i) ρ(L 00 k0 ) ⋆ + p 0k 00 (i) ρ(L 00 0k ) ⋆ ρ ,

L(ρ) = L 00 00 ρ + ρL 00 00 + N k=1

L 00 k0 ρ + ρ(L 00 k0 ) ⋆ + L 00 0k ρ + ρ(L 00 0k ) ⋆ .

THEOREM 4. Let A = p i=0 λ i P i be an observable. Let ρ 0 be a state on H 0 . Let (ρ k ) be the discrete quantum trajectory describing the quantum repeated measurements at positive temperature. Let (ρ n (t)) be the sequence of stochastic processes defined for all t and all n by ρ n (t) = ρ [nt] (t). Then (ρ n (t)) converges in distribution, when n goes to infinity, to the solution of the stochastic differential equation

ρ t = ρ 0 + t 0 L(ρ s ) ds + p i=0 t 0 hi (ρ s ) dW i (s) , (28) 
where (W i (t)) are N + 1 independent Brownian motions.

Proof: With the expression [START_REF] Breuer | The theory of open quantum systems[END_REF], with the fact that the state ρ β is a pure state in the G.N.S. representation, we can apply directly Theorem 2.3., with the particular restriction we have mentioned above. This gives easily Equation [START_REF] Gardiner | A handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics Third edition Springer Series in Synergetics[END_REF].

With the explicit expression of the coefficients L 00 kl , Equation ( 28) can be made more explicit: The equation ( 29) becomes

ρ t = ρ 0 + t 0 -i[H 0 , ρ s ] - 1 2 N k=0 β 0 (C ⋆ k C k ρ s + ρ s C ⋆ k C k -2C k ρ s C ⋆ k ) - 1 2 N k=0 β k (C k C ⋆ k ρ s + ρ s C k C ⋆ k -2C ⋆ k ρ s C k ) ds
ρ t = ρ 0 + t 0 L(ρ s ) ds - t 0 i √ 2 2 β 0 C 1 ρ s -ρ s C ⋆ 1 -Tr[C 1 ρ s -ρ s C ⋆ 1 ]ρ s + + β 1 C ⋆ 1 ρ s -ρ s C 1 -Tr[C ⋆ 1 ρ s -ρ s C 1 ]ρ s dW 0 (s) + t 0 i √ 2 2 β 0 C 1 ρ s -ρ s C ⋆ 1 -Tr[C 1 ρ s -ρ s C ⋆ 1 ]ρ s + + β 1 C ⋆ 1 ρ s -ρ s C 1 -Tr[C ⋆ 1 ρ s -ρ s C 1 ]ρ s dW 1 (s) . ( 34 
)
By defining a new Brownian motion W t = √ 2/2(W 0 (t) -W 1 (t)) and by putting C = -iC 1 , the above equation becomes

ρ t = ρ 0 + t 0 L(ρ s ) ds + t 0 β 0 Cρ s + ρ s C ⋆ -Tr[Cρ s + ρ s C ⋆ ]ρ s + + β 1 C ⋆ ρ s + ρ s C -T r[C ⋆ ρ s -ρ s C]ρ s dW s . (35) 
The equation ( 35) is then the equivalent of diffusive equation (1) (see Introduction) for the model with positive temperature.

  p 00 0k (m)C k ρ sp 0k 00 (m)ρ s C ⋆ k -Tr p 00 0k (m)C k ρ sp 0k 00 (m)ρ s C ⋆ k ρ s + N k=1 i β k p 00 k0 (m)C ⋆ k ρ sp k0 00 (m)ρ s C k -T r p 00 k0 (m)C ⋆ k ρ sp k0 00 (m)ρ s C k ρ s dW m (s) .(29)
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Exemplary OSID style

In this equation the expression

corresponds to the usual Lindblad operator describing the evolution of a small system in contact with a heat bath at positive temperature.

The 2-Dimensional Case

As in Section 2.4., we want now to specialize the equation ( 29) when H = C 2 and when considering particular observables.

The first case is when the observable is diagonal, that is A = λ 0 a 0 0 + λ 1 a 1 1 . In this case we have to compute π(a 0 0 ) and π(a 1 1 ). As we have a 0 0 + a 1 1 = I and π(I) = I, we just have to compute π(a 0 0 ). Since p 01 00 (0) = p 00 01 (0) and p 10 00 (0) = p 00 10 (0), we have only three terms to determine: p 00 00 (0), p 00 01 (0) and p 00 10 (0). We get

As a consequence the equation ( 29) for a diagonal observable becomes

which is just the master equation for a heat bath, with no noise contribution. Hence, at positive temperature, the repeated measurements of the observable A gives rise to a deterministic limit behavior. Recall that at zero temperature, the limit behavior was described by a jump equation.

At positive temperature, we had already seen that the limit behavior should not involve jump contribution, but here, in addition we have no randomness at all in the limit.

Let us now consider the observable

). As we have 1/2(a 0 0 + a 0 1 + a 1 0 + a 1 1 ) + 1/2(a 0 0a 0 1a 1 0 + a 1 1 ) = I, we just need to compute π 1/2(a 0 0 + a 0 1 + a 1 0 + a 1 1 ) . With the previous computations, we only have to determine π(a 0 1 ) and π(a 1 0 ). In order to simplify the notations put R = a 0 1 and S = a 1 0 . We have R 00 00 = R 00 10 = S 00 00 = S 00 01 = 0 R 00 01 = β 0 , S 00 10 = β 1 .

Hence by [START_REF] Parthasarathy | An introduction to quantum stochastic calculus[END_REF][START_REF] Pellegrini | Existence, uniqueness and approximation for stochastic Schrödinger equation: the Diffusive case[END_REF], for P 0 = 1/2(a 0 0 + a 0 1 + a 1 0 + a 1 1 ), we get p 00 00 (0) =