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ABSTRACT 

 

A compact model for the drain current and node charges in symmetrical Double-Gate 

MOSFET, including short-channel and carrier confinement effects is developed. The 

model is particularly well-adapted to ultra-scaled devices, with short channel lengths 

and ultra-thin silicon films. An extensive comparison step with 2D quantum numerical 

simulation fully validates the model. The model is also shown to reproduce with an 

excellent accuracy experimental drain current measured in Double-Gate devices 

fabricated with SON process. Finally, the DG model has been successfully implemented 

in Eldo IC analog simulator, demonstrating the application of the model to circuit 

simulation. 

 

Keywords: compact modeling, Double-Gate MOSFET, quantum effects, short-channel 

effects 
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1. Introduction 

Double-Gate (DG) structure has been in the last years the object of intensive research 

and an impressing number of studies have confirmed its enormous potentiality to push 

back the integration limits to which conventional devices are subjected [1-4]. The main 

advantage of this architecture is to offer a reinforced electrostatic coupling between the 

conduction channel and the gate electrode. In other terms, a double-gate structure can 

efficiently sandwich (and thus very well control, electrostatically speaking) the 

semiconductor element playing the role of the transistor channel, which can be a Silicon 

thin layer or nanowire, a Carbon nanotube, a molecule or an atomic linear chain. The 

MOSFET operation of such ultimate DG devices with a single quantum conduction 

channel has been theoretically demonstrated in recent works [5-6]. 

Although the operation of DG transistor is similar to the conventional MOSFET, the 

physics of DG MOSFET is more complicated. Moreover, physical phenomena such as 

2D electrostatics or carrier quantization have to be considered, since DG structure will 

be precisely used to design very integrated devices (with short channel and extremely 

thin films). Therefore, new compact models, dedicated the circuit simulation, have to be 

developed for DG MOSFET [4]. Several interesting models have been proposed for the 

classical (i.e. without quantum effects) drain current in long channels DG [3-4, 7-9] or 

for short channel DG operating in the subthreshold regime [10]. Carrier quantization 

effects have been considered for the first time in [11]. In this work, we propose a 

compact model which combines short-channel with quantum-mechanical effects and 

applies to all operation regimes. In addition the model is continuous over all gate and 

drain bias range, which makes it very suitable for implementation in circuit simulators. 

The development is based on the calculation of the 2D potential distribution in the 

device taking into account the quantum-evaluated inversion charge. A full 2-D quantum 

mechanical numerical simulation code [12] is used for completely validating the model. 
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The drain current as predicted by the model is compared with experimental data 

measured on scaled DG devices fabricated using the SON (Silicon-on-Nothing) process 

[13-14]. Finally, the drain current model is supplemented by a node charge model and 

further, the entire DG model is successfully implemented in Eldo IC analog simulator. 

 

2. Drain current modeling 

The schematic of a symmetric DG structure and its parameters are shown in Figure 1a. 

Figure 1b illustrates the band diagrams in an horizontal cross-section together with the 

first energy subbands. The drain current modelling starts with the calculation of the 2D 

potential distribution in the DG transistor. For this purpose several methods have been 

proposed, the most complete being the evanescent-mode analysis, where the potential is 

divided into two different parts )y,x(*)y()y,x( L Ψ+Ψ=Ψ  [15]. The first term represents 

the long channel solution and the second term takes into account short-channel 

behaviour. This last term is then approximated by retaining only the lowest-order mode 

from a Fourier expansion of modes. The method can be very powerful for taking into 

account short-channel effects in the evaluation of the threshold voltage [15], but the 

mathematical development is complicated. For simplifying the calculation, in this work 

we assume the following dependence for the potential: 

)y,x(VE)x()y,x( s ×Ψ=Ψ   (1) 

where ΨS is the surface potential and VE(x,y) is the vertical distribution envelope 

function. The 2D potential distribution is thus obtained by modulating the surface 

potential by an envelope function containing the potential dependence in the vertical 

direction. VE(x,y) is then given by: 

)0y,x(P
)y,x(P)y,x(VE
=

=   (2) 

where P(x,y) is calculated as in [16]: 
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where β=q/kT, QFL(x) is the quasi-Fermi level and ψ0 are calculated as shown in 

[16]. 

For calculating the vertical distribution envelope function VE(x,y), the expression of 

QFL(x) is needed. An analytical expression of QFL(x) has been proposed in [17] for 

bulk MOSFET, depending on the x position in the channel, on the channel length and 

on the drain voltage. However, our detailed investigation by numerical simulation 

showed that the quasi-Fermi level in DG MOSFET also depends on the gate voltage and 

on the film thickness. Therefore, we adopted here a quasi-empirical expression 

(equation 4) inspired from that proposed in [17] and extensively verified by numerical 

simulation:  
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where ( )FBG VVb2m −+= , 1nm2.0a −= , 1V5.7b −=  and V1c = . 

The last term to be calculated for obtaining the 2D potential distribution is the surface 

potential ΨS(x). As presented in [18], for obtaining the expression of ΨS(x) the Gauss’s 

law is applied to the particular closed surface shown in Figure 1a:  

Si

i

Si

SiA
S

SiSi
2

dx)x(Q
2

dxtqNdx)x(E
2

t)dxx(E
2

t)x(E
ε

−
ε

−=−++− (5) 

where E(x) is the electric field, ES(x) is the surface electric field at the Si/SiO2 interface 

and NA is the channel doping. Qi(x) is the inversion charge density in the x point of the 

channel, calculated by the integration of the electron charge over the Si film thickness. 

In the right hand side of equation (5), the first term corresponds to the depletion charge 

and the second term corresponds to the mobile inversion charge.  

Page 5 of 25

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

In has been shown in reference [13] that for very thin films (<15nm), the electric field 

E(x) in equation (5) can be approximated as: 

dx
)x(d)x(E sΨ−≈  (6) 

The following equation can also be written for the electric field: 

dx
)x(dE

dx
)dxx(E)x(E
=

++−  (7) 

In equation (10), the surface electric field at the interface Si/SiO2, ES(x), is obtained 

from the boundary conditions at the interface: 

Fssox
ox

Si
FBG EtVV φ+Ψ+

ε
ε

=−  (8) 

where VFB is the flat-band voltage and φF is the Fermi potential. Replacing (6) in 

(7) and then in (5) and using (8), we obtain the following differential equation for 

the surface potential ΨS: 

[ ]iFFBGoxSiA
SiSi

s
SiSi

ox
2
s

2
Q)VV(C2tqN

t
1

t
C2

dx
d

+φ−−−
ε

=Ψ
ε

−
Ψ  (9) 

An approximative analytical solution of equation (9) is given by: 

2
1

1211s
m

)x(R)xmexp(C)xmexp(C)x( −−+=Ψ  (10) 

with C1, C2, m1 and R(x) calculated for filling the boundary conditions ΨS(x=0)=φS and 

ΨS(x=L)=φS+VD: 

)Lmsinh(2
m

)Lmexp(1)0(RV)]Lmexp(1[
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2
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)x(Q)VV(C2tqN)x(R
ε

+φ−−−
=   (12) 

)t/(C2m SiSiox1 ε=  (13) 

( )2
iSDAS n/NNln)q/kT(=φ  (14) 
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The evaluation of R(x) requires to know the value of the inversion charge density Qi(x), 

which can be calculated in two different cases: (a) the "classical" case, i. e. without 

quantum confinement effects and (b) the quantum case. In the classical case, the 

inversion charge is given by the following equation, assuming a Boltzmann distribution 

for the carriers in the channel: 

( )[ ]
dyeniq)x(Q

Sit

0

)x(QFL)y,x(
kT
q

i ∫=
−Ψ

 (15)  

In the quantum case, the inversion charge Qi(x) is given by: 
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where mt
*=0.19×m0, ml

*=0.98×m0, gl=2, gt=4, β=q/kT, *
t

l
D2 mm = , *

t
*
l

t
D2 mmm = . In 

equation (16) ξi
l,t are the energy levels calculated using a standard method for first-order 

perturbation applied to the energy levels of an infinite rectangular well (as shown in 

[13]): 

ii
t,l

i
t,l )r( ξ∆+ξ=ξ  (17) 

where (ξr)il,t are the energy levels of an infinite rectangular well. (ξr)il,t is given by the 

well-known equation:  

2
Si

*
t,l

222
i

t,l tqm2
i)r( π

=ξ
h  (18) 

and  

iii H ϕϕ=ξ∆  (19) 

where H is the Hamiltonian of the perturbation and φi are the electron wave functions 

associated to energy levels ξi
l,t. In equation (11), R(0) is calculated considering Qi(0) 

given by equation (15) or (16) with ΨS(0)=φS. 
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Since ΨS(x) given by equation (10) depends on Qi(x), replacing (10) and (17) in (16) 

leads to an implicit equation on Qi(x), which is solved numerically for obtaining Qi(x). 

Finally, for calculating the drain current in DG MOSFET we express the current density 

(including both the drift and the diffusion components) as: 

dx
)x(dQFL)y,x(qµnJ −=  (20) 

which is then integrated in y and z directions: 

dx
)x(dQFL)x(µWQ)x(I id =  (21) 

Current continuity requires the drain current be independent of x and therefore, 

integrating equation (21) in x direction from x=0 to x=L gives the final expression of ID: 

∫=
DV

0
iD )x(dQFL)x(Q

L
WµI  (22) 

In the classical case and considering the Boltzmann distribution for the carriers, 

equation (21) becomes [10]: 

( )

∫

∫

−−
=

ψ

L

0 Sit

0

kT/)y,x(q
i

D
D

dxeqn

dy
kT/qVexp1

q
kTµWI  (23) 

3. Model validation by numerical simulation: short-channel, quantum effects and 

volume inversion 

The model was validated by an extensive comparison with quantum numerical 

simulation using a full 2-D Poisson-Schrödinger code [12]. In a first step, the potential 

distribution as given by equation (1) has been extensively validated for various structure 

parameters and biases. An example is shown in Figures 2a, where the surface potential 

as given by the model for L=50nm and L=10nm is compared with numerical simulation. 

In Figure 2b, the potential distribution in a vertical cut-line perpendicular to the Si film 

(in the middle of the channel, y direction) is illustrated. A good agreement is obtained 
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between the model and the numerical simulation. The variation of the quasi-Fermi level 

(equation 4) was also validated as presented in Figure 3. Equation (3) has been derived 

under classical assumptions, but we verified by quantum numerical simulation that this 

equation still applies in the quantum case.  

In a second step, the drain current expression has been completely validated by 

numerical simulation, for channel lengths varying between 30nm and 200nm and film 

thicknesses from tSi=15nm down to tSi=2nm. Figure 4 shows an example of this 

validation step DG MOSFET with different channel lenghts (a constant mobility is 

considered in equation (22)). Short channel behaviour of the quantum drain current is 

also checked in Figure 4: the model reproduces very well the simulation (even for 

L=30nm), in both weak and strong inversion regimes. The extensive investigation of 

additional ID(VD) curves has shown that the model is completely valid in both linear and 

saturation regimes. 

The validation procedure was continued by an in-depth investigation of the model 

capability to take into account carrier quantization effects. For this purpose the 

inversion charge density Qi(x) (in both classical and quantum case) in long and short 

channels has been compared to numerical results and very good agreement has been 

found (Figure 5). Further the classical and quantum drain current were calculated as a 

function of the channel thickness tSi. Figure 6 shows that the quantum model perfectly 

reproduces two essential phenomena:  

(1) the impact of quantum effects quantum effects, increasingly significant when tSi is 

scaled down. The shift between classical and quantum ID(VG) curves increases for 

thinner Si channels. In the same way, the shift between the classical and the quantum 

threshold voltage is clearly higher for tSi=2nm than that for tSi=10nm. 

(2) the drain current dependence on the channel thickness in the subthreshold region, as 

a manifestation of the volume inversion, which is a key phenomenon in symmetrical 
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DG transistors. Above threshold the drain current does not depend much on the Si 

channel thickness [7]. 

 

4. Compact model versus experimental data 

Finally, the model was used to fit drain current measured [13-14] on DG devices 

(Figure 7). The match between experiment and model is very good, especially in the 

subthreshold regime. Above threshold the model slightly overestimates the current due 

to the use of a constant mobility and no series resistances. For improving the model 

accuracy the next step will be to consider a realistic mobility model [19] and to include 

the effect of series resistances.  

The proposed compact model can easily be used to obtain all main performance 

indicators of DG MOSFET, such as the threshold voltage VT, the subthreshold swing S, 

the DIBL (Drain-Induced-Barrier-Lowering) effect on the threshold voltage, the 

threshold voltage roll-off, Ion and Ioff currents and the CV/I metric. In addition, the 

model can be directly implemented in circuit simulation software and used for the 

simulation of DG MOSFET based-circuits, as will be shown in following paragraphe. 

 

5. Model implementation in EldoTM IC analog simulator 

The drain current model presented previously has been implemented in a circuit 

simulator in order to evaluate the performances of simple DG MOSFET-based circuits. 

For this purpose, the model was firstly supplemented by a charge model including the 

expressions of charges on the device terminals. The schematic description of the entire 

model is given in Figure 8a as well as the symbol of a DG transitor with n-channel. In 

this figure QG is the total charge on the two gates, QD is the charge on the drain terminal 

and QS is the charge on the source terminal. 
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The starting point for calculating the gate charge is the neutrality condition which 

requires that the total charge in the device be always zero: 

0QQ IG =+  (24) 

In (24) QI is the total inversion charge obtained by the integration of relation (16) from 

0 to L: 

∫=
L

0
iI dx)x(QQ  (25) 

The gate charge QG is then obtained from equation (24). Under normal bias conditions, 

the inversion charge is not uniformly distributed along the channel except for VD=VS. 

Because of this bias dependence, Qi(x) contributes differently to the source and drain 

charges. Various approaches have been proposed for sharing the inversion charge 

between the source and drain nodes [20-22]. In our development we have adopted the 

approach given in [22] and also presented in [18]. At low drain voltage, the inversion 

charge is equally shared between the source and drain. When the drain voltage 

increases, the drain charge is strongly reduced and the source charge becomes close to 

the inversion charge QI.  

It is important to note that our compact model is completely continuous over all 

operation regimes and the drain current and node charges equations are derivable and 

their derivatives are also continuous over all bias regimes. We have also verified that 

the source and the drain electrodes can be permuted. 

The compact model described previously for the n-channel DG transistor (NMOS) has 

been implemented in Eldo IC simulator. A similar model has been considered for the 

DG MOSFET with p-channel (PMOS). The model has been used further to simulate DC 

and transient response of a three-stage inverter chain containing DG MOSFETs (the 

schematic of this circuit is shown in Figure 8b). The Figure 8c shows the time response 

of the two outputs voltages (the output voltage of the second and of the third stages) to a 
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rectangular input voltage. This results demonstrates that the model can be perfectly used 

to the simulation of small circuit based on DG MOSFETs.  

 

6. Conclusion  

In this paper we developped a compact model for the drain current and node charges in 

symmetrical Double-Gate transistors, including short channel and carrier quantization 

effects. The model is particularly dedicated to ultra-scaled devices expected at the end-

of-the-roadmap. The starting point of the model was the development of an analytical 

expression for the 2D distribution of the potential considering the quantum inversion 

charge. An extensive comparison with 2D Poisson-Schrödinger simulation data was 

conducted in order to fully validate the model. We have shown that the proposed model 

reproduces with an excellent accuracy the impact on the drain current of short channel 

effects, volume inversion phenomenon and carrier quantum confinement. A very good 

agreement was also obtained with experimental data measured on very integrated 

devices. Finally, the model was implemented in Eldo IC analog simulator and the 

transient simulation of simple DG CMOS-based circuits has been performed. 
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Figure captions 

 

Figure 1. (a) Schematic of symmetrical DG MOSFET structure and its electrical and 

geometrical parameters considered in this work; the dashed area shows the closed 

surface for the application of the Gauss’s law; (b) Band diagram in a vertical cross-

section in the channel and definition of the different parameters used in the model 

development. 

 

Figure 2. (a) Surface potential variation along the channel from source to drain for 

L=50nm and L=100nm (tSi=5nm, VD=0.4V). (b) Potential variation the y direction for 

differents channel doping levels (tSi=10nm, VG=0.6V). Comparison between compact 

model and numerical simulation. 

 

Figure 3. Variation with x of the normalized quasi-Fermi level QFL/VD for L=200nm 

(intrinsic channel) at low and high drain voltage. 

 

Figure 4. Drain current in long and short channel DG transistors as calculated by model 

in the quatum case and validation by numerical simulation (tSi=10nm, tox=1nm, midgap 

gates, intrinsic channel, VD=0.1V). 

 

Figure 5. Variation of the inversion charge density Qi(x) along the channel from source 

to drain in the classical and quantum mechanical cases: (a) L=200nm; (b) L=50nm. 

Other parameters are: tSi=5nm, VG=1V, VD=0.4V, intrinsic channel. 

 

Figure 6. Impact of film thickness on the subthreshold operation of L=50nm DG 

transistor: the model perfectly reproduces quantum effects and volume inversion 
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(tox=1nm, midgap gates, intrinsic channel). The drain current calculated in the classical 

case is also shown. 

 

Figure 7. Compact model versus experimental data measured on DG transistors 

fabricated with the GAA/SON process described in references [13-14]. 

 

Figure 8. (a) Schematic description of the DG model implemented in Eldo IC analog 

simulator and definition of the node charges. The symbol of a DG MOSFET with n-

channel is also represented. (b) Schematic of a three-stage inverter chain containing DG 

MOSFETs with n- and p-channels. (c) Transient analysis of the three-stages inverter 

chain shown in figure (b) and simulated using the model: response to a rectangular input 

voltage VIN. The parameters of DG transistors are: L=50nm, tSi=10nm, tox=1.5nm, 

intrinsic channel and midgap gates. 
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