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Abstract. In this paper, we consider the Independent Component Anal-
ysis problem when the hidden sources are non-negative (Non-negative
ICA). This problem is formulated as a non-linear cost function opti-
mization over the special orthogonal matrix group SO(n). Using Givens
rotations and Newton optimization, we developed an effective axis pair
rotation method for Non-negative ICA. The performance of the proposed
method is compared to those designed by Plumbley and simulations on
synthetic data show the efficiency of the proposed algorithm.
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1 Introduction

We consider the batch mode of ICA. Lets S =
[
s1 s2 · · · sn

]T
be the n hidden

sources observed through a mixing matrix A = [aij ], 1 ≤ i ≤ m and 1 ≤ j ≤ n.
The noiseless model of ICA can be written:

X = AS (1)

where X =
[
x1 x2 · · · xm

]T
. We consider a square system where m = n.

The task of ICA is to find A and S given X.
In “classical” ICA the sources are required to be independent and non-Gaussian.
Under these conditions, many algorithms based on maximization of the source
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of National School of Engineers of Tunis (Tunisia)

?? Christian JUTTEN is also with Institut Universitaire de France



2 Lecture Notes in Computer Science: Ouedraogo, Souloumiac, Jutten

non-Gaussianity [5][4] or independence [3] have been developed for estimating
the hidden sources up to the permutation and scaling indeterminations.
Subsequently, using a priori knowledge on the sources, some constraints such as
sparsity have been incorporated in ICA to favour particular types of solutions
[17].
In many real world applications such as biomedical imaging, music or spectrum
analysis, the sources are known to be non-negative. This a priori must be taken
into account when estimating the sources.
Several authors have proposed methods for solving the equation (1) under non-
negativity constraint on S and/or A. The most used approach is Non-negative
Matrix Factorization (NMF) [14][6][7][13] where the estimated sources and mix-
ing matrix are all constrainted to be non-negative. However, the non-negativity
alone is not sufficient to guarantee the uniqueness of the solution [8][9][10]. So de-
pending on the application some constraints such as sparseness and/or smooth-
ness also been incorporated in NMF to improve the parts based representation
and reduce the range of admissible solutions [18].
For estimating the sources and/or mixing matrix under non-negativity con-
straint, another approach uses the a priori knowledges of the variables distri-
bution to design a Bayesian method [19][20]. This approach needs however to
make a “good” choice of A and S prior density and can be time-consuming.
Slightly relaxing the non-negativity constraint, Plumbley introduced Non-negative
Independent Component Analysis [1][2] for solving (1) under non-negativity
constraint on S, A being positive or of mixed sign. This approach requires
the sources to be non-negative (Pr(si < 0) = 0, ∀ 1 ≤ i ≤ n), indepen-
dent (Pr(

∏
si) =

∏
Pr(si) ), and well grounded (∀ δ > 0, Pr(si < δ) > 0,

∀ 1 ≤ i ≤ n).
In this paper, we use Givens rotations and Newton optimization to develop an
efficient axis pair rotation method for non-negative ICA.
The rest of the paper is organized as follows. Section 2 recapitulates Non-negative
ICA problem and its formulation as a non-linear cost function optimization. In
section 3, we describe the proposed axis pair rotation method. The computa-
tional complexity is evaluated in section 4 and we compare it with the geodesic
search method designed by Plumbley. Section 5 discusses the simulation results
and finally section 6 presents the conclusions.

2 Non-negative Independent Component Analysis

Under the independence and well grounded assumptions, the non-negative hid-
den sources S can be estimated by whitening the observations X and rotating
the whitened data to fit them on the positive orthant.
In fact, let Z be the whitened observations, Z = V X = V AS where V is a
whitening matrix. Assuming that the sources are unit variance or transformed
to be so, the covariance matrix of Z is given by CZ = In = (V A)(V A)T , then
V A is an orthonormal matrix.
Let Y = WZ andW be a rotation matrix (WTW = WWT = In and detW = 1).
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Y = WVAS = US where U = WVA

Plumbley showed [1] that U is a permutation matrix if and only if Y is positive
(i.e. each element of Y is positive) with probability 1.
It is then sufficient to find a rotation matrix W so that the components of
Y = WZ are positive.
We consider the following negativeness measure criterion defined in [2] :

J(W ) =
1

2

∥∥Z −WTY +
∥∥2
F

where Y + =
[
y+1 y

+
2 · · · y+n

]T
, y+i = max(0, yi) and ‖‖F is the Frobenius norm.

J(W ) =
1

2

∥∥Z −WTY +
∥∥2
F

=
1

2

∥∥WTY −WTY +
∥∥2
F

=
1

2

∥∥Y − Y +
∥∥2
F

=
1

2

∥∥Y −∥∥2
F

where Y − =
[
y−1 y

−
2 · · · y−n

]T
and y−i = min(0, yi).

One can prove that J(W ) = 0⇔ Y − = 0⇔ Y is positive with probability 1.
In pratical algorithm, the task of Non-negative ICA is to find a rotation matrix
W that minimizes the criterion J . This is equivalent to solve the optimization
problem (2) on the group of rotation matrices SO(n) :

W ∗ = arg min
W∈SO(n)

J(W ) (2)

Several methods such as non-negative PCA [11][12], axis pair method [11] or
geodesic search [15][16] have been proposed for solving (2). In the next section
we propose an efficient axis pair rotation method for solving the optimization
problem.

3 Givens parametization and Newton optimization for
Non-negative ICA

When the sources are independent and well grounded, the task of solving the
Non-negative Independent Component Analysis problem reduces to finding the
rotation matrix W ∗ which minimizes the criterion J (resolving equation (2)).
Noting that any general n-dimensional rotation can be written as a product of
Givens rotations G(il, jl, θl) where

G(il, jl, θl) =



1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . cos(θl) · · · sin(θl) . . . 0
...

...
. . .

...
...

0 . . . − sin(θl) · · · cos(θl) . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 1


il
...
jl

(3)



4 Lecture Notes in Computer Science: Ouedraogo, Souloumiac, Jutten

the task of computing the optimal rotationW ∗ is iteratively performed by several

sweep of the n(n−1)
2 rotations, each rotation G(i, j, θki,j) decreasing the criterion

for the axis pair (i, j), 1 ≤ i < j ≤ n at sweep k. The whole rotation W ∗ is
performed by multiplying the individual one.

W ∗ =
∏
k

n−1∏
i=1

n∏
j=i+1

G(i, j, θki,j)

Note that the rotation G(i, j, θki,j) not commute and the product is write from
rigth to left.

3.1 Computing the rotation G(i, j, θki,j) at sweep k

For fixed (i, j), the optimal rotation G(i, j, θki,j) is determined by the angle θki,j .

To simplify notation, we replace θki,j by θ so G(i, j, θ) = G(i, j, θki,j).
Noting that for updating Y , when multiplying by G(i, j, θ), the components of
Y remain unchanged excepted for rows i and j, the computing of the optimal
angle θ is done on the reduced 2D data given by (3) :

Y ki,j =

(
Y1
Y2

)
=

(
cos(θ) sin(θ)
− sin(θ) cos θ)

)(
Y (i, .)
Y (j, .)

)
(4)

The criterion on reduced 2D data is given by :

J(θ) =
1

2

∥∥(Y ki,j)
−∥∥2

F
=

1

2

∑
l

(
Y 2
1l1Y1l<0 + Y 2

jl1Yjl<0

)
(5)

where 1Yx<0 =

{
1 if Yx < 0
0 otherwise

.

Differentiating (4) with respect to θ and noticing that

Y1l = Y (i, l) cos(θ)+Y (j, l) sin(θ) =⇒ dY1l
dθ

= −Y (i, l) sin(θ)+Y (j, l) cos(θ) = Y2l

Y2l = −Y (i, l) sin(θ)+Y (j, l) cos(θ) =⇒ dY2l
dθ

= −Y (i, l) cos(θ)−Y (j, l) sin(θ) = −Y1l

we get
dJ

dθ
=
∑
l

Y1lY2l [1Y1l<01Y2l>0 − 1Y1l>01Y2l<0] (6)

and
d2J

dθ2
=
∑
l

(
Y 2
2l − Y 2

1l

)
[1Y1l<01Y2l>0 − 1Y1l>01Y2l<0] (7)

A Newton method is used for optimizing θ leading to :

θ = −dJ
dθ
/
d2J

dθ2
(8)
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Note that d2J
dθ2 = 0 if all the samples are in the positive and/or the negative

quadrant or all the samples are on the first and/or the second bisector. In this
case it is not necessary to perform the rotation because it would not decrease
the criterion.

3.2 Proposed algorithm

The Givens based parametization/Newton optimization method is described in
the following algorithm :

Start whith whitening the data

Z=VX

Initialization

W = I_{n}, Y = Z, k = 1

Begin

Repeat

For i=1 to n-1

For j=i+1 to n

Compute dJ=dJ/dtheta as in (6)

Compute d2J=d^{2}J/dtheta^{2} as in (7)

If (d2J==0)

continue

Else

theta_min=-dJ/d2J

Form G(i,j,theta_min) as in (3)

W = G(i,j,theta_min) W

Y = G(i,j,theta_min) Y

End

End

End

k=k+1

Until J(W) is less than a tolerance

End

4 Computational complexity

The proposed algorithm complexity is evaluated by counting the number of
floating point operations (flops). One flop corresponds to one multiplication fol-
lowed by one addition. We suppose that we have p samples (p >> n), the whole
computational complexity is compute by adding individual complixity term and
keeping only the term having p.

Proposed Axis pair rotation method
Note that for updating W and Y when rotating axis (i, j), it is only necessary
to update the rows i and j.
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1. dJ
dθ −→ O(4p)

2. d2J
dθ2 −→ O(2p)

3. θ = θ − dJ
dθ /

d2J
dθ2 −→ O(1)

4. updating W −→ O(4n)
5. updating Y −→ O(4p)

For one sweep, the proposed algorithm has a complexity of O(n(n−1)2 10p) =
O(5n(n− 1)p).

Geodesic search method
The computational complexity of the geodesic search method [15] designed by
Plumbley is evaluated as follow :
1. θ = 1

2

∥∥Y −Y T − Y (Y −)T
∥∥
F
−→ O(n2p)

2. H =
[
Y −Y T − Y (Y −)T

]
/θ −→ O(n2)

3. dJ
dt = −2θ −→ O(1)

4. d2J
dt2 = ‖KoHY ‖F + < Y −, H2Y >−→ O(2n2p)

5. t = − arctan
(
dJ
dt /

d2J
dt2

)
−→ O(1)

6. B = tH −→ O(n2)
7. R = exp(B) −→ O(n3)
8. W = RW −→ O(n3)
9. Y = RY −→ O(n2p)
The geodesic search method has a complexity of O(4n2p).

Comparing to the geodesic search approach, the axis pair rotation method is
less complex especially when having small number of sources (n ≤ 5) and the
two algorithms have similar computational complexity otherwise.
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