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ABSTRACT

The principle of "indirect continuous measurement” in 'loggiantum system theory" is
usually described by non-usual types of stochastic diffs@meequations. These equations
are called "stochastic Schrodinger equations" and théitisns are called "quantum tra-
jectories"”. Physically, they describe the random evolubbthe state of a quantum system
undergoing indirect quantum measurement (such models ideywsed in quantum op-
tics, quantum computing and quantum information theorg)thls chapter, we consider a
physically realistic discrete-time setup for two-levelagtum systems and we present the
theory of "discrete quantum trajectories”. These disctetectories are Markov chains
which can be expressed as solutions of "discrete-time'hasii differential equations”. In
particular, these equations appear as time discretizafidstochastic Schrodinger equa-
tions". Going to the continuous-time limit, we justify thisshastic Schrodinger equations
associated to the two-level systems. Within this approa@hpbtain two different types
of behaviors described either by jump-type or diffusivpeystochastic differential equa-
tions. Finally we investigate the large time behavior ofsbkitions and we prove return to
equilibrium properties for the associated physical madels

PACS: AMS Subject Classification:

Keywords: stochastic Schroédinger equations, stochastic diffexkeaguations, diffusion,
Poisson random measure, weak convergence of stocha$éicedifal equations, quantum
measurement, quantum trajectory.
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2 S. Attal and C.Pellegrini

1. Introduction

Recent experiments of continuous measurement in quantwhanies (Haroche’s team in
particular), or more precisely in quantum optics, have ptda evidence the random evolu-
tion of the state of a quantum open systéem [25, 26]. In pdaicone has experimentally
observed "quantum jumps". These experiments allow to stodyevolution of a quan-
tum system interacting with some environment. They aredatéhe principle of indirect
measurement on the environment, in order not to perturb bkitgon of the small sys-
tem [8[12] 20, 22,23, 33,34].

The stochastic models attached to these phenomenons aréodddy stochastic dif-
ferential equations, called "Stochastic Schrodinger Eqog' or also "Belavkin Equa-
tions" [6+13[ 15, 20, 22-24,83,134]. Their solutions aréechfquantum trajectories", they
describe the evolution of the state of the small open quasistem. The stochastic differ-
ential equations which are usually obtained in this corsiegtof two different types. Either
they are of "jump-type":

J(Pt) Y
dpy = L(py)dt+ <W_pt> (dNy —Tr[7 (py)]dt) . 1)
wherel is a stochastic counting process with stochatic intenfityr[7 (ps)]ds The op-
eratorL corresponds to a Lindblad type operator and the opeyati@scribes the evolution
of the system during the quantum jumps. This equation dessm@xperiments which are
called "direct photon detection” (observation of the phatmission by an atom excited by
a laser).
Or it can be an equation of diffusive type:

dpr = L(po)dt+ (Cpr+pC* — Tr((C+C)prlor AWt ®)

whereW is a standard Brownian motion. In quantum optics, this egnatescribes exper-
iments called “Heterodyne or Homodyne detection”.

More complex models are described by jump-diffusion stetbalifferential equations
which are mixing of the two previous types [15] 32].

In the usual literature, obtaining and justifying rigoruthese equations makes use of
Quantum Filtering Theory [7,10,12,]19]. It is the quanturalyability version of the usual
filtering technics, it makes use of fine quantum stochastmubties and heavy von Neumann
algebra theory. Others approaches are based on classibality and use of instrumental
process and notion of a posteriori staté [911], 15, 29].

A maybe more intuitive and more physical approach for thegmgons is to start from
a discrete-time procedure, that is, repeated quantumatitens with measurement of the
environment ([[2,13, 16=18, 35]). Then one obtains the swtah&chrddinger equations by
passing to the limit to a continuous-time modell[30, 31].

In this chapter, we come back and apply results obtained@hd48d [31], in which
Belavkin equations are obtained with this approach. Heweobtain the description of
the stochastic Schrodinger equations for a two level systecontact with a spin chain.
We adapt the result of [80] and [31] in order to describe thantum trajectories in terms
of wave function (in[[30] and([31], the stochastic equatidmsthe evolution of density
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Return to Equilibrium for Some Stochastic Schrédinger Egona 3

matrices have been derived from the approximation proe@divext, for a special model,
we show a property of return to equilibrium of the solution.

The chapter is structured as follows. Section 2 is devotetthéopresentation of the
model of quantum repeated interactions and quantum repea@asurements, that is the
model of "discrete quantum trajectory” . In Section 3, wesprd the passage to the limit
from discrete quantum trajectories to continuous quantajadtories for two level systems.
In parallel, we present the result of existence and unigggenéthe solutioffsof equations
(@ and(2). Next we concentrate on the property of return to equiliriu

2. Discrete-Time Quantum Trajectories

In this section we describe the physical model and the madtieah setup of indirect re-
peated quantum measurements. We describe the evolutibe efriall system undergoing
successive measurements through the "discrete quantjetidrées”.

2.1. Repeated Quantum Interactions

The physical situation is the following. A quantum systemthwstate spaceis (often
called small systenfor it is in general finite-dimensional and/or small comghte the
environment) is undergoing repeated interactions withaarchf quantum systems- 4 .
This is to say that we consider an environment which is madef agsequence of identical
copies of a quantum system, each with state spacdeach piecex of the environment
is going to interact, one after the other, with the small eryst/s. This interaction lasts
for a time duratiort and is driven by a total HamiltoniaH,; on #s® # . Hence, each
interaction is described by the unitary operator

U _ e_iTHtot

on #s® # . In the Schrodinger picture, @ denotes any initial state on the tensor product
Hs® #H then the evolution of the state after this interaction iggiby:

p—UpU*.

After this interaction, the systemss and# stop interacting together, the systergcomes
to meet a second copy of and they interact together in the same way as before (that
is, with following the same unitary operatbr). And so on... the small system interacts
repeatedly with each of the independent copie# of

Let us develop the mathematical framework which allows deisg these repeated
guantum interactions. We follow the setup of the arti€lg jB]which these models and
their continuous limit were first introduced.

1This question is not straightforward since the coefficiedéfining the equations, are not Lipschitz. Fur-
thermore the equatiofl(1) is ill defined: in express[dn (18,driving process depends on the solution that it is
supposed to drive. Hence the notion of solution is not imiauediln particular, the existence @) relies on
the existence off) and reciprocally.
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4 S. Attal and C.Pellegrini
The state space describing the whole game is

M =2#s® ) #, (3)
keN*

where eacl¥ is a copy of the Hilbert space . We have to be clear about what the above
countabletensor product means:
T = ® Hy .

— keN*
Recall that a countable tensor product of Hilbert spacesngnbe defined with respect to
a choice of a particular unit vectag in each copyy (the so-called thstabilizing sequence
of the countable tensor product). In our case, we assumexthiatfinite dimensional and
we choose an orthonormal basis

{X';i e ac U{0}}

wherea( is a set of the forn{1,...N}, which is the same for eachi. A particular role is
played by the vectoX® which has to be considered as a reference vector for thensyste
as we choose the stabilizing sequence taye X° for all k.

Denote byX; the basis vectoX' but leaving in thek-th copy # of 7. Then an Hilber-
tian orthonormal basis of ® is given by all the tensor products,vi where all the vectors
vk are equal td(f, except for a finite number of them which might be equal to smﬁ‘ie
ik € AL. This stands for a definition of the countable tensor prod@et= e+ H.

The repeated quantum interaction setup is based on two eisnike time length and
@ the HamiltonianH,; which describes each basic interaction. Consider theyrifgerator
U = exp(—itHt) acting on#s® # and consider the unitary operatdg on I" which acts
asU on #s® # and which acts like the identity operator on the other copigs This
operatoilUy describes the effect of tHeth interaction.
The unitary operator
Vi =Uk...Up

describes the effect of thefirst interactions. Indeed, @ is any initial state oifr, then
Vi pW¢

is the state of the whole system (small system + environnegtejk interactions.
Define the elementary operat(ﬂﬁ i,j €A N{0} on# by

aij Xk = 6i’ka .

It is useful for further computations to notice that in Dinagtation aij = |Xj><Xi||§. We

denote byalij (n) their natural ampliation t@ ® acting on then-th copy of# only.
w 2These are the usual "bra-ket" notations in quantum mechariibe term/X) represent the vectof in
—

the underlying Hilbert space. The terf¥i| represent the linear form which acts @§ (|X)) = (Y, X) where
(,) corresponds to the scalar product. This way, we have(X'|(|X)) = (X', X)|X!), for all vectors|X). In
particular the operatdiX) (X| corresponds to the orthogonal projector on the space geddosX.
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Return to Equilibrium for Some Stochastic Schrédinger Egona 5

Clearly,U can always be written as

u=_5 Ul ®a]
i,jeal U{0}

for some operator‘sl} on #Hp such that:

U Uf= 3 URUE =38t
ke U{0} ke U{0}
With this representation fdy, it is clear that the operattt,, representing tha-th interac-
tion, is given by o
U= > Uj@aj(n).

i,jea’U{0}
With these notations, the sequer{tg) of unitary operators describing timefirst repeated
interactions can be represented as follows:

Vn+1 = Un+1Vn
= 5 Ujed(+)V,.
i,jea’U{0}
But, inductively, the operatov,, acts only on then first sites of the chaiff ®, whereas the
operatorsa‘j (n+1) act on the(n+ 1)-th site only. Hence they commute. In the following,
we shall drop thex symbols, identifying operators liké (n+ 1) with 1, ® aj(n+ 1), the
operatolU; with U; ® Ito, etc. This gives finally

Vasi= Y UjVad(n+1). (4)
i,jea’ {0}
OnT®, one vector plays a particular role, the vector
Q= ®kX;?.

For any bounded operatiron, we define the operatdiy[K] on #s as the unique operator
on #{g such that, for all trace-class operajoon #s we have

Tr o, (PEoK]) = Trr ((p® |Q)(Q])K) .

That is,Eg[K] is the partial trace oK with respect to the stat€)(Q| on T ®.
We then have the following fundamental action of the remkateeractions, when re-
stricted to the small system.

Theorem 1(cf [3]). The effect of the repeated interaction dynamics when atsttitos/s
is given as follows. For all observable X a1, for all n € N, we have

Eo[Vi (X @ 1)V, = L"(X),
where L is a completely positive map @fa whose Krauss decomposition is

LX) = 3 (U xXUP.
e
Any (discrete) semigroufl.") of completely positive maps can be obtained this way.
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6 S. Attal and C.Pellegrini

Note that the completely positive mapdefined above acts on observables. It also
induces a completely positive "dual map” acting on states as follows:

L'(p)= 3 Up(U) ()
e

and which satisfies
Tr(pL(X)) =Tr(L*(p)X)

for all statep and all bounded operatot on #s. Recall the usual notion of partial trace
defined as follows.

Definition-Theorem 1. Given any state on a tensor product ® K, then there exists a
unique statey on # which is characterized by the property:

TrinX]=Trla(X®1)],

forall X € 8 (7). The state) is denoted byt 4 (o) and is called theartial trace ofy with
respect tox .

With these notations we have the following result.
Theorem 2. For every state on #s and all ne 4{ we have
Trro(Va(P® [Q)/(QNVY) = (L) ().
{B Proof: We have, for allX bounded operator ofs,

Tr((L)(p)X) =Tr

This proves the announced result. O

2.2. Repeated Quantum Measurements

We now somehow consider a more complicated procedure. A#eh interaction is fin-
ished, the pieceyy of environment which has just finished to interact wih is undergo-
ing a quantum measurement of one of its observables. Themanesult of this quantum
measurement will give some information on the state of theleveystem and in particular
on the state of/s. The so-called quantum trajectory is the random processbiarothis

way, by looking at the knowledge we have of the state/gffter each measurement.
Let A be any observable o', with spectral decomposition
9_

p
A= S AP,
gl it
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Return to Equilibrium for Some Stochastic Schrédinger Egona 7

theAj’s being the eigenvalues, thi®’s being the eigenprojectors. We consider the natural
ampliations ofA which defines an observable driby makingA acting on thek-th site #
only:

k-1
A=RNIeAz &) |
j=0

j>k+1
k-1 p
:®I® (Z)\jpj>® ® I
=0 =1 j>kt1
p
= § AjPK,
2P

with obvious notations.

As a consequence, fifis the state of then a quantum measurement of the observable
AK gives the valuea j with probability:

P[to observe\j] = Tr[pP¥], je{1,...,p}.

If we have observed the eigenvaligfor the observablé, the new sate of the system is

k o pk
Pj = Lj il :
Tr[pPX]
@ This principle is the so-called "von Neumann projectiontplage”. Now, if we perform an-

other measurement of the observahfeve obtainP[to observe\j] = 1. As a consequence,
a naive repeated measurement operation gives no informatidghe evolution of the sys-
tem. The repeated measurement procedure has to be comhbthélderepeated interaction
procedure in order to give non-trivial informations on tlenbavior of the system.

The quantum repeated measurement principle is the condinat the measurement
principle and the repeated quantum interactions. Phygithls means that each copyk
of # interacts with#s and we perform a measurementA$fon # after it has interacted
with #s. After each measurement we have a new (random) state of thie system, given
by the projection postulate. This is the so-caliBscrete quantum trajectory

More precisely, the initial state dnis chosen to be of the form

H=p®@n;,

j>1

wherep is any state orty and each; = n is a reference state om. We denote by the
state representing the new state afterkfiest interactions, that is,

Mk = VKUV -
Let us now define the probabilistic framework in order to déscthe effect of the suc-
cessive measurements. We gut= {1,...,p} and onQ" we define the cylinders of size
k:
/\il,---,ik = {0) S QN/(.Ol = il, W= ik}.
9_
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8 S. Attal and C.Pellegrini

We endowQ" with the o-algebraz generated by all these sets, this is tydinder o-
algebra Note that for allj, the unitary operatod; commutes with all the projectoBk
such thatk < j. Hence, the state of the system afkeinteractions ank measurements
which have given the respective valdgs ..., A;, is (up to normalization by the trace)

PEUk... PULu(UL) P . (U P =
=P¢ . PIUk.. Up(Uy)* ... (U PL L P
=P .. PLWPL P
where we have used thdk commutes with any¢ such thak’ + k.
We denote by(is, .. .,ik) the quantity
Pl PR R,

By the Kolmogorov Consistency Theorem we can define a prbtyalbneasureP on
(QN, ) only by specifying

P[Ai1,~~~,ik] =Tr[f(iy,...,ik)].

We also define a random sequence of statels oy

k() QN — r.;;(rz( |
~ M0 ... 0
W — Pr(wr...0%) = =——
This random sequence of states is our discrete quantunctoejeand the operator
pX(i1,...,ix) represents the state of the system, after having obsereaéshlts\; , ... A,

for thek first measurements. This fact is made precise in the follgysioposition.
Proposition 1. Let (k) be the above random sequence of states we have, fara"

N P& Uk () (Uky) PSS
pk+l(w) — ~ * K+ 1 .
Tr [pk(u)) (Uky1) P(A)K+1Uk+l]

This proposition is obvious but summarizes the quantumatepgemeasurement prin-
ciple. The sequencg is the quantum trajectory, showing up the effect of the ssgive
measurements dn. The following theorem is an easy consequence of the pre\poopo-
sition.

Theorem 3. The sequenc&), is a Markov chain, valued in the set of stated oflt is
described as follows:

P[ﬁn+l: p‘|ﬁn:env"'760:eo] = P[ﬁn+l:u|ﬁn:en] :
If p" = 6, thenp"*! takes one of the values:

PinJrlUn+1 On (Un+l)*pin+1 - .
Tr [Un+19n (Un+1)*Pn+l] ) o P,

with probability Tr [Un1 65 (Uny) PP
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Return to Equilibrium for Some Stochastic Schrédinger Egona 9

The most interesting behavior of the Markov chain of stabewa is obtained when one
restricts it to the small systemis. This way we obtain a quantum trajectory on the states of
Hs by considering the sequence of random state&€n

Pn(w) = Trro(Pn(w)). (6)

This defines a sequence of stateragwhich contains the "partial” information given by the
measurement and we have the following theorem which coelpldescribes the behavior
— of this random sequence.

Theorem 4. The random sequence defined by form@gis a Markov chain with values in
the set of states ons. If p, = Xn thenp, 1 takes one of the values:

Tr, [(1@P)U(Xn@nU* (1 @ R)]
TriU(xn@nU*(1@R)] ’

with probability Tr [U (xn@n)U* (1 @ R)].
The expectation gd, satisfies
E[pn] = (L*)"(po)

where L* is the completely positive map described in Thedrem 2.

i=1...,p,

Proof: Assume, by induction, thgi, is given. This means that F&(pn) = pn. The
next step of the quantum measurement gives (by Therem 3)

51— P Uny 1 Pn (Uny 1) P

n+1 — * )

@ TI’ [Un+1en (UrH_]_) PinJrl]
for somei. Hence, we have to compute

Trro(P" ™ Uni1Pn (Uns1) P

Decomposing, with obvious notations, the spaee into #s®@ Mg @ Hni1 @ T 12 4o
one notes that, by induction, the stgteis of the form

Bhon® &) N

k>n+2
whereb, is a state oHs® gy, satisfying
Trr, (6n) = pn.
Hence, for allX, bounded operator ans, we have
Tr (TerD(PinHUnH Pn (Un+1)*Pin+1) X) =
=Tr ((Pim—lUnJrl P (Uns1) P (X @1 )

=Tt (Unt1Pn (Uns1)* (X @ 1o @ P @112 1ef))
—Tr <Un+1 <9n @ne @ ﬂ) (Un1)" (X®@ljoy @ P ® I[n+2,+°°[)>
k>n+2
9_

=Tr ((8h®@N) (Uns1) (X@1jo @ P HUnsa) - )
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10 S. Attal and C.Pellegrini

But Un1 acts only orv/s® #n,1, hence the operatqty,1)" (X ® ljgy @ P U, 4 is an
operator oms® Hn 1@ o (NOte the interchange of space, for simplicity of the note)
which is of the form

((Uns) (X @PMUny) @ o -

Hence, the quantity{7) is equal to
T0 (T, (000 1) (Unea) (X &R Un 1)
But Trrop (Bh®n) is equal to TFon) (Bn) = pn®@n. This gives finally
TI’ (TrTq;(I:)in+lUn+1 f)n (Un+1)*|3in+1) X) =
=Tr ((PinHUnH (Pn®@N) (Unsa) P X).

But in this expression, the index+ 1 plays no more role and the expression above may as
well be written
Tr ((RU (ph@n) (U)'R)X)

on Hs® # . This proves the first part of the theorem.
Let us check, the one concerning the expectatiop,ofNote that the expectation pf
is equal to

Tr, (RU(po®n)U*R)
P({i})

p
= ZLTFH(U(po®n)U*P.P.) for P acts on# only
i=

Elpr = 3 ()

p
=T Ulpo=nU* 3 R)

By induction, we conclude easily. O

Thanks to the above description we can express a discnegeavolution equation for
the quantum trajectories. Let us put

Li(p) =Eo[(l®@R)U(penU*(I2R)],

i=1,...,p. We then have for allo € =" and allk > 0:

Tr(zi(pw)(w)] ™

where1¥(w) = 1;(ux).

Pri1(0) = Zpb IO 1 (w) (8)
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2.3. The two-level atom model

In this section we specialise to the case whege= C?, this is the so-calletivo-level atom
model In most of the physical applications that we have in mind,ititeracting system is
also of the form = C2. We denote byXy, X1 an orthonormal basis where the reference

staten is diagonal:
_(MNo O
= ( 0 m ) '

Let Q,X be any orthonormal basis afy. For describing the interactions betwegp
and# we choose @ Xg, X ® Xg,Q ® X1, X ® X1 as an orthonormal basis ofy® # . In
such a basis, the unitary operatdy describing the elementary interaction, can be written
as a 2x< 2 matrix with coefficients being operators @fy. That is, we can writé) as:

0 i
U= < Vg Ug ) .
Ur Ui
Let Abe an observable af on which we want to perform a measurement. It can be written

asA = AoPo +A1P1 where); are its eigenvalues arfl the corresponding eigenprojectors.
Let (PII(VI)kJ:O’l be the matrix elements of the projectrin the basisXy, X;. Put

L) = 3 R (noUkp(UY)" + kP UY") -
k50,1

Then, if px denotes the state of the systeny after the k-th measurement, the stpig1
takes one of the two possibles values

Li(px)
TrLi(pe)]

We denotepx;1 = Tr[Lo(pk)] or k1 = Tr[£1(pk)] the corresponding transitions probabil-
ities.

In the rest of the chapter, we concentrate on a special camsvobnment, wherg =
|Xo)(Xo|. This situation corresponds to a model of heat bath at zenpeeature, seé [5]
for more explanations and for positive temperature modelsi§ just stress that this choice
is crucial and that positive temperature gives rise to cetepl different continuous-time
behaviours). In this situation, the discrete quantum ¢tajy can be described in terms
of pure states. More precisely, if the initial statesaf is pure, the random sequen(s)
remains pure. This way, we can describe the evolutiow®ith a random sequence of
vectors (wave functions).

Proposition 2. Let #y = # = C? and n = |Xo)(Xo|. Let (px) be the discrete quantum
trajectories corresponding to the indirect measuremerarobbervable A.

If po is a pure state, that ipo = |Wo) (Yo, and if the measurement is non-trivial (A is
not a multiple of the identity), then the state of the smadteyp, is always a pure state.
In other terms, there exists a random sequence of wave émsctip,)) such that|y,|| =1
and such thap, = |n) (Pn|, for all n € N.

The sequenc@yy,)) is also called a discrete quantum trajectory.
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Proof: Since we work in 2-dimension and sindas not a multiple of identity, we have
A = AoPy + A1P; whereP, are one dimensionnal projector. Thus there exist two vector
aj, i = 0,1 such tha® = |a;)(ai|. Now, letpg = |Wo)(Wo|, after the first measurement if
we have observed the eignevalMethe non normalized state describing the experiment is
described by

Buli) = Eofl @ as) (el U (1Yo} (Wol @ Xo) (XaU™ I & et o]
= 35 B[t lau)(en] (Uil (Wol(U)" & &) (Xolat) 19 ) (|

= 3 o @la)(enl (U2(Wo) (ol (U)" @) 1 o) e

= 3 [[Uo) (Uo] ) el < ) i

:E[

= ‘Z<Givxk>U|?tlJo> <Z<Gi7XV>U\9¢o

Vv

Vv

Z(Givxk>U£tlJo> <Z<Gi7XV>U\9¢o ® !Gi><0i\]

Now, by normalizing the vecto[k<0(i,xk>U|?qu, it is straightforward that we get a
vectory; such thap; = |W1)(W1|. Next, by induction we can construct a sequegsuch
thatpn = |n) (Pl for all n. O

Remark: Such a property is at the basis of the use of "quantum trajedt@ory”
for numerical simulations of Lindblad master equations.mgucally, the description in
terms of pure states reduces the number of parameters tmlc@nt comparaison with
density matrices) . We recover the "deterministic” dynabydaking the expectation, that
is, E[|Wn) (Wn]] = £"(po). In the continuous time version, similar properties ardecal
"unravelling?” of master equations and simulations use techniques cdlledntum Monte
Carlo simulations”.

Now, we can complete the description of our model with the leéldiscrete equation
which describes the stochastic evolutions of discrete uarnrajectories. To this end, let
us introduce some notations. LRfbe the projector o = (W1, v), with ||ag|| = 1 andP;
the projector oy = (v, —H). Let define the following functions acting on vectors

Fo(lW)) = [[HUS+VUD)| W)
Fi(lw) = [[VUG—RUD)] W) .
Then, the dynamic of,) can be described by the equation

@) e A0
W2 (@) = ™ O Taud@pr ™ @

for all w e =N. This equation corresponds to equatioh (8) for a two levsllesy in terms of
wave functions, i.e. the sequen@e) (k|) satisfies equation]8).

(00) + 9)

3Unravelling means the description of a wave function stetihgorocess i) such thatE[|y) (W|] =
&t (po)
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Return to Equilibrium for Some Stochastic Schrédinger Egona 13

In the next section, we will describe the continuous timesigar of these equations. To
this end, we aim at considering this discrete-time modeldaytending on a time-length
parameter which we shall make tend to 0. That is, we want to pass from aetis time
interaction model to a continuous time one. This way, wel slighin the classical Belavkin
equations for quantum trajectories associated to contsunweasurement. In the literature,
these equations describe a model where a two-level atonc@itact with a photon-stream.

Let T = £ be the time of interaction between the small system and @eesit of the
environment. Let us denote by(n) the unitary operator associated to each interaction, it
now depends of the time of interaction. If we had no measunémpecess on the envi-
ronment, we will be back to the problem of going from a dises#ine repeated quantum
interaction model, to a continuous time one. This problem lbeen completely studied
in [3]. In their article they show that, in order to get a lineolution whent goes to O,
we have to ask the operatdr(n) to satisfy certain renormalization conditions. They have
shown that the coefficientsji(n) must follow well-defined time scaling in order to obtain a
non-trivial limit. Namely they have shown that the operaddp; = U ([nt])...U1)t~o con-
verges to an evolutiof\; ); which is a continuous operator process. This process Higtura
satisfies a quantum Langevin equation which representss/thetion equation of the small
system + bath.

Our continuous measurement procedure does not differ nraahtheir approach, ex-
cept that we perform a measurement on the environment aftérieteraction. This is why
we have to keep the same normalization for the coefficitalr}](ﬂ) in order to get a limit.
Following [3] we assume that the total Hamiltonian, desoglone elementary interaction,
is of the form

0
Hot=H®I+1® Cg y1> +vn(Ceal+C* ®ag) .

That is, a typical dipole-type interaction Hamitonian wahrenormalization in,/n of
the field operator? anda} in order to strengthen the force of the interaction while the
interaction-time decreases.

With this Hamiltonian, it is easy to check that the coeffitseofU (n) are of the form

udn) = | +% <—iH iyol + %C*C) —I—o(%) (10)
U = =Gl (11)
uiin = —i\%C* —1—0(%) (12)
uln) = | +% <—iH il + %CC*) —i—o(%). (13)

3. Continuous Trajectories

In this section, we implement the asymptotic expressionhef doefficientU J-i(n) in the
description of the quantum repeated measurements for tHelrafthe two level atom. First
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14 S. Attal and C.Pellegrini

we recall the convergence of discrete models to continucedets of Belavkin equations.
Second, we show return to equilibrium results in this contex

As in shown in [[30] and[[31], the continuous limit of the eviddun equation is com-
pletely different, depending on wether the observable diagonal or not in the basis of
n. The point is that the limit equation is of diffusive type wh& is non-diagonal and of
Poisson type in the diagonal case. Inside each case, theitwshare very comparable and
differ only by some coefficients. This is why, it is enoughé&y consider only two cases:

(0 0\ 1
A_<0 1)—3.17

as representing the diagonal case, or
: 01 1..0
( 10 > o+ a

as representing the non-diagonal case. Here, we focus afesiogiption of quantum tra-
jectories in terms of pure states, while in]B0, 31], the etioh for the density matrices is
considered.

3.1. The Poisson case

We first start with the cas& = a}, for which we havePy = &J. It is easy to see that we
can choosqt = 1, v = O for the description of the projectoB. Applying the hypothesis
(10)-(I3), we obtain the probabilities

11 1
Pss = TrlpeRe] = U] =1 % 5+ ()

11 1
e = Tripee] = JUFI | = 5 ) +o (5.

wherep(n) = (Wx, C*C ). By remarking thatl§ = 1 — 1%, we have the following differ-
ence equation fofWy):

1 . 1 1
) =) = 5 (—iH = 3C°C+ ek o(D) ) i+

+ (\/Lm —1 +o(1)> W13t (14)

In the continuous limit, we shall see that this differencaapn converges to an equa-
tion of the form

) = (~iH - 3 (CC+ 1)+ VIEC) )

EBE D ) @y 9
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Return to Equilibrium for Some Stochastic Schrédinger Egona 15

where, = (J,C*Cux) and (K) is a counting process such that> Ny — [j usdsis a
martingale. This is to say that:lt) is a counting process with stochastic intensity equal
to f(t,psds A first problem is that equation (IL5) is ill-defined. Indedtt intensity of the
counting process depends on the solution itself. We need todye precise about what we

mean by a "solution to equation {15)".

Definition 1. Let Q,# ,P) be a probability space. fprocess—solutionof the jump-
equation (I5) is a processyx) and a counting procesBk, with intensity [3 psds where
= (Y, C*Cuk), such that for all t we have

W) = |lp0>+/0t (—iH —%(C*C—I—L@I)%—@C) |Ws—)ds+

tC- Vs ) N
+/O T|qJS_>(o|NS—us_ols,). (16)

This notion of solution imposes the simultaneous existeri¢be proces$y;) and the
counting processk. In order to construct such a counting process, we use adPogsnt
process.

Let (Q, 7 ,P) be a probability space, on which is living a Poisson pointpssN on
RR? such that the expectation of the number of pold{sv, B) lying inside a Borel seB is

given by
E[N(-,B)] = A(B)
{B where) is the Lebesgue measure BA.
This way,N defines aandom measure B> N(w,B) onR?, whose volume element is

denoted byN(w, dxx ds). The following theorem shows how the random Poisson measure
is used to construct the counting process.

Theorem 5( [31])). Let(Q, 7, 7, P) be afiltered probability space on which lives a Poisson
point process N. The following equation

) =)+ [ (= 5T 1)) s dst
RN =)
+/O/RT|WS—>10§X§LLSN(dde)- (17)

admits a unique solutiofiyx) such that||;|| = 1 almost surely. Then the procegg)))
together with the counting process

5 t
f= [ [ Locxey N(dxds (18)

constitute a process-solution for equati@nl(15).

Even if this theorem is just an application of the results3f][ let us explain roughly
how it is proved (this description will allow also to des@&ithe return to equilibrium prop-
erty in the jump case).

9_
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16 S. Attal and C.Pellegrini

In equation[(1l7) there are two parts: the ordinary diffaemart and the one driven by
the Poisson process. Consider the collection of jumping@giof the Poisson process. If
there is no jump of the Poisson proc&sswe deal with an ordinary differential equation

) =)+ [ (H -3 (CC—pe 1)) ) ds

This equation admits a unique solution, from which we dedbeecurvet — . The first
— time T; when the Poisson process has a jump under this curve, th@sdiy;) jumps and
takes the value
CNJT17>

After this first jump, we have a new "initial" value fog;) and the process starts again in
the same way: we solve the ordinary differential equaticsh tie solution follows it, until
it meets a jump oN which is bellow the curve, then it jumps. And so on.

Remark: The corresponding evolution for the density matrices carmlitained by
computing the stochastic differential equation fipe= ) (. By applying the stochastic
calculus rules for random Poisson measure, we get the equati

Pt = Pot / (Ps-) Cps_C*+Tr[Cps_C*]ps_)ds+ (19)
Cps C*
/ / (TI’ C;S_C* ps—) loox<Tricps cN(dX ds), (20)
@ wherelL is the Lindblad operator defined by

L(p) = ~i[H.p] - 5{CC.p} +CpC"

Thus, by definigr (p) = CpC*,we recover the equatiohl (1) mentionned in Introduction.

Now, that equatior{(17) is well understood, we wish to paskaéa@ontinuous time limit
on equation[(15). The appropriate topology for the convergeheorem proved in [31] is
the Skorohod topology. Let us recall it. For @ll> 0 we denote byp ([0, T]) the space
of all cadlag matricial process df, T| endowed with the Skorohod topology, that is, the
topology of the weak convergence of cadlag processes (theence in distribution).

The approximation result is based on the description of antgua trajectory as the
solution of a stochastic equation wich is a discretizatibfi@). In particular, from equation
(I4), we can write

[nt]—1

Wing) = [Wo) + Z}(Iwk+1>—|lbk>))
k=
[nt]—1 1 .
= )+ Y 3 (M- T G o)) W)
(¢ | +o(1 qk+t 21
b5 (e ot @)
for allt > 0. An adaptation of the result df [31] give us the followingweergence.
9_
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Return to Equilibrium for Some Stochastic Schrédinger Egona 17

Theorem 6 ( [31]). Let T be fixed. LetQ, 7 ,P) be a probability space in which lives a
Poisson point process N. L€ty ))o<t<T be the discrete quantum trajectory defined by
the equation(2). This discrete quantum trajectory convergezif[0, T]) to the process
(|0))o<t<T Which is the unique solution of the stochastic differenéiliation

B = o+ [ (H-decs 2 was

- - <——|) Bs Voo N(dxd9

where = (J, C*C{x).

This result relies on the fact that Equatiénl(21) can be pmeted as a discrete time
stochastic differential equation which is a discretizatod the jump equation.

3.2. The diffusive case

0 1 3
We now consider the case whete= ( ) = (

NIF NI
Nk NI
~_
|
~/
I
I
Nl
v
=

10 -3 3
11
havePp = ¢ % |andu=v= % Hence, after computation we obtain:
2 2
_ L 0.0 1 w(n) 1
& pr = Tt = | 5 Ug+uDIwg | =5+ 2o (7). 22
B 1 w(n 1
Okir = TripkPi] = H\f —Ug) W) H 5~ W+O (ﬁ) ) (23)
wherevy(n) = Re({Wk,CWk)). here, we introduce the random variab{&g) defined by
X 1= — 1 — g
VP 10k 1

for all k > 0. in terms of(Xx), the evolution equation takes the form
1/ . 1 . 2
Wir2) = (Wi = — { —1H = S(C°C =20 C+ il ) + (1) | i)+

+ (C —Vk+ 0(1)> k) %XHL (24)

The continuous diffusive equation which is the natural edaie to be the limit of equation

24) is

o1
) = (- — 3 (€ 20C 1) ) [)dt+ (C— v )W, @5)
wherev; = Re({Yx,Cyy)) and (W ); is a one-dimensional Brownian motion.
In [30], it is shown that the convergence result is highlydshen the existence and
9_

uniqueness of the solution for such equation (let us streggliie coefficients are not Lips-
chitz). In particular, by a truncation method the followifibeorem is proven in[30].
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18 S. Attal and C.Pellegrini

Theorem 7( [30]). Let(Q, 7, #,P) be a probability space on which is defined a standard
Brownian motion\W );. The following stochastic differential equation

diyr) = <—iH - % (C*C_ZVtC+Vt2|)> W) dt+ (C—vel ) [ ) dW (26)

admits a unique solution. Furthermore, almost surely, fbt we have||y|| = 1.

We can now consider the approximation procedure. In a simiy as the Poisson
case, we can consider the difference equation

[nt]—1

Wing) = [Wo) + kZO (IWkt2) = [WK)))

e A | )
= |Wo)+ Z n (—IH —E(C*C—ZVKC—I—VKU-{-O(:L)) |Wk)
k=0

[nf]—1

1
C — o(1) | —
+ kZO < | W) — Vi|Wk) +of )>

\/ﬁxk+1- (27)

We have the following result.

Theorem 8. Let T be fixed. LetQ, ¥ , #,P) be a probability space on which is defined
a standard Brownian motiofW\ ). Let (|@y))o<t<T be the discrete quantum trajectory
defined by the equatioff?). This discrete quantum trajectory convergeszif[0, T]) for

all T to the proces$|() ) )o<t<T Which is the unique solution d of the following stochastic
differential equation:

) = (C—w) AW+ (-iH — 3 ©C-2vC+f1) ) [t 28)

wherev; = Re((,Cux)).

In a sake of completeness we give some details of how provioly & convergence. In
particular we show how to interpret the equation (27) as erelis-time stochastic differen-
tial equation.

Proof: Define the processes

() = W), Vo) = B WA = 25 K

The process(Wn(t)) can be considered as the solution of the following disctiete-
stochastic differential equation

) = [ (~5C"CUn(s-) + ReUn(s-) Cln(s)))Cin(s-) ) V(s

+/0t(CllJn(S—) — ReWn(s—),Cn(s—)))Wn(s—)dWh(s) +&n(t),  (29)

where the terms,(t) corresponds of the terms in the equation in asymptotic form.
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Return to Equilibrium for Some Stochastic Schrédinger Egona 19

In order to show thai,(t) converges in the Skorohod space to the solution of

) = [ (- 3C 0l +viclu ) ds [ ()~ velun)ave

we make use of the celebrated Kurtz-Protter theorem. Letaalrit.

Recall that[X,X] is defined for a semi-martingale by the formyh, Xy = X? —
JoXs_dXs. For a finite variation proces¢ we putT;(V) to be the total variation o¥/
on [0,t].

Theorem 9 (Kurtz-Protter, [28]) Suppose that YMs a martingale and Yis a finite varia-
tion process. Assume that for each 0:

SUPE[[Wh, Whlt] < o0
n
SUPE[T:(Vp)] < o0
n

and that(\W,, Vi, €n) converges in distribution tdW,V,0) where W is a standard brownian
motion and \(t) =t for all t. Let X,(t) be a process satisfying

Xalt) = po-+en(t) + [ L(KG(s)aM(9) + [ ©0X(-))Wh(9)

Suppose that X satisfies:

t t
X = Xo+ /O L(Xs)ds+ /O O(Xe)dW,

and that the solution of this stochastic differential egoiis unique. Then xXconverges in
distribution to X.

In our case, the different hypothesis above are satisfiedbekh define a filtration for
the processWa(.)):
7" = 0(X,i < [nt]).

The following is proved in [Pel].
Proposition 3. We have thafW,(.), # ") is a martingale. The proceg8\,(.)) converges to
a standard Brownian motion Wvhen n goes to infinity and Spip[[Wh, Wh]t] < co.

Furthermore, we have the convergence in distribution f& pocess\Wy, Vi, €n) to
(W,V,0) when n goes to infinity.

This proves the announced convergence. O
Remark: Using Ito rules oryx) (Y|, we get the equation for density matrices

dpx = L(p)dt+ (Cpr +pC™ — Tr{(C+C)pr] ),

which corresponds to the equati@h (2) mentionned in thediviction (the Linblad operator
L has the same form as the Poisson case).
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20 S. Attal and C.Pellegrini

3.3. Return to Equilibrium

Now that the limit equations are established, we are intedesto the long time behaviour

of the solutions. We specify our investigations to the sglerase wher€ = ( 8 é > =

ajandH = Hg = ( é 8).
Writing the processe$yx) in terms of their coordinates; that {§ := (%, %)), the
Belavkin equations take the form

t . _ 1 _ t _
X = X0+/O <—|XS+R€(XSYS)YS_ERe(XSYS)Xs)dS+/() (Ys — ReE(Xsys)Xs) AW
(30)
t 1 1 — 9 t _
Yo = YO+/O <_§yS_EqusyS) YS> ds"‘/o — Re(Xsys)Ys | A&
\
in the diffusive case, and
( t 1 t
X = xo+/ —istr—xs\ys\2 ds+// —Xs— +1 |N(dx ds)
0 2 0 JOo<x<|ys |2
(31)
t 1 1, t
o= Yot [ (—5ystphelys)dse [ “ye |N(dxds)
0 2 2 0 JO<x<|ys-|?

{B in the Poisson case.

In the Poisson case, note that the intensity is |y;_ |2, so that one can restrict ourselves
to the case where the jumps of the Poisson process are indrethe lines/ = 1 andy =0
(we have namelyy; |> < 1, for all t). The functiont — card(N(.,[0,1] x [0,1])) = A4
then defines a standard Poisson process with intensity 1P@isson random measure and
the previous process generate[0T | (for a fixedT) a sequencé(T;,&;),i € {1,...,24)}}
where eacf; represents the jump time af . Moreover the random variablésare uniform
random variables of0, 1]. Consequently we can write our quantum trajectory as failow

t ) 1 At
X = Xo—I—/O <_|XS+EXS‘yS‘2>dS+i;<_XTi+1>10<Zi<|y1'i|2

.

(32)

W

t 1 1 ) At
YO+/O _EYS‘F §|YS| Ys ds‘f‘i; — Y- 10<Zi<|yTi,|2
Now, we shall investigate the large time behaviour of a smubf equation[(30) of(31).
To this end we need to notice the following lemma.
Lemma 1. Let( ? > be the either solution of equatidn {30) 6r{31) starting véthinitial
t
9_

condition of the forrr< Xg > Then, almost surely, we have=y 0, for all t.
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Return to Equilibrium for Some Stochastic Schrédinger Egona 21

Proof: Starting fromyp = 0, in each case, it is easy to verify that= 0 is a particular
solution for the corresponding stochastic differentialiaopn describing the evolution of
(yt). As a consequence by uniqueness of solution, almost syrel0 for all t. O

Remark: In both cases, ifs = O for all t, it is easy to see that the evolution ©f) is
given by the solution oflx = —ix;dt.
Xo

Remark: In terms of states, this lemma expresses thdip i ( 0

>, we have almost

surely
W) (| = ( é 8> = |Q){(Q],

for all t. In other words, the statf)(Q| is an invariant (or stationnary state) for the
stochastic dynamic of continuous measurement (let usssthed without measurement,
i.e in the deterministic regime, it is easy to see that tlagess already the invariant state).

Now we can make precise the result which states the returguititgium property. In
particular we focus on the large time behaviour of the paaind we show that this process
converges to zero whergoes to infinity.

Proposition 4. Let [yy) = < ? ) be either the solution of the jump-equation or the solu-
t

tion of the diffusive equation, then we have

vt 2>0. (33)
t—oo
{B Therefore, we have
Yt 250 (34)
t—oo

and the process of pure stat@gy ) (Ux|), where; = ( ;(t ) for all t, satisfies
t

’¢t><¢t’t%i§\9><m- (35)

Proof: Let us first treat the case of the jump-equation. We need te shio two cases,
if there are jumps or if there are no jumps.
In the case where there is at least one jump. At the first jughfime T; we have

()= G )+ (5.7) - (o)
yn yr— —Ym- 0/
Following the description of the solution of the jump eqaafithe solution after; is given

by the ordinary differential part with the new initial cotidn é . This initial condition

satisfiesyp = 0, then by Lemma 1, we ggt =0 for allt > T;.
If there are no jumps, this corresponds to the evest{w c Q/N(w, {(s,x) € R?/0 <
X < |ys|?} = 0}. In this situation, the evolution dfy) is only given by the ordinary differ-
ential equation
9_

l t
Ve =yo+§/0 (—Ys+ |ys|?ys)ds.
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22 S. Attal and C.Pellegrini

We want to show thal |2 — 0, whent goes to infinity. Derivating, we get

d d _ d - _d
a(|Yt|2) = E(Yth) = YtE(Yt) +YtE(Yt) = [wl2(In]?-1).

By Lemma 1, ifyo # 0, we havey;|? > 0, for allt. In this case, dividing by? we solve the
equation and we get

2= b x exp(~(t-9)+ [ (l?)du)).

for allt > s. In particular the function — |y;|? is decreasing, then we get
el* < lyslexp(—2(t —s) +2(t — s)lys|) . (36)

for all t <'s. Since we havéxs|? + |ys|?> = 1, for all s, we havelys|? < 1, for all s. With
the estimation[{36), in order to conclude, we need to remaak there exist such that
lys|> < 1. In the opposite case, we should hayg = 1, for all s. Such situation appears
actually with probability zero. Indeed, in this case thergveis A= {we Q/N(w,{(s,X) €
R?/0 < x < 1= 0,s> 0} which is actually an event of probability zero (we h&¥gw <
Q/N(w,{(s,x) € R?/0 < x < 1= 0}] = limyP[{w € Q/N(w,{(s;x) e R?/0 < x < 1=
0,0 < s< n}] andP[{w € Q/N(w,{(s,x) € R?2/0 < x < 1=0,0 < s< n}] = exp(—n)).
Thus, there exiss such thatlys|? < 1. For thiss, by taking the limitt goes to infinity in
expression[(36), we géy |2 — 0.

With the above discussion, for the jump equation, it is easggohclude that

Ve =20.

t—o0

Let us now treat the diffusive case. In order to prove theltese shall show first that
lvt|? converges almost surely to a random varialblevhent goes to infinity. Second we

showu.,, = 0 almost surely. Using Ito rules, we get
? = wd¥+Yedyt + dydye
= —[y[dt — 2Re(xyt) |yt [*dW

As a consequence we have almost surely:

d|wt

! 2 ! o 2
V= Y3+ [ —lwldu+ | —2Rely) AV, @)

for allt >s. Let (#) be the filtration generated by the Brownian motion, thafis=
o{W,,u <t}. SinceE [fst —2Re(x]yu)|yu|2dV\(,|fs] = 0, the above equation shows that

E[lyt|?|7s] < E[|ys]?].

This way the proces§ly;|?) is a super martingale which is bounded (for tallwe have
0 < |y] < 1). Therefore, this process converges almost surely to enagative random
variableu.,, whent goes to infinity. In order to show that this random variabledsial to
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Return to Equilibrium for Some Stochastic Schrédinger Egona 23

zero almost surely, we just have to show tBfii,| = 0. To this end, from Eq_37 fa= 0,
we get

Ellvt|?] y%+/ E[lys/?]

Solving the equation, we get
E(I%:[*] = Iyo[?e™"
As a consequence, we get

Ely?] — 0.

t—o

Now, using the Lebesque dominated convergence Theoremeeesd thaik[u.,] = 0 and
thenu,, = 0 almost surely. The proposition is then proved. O

Remark: In the proof, we have supposed that the initial condition @gethinistic.
This result can be easily generalized by assuming that thal icondition is random and
the same result holds.

Remark: In Probability Theory, for stochastic process, we usuatipsider invariant
measure. Here, we are in a special case where the invarisagungeis just the Dirac
measure on the stat@) (Q|.
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