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CONTROLLABILITY OF NETWORKS OF SPATIALLY
ONE-DIMENSIONAL SECOND ORDER PDEs—AN ALGEBRAIC

APPROACH∗

FRANK WOITTENNEK† AND HUGUES MOUNIER‡

Abstract. We discuss controllability of systems that are initially given by boundary coupled
PDEs of second order. These systems may be described by modules over particular rings of distribu-
tions and ultradistributions with compact support arising from the solution of the Cauchy problem
of the PDE under consideration with data on the time axis. We show that those rings are Bézout
domains. This property is utilized in order to derive algebraic and trajectory related controllability
results.
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1. Introduction. The solution of control design problems is, in general, pre-
ceded by a controllability analysis of the system under consideration. While for linear
finite dimensional systems both algebraic and analytic controllability notions are used
in parallel, the analysis of infinite dimensional systems is dominated by (functional)
analytic methods [8]. The latter approach has proven to be useful, in particular, for
the analysis of state space controllability, i.e., the possibility of steering the system
under consideration from a given initial state to a desired final state. For example,
controllability of the same class of systems as considered in the present contribution
has been analyzed this way in [26, 9]. However, the behavioral controllability notion
due to Willems [51] is a conceptually interesting alternative to the classical notion
of state space controllability, since it directly refers to the concatenation of solutions
without the need for a state space.

The connections between the behavioral and the algebraic system properties have
been pointed out by Fliess for linear finite dimensional systems: From the algebraic
(module theoretic) viewpoint, a linear system is a finitely generated module [11]. For
finite dimensional systems, torsion freeness, i.e., the absence of autonomous subsys-
tems, is equivalent to freeness, that is, the existence of a basis of the module.1 All
these algebraic system properties are equivalent to the behavioral controllability of
the system [12]. More generally, systems described by linear PDEs have been consid-
ered in [32]. This latter contribution, which introduced methods of algebraic analysis
[33] into control theory, gave birth to increasing research activities in the field of so-
called multidimensional systems theory—see, e.g., [39, 57, 56, 54] and the references
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therein. Again, it turned out that torsion freeness of the system module is equiva-
lent to controllability in the behavioral sense, while freeness is no longer a necessary
condition. However, despite its theoretical elegance, there are some drawbacks of the
multidimensional systems approach, impeding its application, in particular, to bound-
ary controlled evolution equations. In its standard definition introduced in [55, 37] the
associated behavioral controllability notion puts no special emphasis to a particular
variable and is, therefore, inappropriate for the analysis of evolution equations. In or-
der to overcome this limitation, the alternative notion of time controllability has been
introduced in [47, 48]. However, as in the previous references, there is no possibility
to consider boundary conditions within the multidimensional framework.

A rather different approach to the control of distributed parameter systems goes
back to [31, 16, 30], where the general solution of the wave equation is used in order
to obtain a differential delay system. For other spatially one-dimensional evolution
equations similar techniques lead to more general systems of convolution equations
[1, 35, 34, 53]. In [52, 46, 45] the approach has been formulated in a systematic
way, making it applicable to a wide range of hyperbolic and parabolic equations
for which the Cauchy problem with data on the time axis is well posed within a
suitable space of generalized functions: The desired convolutional system is obtained
by first solving the Cauchy problem and plugging its solution into the boundary
conditions, i.e., the equations imposed by the boundary conditions further restrict
the Cauchy data. Unfortunately, the structure of these coefficient rings, i.e., rings of
compactly supported distributions and ultradistributions, is in general more involved
than in the finite dimensional case. In particular, they are neither principal ideal
nor Noetherian domains. For this reason, as in the multidimensional case, the two
basic controllability related module properties, torsion freeness and freeness, are not
necessarily equivalent.2 An approach to circumvent the problems caused by this “lack
of structure” is the concept of π-freeness, which relies on localization and was at first
developed for linear delay systems [14]. This way a basis can be introduced at least
within an appropriate extension of the module under consideration. The approach
has proven to be very useful for both trajectory planning and open loop control design
[52, 46, 43, 44, 34, 27, 53]. Nevertheless it seems to be difficult to compare such purely
algebraic controllability notions to the behavioral ones. For this reason, within the
present contribution, we do not use localization.

Instead, we restrict ourselves to a particular class of boundary value problems, i.e.,
to networks of spatially one-dimensional parabolic and hyperbolic constant coefficient
PDEs of second order. Here, by a network, we understand a system consisting of
several branches, each of which is governed by a system of PDEs and which are coupled
via the boundary conditions. Such models may occur in various fields of physical
and technological processes. Simple models of diffusion processes in tubular reactors
as well as heat conduction phenomena may be described by parabolic equations.
Hyperbolic equations are used in order to describe wave propagation phenomena,
occurring, for example, in the modeling of elastic strings, flexible rods, or electric
transmission lines [7, 6]. However, in many applications one is faced not only with
a single device of this type but also with plants consisting of several interconnected
components. Think of networks of transmission lines or elastic strings. Even devices
with interior actuation points (or intervals), such as multiple zone ovens in the steel
and glass industries, may be modeled using sequentially interconnected boundary

2See [21, 2] for results on the ideal structure of distribution rings and [49, 50] for a discussion of
systems defined over rings of compactly supported distributions without referring to PDEs.
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value problems. Through algebraic properties of adequate coefficient rings obtained
for the considered class of PDEs, we investigate the related controllabilities of the
associated system module and establish some controllability results including module
theoretic and behavioral ones. In accordance with [52, 46, 45], we use the general
solution of the Cauchy problem w.r.t. space in order to rewrite the given model as
a linear system of convolutional equations. The latter are regarded as the defining
relations of a finitely presented module. The coefficient ring of this module is a subring
of the ring of compactly supported distributions or ultradistributions depending on
the PDE under consideration. It turns out that this ring is a Bézout domain; i.e.,
every finitely generated ideal is principal. An algorithm enabling us to calculate the
generator of a given finitely generated ideal is presented within this paper. This latter
result is strongly inspired by those derived in [3, 17] for particular rings of distributed
delay operators which in our setting may arise from the wave equation. The derived
properties of the coefficient ring allow us to decompose the system module into a free
module and a torsion module. Finally, from these algebraic results, we deduce the
trajectorian controllability of the free submodule in the sense of [15] and its behavioral
controllability in the sense of [51].

The paper is organized as follows. In section 2 we introduce the class of models
considered as systems of PDEs which are coupled via their boundary conditions. We
show how to pass from this model to a system of convolution equations giving rise to
our module theoretic setting. Section 3 is devoted to the study of the coefficient ring
of this module. In section 4 we obtain several controllability results for the systems
under consideration. Finally, in section 5, we apply the method to a system example
of two boundary coupled PDEs.

2. Boundary value problems as convolutional systems.

2.1. Models considered. We assume that the model equations for the dis-
tributed variables in w1, . . . ,wl and the lumped variables in u = (u1, . . . , um) are
given by

∂xwi = Aiwi +Biu, wi ∈ W2
i , u ∈ (F (R))m,

Ai ∈ (R[∂t])
2×2, Bi ∈ (R[∂t])

2×m,
(2.1a)

where F (R) denotes either a suitable space E∗(R) of (complex-valued) infinitely dif-
ferentiable functions to be specified in section 2.2 or a corresponding space D ′∗(R) of
(ultra-)distributions. Moreover, Wi stands either for E∗(Ωi × R) or C0(Ωi,D

′
∗(R)),

the latter of which is defined in section B.2 in Appendix B.
The assumptions which are crucial for the applicability of our approach are

twofold. First, we assume that all the matrices A1, . . . , Al give rise to the same
characteristic polynomial, namely,

(2.1b) det(λI −Ai) = λ2 − σ, σ = a∂2t + b∂t + c �= 0, a, b, c ∈ R, a � 0.

Additionally, we require the intervals Ω1, . . . ,Ωl of the definition of the above dif-
ferential equations to be rationally dependent. More precisely, we assume the Ωi

(i = 1, . . . , l) to be given by an open neighborhood of

(2.1c) Ω̃i = [xi,0, xi,1], �i = xi,1 − xi,0 = qi�, qi ∈ Q, � ∈ R.

In the following, and without further loss of generality, we assume xi,0 = 0. The
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model is completed by the boundary conditions

(2.1d)

l∑
i=1

Liwi(0) +Riwi(�i) +Du = 0,

where D ∈ (R[∂t])
q×m and Li, Ri ∈ (R[∂t])

q×2.
Remark 2.1. In a more general setting, instead of the boundary conditions (2.1d),

one could consider auxiliary conditions of the form

l∑
i=1

Qi(wi) +Du = 0.

Here,

Qi(wi) =

ν∑
j=0

Li,jwi(αi,j�) +

μ∑
j=1

∫
Ωi,j

Q�
i,j(x)wi(x)dx,

with Li,j ∈ (R[∂t])
q×2, Q�

i,j ∈ (R[∂t, x])
q×2, Ωi ⊃ Ωi,j = [βi,j,1�, βi,j,2�], αi,j , βi,j,k ∈

Q ∩ Ωi, and μ, ν ∈ N.

2.2. Solution of the Cauchy problem. This section recalls some properties
of the solution of a single Cauchy problem of the form (2.1a) with initial conditions
given at x = ξ, i.e.,

(2.2) ∂xw = Aw +Bu, w ∈ W2, w(ξ) = wξ ∈ (F (R))2,

with A, B having the same properties as Ai, Bi (i = 1, . . . , l) introduced within the
previous section and W standing either for C0(Ω,D ′

∗(R)) or E∗(Ω× R). To this end,
we start with the initial value problem

(2.3) (∂2x − σ)v(x) = 0, v(0) = v0, (∂xv)(0) = v1,

associated with the characteristic equation (2.1b). It is easy to verify that the line
x = 0 is not a characteristic of ∂2x − σ2. More precisely, for a > 0 the operator
∂2x − σ is hyperbolic w.r.t. the line x = 0 in the sense of [23, Def. 12.3.3], while in the
(parabolic) case a = 0 this statement is true only for its principal part ∂2x.

According to [22, Cor. 8.6.9] the Cauchy problem (2.3) possesses at most one
solution belonging to the space E (Ω × R) of infinitely differentiable functions on
Ω×R. However, existence of such a solution for arbitrary v0, v1 ∈ E (R) and continuous
dependence on the initial data are ensured in the hyperbolic case only [23, Cor. 12.5.7].
In the parabolic case, existence and continuous dependence on the initial data are
guaranteed only as long as the data belongs to the small Gevrey class E(2)(R) defined
in3 [23, Def. 12.7.3, p. 137] (see [23, Thm. 12.5.6] and [41, Thm. 2.5.2, Prop. 2.5.6]
and the explicit formulas in Appendix B).

Consequently, E∗ (resp., D∗) stands for the spaces E (resp., D) in the hyperbolic
case and for E(2) (resp., D(2)) in the parabolic case, where D (resp., D(2)) denotes
the space of smooth functions with compact support (resp., the space of compactly
supported elements of E(2)). Due to the linearity of the PDE under consideration, the
solution of (2.2) can be written as

v = C̃[v0] + S̃[v1], ∂xv = σS̃[v0] + C̃[v1],

3See also [41, 24, 25] and Definition B.1 in Appendix B.
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where the continuous mappings C̃, S̃ : E∗(R) → E∗(R2) are defined by the initial value
problems

(∂2x − σ)C̃[v0] = 0, C̃[v0](0) = v0, ∂xC̃[v0](0) = 0,(2.4a)

(∂2x − σ)S̃[v1] = 0, S̃[v1](0) = 0, ∂xS̃[v1](0) = v1.(2.4b)

Therein, the formula for ∂xv is a simple consequence of the fact that this function
is the solution of (2.3) with data v1, σv0. Since the coefficients of the PDE are con-
stant, those mappings commute with time shifts and can, thus, be identified with
compactly supported (ultra-)distributions (see, e.g., [10, p. 121], [22, Thm. 4.2.1] for
the hyperbolic case) acting by convolution.4 Their support satisfies (cf. the above
cited references and the explicit representations in Appendix A)

(2.5) ch supp(C(x), S(x)) =
{
t : −|x|√a ≤ t ≤ |x|√a} ,

with ch supp(C(x), S(x)) denoting the complex hull of supp(C(x), S(x)). Since, for
E∗(R)-data, C(x)v0 and S(x)v1 belong to E (R2) and due to the continuous depen-
dence of the solution on the initial conditions, both functions, C and S, belong to
C∞(Ω, E ′∗(R)) defined in section B.2 in Appendix B. They can, therefore, be defined
by

∂2xC(x) = σC(x), C(0) = 1, (∂xC)(0) = 0,(2.6a)

∂2xS(x) = σS(x), S(0) = 0, (∂xS)(0) = 1,(2.6b)

where 1 is the identity element in E ′
∗(R) w.r.t. convolution, i.e., the Dirac distribu-

tion.5 Convolving these equations with (ultra-)distributions v1, v2 ∈ D ′∗(R) yields the
solution v = Cv1 + Sv2 ∈ C∞(Ω, E ′

∗(R)) for the Cauchy problem (2.3) with D ′
∗(R)-

data.
Let F stand either for D ′∗ or E∗, and consider the Cauchy problem (2.2) with

data wξ ∈ (F (R))2. Using the above defined E ′
∗-valued functions C and S, one easily

verifies that the (unique) solution w of this problem, given by6

(2.7) w(x) = Φ(x, ξ)wξ +Ψ(x, ξ)u,

with

(2.8) Φ(x, ξ) = AS(x− ξ) + IC(x− ξ), Ψ(x, ξ) =

∫ x

ξ

Φ(x, ζ)Bdζ,

belongs to W2. Here, I denotes the identity in (E ′
∗(R))

2.
Since Φ(x, ξ)B vanishes on {t : |t| > √

a|x − ξ|}, the restriction of the kernel of
the above integral to ([ξ, x]×(

√
a|ξ−x|,∞))∪([ξ, x]×(−∞,−√

a|ξ−x|)) equals zero.
Hence, x �→ Ψ(x, ξ) ∈ (E ′

∗(R))
2×m vanishes outside {(x, t) : |t| ≤ √

a|ξ − x|}.
From the uniqueness of this solution one deduces the addition formula

Φ(x, ξ)Φ(ξ, ζ) = Φ(x, ζ).

4Throughout this paper convolution always means partial convolution w.r.t. t. This operation
will be continuously denoted by juxtaposition.

5Differentiation and integration are defined in section B.2 in Appendix B.
6That w is indeed a solution can be checked by plugging it into the PDE. Uniqueness follows

as usual by assuming the existence of two different solutions or, equivalently, of a nonzero solution
of the homogeneous PDE with zero data. Differentiating w.r.t. x and using the Cayley–Hamilton
theorem, one observes that both components of the solution satisfy (2.3) with zero data.
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For A the companion matrix of the characteristic polynomial, i.e.,

(2.9) A =

(
0 1
σ 0

)
, Φ(x, ξ) =

(
C(x − ξ) S(x− ξ)
σS(x− ξ) C(x− ξ)

)
,

this yields, in particular,

(2.10) C(x+ y) = C(x)C(y) + σS(x)S(y), S(x+ y) = C(x)S(y) + S(x)C(y).

According to (2.8) the entries of the matrix Φ(x, ξ) are linear combinations of C(x−ξ),
S(x− ξ) while those of Ψ(x, ξ) may also contain the integrals of S and C, which may
be easily obtained by integrating (2.6a):

(2.11)

∫ x

0

C(ζ)dx = S(x),

∫ x

0

S(ζ)dx = (C(x) − 1)/σ.

Later, the latter equations will essentially ease our controllability analysis.
Remark 2.2. Two alternative starting points for the above considerations could be

the fundamental solution of (2.3) vanishing in a half-space (cf. [23, Thm. 12.5.1] in the
hyperbolic case) or a spectral approach using the partial Fourier–Laplace transform
(w.r.t. t) in connection with the corresponding Paley–Wiener theorems for distribu-
tions (see, e.g., [22, Thm. 7.3.1]) and ultradistributions (see, e.g., [25, Thm. 1.1]).

2.3. A module presented by a system of convolution equations. In the
previous section we have discussed the solutions of the initial value problems asso-
ciated with the equations (2.1a). In what follows, these results are used in order
to define an algebraic structure representing the model under consideration, i.e., a
module over a suitable subring of E ′

∗ admitting the same solutions as (2.1).
To this end we substitute the general solutions of the initial value problems into

the boundary conditions (2.1d). This way, one obtains the following linear system of
equations for u and the values of w1, . . . ,wl:

wi(x) = Φi(x, ξi)wi(ξi) + Ψi(x, ξi)u, x ∈ Ωi,(2.12a)

Pξcξ = 0.(2.12b)

Here, ξ = (ξ1, . . . , ξn), with ξi ∈ Ωi arbitrary but fixed, cTξ = (wT
1 (ξ1) · · ·wT

l (ξl),u
T ),

and

Pξ =
(
Pξ,1 · · ·Pξ,l+1

)
,

with

Pξ,i = LiΦi(0, ξi) +RiΦi(�i, ξi), i = 1, . . . , l,

Pξ,l+1 = D +

l∑
i=1

LiΨi(0, ξi) +RiΨi(�i, ξi).

By section 2.2 the above equations are equivalent to (2.3) in the sense that they admit
the same solutions. Moreover, the entries of Φi(x, ξi), Ψi(x, ξi) (i = 1, . . . , l) and those
of Pξ are composed of the values of the functions S,C : R → E ′

∗ and, additionally,
values of the spatial integrals of C and S. Thus, they can be read over the ring
RI

R ⊂ E ′∗ which, for any X ∈ {Z,Q,R}, is defined as RI
X = C[∂t,SX,S

I
X], with

SX = {C(z�), S(z�)|z ∈ X}, SI
X = {CI(z�), SI(z�)|z ∈ X},
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� given as in (2.1c), and, according to (2.11),

SI(x) =

∫ x

0

S(ζ)dζ =
C(x)− 1

σ
∈ E ′

∗(R), CI(x) =

∫ x

0

C(ζ)dζ = S(x) ∈ E ′
∗(R).

Inspired by the results given in [3, 17, 30], and in view of the simplification of the
following algebraic considerations, instead of the ring RI

X we will use a slightly larger
ring, given by RX = C(∂t)[SX] ∩ E ′∗(R). We are now in position to define the system
module Σ that will represent all the equations to be satisfied by the lumped variables
in u and the values in w(x), x ∈ X, of the distributed variables in w. This module
contains the variables in ũ, w̃(x), x ∈ X, such that the solutions of (2.12) are just the
RX-homomorphisms to the solution space F (R); i.e., for any t ∈ HomRX

(ΣX,F (R)),

ci = t(c̃i), i = 1, . . . , 2l+m.

Definition 2.1. Let ΣX = R2l+m
X /PξR2l+m

X , ξ ∈ Xl, X ∈ {Z,Q,R}. The
convolutional system associated with the boundary value problem (2.1) is the module
Σ = ΣR.

One easily verifies that ΣX does not depend on the choice of ξ ∈ Xl (cf. [52,
sect. 3.3.] and [46, Rem. 4]). In view of the assumed mutual rational dependence of
the lengths �1, . . . , �l for the analysis of the system properties, it is useful to start with
the system ΣQ, i.e., a system containing only the values of the distributed variables
at rational multiples of �. However, having analyzed the properties of ΣQ, we may
pass to Σ by an extension of scalars, i.e., Σ ∼= RR ⊗RQ

ΣQ.
Remark 2.3. Note that the procedure described in section 2 can be applied to

any network of spatially one-dimensional systems of PDEs with constant or spatially
dependent coefficients provided the Cauchy problem is well posed in some space of
ultradifferentiable functions with compact support. However, in the general case, the
coefficient ring of the resulting module is generated by the values of more than just
two functions (such as S and C). In particular for a pth order system of PDEs with
constant coefficients, the above described procedure can be performed in a manner
completely analogous to that described above if the principal part of the operator
det(∂x − A) is hyperbolic w.r.t. the line x = 0. The only differences will be the need
for p linear independent functions S1, . . . , Sp taking values in E ′

((p/(p−1))) instead of

just S and C. Moreover, the formula (2.8) has to be adapted.

3. The ring RQ is a Bézout domain. In this section we study the structures
of the ideals within the ring RQ. To this end, we first establish some results on the
ideals in C(∂t)[SQ] and C(∂t)[SZ].

3.1. Ideals in C(∂t)[SQ] and C(∂t)[SZ]. In the following, we will replace
C(∂t) by any field k. Moreover, the rings C(∂t)[SX] are replaced by arbitrary rings in
which the addition formulas derived in section 2.2 hold. More precisely, for an arbi-
trary field k and an additive subgroup X of R we consider the ring R̃X := k[C∗

a , S
∗
a ; a ∈

X]/a, where, for fixed σ ∈ k, the ideal a is generated by

C∗
aC

∗
b ± σS∗

aS
∗
b − C∗

a±b, S
∗
aC

∗
b ± C∗

aS
∗
b − S∗

a±b, C
∗
0 − 1, S∗

0 , a, b ∈ X.

Denoting the canonical images of C∗
a and S∗

a in R̃X by Ca and Sa, one deduces the
relations

CaCb ± σSaSb = Ca±b, SaCb ± CaSb = Sa±b,(3.1a)

C0 = 1, S0 = 0, Ca = C−a, Sa = −S−a,(3.1b)

2CaCb = Ca+b+Ca−b, 2σSaSb = Ca+b−Ca−b, 2CaSb = Sa+b−Sa−b.(3.1c)
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Moreover, any element r ∈ R̃X can be written in the form

(3.2) r =

n∑
i=0

aαiCαi + bαiSαi , n ∈ N, aαi , bαi ∈ k, αi ∈ X+,

where X+ = {|α| : α ∈ X}. Finally, the units in R̃X belong to k.

In the following, it is necessary to distinguish the cases where the equation λ2 −
σ = 0 either has a solution over k or does not. For our application, this is clearly
equivalent to the question of whether the roots of the characteristic equation (2.1b)
belong to R[∂t]. The necessity to distinguish these cases is explained by the following
simple example, which, in addition, shows that the cases X = Z and X = Q need to
be analyzed separately.

Example 3.1. Consider the ideal I = (a, b), a = S1, b = C1+1. Over R̃Q we have

a = S1 = 2C1/2S1/2, b = C1 + 1 = 2C2
1/2.

Thus, both generators belong to (C1/2), which, conversely, belongs to I since 2C1/2 =
−σS1/2a+C1/2b. The ideal I is, therefore, generated by C1/2, which does not belong

to R̃Z if λ2 − σ is irreducible over k. However, the situation is different if
√
σ belongs

to k. From the relations given in (3.1), it follows immediately that

(C1/2 +
√
σ S1/2)(C1/2 −

√
σ S1/2) = 1.

As a consequence, over R̃Q, C1/2 can be factorized as

C1/2=(C1/2+
√
σS1/2)(C1/2 −

√
σS1/2)C1/2=(C1/2+

√
σS1/2)(1 + C1 −

√
σS1)/2.

The element C1/2 is, thus, associated with 1 + C1 − √
σS1, which indeed belongs to

R̃Z.

3.1.1. The polynomial λ2 − σ is reducible over k.

Proposition 3.1. The ring R̃Z is a principal ideal domain (PID).

Proof. From the addition formulas given in (3.1), it follows that R̃Z is isomorphic
to k[S1, C1], which, in turn, is isomorphic to k[z−1, z] by

S1 �→ z−1 − z1

λ
, C1 �→ z−1 + z1.

The latter ring is Euclidean with the norm function given by the difference of the
degrees of the monomials of maximal and minimal degrees w.r.t. z.

Corollary 3.2. The ring R̃Q is a Bézout domain.

Remark 3.1. Note that, for the same reason as given in Remark 3.3 below, R̃Q

is not a PID.

Remark 3.2. Having in mind that in our application σ is given according to (2.1b)
and k = C(∂t), for

√
σ ∈ k, say

√
σ = λ, the operators C(x) and S(x) introduced in

section 2.2 are constructed from point delays: From λ = s
√
a − α, α ∈ C, we obtain

2C(x) = ex(∂t
√
a−α) + e−x(∂t

√
a−α). Note that in this case our results are simply a

restatement of those presented in [3, Thm. 1] and [17, Thm. 3.2].
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3.1.2. The polynomial λ2−σ is irreducible over k. As indicated by Exam-
ple 3.1, the second case, i.e., the equation λ2 − σ = 0 has no solutions over k, is much
more challenging than the first one. There, the ring R̃Z corresponds basically to the
ring Q[x, y]/[x2 + y2 − 1] of trigonometric polynomials which is obtained from R̃Z for
σ = −1 and k = Q. The latter ring is lacking the pleasing properties of a PID or even
the ones of a Bézout domain.7 However, Example 3.1 suggests that the difficulties
can be circumvented when allowing one to halve the argument, i.e., working with R̃Q

instead of R̃Z.
Definition 3.3. For any nonzero r ∈ R̃X the norm ν(r) is defined as the highest

α ∈ X+ such that at least one of the coefficients aα and bα in (3.2) is nonzero.

Lemma 3.4. Let S be the multiplicative subset of R̃Z consisting of all the elements
such that either the coefficients with odd or those with even indices vanish. More
precisely, any element s of S can be written as

s =
∑
i∈Is

as,iCi + bs,iSi, Is =

{
ν(s)− 2i

∣∣ i ∈ Z, 0 � i � ν(s)

2

}
.

Let p, q ∈ S, the norms of which are strictly positive. Without loss of generality
assume ν(p) � ν(q). Consider the ideal I = (p, q) generated by p and q. Then there
exist p̄, q̄ ∈ S, with I = (p̄, q̄) and either ν(p) > ν(p̄) � ν(q̄) or q̄ = 0.

Proof. In the following, three different cases are considered.
Case 1. If ν(p) > ν(q), one can apply a division step similar to that of polynomials.

More precisely, we will show that there exist r, h ∈ S with either r = 0 or ν(r) < ν(p)
such that p = qh+ r. Then we may set p̄ = q, q̄ = r (or vice versa) to complete the
discussion of the first case.

In order to show that r, h with the claimed properties exist, set

h = ahCΔ + bhSΔ, Δ = ν(p)− ν(q),

where the coefficients ah, bh ∈ k have to be determined appropriately. It follows that

s = hq =
∑
i∈Iq

(
(ahaq,iCiCΔ + bhaq,iCiSΔ) + (ahbq,iSiCΔ + bhbq,iSiSΔ)

)

=
1

2σ

∑
i∈Iq

(
(σahaq,i + bhbq,i)CΔ+i + (σahaq,i − bhbq,i)CΔ−i

+ σ(bhaq,i + ahbq,i)SΔ+i + σ(bhaq,i − ahbq,i)SΔ−i

)
=

∑
i∈Ip

as,iCi + bs,iSi,

where the leading coefficients are given by

as,ν(p) =
1

2σ

(
σahaq,ν(q) + bhbq,ν(q)

)
, bs,ν(p) =

1

2

(
bhaq,ν(q) + ahbq,ν(q)

)
.

From this equation and from r = hq − p, the norm of r is smaller than that of p if
and only if ah, bh satisfy

(3.3)

(
aq,ν(q) σ−1bq,ν(q)
bq,ν(q) aq,ν(q)

)(
ah
bh

)
= 2

(
ap,ν(p)
bp,ν(p)

)
.

7Actually, the trigonometric ring is a Dedekind domain [36, Thm. 3.1].
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By the definition of the norm, at least one of the coefficients aq,ν(q) and aq,ν(q) is
nonzero. Since, additionally,

√
σ �∈ k, it follows that σa2q,ν(q) − b2q,ν(q) �= 0 and ah, bh

can be always chosen according to (3.3).
Case 2. If ν(p) = ν(q) and for some c ∈ k the equations aq,ν(q) = cap,ν(p),

bq,ν(q) = cbp,ν(p) hold, the ideal I is generated by p̄ = p, q̄ = q−cp, where ν(q̄) < ν(p̄).
If q̄ = 0, the proof is complete; otherwise we can proceed according to the first case
with the pair p̄, q̄ instead of p, q.

Case 3. If ν(p) = ν(q) but we are not in the second case, set

(
p q

)T
= A1

(
p̃ q̃

)T
,(3.4a) (

p̃ q̃
)T

= A2

(
p̄ q̄

)T
,(3.4b)

with

A1 =

(
ap,n bp,n
aq,n bq,n

)
, A2 =

(
C1 σS1

S1 C1

)
, n = ν(q) = ν(p).

Obviously, p, q belong to the ideal generated by p̄, q̄. Both matrices, A1 and A2, are
invertible, the first one since otherwise we would be in the second case, the latter one
since, by (3.1), its determinant equals 1. Thus, (p̄, q̄) = (p̃, q̃) = (p, q).

It remains to show that the norms of p̄ and q̄ are both smaller than n. From
(3.4a), one obtains ν(p̃) = ν(q̃) = n, with ap̃,ν(q) = bq̃,ν(q) = 1, bp̃,ν(q) = aq̃,ν(q) = 0.
From (3.4b), one has

p̄ = C1Cn − σS1Sn +
∑
i∈I∗

p

C1

(
ap̃,iCi + bp̃,iSi

)− σS1

(
aq̃,iCi + bq̃,iSi

)
,

q̄ = C1Sn − S1Cn +
∑
i∈I∗

p

C1

(
aq̃,iCi + bq̃,iSi

)− S1

(
ap̃,iCi + bp̃,iSi

)
,

with I∗p = Ip \ {n}. The norms of the sums in the above expression are at most n− 1,
while for the leading terms one obtains, according to (3.1a),

C1Cn − σS1Sn = Cn−1, C1Sn − S1Cn = Sn−1.

Thus, the norms of p̄, q̄ cannot exceed n− 1.
Lemma 3.5. Let p, q ∈ S ⊂ R̃Z, with ν(p) � ν(q). Then there exist p̄, q̄ ∈ S∩(p, q)

such that (p, q) = (p̄, q̄) and ν(q̄) < ν(q), ν(p) � ν(q) or q̄ = 0.
Proof. By Lemma 3.4, (p, q) = (p∗, q∗), with ν(p) > ν(p∗) � ν(q∗) or q∗ = 0.

In the latter case the claim has been proved. Otherwise, repeat the above argument
p∗, q∗ until we are in the claimed situation, which happens after at most ν(p)−ν(q)+1
steps.

Proposition 3.6. Any ideal I in R̃Z generated by a subset G of S is principal.
Proof. Step 1. We show that up to multiplication with units there is only one

element q of lowest norm ν(q) = n in S∩I. To this end, assume there are at least two
such elements, say p and q. By Lemma 3.5 there exist p̄, q̄ ∈ S, with (p̄, q̄) = (p, q),
where n > ν(p̄) � ν(q̄) or n � ν(p̄) and q̄ = 0. Since n is the lowest possible norm for
an element of I ∩ S, only the case n = ν(p̄) and q̄ = 0 remains. But this can happen
only if we are in Case 2 of Lemma 3.4 having p̄ = p and q = cp, c ∈ k×.

Step 2. We now show that any element of G belongs to (q), where q is defined
as in the first step. To this end, choose any element p from G. Applying Case 1 of
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Lemma 3.4 several times, one gets p = hq+ r, ν(r) � n, r ∈ S. Since, by assumption,
q has the smallest possible norm, it follows that ν(r) = n or r = 0. This, in turn,
yields r = cq, c ∈ k, according to Step 1. Finally, we have p = (h+ c)q and, therefore,
I = (q).

Proposition 3.7. Any finitely generated ideal I in R̃Q is principal; i.e., R̃Q is
a Bézout domain.

Proof. Let I = (r1, . . . , rm) for some m ∈ N. Write the generators according to
(3.2), i.e.,

(3.5) rj =

nj∑
i=0

aαj,iCαj,i + bαj,iSαj,i , nj ∈ N, aαi,j , bαi,j ∈ k, αi,j ∈ Q+.

Let d be a common denominator of all the αi,j occurring in these equations. Then the
generators of I can be identified with elements of the subset S defined in Lemma 3.4
of the ring R̃Z via the embedding E : R̃Z → R̃Q which is defined by C̃2 �→ C1/d,

S̃2 �→ S1/d. Let r̃1, . . . , r̃m be elements of R̃Z, the images of which are r1, . . . , rm.

The ideal Ĩ generated by r̃1, . . . , r̃m is principal by Proposition 3.6. Consequently, I
is generated by the image of the generator of Ĩ under E.

Remark 3.3. Note that neither R̃Q nor R̃Z is a PID. The first is not Noetherian:
As an example, for an ideal that is not finitely generated take ({S1/2n |n ∈ N}).
Moreover, R̃Z is not a PID since there are finitely generated ideals that cannot be
generated by one single element: The ideal (S1, C1 +1), viewed as an element of R̃Q,

is generated by C1/2, which does not belong to R̃Z.

3.2. RQ is a Bézout domain. We are now in position to prove that RQ is a
Bézout domain. After the preparation done in the previous subsection, the remaining
steps are very similar to those given in [3, 17]. In particular, the proof of Lemma 3.8
which prepares Theorem 3.9 is strongly inspired by [3, Thm. 1].

Lemma 3.8. For two coprime elements p, q ∈ RQ there exist a, b ∈ RQ such that
ap+ bq = 1.

Proof. By Proposition 3.7 (resp., Corollary 3.2), C(∂t)[SQ] is a Bézout domain.
Thus, there exist a, b ∈ C[∂t,S] ⊂ RQ such that ap+ bq = h, where h ∈ C[∂t]. Write

h as product h =
∏N

i=1(∂t−si), and proceed by induction (we do not assume si �= sj).

Assume there exist a, b ∈ RQ, with ap+ bq =
∏N

i=1(∂t − si). In the following, for
any γ ∈ E ′∗ we set γ̄ = L (γ)(sN ), with the entire function L (γ) being the Laplace
transform of γ. By the coprimeness of p, q

a� =

⎧⎪⎨
⎪⎩

q̄a− qā

q̄(∂t − sN )
, (∂t − sN ) � q,

a

s− sN
, (∂t − sN ) | q,

b� =

⎧⎪⎪⎨
⎪⎪⎩

p̄b− pb̄

p̄(∂t − sN )
, (∂t − sN ) � p,

b

s− sN
, (∂t − sN ) | p

belong to RQ. Here, we used the fact that a differential operator from C[∂t] divides
an element of E ′

∗ if and only if the quotient of the respective Laplace transforms is an

entire function.8 One easily verifies that pa� + qb� =
∏N−1

i=1 (∂t − si).
Applying this step N times completes the proof.

8This is a simple corollary of the Paley–Wiener theorems [22, Thm. 7.3.1]) and [25, Thm. 1.1].
See [22, Thm. 7.3.2] for a detailed proof in the case E ′∗ = E ′.
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Theorem 3.9. The ring RQ is a Bézout domain; i.e., any finitely generated ideal
is principal.

Proof. We show that any two elements p, q ∈ RQ possess a common divisor c̃ that
can be written as a linear combination of p, q. (It is then the unique greatest common
divisor (gcd) of p and q.)

According to section 3.1 the ring C(∂t)[SQ] is a Bézout domain. Consequently,
there are elements a, b ∈ C[∂t,SQ] such that

(3.6) c = ap+ bq ∈ C[∂t,SQ]

is a gcd in C(∂t)[SQ]. Hence, p/c and q/c belong to C(∂t)[SQ]. In particular, there
are ni ∈ RQ, di ∈ C[∂t], with gcdRQ

(ni, di) = 1 (i = 1, 2) such that p/c = n1/d1
and q/c = n2/d2. It follows that pd1 = cn1, qd2 = cn2. Consequently, both d1 and
d2 divide c in RQ. Since d1 and d2 are polynomials, they possess a least common
multiple h = d1d2/ gcd(d1, d2), and it follows that c̃ = c/h ∈ RQ. Clearly, c̃ divides
both p and q. Dividing (3.6) by c̃ yields the equation

(3.7) a n1d2/ gcd(d1, d2)︸ ︷︷ ︸
p̃

+b n2d1/ gcd(d1, d2)︸ ︷︷ ︸
q̃

= d1d2/ gcd(d1, d2)︸ ︷︷ ︸
h

.

By the coprimeness of n1 and d1 (resp., n2 and d2), it follows that gcd(p̃, h) =
d2/ gcd(d1, d2) (resp., gcd(q̃, h) = d1/ gcd(d1, d2)). Thus, gcd(q̃, h) and gcd(p̃, h) are
coprime and, since by (3.7) any common divisor of p̃ and q̃ divides h, we can finally
conclude the coprimeness of p̃ and q̃. Thus, by Lemma 3.8, there are a�, b� ∈ RQ such
that a�p̃+b�q̃ = 1. The claim follows directly by multiplying this equation by c̃.

4. Controllability analysis.

4.1. System controllabilities. In this section we emphasize several controlla-
bility notions which are defined directly on the basis of the above system definition
without referring to a solution space. For the latter we refer to the next subsection.
Let us start with some purely algebraic definitions.

Definition 4.1. An R-system Λ, or a system over R, is an R-module. A
presentation matrix of a finitely presented R-system Σ is a matrix P such that Σ ∼=
[v]/[Pv], where [v] is free with basis v. An output y is a subset, which may be empty, of
Λ. An input-output R-system, or an input-output system over R, is an R-dynamics
equipped with an output.

Definition 4.2 (see, e.g., [14, Def. 2.4.]). Let A be an R-algebra. An R-system Λ
is said to be A-torsion-free controllable (resp., A-projective controllable, A-free con-
trollable) if the A-module A⊗RΛ is torsion-free (resp., projective, free). An R-torsion-
free (resp., R-projective, R-free) controllable R-system is simply called torsion-free
(resp., projective, free) controllable.

Elementary homological algebra (see, e.g., [42]) yields the following proposition.
Proposition 4.3. A-free (resp., A-projective) controllability implies A-projective

(resp., A-torsion-free) controllability.
The importance of the notions of torsion-free and free controllability is intuitively

clear: While the first one refers to the absence of a nontrivial subsystem which is
governed by an autonomous system of equations, the latter refers to the possibility to
freely express all system variables in terms of a basis of the system module. For this
reason and, secondarily, in reminiscence to the theory of nonlinear finite dimensional
systems, we have the following definition.
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Definition 4.4. Take an A-free controllable R-system Λ with a finite output y.
This output is said to be A-flat, or A-basic, if y is a basis of A⊗R Λ. If A ∼= R, then
y is simply called flat, or basic.

In finite dimensional linear systems theory, the so-called Hautus criterion is a
quite popular tool for checking controllability. This criterion has been generalized to
delay systems (see, e.g., [30, Def. 5.1]) and to the more general convolutional systems
defined over E ′ [50, Def. 10] and the ringM0 of compactly supported Mikusiński oper-
ators [52, Def. 4.3]. All those rings may be embedded into the ring of entire functions
via the Laplace transform. This motivates the following quite general definition.

Definition and Proposition 4.1. Let R be any ring that is isomorphic to a
subring of the ring O of entire functions with pointwise defined multiplication. Denote
the embedding R → O by L . A finitely presented R-system with presentation matrix
P is said to be spectrally controllable if one of the following equivalent conditions
holds:

(i) The O-matrix P̂ = L (P ) satisfies ∃k ∈ N : ∀σ ∈ C : rank P̂ (σ) = k.
(ii) The module ΣO = O ⊗R Σ is torsion-free.
Proof. The result is a simple consequence of the fact that O is an elementary

divisor domain;9 i.e., the matrix P̂ admits the Smith normal form.
Proposition 4.5. Let R be any Bézout domain that is isomorphic to a sub-

ring of O with the embedding R → O denoted by L . Then the notions of spectral
controllability and R-torsion-free controllability are equivalent if and only if L maps
nonunits in R to nonunits in O .

Proof. Since R is a Bézout domain, torsion freeness of Σ implies freeness. Ten-
soring with the free module O yields another free module ΣO and thus, by Definition
and Proposition 4.1, spectral controllability. Again, since R is a Bézout domain, any
presentation matrix admits a Hermite form. Thus, the torsion submodule tΣ of Σ can
be presented by a triangular square matrix tP of full rank. If Σ is not torsion-free,
at least one diagonal entry of this matrix is not a unit in R. If this entry is mapped
to a nonunit in ΣO by L , it admits a complex zero σ0. Thus, L (tP ) has a loss off
rank at σ = σ0. Conversely, if there is a nonunit r ∈ R which corresponds to a unit
r̂ ∈ O , consider Σ ∼= [τ ]/[rτ ]. Obviously, the image of τ in ΣO is zero. Thus, the
trivial module ΣO is torsion-free.

Remark 4.1. Note that, under the additional assumption that Σ admits a presen-
tation matrix of full row rank, the assumption of R being a Bézout domain may be
replaced by a less restrictive one. In this case, equivalence of (Q⊗R R) ∩ O-torsion-
free controllability, with Q the ring of rational functions in one complex variable, and
spectral controllability may be established (see, e.g., [30, 52] for different examples).
In [50, Thm. 14 ] a related result has been presented for systems over E ′. Note that
this latter result is formulated for the module of solutions HomE ′ (Σ, E ) instead of the
system module Σ. This is motivated by the viewpoint that systems admitting the
same solutions should be described by the same algebraic structure.

We are now able to state the main result of this section.
Theorem 4.6. A finitely presented RQ-system ΣQ is free if and only if it is

torsion-free. More generally, ΣQ = tΣQ⊕ΣQ/tΣQ, where tΣQ is torsion and ΣQ/tΣQ

is free. Moreover, ΣQ is spectrally controllable if and only if it is torsion-free.
Proof. Since the first assertion holds for finitely presented modules over any

Bézout domain, it holds for any RQ system. The second assertion follows from Propo-
sition 4.5. (The fact that the Laplace transform maps any nonunit of RQ to a nonunit

9See [20, p. 226] for this statement, which is a corollary of two results proved in [19].



14 FRANK WOITTENNEK AND HUGUES MOUNIER

in O is obvious.)
Clearly, the above results hold not only for RQ systems but also for Σ defined in

Definition 2.1, which is obtained from ΣQ by an extension of scalars.
Corollary 4.7. For the convolutional system Σ defined in Definition 2.1 one

has Σ = tΣ⊕ Σ/tΣ, where tΣ is torsion and Σ/tΣ is free. Moreover, Σ is spectrally
controllable if and only if it is torsion-free.

4.2. Trajectorian controllability. In this section we will give two different
interpretations of our algebraic controllability results that directly refer to trajectories
of the system. To this end we need to introduce the notions of a solution space and a
trajectory (or solution), which go back at least to [28]. To the authors’ knowledge such
notions have been used in linear control theory since [32, 12] and became thereafter a
standard notion when relating the algebraic structure of a system with its solutions.

Definition 4.8. Let Σ be an R-system and F a space of generalized functions.
The space F is called a solution space of Σ if it can be equipped with the structure of
an R-module. An F -trajectory of Σ is an element of HomR(Σ,F ).

The crux of the first controllability notion (Definition 4.9) is the question of
whether it is possible to assign an arbitrary (generalized) function from F to any
system variable.

Definition 4.9 (see [15, sect. 2.2.1]). An R-system is called F -trajectory con-
trollable if for any element a ∈ Σ and any b ∈ F there exists a trajectory t, with
t(a) = b.

The following result is borrowed from [15, Thm. 2.2.1] and applies to any torsion-
free controllable R-system where R is a ring of functions or (ultra-)distributions
with compact or left bounded support. Their quotient fields are subfields of the
Mikusiński field M defined in [29].

Proposition 4.10. The system Σ/tΣ is M-trajectory controllable.
Another elegant trajectory related controllability notion is the following, due to

[51]. As above it relies on the notion of a trajectory. However, since it refers to the
possibility of connecting trajectories, an appropriate solution space should allow the
definition of local properties. This is not possible for the field of Mikusiński operators
but is possible for the spaces D ′

∗ and E∗. The controllability criterion in the behavioral
framework is the possibility of concatenating trajectories. In our algebraic setting we
may formulate this criterion as follows.

Definition 4.11 (cf. [51, Def. V.1] and [40, Def. V.1]). Let Σ be an R-system
and F a solution space of Σ that possesses the structure of a sheaf on R. Then
Σ is called F -behavioral controllable if for any a ∈ Σ there are ta1 , t

a
2 ∈ R such

that for any two trajectories t′, t′′ ∈ Hom(Σ,F ) there exists t ∈ Hom(Σ,F ), with
t(a)|(−∞,ta1)

= t′(a)|(−∞,ta1 )
and t(a)|(ta2 ,∞) = t′′(a)|(ta2 ,∞).

Theorem 4.12. The system Σ/tΣ, where Σ is defined in Definition 2.1, is
D ′

∗(R)-behavioral controllable (resp., E∗(R)-behavioral controllable). The system tΣ is
controllable only if it is the zero module.

Proof. Since Σ/tΣ is free, any homomorphism is uniquely determined by the
functions assigned to the basis. For the basis b = b1, . . . , bn we may choose tb1 < tb2
and t(b) = ϕt′(b) + (1 − ϕ)t′′(b), where ϕ ∈ E∗ is a cutoff function, i.e., ϕ(−∞,tb1)

= 1,

ϕ(tb2,∞) = 0, and juxtaposition denotes the (generalized) pointwise multiplication.

Any a ∈ Σ/tΣ is given by a =
∑n

i=0 αibi, where the coefficients αiRR have compact
support. Thus, there exist T1, T2 such that suppαi ⊆ [T1, T2], i = 1, . . . , n. The claim
follows by an application of the theorem on supports ta1 = tb1 + T1, ta2 = tb2 +T2 (see
[22, Thm. 4.3.3]).
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In order to show that tΣ is uncontrollable, take a trajectory t′′, the restriction of
which to tΣ is nonzero, and let t′ = 0. Choose a torsion element τ /∈ ker t′′. Since τ is
torsion, one has βτ = 0 for some β ∈ RR. Thus, βt′′(τ) = 0 and, by the theorem on
supports, the support of t′′(τ) is not bounded from the right, which implies t(τ) �= 0.
However, supp t(τ) must be bounded from the left, which is impossible by the theorem
on supports.

Behavioral controllability may be defined directly on the basis of the solution set
of (2.1) or (2.12) without making reference to the convolutional system Σ (see, e.g.,
[51]). The set of all such solutions is called the behavior of the system. Clearly, the
(lumped) behavior B1 = kerF(R) P consisting of all the solutions c ∈ F (R)m+2l of
(2.12b) is isomorphic to Hom(Σ,F (R)) as a C-vector space. Since B1 corresponds
to the restriction of Hom(Σ,F (R)) to the generators of the Σ, the concatenability of
two elements of B1 is immediate.

The (distributed) behavior B2 comprises all the solutions (w1, . . . ,wl,u) ∈ W of
(2.1) with W = W2

1 × · · · ×W2
l ×F (R)m and either Wi = C0(Ωi, E ′∗(R)), F = E ′∗ or

Wi = E∗(Ωi × R), F = E∗ of (2.1). By the existence and uniqueness of the solution
of the Cauchy problems (2.2) with data in F (R), the restriction mapping

W → F (R)2l+m, (w1, . . . ,wl,u) �→ (w1(ξ1), . . . ,wl(ξl),u) = c

is a bijection, the inverse of which is given by (2.12a). In other words, the behaviors B1

and B2 are isomorphic as C-vector spaces. As the lumped behavior B1, the distributed
behavior B2 is called controllable if for any two elements w′,w′′ ∈ B2 there exists
w ∈ B2 such that w|t∈(−∞,t1) = w′|t∈(t2,∞) and w|t∈(−∞,t1) = w′′|t∈(t2,∞), with
appropriate real constants t1, t2. By the properties of the support of the entries of
the coefficient matrices Φi and Ψi which can be deduced from (2.5), i.e.,

supp(Φi(·, ξi),Ψi(·, ξi)) ⊂ {(x, t) ∈ Ωi × R : |t| < |x− ξ|√a}, i = 1, . . . , l,

the controllability result for HomRR
(Σ,F (R)) translates not only to B1 but also to

B2.
Theorem 4.13. The distributed behavior B2 associated with the boundary value

problem (2.1) is controllable if and only if the corresponding convolution system Σ is
free.

Proof. The proof is essentially the same as the one of Theorem 4.12.
Remark 4.2. Even if the boundary value problem under consideration is led

back to a one-dimensional convolutional system, we would like to point out that
the definition of behavioral controllability is not unique in the distributed case. As
already mentioned in the introduction, at first glance, the most direct generalization of
behavioral controllability to systems described by PDEs seems to be the one given in
[37, Def. 2] which refers to the possibility of concatenating the restrictions of solutions
to arbitrary disjoint open sets. W.r.t. this notion, the behavior associated with a set
of PDEs is controllable if and only if the system module is torsion-free (see, e.g., [37,
p. 398], [57, Cor. 2]). Thus, no boundary controlled distributed parameter system
would be controllable, even if it would be controllable in the sense of [8, Def. 4.1.3].
This suggests that the described notion is not suitable for this class of systems. (In
our opinion the choice of the term “controllability” for this concept is misleading.)
Instead, a weaker concept of controllability is required. Such a notion which refers to
the concatenation of solutions only in the time direction is introduced in [47, p. 61].
This latter notion is the appropriate one for boundary controlled systems as considered
here.
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5. An example: Two boundary coupled equations. In order to illustrate
our results, in the following we discuss a simple example. Consider the system of two
second order equations

(5.1a) ∂2xwi(x) = σwi(x), i = 1, 2,

defined on an open neighborhood Ωi of [0, �i] ⊂ R, where σ = α∂2t + β∂t + c. Those
equations are coupled via the boundary conditions (i = 1, 2)

μi1wi(�i) + μi2w
′
i(�i) = 0,(5.1b)

wi(0) = u.(5.1c)

According to section 2.2, the general solution of the initial value problems asso-
ciated with (5.1a) reads (i = 1, 2)(

wi(x)
w′

i(x)

)
=

(
C(x − �i) S(x− �i)
σS(x− �i) C(x− �i)

)(
ci1
ci2

)
,(5.2)

with ci1 = wi(�i), ci2 = ∂xwi(�i). The boundary conditions at x = �i yield

μi1ci1 + μi2ci2 = 0,(5.3a)

C(�i)ci1 − S(�i)ci2 = u.(5.3b)

Here, the relations S(−�i) = −S(�i) and C(−�i) = C(�i), derived in section 2.2, have
already been incorporated.

Thus, according to Definition 2.1, the convolutional system Σ associated with the
boundary value problem (5.1) is the RR module [c11, c12, c21, c22, u], the generators of
which are subject to the equations (5.3).

In order to reduce the number of equations, we aim to introduce new variables
ω1 and ω2 such that (5.3a) is satisfied automatically, i.e.,

ci1 = −μi2ωi, ci2 = μi1ωi, i = 1, 2.

Indeed, since

ωi =
1

μ2
i1 + μ2

i2

(−μi2ci1 + μi1ci2) , i = 1, 2,

the new variables belong to Σ. Using the new generators ω1, ω2, and u, (5.3b) may
be rewritten to obtain

u = −piωi, pi = μi2C(�i) + μi1S(�i), i = 1, 2.

Thus, p1ω1 − p2ω2 = 0, and Σ ∼= [ω̃1, ω̃2]/[p1ω̃1 − p2ω̃2].
In accordance with section 2.1 assume that �i = ni�, with ni ∈ N and i = 1, 2.

Thus, by Theorem 4.6, checking spectral, torsion-free, and free controllabilities is
equivalent. Since the aim of this section is not the presentation of a general controlla-
bility analysis for the boundary value problem (5.1), but rather to give an example for
the application of the derived algebraic results, we shall restrict ourselves to partic-
ular values for n1 and n2. In order to avoid tedious computations, we choose simply
n1 = 1, n2 = 2. Apart from that, we discuss only the generic case; i.e., we do not
care about singularities which may occur for particular values of the μij , i, j = 1, 2.



CONTROLLABILITY OF NETWORKS OF SECOND ORDER PDEs 17

Applying the algorithms of section 3.1 we obtain p1r1 + p2r2 = ε, with

r1 = 2
(
(μ21μ11 − μ22μ12σ)C(�) + (μ22μ11 − μ21μ12)σS(�)

)
,

r2 = μ2
12σ − μ2

11,

ε = −μ22μ
2
12(σ − σ̄), σ̄ =

2μ21μ11μ12 − μ22μ
2
11

μ22μ2
12

.

Following section 3.2, it remains to modify r1, r2 in such a way that ε is replaced by
a constant. This may be done by applying the induction step of Lemma 3.8 once. To
this end, let r̄1, r̄2, p̄1, p̄2 be the complex numbers obtained by setting σ = σ̄ in the
Laplace transforms of r1, r2, p1, p2. Assume that neither p̄1 nor p̄2 is zero. Then the
variables

q1 =
p̄2r1 − r̄1p2

p̄2ε
, q2 =

Lσ̄(p1)r2 − Lσ̄(r2)p1
p̄1ε

belong to RQ and, therefore, to RR. Thus, we have the Bézout equation p1q1+p2q2 =
1.

From the above results, one easily verifies that with

y = q2ω1 + q1ω2

one has ω1 = p2y and ω2 = p1y. Hence, y is a basis of the system under consideration.

6. Conclusion. For a class of convolutional systems associated with boundary
coupled second order PDEs, we have derived algebraic controllability results which
translate directly into trajectory related controllability conditions. These results rely
on a division algorithm for particular convolutions rings of distributions and ultradis-
tributions with compact support which are obtained from the solution of the Cauchy
problem associated with the given system of PDEs. However, this means that our
algebraic setting does not apply directly to the given boundary value problem but
rather to a convolutional system arising from the solutions of the associated Cauchy
problem and the boundary conditions. A promising approach allowing an algebraic
treatment from the very beginning is currently under investigation.

The current work was motivated by previous contributions [3, 17] in which similar
results were presented for differential delay systems. These approaches have been
shown to be useful not only for controllability analysis but also for the design of
closed loop control schemes using the factorization approach or the method of finite
spectrum assignment [4, 5, 18]. This suggests the investigation of similar methods for
the class of systems considered within this contribution.

Appendix A. Representation of the operators S(x) and C(x). In this
section we give explicit expressions for the solution of the Cauchy problem (2.3). To
this end, we will use the notation introduced in section 2.2; i.e., we write the solution
in the form w(x) = C(x)v0 + S(x)v1, with v0, v1 being the Cauchy data.

If a > 0 in (2.1b), we may rewrite σ as

σ = ā2
(
(∂t + α)

2 − β2
)
, ā =

√
a, α =

b

2a
, β =

√
b2

4a2
− c

a
.
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Then we have for v0, v1 ∈ E (R) (cf. [38, p. 293])

(S(x)v1)(t) =

∫ xā

−xā

exp (−ατ)
2ā

J0
(
β
√
ā2x2 − τ2

)
v1(t− τ)dτ ,(A.1)

(C(x)v0)(t) =
1

2
exp

(
− bx
2ā

)
v0(t− xā) +

1

2
exp

(
− bx
2ā

)
v0(t+ xā)dτ

− βāx

2

∫ xā

−xā

exp (−ατ) J1
(
β
√
ā2x2 − τ2

)
√
ā2x2 − τ2

v0(t− τ)dτ .

(A.2)

In contrast, for a = 0 in (2.1b) and v0, v1 ∈ E(2)(R) those convolution products
can be written as power series w.r.t. x:

C(x)v0 =

∞∑
k=0

x2kv0,k
(2k)!

, v0,k+1 = ∂tv0,k − bv0,k, v0,0 = v0,

S(x)v1 =

∞∑
k=0

x2k+1v1,k
(2k + 1)!

, v1,k+1 = ∂tv1,k − bv1,k, v1,0 = v1,

where the differential recursion is obtained by plugging the series ansatz into the PDE.

Appendix B. (Ultra-)distributions.

B.1. Gevrey functions and Beurling ultradistributions of Gevrey type.
This section recalls some basic definitions about Gevrey functions and the correspond-
ing classes of ultradistributions.

Definition B.1 (see, e.g., [24], [23, Def. 12.7.3, p. 137]). An infinitely differ-
entiable function f : Ω → C (with Ω ⊂ Rn open) belongs to the small Gevrey class
E(α)(Ω) (or the space of Beurling ultradifferentiable functions of Gevrey class α) if for
all M ∈ R+ and all compact sets K ⊂ Ω there exists CK,M such that

sup
t∈Ω,k≥0

|∂(k)t f(t)| ≤ CK,MM
k(k!)α.

A sequence (fn), n ∈ N, fn ∈ E(α)(Ω), converges to f ∈ E(α)(Ω) if for all compact
K ⊂ Ω and all M ∈ R+

lim
n→∞ sup

t∈Ω,k≥0

|∂(k)t (fn(t)− f(t))|
Mk(k!)α

= 0.

The space of compactly supported functions in E(α) is denoted by D(α)(Ω). A sequence
(fn), fn ∈ D(α)(Ω), n ∈ N, converges in fn ∈ D(α)(Ω) if it converges in E(α)(Ω) and,
moreover, ∪n∈N supp fn is compact. The space D ′

(α)(R) (resp., E ′
(α)(R)) of Beurling

ultradistributions (resp., Beurling ultradistributions with compact support) of Gevrey
order α is the space of linear continuous functionals on D(α)(R) (resp., E(α)(R)).

B.2. (Ultra-)distribution-valued functions. In the following, let F stand
either for E∗ or D∗ and F ′ for the respective dual space. Moreover, C∗ may stand
either for C∞ or for Cn, n ∈ N.

Definition B.2. Let Ω1,Ω2 ⊂ R. A(n) (ultra-)distribution-valued function F :

Ω1 → F ′(Ω2) is of class C
∗ if it defines a continuous linear map F̃ : F (Ω2) → C∗(Ω1)

via F̃ [ϕ](x) := F (x)[ϕ], x ∈ Ω1, ϕ ∈ F (Ω2).
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The derivative of a function Cn(Ω,F ′(R)), n > 0 (resp., C∞(Ω,F ′(R))), is

defined by ∂xF (x)[ϕ] := ∂x(F̃ [ϕ](x)) for all ϕ ∈ F (Ω2). As a composition of the
continuous maps F (Ω2) → Cn(Ω1) and Cn(Ω1) → Cn−1(Ω1) (resp., C∞(Ω1) →
C∞(Ω1)) the derivative ∂xF is continuous.

Lemma B.3. The derivative ∂xF of F ∈ Cn(Ω1,F ′(Ω2)), n > 0 (resp., F ∈
C∞(Ω1,F

′(Ω2))), belongs to Cn−1(Ω1,F
′(Ω2)) (resp., C∞(Ω1,F

′(Ω2))).
The integral F I(x) =

∫ x

ξ
F (ζ)dζ of a function Cn(Ω1,F ′(Ω2)), (C

n(Ω1,F ′(Ω2))

is defined by F I(x)[ϕ] =
∫ x

ξ
F̃ [ϕ](ζ)dζ. Since integration defines a continuous map

Cn(Ω1) → Cn+1(Ω1) (resp., C
∞(Ω1) → C∞(Ω1)) the composition with F̃ is contin-

uous.
Lemma B.4. The integral F I of a function F ∈ Cn(Ω1,F

′(Ω2)), n ≥ 0 (resp.,
F ∈ Cn(Ω1,F ′(Ω2))), belongs to Cn+1(Ω1,F ′(Ω2)) (resp., C

∞(Ω1,F ′(Ω2))).
Lemma B.5. Let F ∈ C∗(Ω1, E ′∗(Ω2)) and G ∈ F ′(Ω2). Then, the function

H : Ω → F ′(Ω2) defined by H(x) = GF (x) belongs to C∗(Ω1,F
′(Ω2)).

Proof. From the commutativity of the convolution product of two (ultra-)distri-
butions it follows for ϕ ∈ F (Ω2) that

(GF (x))[ϕ] = (F (x)Gϕ̄)(0) = F (x)[Gϕ̄] = F (x)[Gϕ],

where, for ψ ∈ F (Ω2), ψ̄ is defined by ψ̄(t) = ψ(−t), t ∈ Ω2. Since Gϕ ∈ E∗(Ω2),
the function x �→ H(x)[ϕ] = F (x)[Gϕ] belongs to C∗(Ω1) by the assumption on F .
Thus, H ∈ C∗(Ω1,F ′(Ω2)).
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[4] D. Brethé and J. J. Loiseau, Proper stable factorizations for time-delay systems, in ProcPro-
ceedings of the 4th European Control Conference, Brussels, Belgium, 1997.
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