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A robotics approach for interpreting the gaze-related
modulation of the activity of premotor neurons during reaching

Christophe Halgand, Philippe Souéres, Yves Trotter, Simona Celebrini, and Christophe Jouffrais

Abstract— This paper deals with the modeling of
the activity of premotor neurons associated with the
execution of a visually guided reaching movement in
primates. We address this question from a robotics
point of view, by considering a simplified kinematic
model of the head, eye and arm joints. By using
the formalism of visual servoing, we show that the
hand controller depends on the direction of the head
and the eye, as soon as the hand-target difference
vector is expressed in eye-centered coordinates. Based
on this result, we propose a new interpretation of
previous electrophysiological recordings in monkey,
showing the existence of a gaze-related modulation
of the activity of premotor neurons during reaching.
This approach sheds a new light on this phenomenon
which, so far, is not clearly understood.

I. INTRODUCTION

To plan and control a reaching movement toward a
visual target, the Central Nervous System (CNS) of
primates needs to perform various transformations to
match sensory and motor variables encoded in different
coordinates. Different experiments tend to prove that the
reference input used by the CNS for planning the motion
is the position error — called “difference vector” — between
the hand and the target [1]. In order to make the encoding
of this difference vector possible, the hand and the target
need to be expressed in the same reference frame. The
question of which spatial reference is used by the CNS
to encode this vector has been debated since a long-time
in neurosciences.

A first way of thinking was that the CNS encodes
the difference vector with respect to the body. This idea
was suggested by early experiments showing that, during
motion, the activity of different cortical areas varies as a
function of the end-effector location with respect to the
body [2], [3], [4].

Physiological evidence has progressively convinced
neuroscientists that the CNS rather encodes the hand-
target difference vector in visual coordinates. Cohen and
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Andersen [5] suggested the existence of a common eye-
centered reference frame for movements plans. It was
shown that this eye-centered spatial representation consti-
tutes a reference for multisensory integration, illustrating
the predominant role of vision in primates [6]. Buneo et al.
[7] observed that, when the relative hand-target position
remains constant with respect to the fixation point, the
activity of dorsal area 5 cells varied little, suggesting
that the difference vector is encoded in fixation-centered
coordinates. Finally, numerous psychophysics studies have
strengthened the idea that visually guided movements
are planned in an eye-centered frame [8].

However, though an increasing number of neuros-
cientists agree that the CNS encodes the hand-target
difference vector in a visual frame, most models of
reaching control still consider the body as the basis
of the movement, without considering the influence of
the eye and head position. For instance, most research
studies, which aim at determining the cost criterion that is
minimized by the CNS during reaching, simply consider
that the target position, with respect to the body, is
known [9]. Many models dealing with coordinates trans-
formations emphasize the central role of vision for the
integration of motor plans, but consider at the end that
movement is organized from the trunk [6] [10]. A striking
illustration of this fact is given by the computational
model of control proposed by Shadmehr and Wise in
their famous book devoted to the neurobiology of reaching
and pointing [1]. This model, represented in Fig. 1, is
based on the hypothesis that the difference vector is
expressed in a fixation-centered frame but only consider
the kinematic transformations associated with arm joints.
The authors argue that, when the eye or the head position
are modified, both the hand and the target positions are
shifted by a same amount in retinotopic coordinates and,
as a consequence, the representation of the difference
vector remains identical with respect to the eye frame.
This reasoning is questionable because, though vector
coordinates are actually invariant under translation they
should be modified by rotations induced by eye and head
angles.

On the other hand, electrophysiological studies in
monkey have shown that, during visually guided reaching
movement with an imposed fixation point, the activity
of premotor neurons is qualitatively and quantitatively
modulated by gaze direction [11], [12] [13], [14]. These
interesting results reveal that the eye and head posi-
tions are actually involved in the computation of the
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Fig. 1. From Shadmehr and Wise [1]-p246 : Virtual robotics model
describing the successive transformations involved in a reaching task.
First, the position of the target, &, and the position of the end-
effector, Zee, are both transformed in fixation-centered coordinates
(networks 1 and 2). Then, the difference vector x4, is computed
as the gap between #; and Zee (network 3). :I‘aking the difference
vector x4, and the current arm configuration 6 as input, the internal
model of inverse kinematics allows to determine an infinitesimal
variation of arm joints, Ad, that allow to drive the hand toward
the target along x4, . Fmally, from A and § the internal model
of inverse dynamics allows to compute the necessary torque 7 to
execute the movement. Note that the terms 0 or Af are related to
arm joints only, and that the eye and head angles are not considered
in this model. FK and IK respectively stand for forward kinematics
and inverse kinematics, whereas FC is used to specify that data are
expressed in fixation centered coordinates.

arm controller. This effect was however considered as
a marginal one by the neuroscientists who share the
belief that motor control is organized from the body.
For instance, Shadmehr and Wise interpreted the gaze
influence on premotor neurons as the neural expression of
the well-known fact that movement accuracy in primates
depends on the angle between the target and the fixation
point [1].

The goal of this paper is to shed a new light on
this question by considering it from the point of view
of robotics. We propose to study the transformations
inherent in the computation of a vision-based reaching
controller, by using a simplified kinematic model of the
head, eye and arm joints involved in the task. We use the
formalism of visual servoing to design a controller that
allows to drive the hand to the target while controlling the
gaze direction. By this, we want to show that the eye and
head angles are intrinsic parameters of the hand controller,
as soon as the hand-target difference vector is expressed
in visual coordinates. After giving the analytic expression
of the controller we will implement it as a feedforward
artificial neural network, similar to the ones proposed by
several authors dealing with coordinate transformations
[10]. This neural network will be trained to execute
reaching movement with prescribed gaze direction. The
activity of single artificial neurons will be analyzed and
compared with the results reported in [15]. Based on this
study, a new interpretation of the gaze-related modulation
of premotor dorsal (PMd) neurons during reaching will
be proposed.

II. PREVIOUS ELECTROPHYSIOLOGICAL RESULT

This section briefly recalls the experimental result by
Jouffrais et al. [15], which reveals the existence of a
qualitative and quantitative gaze-related modulation of
the activity of premotor neurons during visually guided
reaching in monkey.

Behavioral task

Two macaque monkeys were trained on a visually
guided reaching task. To begin a trial, the monkey had to
put its hand on a target at the center of a screen. When
the fixation spot appeared, the animal was required to
orient gaze and maintain fixation during the upcoming
period of the trials. Then a white target appeared which
turned grey after a delay. The monkey had to move its
hand to this target without moving gaze (Fig. 2 A). In the
experimental paradigm, the fixation spot was presented at
nine different positions. This design required the monkey
to make limb movements in a given direction, while gazing
at various locations (Fig. 2 B).
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Fig. 2. Behavioral task : (A) illustrates the case where the monkey
fixates the central point and reaches a peripheral targets. The nine
fixation points and targets (B) were successively considered

Results

129 set-related PMd neurons showing a preferred
direction (PD) (bootstrapping test, p<0.05) and/or a
gaze modulation (ANOVA, p<0.05) were recorded. For
most of these cells, the PD vector tended to shift with
gaze. In many cases, the highest activity was associated
with movements made towards the fixated target. In
less than half of the trial, the PD remained stable,
independent of gaze angle, but the magnitude of the
PD changed. The following figures illustrate how the gaze
position modulates the PD. 3/41 (7%) cells show a gain
modulation of the PD due to gaze positon (ANOVA,
p<0.05). 15/25 (60%) cells show a rotation of the PD
due to gaze positon (Watson-Williams test, p<0.05).

Conclusion

This study, as well as the previous works [16], [11]
and [12], demonstrate that directional coding of arm
movement in PMd (and M1) is dependent of gaze
direction. However the current biological models of PMd
activity do not allow to clearly explain the reason of this
dependency.
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Fig. 3. Typical examples of PMd cells with reach-related activity :
A : independent of gaze position, B : dependent on gaze position
(preferred direction (PD) is not modified, but is gain-modulated by
gaze position), C : dependent on gaze position (PD is modified by
gaze position, indicated by *), D : shows how the PD of the neuron
represented in C rotates with gaze position.

III. THE KINEMATICS OF VISUALLY GUIDED REACHING

In this section we explain how the formalism of robotics,
and more specifically the visual servoing framework, can
be used to design a vision-based kinematic controller to
execute reaching movements. In the literature devoted
to the neurobiology of reaching and pointing the « eye
frame » is usually attached to the dominant eye [1]. We
will use the same convention here by considering a model
of « cyclopean » robot. We consider a simplified model of
the human upper body in which the trunk is supposed to
be fixed, as represented in Fig 4. This model includes 7
degrees of freedom (DoF) at the arm (3 at the shoulder,
2 at the elbow and 2 at the wrist), plus 2 DoF at the
neck and 2 DoF at the eye.

In order to design the visually guided reaching control-
ler, we use visual servoing. First we recall the basics of
this approach by following the presentation proposed in
[17]. Basically, visual servoing aims at controlling robot
motion by regulating an output function e, called « task
function », defined as the gap between the current value
of a vector of k visual feature s € R* and the desired one
s*

e=s5—s"
The interaction matrix Lg, associated with s, allows to

express the differential link between the time derivative
of the task function and the velocity of the camera v, :

é= Lsv.

In visual servoing, 2D and 3D features can be considered.
However, to simplify our presentation, we will consider
here that that the visual features are simply 2D projection

of points s = (X,Y)T in the camera image plane, and
that L is the interaction matrix associated to a point.

Two situations are to be considered. Either the camera
is attached to the end-effector of the robot, defining an
« eye-in-hand » system, or it is placed aside the robot and
constitutes a « eye-to-hand » system. In both cases, the
system equations in joint space have the same form :
o (1)
where, ¢ € R™ is the joint vector of the robot, J. € R
is the feature Jacobian matrix and de/0t expresses the
variation of visual features which is independent of joint
variations.

- For an eye-in-hand system, J, is expressed by :

Je = Ls CVn n‘](q)

e=JeGg+

where ¢V, is the transformation matrix from the camera
frame R, to the end-effector frame R,, (n*" link). If the
camera is rigidly fixed to the end-effector, “V,, is constant.
"J(q) is the robot Jacobian expressed in R,,. In this case,
Oe /Ot represents the time-variation of s due to potential
object motion.

- For a eye-to-hand system, .J. is expressed by :

Jo =—-Ls°Vy, nJ(Q) (2)
=—Ls;Vp IZ](Q)

where, in the first line of (2), the robot Jacobian "J(q) is
expressed in R,, and the transformation “V,,, from R. to
R,, changes all along the servo; whereas, in the second
line of (2), Y(q) is expressed in the robot frame Ry, (base)
and the transformation ¢V}, from R, to R; is constant,
as long as the camera does not move. In this case de/0t
represents the time-variation of s due to the potential
camera motion.

In both cases, a kinematic controller can be obtained
by inverting equation (1), using for instance the Moore-
Penrose pseudo-inverse J = JI'(J.JI)~1. The following
expression of the controller is then obtained :

Q=% Q

Rn Rn

Fig. 4. Simplified kinematic model of eye, head and arm joints
involved in the visually guided reaching task

In view of this formalism, let us go back to our problem
of designing a vision-based reaching controller. In order to



clearly describe our reasoning, we will proceed in two steps.
Suppose first, as in Fig 4-A; that only the arm joint may
vary, while the body frame R (trunk) and the camera
frame R, are fixed. This configuration constitutes an eye-
to-hand system. The visual servoing task we consider is
to drive the reference point of the hand H to reach the
target position T'. The task function is then defined by
the difference vector x4, expressed in the eye frame :

€e=1Tqgy =SH — ST (4)

According to (1), as R—c and T are fixed, de/0t = 0.
Denoting by ¢, the vector of arm joints, we get :

é:JeCja

where J, = —Lsg,, “V4%J(qq). In this expression, °Vj
describes the transformation between the camera frame
R, and the body frame R}, which, in situation A, is
constant, and ®J (ga) is the Jacobian associated with
the joints g, expressed in Ry. From (3), the controller
expresses :

. _ J+ .

Ga = J¢ €

Clearly, this first representation is not sufficient for our
purpose as we also need to control the gaze. To this
end, consider now the configuration of Fig. 4-B in which
the additional joints go (neck and eye joints) have been
introduced between the fixed body frame R; and the
camera frame R.. In this configuration, two vision-based
tasks are to be executed simultaneously : the fixation and
the reaching.

- The first task ej is to drive the camera in order to
place and maintain a new fixation point at the center of
the camera image plane. If we denote by F' the current
position of this point and F* = 0 the desired one, this
task expresses :

€1 =S — Sp=*

For this task, the joints qg linking the body to the camera
constitute a eye-in-hand system. As the fixation point
cannot move independently from the camera, deq /0t = 0.
According to (3) a gaze controller is given by :

do=Jer (5)

where
Jey = Lsp Vi " (q0) (6)

- The second task es = s — st is to drive the hand to the
target. This task is similar to the one introduced in (4)
for the situation A, except that, here, the movement of
the camera due to the execution of the task e introduces
a nonzero term deg /0t in the dynamics of ea. According
to (3), the reaching controller expresses then :

362

q.a:J;;(éQ_E) (7)

with
Jey = —Lsy Vi U(qa) (8)

and, according to (5) and (6),
% = 2—;3 4o
= (LSH _LST) W QJ(QO)J;él
= (Lsy — Lsy) Vi U(q0)[Lsp Vo Y (q0)] Téx o
In order to complete the expression of this controller a
decay rate needs to be defined for each of the two tasks e;
and es. For the fixation task e; we chose an exponential
decay by setting é; = —Aej with A > 0, as usually in visual
servoing. However, for the second task eo, we applied the
dynamics proposed by Hoff and Arbib in [18], in order to
obtain the minimum-jerk dynamics observed in human.
This is done by making e2 obey the following third order
dynamics :
9 . 36 60

€g=——éy— —5ér— €
D D2 D3

in which D is the movement duration.

(10)

Now, we have all the elements to conclude the first
part of our reasoning. Indeed, we can observe that
different terms in the expression of the reaching controller
(7) depend on the joints qo that link R. to Rp. This
dependency occurs both in the terms °V; and %(qo),
which appear in the expression of Je, (8) and dey/0t
(9). Recall that €V}, represents the spatial transformation
between R. and Ry, which is a function of the joints
go continuously modified during the movement, whereas
by (qo) is the robot Jacobian associated with gg expressed
in Rb-

This reasoning, shows that, as the reference of the
movement is expressed in visual coordinates, the eye
and head angles are intrinsic parameters of the hand
controller.

IV. MODELING THE REACHING CONTROLLER WITH AN
ARTIFICIAL NEURAL NETWORK

The kinematic analysis presented in the preceding
section provides computational arguments for interpreting
the activity of the CNS associated with the control of
reaching movements. In primates, the premotor dorsal
cortex (PMd) is known to be involved in the computation
of motor plans and sensorimotor integration. By analogy
with the robotics model, if the difference vector is
expressed in eye-centered coordinates, one can expect
that the activity of a large part of neurons invloved in
arm kinematics, i.e. premotor neurons, will be modulated
by gaze position.

In the neuroscience community, many authors use
artificial neural networks for representing models of
multisensory and sensorimotor integration. These works
consist in developing models of neural networks that allow
to execute a given task, and then simulate and compare
the activity of artificial units with the activity of real
neurons. For instance, numerous authors proposed neural
network models to reproduce coordinate transformation
processes, from eye-centered frame to head-centered or
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Fig. 5. Schematic representation of the artificial network

body-centered frames [19], [20], [10]. Using this approach
they show that the eye and/or head position modulates
the activity of artificial units, mainly in the hidden
layer of the network. These results are consistent with
electrophysiological recordings in the partietal posterior
cortex, confirming the idea that this cortical area is
involved in multisensory and visuomotor integration.

Following the same approach, we developed an artificial
neural network to reproduce the function of the visually
guided reaching controller described in section III. Our
goal was to compare the activity of the artificial units
located in the hidden layer of this network with the
activity of real premotor neurons described in [15]. To this
end, we simulated the reaching task by using the same
kinematic conditions as in the behavioral task described
in section II. The subject was standing in front of a
screen, with the trunk and head fixed and aligned. While
maintaining its gaze at a fixation point, he must execute
a reaching movement to one of the eight targets placed
in front of him

Network description

The artificial neural network was implemented in Mat-
lab by using the Neural Network Toolbox and customized
functions. We use the same architecture as in [21] [10].
The network is feedforward with one hidden layer, as
described in Fig 5. In order to have a consistent decrease
of the number of units in the successive layers, we put 12
units in the hidden layer. The activation function of these
units is an hyperbolic tangent. We used the Levenberg-
Marquardt backpropagation technique [22] to adjust the
weights and biases during the training. As in [10], we
stopped the training when the evolution of the root-mean-
squared error (RMSE) was no longer perceptible on a
log-log scale, the gradient became < 1076,

Training

In order to constitute a database for training the net-
work, we simulated a large number of reaching movements
by using the visual servoing controller designed in section
III. By considering the 72 combinations (8 movements x
9 fixation points), with 50 iterations for each movement,
we recorded a set of angular configurations of the arm,
Ga, and of the eye-neck chain, gg. To define the movement

direction we used a set of 3600 unit vectors uniformly
distributed on a spherical surface, as in [10]. For the
training, the network received as input : one unit vector
indicating the direction of movement, a configuration of
the arm and an eye position. The desired output was
computed by applying the reaching controller (7) to the
kinematic model of the mannequin.

Result

Fig. 6 represents the reaching trajectories to the eight
targets that were obtained with the artificial neural
network. We used different colors to represent trajectories
correponding to each of the nine fixation points. These
trajectories are very close to the almost straight trajectory
that was obtained with the controller (7) by applying the
minimimu-jerk criterion [18]. We found that the shape
of trajectories is not correlated with the position of the
target, nor with the fixation point or the eccentricity
(ANOVA one way p < 0.05). This result shows that the
artificial neural networks executes the reaching task with
a good precision.

Fig. 6. Hand trajectories produced with the artificial neural network.
Different colors correspond to the different fixation points

During the execution of these 72 reaching movements,
we analyzed the mean level of activity of the 12 units of
the hidden layer. This analysis shows that the activity
of these units is modulated by the gaze direction and by
the target position. More precisely, we found that the
pattern of activity of these 12 units can be classified in
three categories, as represented in Fig. 7
— 3 units had their level of activity mainly modulated
by the eye direction as in Fig 7-A,

— 7 units had their level of activity mainly modulated
by the target position as in Fig 7-B,

— 2 units had their activity modulated by both the eye
direction and the target position as in Fig 7-C.

Though artificial neural networks are far from represen-
ting the actual activity of biological neurons, it is interes-
ting to compare these patterns with the ones reproduced
in section II. Our objective is to provide computational
arguments to support the idea that premotor neurons are
involved in the computation of the vision-based control



of the hand and, as a consequence, have their activity
modulated by change in eye and head direction. Note
that, beyond a simple modulation of the level of activity,
we found that, for some units, the preferred direction was
also modified. Indeed, certain units have a higher level of
activity for a particular direction of reaching (as described
in [4]), this direction sometimes varies as a function of
the gaze direction. This observation is consistent with
the result described in [15], in which the gaze modulation
effect was not only quantitative but also qualitative.
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Fig. 7. Three characteristic patterns of activity of artificial neurons.
A : mainly modulated by gaze direction, B : mainly modulated by
target position, C : combined effect

V. CONCLUDING DISCUSSION

The current study leads to a more general discussion
about the role of PMd in motor control of human and
nonhuman primates.

Instead of considering that the role of PMd is to
compute the difference vector and express it in body-
centered coordinates, as proposed by [10], we suggest
that the neurons of this area could be involved in
the computation of the control at the kinematic level.
According to this idea, premotor neurons could encode the
differential link that allows to determine an instantaneous
variation of joints to drive the hand in the direction of
the difference vector, as already suggested in [1]. However,
the important difference with Shadmehr’s model is that
here we suggest that, if the difference vector is expressed
in visual coordinates, then the activity of neurons in this
area must be modulated not only by the variation of
arm joints, but also by changes in eye position in the
orbit [11], [12], [13] and head position with respect to the
trunk as predicted by Batista et al. [14]. The robotics
approach and, in particular, the visual servoing formalism,
provide a clear mathematical framework for modeling
the transformations inherent in the computation of the
reaching controller, and show this dependency.
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