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Boundary Value Problems and Convolutional
Systems over Rings of Ultradistributions

Hugues Mounier, Joachim Rudolph, and Frank Woittennek

Abstract One dimensional boundary value problems with lumped controls are con-

sidered. Such systems can be modeled as modules over a ring of Beurling ultradis-

tributions with compact support. This ring appears naturally from a corresponding

Cauchy problem. The heat equation with different boundary conditions serves for

illustration.

1 Introduction

The design of feedforward and feedback control for finite dimensional systems and

delay systems is largely simplified by flatness based control, respectively freeness.

This has been shown in numerous academic case studies and industrial applications.

A central part in the control design (the importance of which has often been under-

estimated) is trajectory planning.

It is particularly useful for distributed parameter systems with lumped control

inputs, a class of systems the models of which include partial differential equations.

In the linear case, as for delay systems, a module-theoretic framework has been

established, and the trajectory planning is based on the use of a module basis, which

plays a role similar to the one of a flat output in finite-dimensional flat systems.

Examples of distributed parameter systems that have been studied are heat con-

ductors, elastic piezo-beams and plates, elastic robot arms, ropes, electric lines,
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tubular chemical reactors, and heat exchangers (see, e.g., [16, 17]). Although many

of the problems considered are linear with fixed boundary, some nonlinear and free

boundary value problems have been solved, too.

Here, based on the example of the linear heat equation the choice of the ring

used to represent the system as a module is further discussed. It is shown that a

suitable ring is R = C(∂t)[S]∩ E
′∗, where ∂t stands for time derivation, S is a

collection of spatially dependant hyperbolic functions, and E
′∗ is a ring of Beurling

ultradistributions.

2 Motivating Example: the Heat Equation

The one dimensional heat equation might be viewed as one of the simplest problems

of the class considered in the sequel. It will, therefore, be used for motivation. More-

over, this discussion is based on elementary calculations, which allow one to capture

the idea of the approach without entering into deeper mathematical considerations.

Consider the system

∂ 2
x w(x, t) = ∂tw(x, t), x ∈ [0,1], t ∈ R (1a)

∂xw(0, t) = 0, w(1, t) = u(t) (1b)

with homogeneous initial conditions. These equations model the heat conduction in

a rod of unit length, where w(x, t) denotes the temperature at the point x at time t.

The first boundary condition means that there is no heat flux at x = 0, the second

one means that the temperature at x = 1 is considered as a control input u(t).

2.1 Symbolic Viewpoint

Use the Laplace transform w.r.t. t to obtain

sŵ(x,s) = ∂ 2
x ŵ(x,s) (2)

from (1a). (Mikusiński’s oprational calculus would lead to similar formulae.) The

characteristic equation associated with (2) reads ζ 2 − s = 0, i.e. ζ = ±√
s, and the

general solution of (1a) can, thus, be written as ŵ(x,s) = ex
√

sγ1(s)+ e−x
√

sγ2(s) or

ŵ(x,s) = cosh(x
√

s)λ1(s)+
sinh(x

√
s)√

s
λ2(s). (3)

The second formulation is easier to handle, because with

Ĉ0(x) = cosh(x
√

s), Ĉ1(x) =
sinh(x

√
s)√

s
(4)
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one has the relations ∂xĈ0(x) = sĈ1(x),∂xĈ1(x) = Ĉ0(x). Furthermore, as Ĉ0(0) =

1 and Ĉ1(0) = 0, the parameters λ1 and λ2 admit a direct interpretation through

λ1(s) = ŵ(0,s) and λ2(s) = ∂xŵ(0,s). The general form of the solution and its first

derivative can thus be written

ŵ(x,s) = Ĉ0(x)λ1(s)+Ĉ1(x)λ2(s)

∂xŵ(x,s) = sĈ1(x)λ1(s)+Ĉ0(x)λ2(s).

The boundary conditions (1b) yield

λ2(s) = 0, Ĉ0(1)λ1(s) = û(s),

and the equation cosh(
√

s) ŵ(x,s) = cosh(x
√

s) û(s), or

Ĉ0(1)ŵ(x,s) = Ĉ0(x) û(s).

As a result one has a parametrization in λ1(s):

û(s) = Ĉ0(1)λ1(s) (5a)

ŵ(x,s) = Ĉ0(x)λ1(s). (5b)

The free parameter λ1 may, therefore, be considered as a flat or basic output. In a

module theoretic framework on an appropriate ring (to be defined) it would form a

basis of a corresponding free module.

Formally, write cosh(
√

s) = ∑i>0 si/((2i)!), and introduce ω(t) = w(0, t) to de-

note the function corresponding to λ1 in the time domain. Then, in the time domain

w(x, t) = ∑
i>0

x2i

(2i)!
ω(i)(t), u(t) = ∑

i>0

1

(2i)!
ω(i)(t). (6)

Convergence of the above series can be shown (see, e.g., [6, 11, 12]) provided t 7→
ω(t) is a Beurling ultradifferentiable function of Gevrey order 2 (cf. the app.).

2.2 Temporal Viewpoint

A different look on the problem is based on a Cauchy-Kowaleski form of the system:

∂ 2
x w(x, t) = ∂tw(x, t), x ∈ [0,1], t ∈ [0,∞[ (7a)

∂xw(0, t) = 0, w(0, t) = ω(t), (7b)

which allows one to search for a formal solution

w(x, t) = ∑
i>0

ai(t)
xi

i!
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where the functions ai are infinitely differentiable. A formal check based upon (7)

gives ai+2(t) = ȧi(t), i > 0,a1(t) = 0,a0(t) = ω(t). Thus, for i > 0, one has a2i(t) =
ω(i)(t),a2i+1(t) = 0, which implies (6).

3 Module Theoretic Formulation over Appropriate Rings

Generalizing the ideas of the introductory example, this section describes how

boundary value problems can be reformulated as linear systems of equations over

rings of ultradistributions. These equations serve as the defining relations for the

module representing the system under consideration. The question of the appropri-

ate choice of the coefficient rings of this module is brought up because its particular

choice may play an important rhole in whether the system module is free. The latter

property essentially simplifies trajectory planning and control design.

3.1 Class of models considered

In order to keep the exposition simple, in the sequel the following particular class of

systems, with distributed variables w1, . . . ,wl and lumped variables u = (u1, . . . ,um)
is considered:

∂xwi = Aiwi +Biu, wi : Ωi → F
p, u ∈ F

m

Ai ∈ (R[∂t ])
pi×pi , Bi ∈ (R[∂t ])

pi×m, i ∈ {1, . . . , l}
(8a)

where F represents an appropriate space E ∗(R) of smooth functions or (ultra-)

distributions D
′∗(R) to be specified in Sect. 3.2 below. The intervals Ω1, . . . ,Ωl are

open neighborhoods of Ω̃i = [xi,0,xi,1]. Without loss of generality, assume xi,0 = 0.

A key hypothesis will be the following: The characteristic polynomials of the

matrices A1, . . . ,Al can be written

Pi(λ ) := det(λ I −Ai) =
pi

∑
ν=0

ai,ν λ ν , ai,ν = ∑
µ≤pi−ν

ai,ν ,µ ∂
µ
t (8b)

with ai,ν ,µ ∈ R, ai,pi,0 = 1. Moreover, their principal parts ∑µ+ν=pi
ai,ν ,µ ∂

µ
t λ ν are

hyperbolic w.r.t. the time t, i.e., the roots of ∑µ+ν=pi
ai,ν ,µ λ ν are real.

The models are completed by boundary conditions

l

∑
i=1

Liwi(0)+Riwi(ℓi)+Du = 0 (8c)

with D ∈ (R[∂t ])
q×m and Li,Ri ∈ (R[∂t ])

q×pi .
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Remark 1. Note that the above assumptions apply to a large class of spatially one-

dimensional boundary controlled evolution equations, including Euler-Bernoulli or

Timoshenko beam equations, more general parabolic diffusion-reaction-convection

equations, damped and undamped wave-equations etc. An exception are the models

of internally damped mechanical systems.

Example 1. Consider an example similar to (1). The model is given by

∂ 2
x w(x, t) = ∂tw(x, t), x ∈ [0, ℓ], t ∈ [0,+∞[ (9a)

∂xw(0, t) = 0, ∂xw(ℓ, t) = u(t), (9b)

which may be rewritten in the form (8a), (8c) as

∂x

(
w(x, t)

∂xw(x, t)

)
=

(
0 1

∂t 0

)(
w(x, t)

∂xw(x, t)

)
(10a)

(
0 1

0 0

)(
w(0, t)

∂xw(0, t)

)
+

(
0 0

0 1

)(
w(ℓ, t)

∂xw(ℓ, t)

)
=

(
0

1

)
u(t). (10b)

The characteristic polynomial P(λ ) = λ 2 −∂t of the coefficient matrix in (10a) has

the principal part λ 2 which is clearly hyperbolic w.r.t. the time axis.

3.2 Solution of the Cauchy Problem

Some properties of the solution of the Cauchy problem (8a) with initial conditions

given at x = ξ , i.e.

∂xw = Aw+Bu, w(ξ ) = wξ (11)

with A ∈ (R[∂t ])
p×p, B ∈ (R[∂t ])

p×q as assumed in the previous section for Ai, Bi,

will be used. The notation of the previous section is used in what follows, dropping

the index i ∈ {1, . . . , l}.

Choose1 E ∗(R) = E (p/(p−1))(R) (resp. D
′∗(R) = D

′(p/(p−1))(R)) which corre-

sponds to Beurling ultradifferentiable functions (resp. ultradistributions) of Gevrey

order p/(p−1) introduced in the appendix.

Consider the initial value problem

P(∂x)v(x) = 0, (∂ j
x v)(0) = v j ∈ F , j = 0, . . . , p−1 (12)

associated with the characteristic polynomial

P(λ ) := det(λ I −A) =
p

∑
j=0

a jλ
j, a j = ∑

µ≤p− j

a j,µ ∂
µ
t .

1 Depending on the particular p.d.e. under consideration, choosing larger spaces E ∗ of smooth

functions and smaller spaces D
′∗ of ultradistributions and even distributions may be possible.
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Conformal with [8, Thrm. 12.5.6] or [15, Thrm 2.5.2, Prop. 2.5.6] the initial value

problem (12) has a unique solution. This solution may be written as

v(x) =
p−1

∑
j=0

C j(x)v j,

where juxtaposition of symbols means convolution and C0, . . . ,Cp−1 are smooth

functions2 mapping Ω to the space of compactly supported Beurling ultradis-

tributions E
′∗(R) := E

′(p/(p−1))(R) of Gevrey order p/(p − 1). The functions

C0, . . . ,Cp−1 satisfy (k, j ∈ {0, . . . , p−1})

∂ k
x C j(0) =

{
1, k = j

0, k 6= j
(13)

and

∂xC j =C j−1 −a jCp−1, j = 1, . . . , p−1, ∂xC0 =−a0Cp−1. (14)

With these preparatory steps, the unique solution x 7→ Φ(x,ξ ) of the initial value

problem (11) can be expressed as

w(x) = Φ(x,ξ )wξ +Ψ(x,ξ )u. (15)

Therein, Φ(x,ξ ) ∈ E
′∗(R)p×p and Ψ(x,ξ ) ∈ E

′∗(R)p×m are given by

Φ(x,ξ ) =
p−1

∑
j=0

A jC j(x−ξ ), Ψ(x,ξ ) =
∫ x

ξ
Φ(x,ζ )dζ B. (16)

That (15) with the matrices given in (16) is indeed a solution of (11) can be checked

by plugging it into the p.d.e. in (11) and then employing (14) in combination with

the Cayley-Hamilton theorem. Moreover, observe that Ψ(ξ ,ξ ) = 0 while Φ(ξ ,ξ )
is the identity. As a consequence, the restriction of x 7→ w(x) to x = ξ indeed equals

wξ .

Uniqueness of the solution (15) can be led back to the uniqueness of the scalar

problem (12). To this end assume the existence of two different solutions of (11)

which, by linearity, implies the existence of a non-zero solution of the homogeneous

p.d.e. ∂xw̃(x) = Aw̃(x) with data w̃(ξ ) = 0. Differentiating this latter differential

equation p−1 times w.r.t. x and using the Cayley-Hamilton theorem, one observes

that all components of w̃ satisfy (12) with zero data w̃(ξ ) = · · ·= ∂
p−1
x w̃(ξ ) = 0.

Remark 2. As in the example introduced in sec. 2 the solution of the Cauchy prob-

lem (11) can be achieved either by direct computations in the time domain (cf. sec.

2.2) or, alternatively, by means of the Laplace transform (cf. sec. 2.1). According

to the classical theory of ordinary differential equations, the solution of the Cauchy

2 A function C : Ω → E
′∗ is called of class C∞ if it defines a map D∗ → C∞(Ω), i.e., for any

test function ϕ ∈ D∗ the function Ω ∋ x 7→ C(x)[ϕ] belongs to C∞(Ω). It can be shown that this

mapping is continuous.
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problem (11) in the Laplace domain always exists even if the characteristic poly-

nomial of A does not satisfy the conditions formulated in section 3.1. However,

these conditions are necessary in order to ensure the existence of time-domain inter-

pretations of such solutions as compactly-supported ultradistributions. More specifi-

cally, they ensure particular growth bounds (w.r.t. the complex Laplace variable s) of

the partial Laplace transforms Ĉ0(x), . . . ,Ĉp−1(x) w.r.t. time of C0(x), . . . ,Cp−1(x).
These bounds are specified in the appropriate Paley-Wiener theorems for ultradis-

tributions (see, e.g., [9, 10, 15]) and distributions (see, e.g., [7]).

Example 2 (Ex. 1 continued). As p= 2, for every fixed x ∈Ω , C0(x),C1(x) are ultra-

distributions of Gevrey order 2 (elements of E
′(2)). Clearly, for this simple example

C0(x), C1(x) can be given explicitly: While their Laplace transforms simply corre-

spond to (4), in the time domain one gets for all ν0,ν1 ∈ E (2)(R) (cf. (6))

C0(x)v0 =
∞

∑
k=0

x2k

(2k)!
∂ k

t v0, C1(x)v1 =
∞

∑
k=0

x2k+1

(2k+1)!
∂ k

t v1.

According to (15) and (16) the solutions of the (spatial) Cauchy problem with data

w(ξ ) = c = (c1,c2)
T is given by

w(x) = Φ(x,ξ )c, Φ(x,ξ ) =

(
C0(x−ξ ) C1(x−ξ )

∂tC1(x−ξ ) C0(x−ξ )

)
. (17)

In particular, one has w(x) =C0(x−ξ )c1 +C1(x−ξ )c2.

3.3 System Module

Using the solutions of the initial value problem in the boundary conditions (8c), one

obtains

wi(x) = Φi(x,ξi)wi(ξi)+Ψi(x,ξi)u, i = 1, . . . , l, Pξ cξ = 0 (18)

Here ξ = (ξ1, . . . ,ξl) is arbitrary but fixed, cT
ξ = (wT

1 (ξ1), . . . ,w
T
l (ξl),u

T ), Pξ =(
Pξ ,1, . . . ,Pξ ,l+1

)
with

Pξ ,i = LiΦi(0,ξi)+RiΦi(ℓi,ξi), i = 1, . . . , l

Pξ ,l+1 = D+
l

∑
i=1

LiΨi(0,ξi)+RiΨi(ℓi,ξi).

The system will be represented by a module generated by cξ , u with the presen-

tation given in (18) — cf. [4, 3, 2, 13]. The ring of coefficients must contain at least

the entries of Φi(x,ξi), Ψi(x,ξi), i = 1, . . . , l, and the entries of Pξ , which consist

of values of functions Ci, j, j = 1, . . . , pi, i = 1, . . . , l from R in E
′⋆. Moreover, the
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matrices may also contain values of spatial integrals of Ci, j. A possible choice for

the ring of coefficients is, thus, RI = C[∂t ,S,SI ]⊂ E
′∗ with

S= {Ci, j(x)|x ∈ R; i = 1, . . . , l; j = 0, . . . , pi −1},
S

I = {CI
i, j(x)|x ∈ R; i = 1, . . . , l; j = 0, . . . , pi −1}

and

CI
i, j(x) =

∫ x

0
Ci, j(ζ )dζ , i = 1, . . . , l, j = 0, . . . , pi −1.

This ring is isomorphic to a subring of E
′∗.

Following [14, 1, 5], in order to simplify the analysis of the module properties

instead of RI , the larger ring R = C(∂t)[S]∩E
′∗ may be considered.

Definition 1. The convolutional system Σ associated with the boundary value prob-

lem (8) is the module generated by the components of cξ and u over R, with the

presentation matrix Pξ .

One may check that Σ is independent of the choice of ξ (cf. [19, Sect. 3.3] and

[18, Remark 4]).

Example 3 (Ex. 2 continued). Substituting (17) into the boundary conditions (10b)

one obtains LΦ(0,ξ )c+RΦ(ℓ,ξ )c−Du = 0 or, even more explicitly,

(
0 1

0 0

)(
C0(−ξ ) C1(−ξ )

∂tC1(−ξ ) C0(−ξ )

)
c+

(
0 0

0 1

)(
C0(ℓ−ξ ) C1(ℓ−ξ )

∂tC1(ℓ−ξ ) C0(ℓ−ξ )

)
c−

(
0

1

)
u = 0.

As a result, one has

(
−∂tC1(ξ ) C0(ξ ) 0

∂tC1(ℓ−ξ ) C0(ℓ−ξ ) −1

)


c1

c2

u


= 0, w(x) = Φ(x,ξ )

(
c1

c2

)
,

the first equation of which may be written

Pξ

(
c

u

)
= 0 with Pξ =

(
−∂tC1(ξ ) C0(ξ ) 0

∂tC1(ℓ−ξ ) C0(ℓ−ξ ) −1

)
.

Thus, the convolutional system Σ associated with the boundary value problem (10)

is the module generated by c1, c2, and u over R =C(∂t)[{C0(x),C1(x)|x∈R}]∩E
′∗,

with the above defined presentation matrix Pξ . Alternatively, instead of starting with

a module over R one may directly pass to E
′∗.

4 Conclusion

A ring has been exhibited over which systems of one dimensional boundary con-

trolled distributed parameter systems may be viewed as convolutional systems. It



Boundary Value Problems and Convolutional Systems over Rings of Ultradistributions 9

appears that this ring is well suited for controllability studies, especially when one

is interested in the relations between algebraic and trajectory related controllabillity

properties. For a particular subclass of the class of models considered here, it is es-

tablished in [20], through Bézout ring properties, that torsion freeness and freeness

are equivalent over such types of rings for systems in which the p.d.e.’s are of second

order only. However, known results for the rings of entire functions of Paley-Wiener

type (which are isomorphic to E
′∗ via the Laplace transform) suggest that in some

situations it may be advantageous to consider systems over even larger subrings of

E
′∗ to obtain similar results.

Appendix: Ultradistributions and Ultradifferentiable Functions

Some basic definitions about Gevrey functions and the corresponding classes of

ultradistributions are recalled here.

Definition 2 (see, e.g. [9],[8, Def. 12.7.3, p. 137]). An infinitely differentiable func-

tion f : Ω → C (with Ω ⊂ R
n open) belongs to the small Gevrey class E (α)(Ω)

(or the space of Beurling ultradifferentiable functions of Gevrey class α) if for all

M ∈ R
+ and all compact sets K ⊂ Ω there exists CK,M such that

sup
t∈Ω ,k≥0

|∂ (k)
t f (t)| ≤CK,MMk(k!)α .

A sequence ( fn), n ∈N, fn ∈ E (α)(Ω) converges to f ∈ E (α)(Ω), if for all compact

K ⊂ Ω and all M ∈ R
+

lim
n→∞

sup
t∈Ω ,k≥0

|∂ (k)
t ( fn(t)− f (t))|

Mk(k!)α
= 0.

The space of compactly supported functions in E (α) is denoted by Dα(Ω). A se-

quence ( fn), fn ∈D (α)(Ω), n ∈N converges in D (α)(Ω) if it converges in E (α)(Ω)

and, moreover, ∪n∈Nsupp fn is compact. The space D
′(α)(R) (resp. E

′(α)(R)) of

Beurling ultradistributions (resp. Beurling ultradistributions with compact support)

of Gevrey order α is the space of linear continuous functionals on D (α)(R) (resp.

E (α)(R)).

The Laplace transform of an ultradistribution f ∈ E
′∗ is given by f̂ (s) = f (gξ )

with gs(t) = e−st . The isomorphism between the two convolution rings of ultradis-

tributions with compact support and their Laplace transforms is given by a Paley-

Wiener type theorem which can be found in [10].
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konzentrierten Stelleingriffen. Berichte aus der Steuerungs- und Regelungstechnik. Shaker

Verlag, Aachen (2007)

20. Woittennek, F., Mounier, H.: Controllability of networks of spatially one-dimensional second

order p.d.e. – an algebraic approach. SIAM J. Control Optim. 48(6), 3882–3902 (2010)


