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In this paper, we consider the Independent Component Analysis problem when the hidden sources are non-negative (Non-negative ICA). This problem is formulated as a non-linear cost function optimization over the special orthogonal matrix group SO(n). Using Givens rotations and Newton optimization, we developed an effective axis pair rotation method for Non-negative ICA. The performance of the proposed method is compared to those designed by Plumbley and simulations on synthetic data show the efficiency of the proposed algorithm.

Introduction

We consider the batch mode of ICA. Lets S = s 1 s 2 • • • s n T be the n hidden sources observed through a mixing matrix A = [a ij ], 1 ≤ i ≤ m and 1 ≤ j ≤ n.

The noiseless model of ICA can be written:

X = AS (1) 
where

X = x 1 x 2 • • • x m T .
We consider a square system where m = n.

The task of ICA is to find A and S given X.

In "classical" ICA the sources are required to be independent and non-Gaussian. Under these conditions, many algorithms based on maximization of the source non-Gaussianity [5][4] or independence [START_REF] Comon | Independent component analysis, A new concept?[END_REF] have been developed for estimating the hidden sources up to the permutation and scaling indeterminations. Subsequently, using a priori knowledge on the sources, some constraints such as sparsity have been incorporated in ICA to favour particular types of solutions [START_REF] Bronstein | Sparse ICA for Blind Separation of Transmitted and Reflected Images[END_REF].

In many real world applications such as biomedical imaging, music or spectrum analysis, the sources are known to be non-negative. This a priori must be taken into account when estimating the sources. Several authors have proposed methods for solving the equation ( 1) under nonnegativity constraint on S and/or A. The most used approach is Non-negative Matrix Factorization (NMF) [START_REF] Paatero | Least Squares Formulation of robust non-negative factor analysis[END_REF][6][7] [START_REF] Cichocki | Nonnegative Matrix and Tensor Factorizations Applications to Exploratory Multi-way Data Analysis and Blind Source Separation[END_REF] where the estimated sources and mixing matrix are all constrainted to be non-negative. However, the non-negativity alone is not sufficient to guarantee the uniqueness of the solution [START_REF] Laurberg | Uniqueness of Non-negative Matrix Factorization[END_REF][9] [START_REF] Donoho | When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts?[END_REF]. So depending on the application some constraints such as sparseness and/or smoothness also been incorporated in NMF to improve the parts based representation and reduce the range of admissible solutions [START_REF] Hoyer | Non-negative Matrix Factorization with Sparseness Constraints[END_REF]. For estimating the sources and/or mixing matrix under non-negativity constraint, another approach uses the a priori knowledges of the variables distribution to design a Bayesian method [19][20]. This approach needs however to make a "good" choice of A and S prior density and can be time-consuming. Slightly relaxing the non-negativity constraint, Plumbley introduced Non-negative Independent Component Analysis [START_REF] Plumbley | Conditions for Nonnegative Independent Component Analysis[END_REF][2] for solving (1) under non-negativity constraint on S, A being positive or of mixed sign. This approach requires the sources to be non-negative

(P r(s i < 0) = 0, ∀ 1 ≤ i ≤ n), indepen- dent (P r( s i ) = P r(s i ) )
, and well grounded (∀ δ > 0, P r(

s i < δ) > 0, ∀ 1 ≤ i ≤ n).
In this paper, we use Givens rotations and Newton optimization to develop an efficient axis pair rotation method for non-negative ICA. The rest of the paper is organized as follows. Section 2 recapitulates Non-negative ICA problem and its formulation as a non-linear cost function optimization. In section 3, we describe the proposed axis pair rotation method. The computational complexity is evaluated in section 4 and we compare it with the geodesic search method designed by Plumbley. Section 5 discusses the simulation results and finally section 6 presents the conclusions.

Non-negative Independent Component Analysis

Under the independence and well grounded assumptions, the non-negative hidden sources S can be estimated by whitening the observations X and rotating the whitened data to fit them on the positive orthant. In fact, let Z be the whitened observations, Z = V X = V AS where V is a whitening matrix. Assuming that the sources are unit variance or transformed to be so, the covariance matrix of Z is given by

C Z = I n = (V A)(V A) T , then V A is an orthonormal matrix. Let Y = W Z and W be a rotation matrix (W T W = W W T = I n and det W = 1). Y = W V AS = U S where U = W V A
Plumbley showed [START_REF] Plumbley | Conditions for Nonnegative Independent Component Analysis[END_REF] that U is a permutation matrix if and only if Y is positive (i.e. each element of Y is positive) with probability 1. It is then sufficient to find a rotation matrix W so that the components of Y = W Z are positive. We consider the following negativeness measure criterion defined in [START_REF] Plumbley | Algorithms for Nonnegative Independent Component Analysis[END_REF] :

J(W ) = 1 2 Z -W T Y + 2 F where Y + = y + 1 y + 2 • • • y + n T , y + i = max(0, y i )
and F is the Frobenius norm.

J(W ) = 1 2 Z -W T Y + 2 F = 1 2 W T Y -W T Y + 2 F = 1 2 Y -Y + 2 F = 1 2 Y -2 F where Y -= y - 1 y - 2 • • • y - n T and y - i = min(0, y i ). One can prove that J(W ) = 0 ⇔ Y -= 0 ⇔ Y is positive with probability 1.
In pratical algorithm, the task of Non-negative ICA is to find a rotation matrix W that minimizes the criterion J. This is equivalent to solve the optimization problem (2) on the group of rotation matrices SO(n) :

W * = arg min W ∈SO(n) J(W ) (2) 
Several methods such as non-negative PCA [START_REF] Plumbley | A "Nonnegative PCA" Algorithm for Independent Component Analysis[END_REF][12], axis pair method [START_REF] Plumbley | A "Nonnegative PCA" Algorithm for Independent Component Analysis[END_REF] or geodesic search [START_REF] Plumbley | Optimization using Fourier Expansion over a Geodesic for Non-Negative ICA[END_REF][16] have been proposed for solving [START_REF] Plumbley | Algorithms for Nonnegative Independent Component Analysis[END_REF]. In the next section we propose an efficient axis pair rotation method for solving the optimization problem.

3 Givens parametization and Newton optimization for Non-negative ICA

When the sources are independent and well grounded, the task of solving the Non-negative Independent Component Analysis problem reduces to finding the rotation matrix W * which minimizes the criterion J (resolving equation ( 2)).

Noting that any general n-dimensional rotation can be written as a product of Givens rotations G(i l , j l , θ l ) where 

G(i l , j l , θ l ) =              1 . . . 0 
             i l . . . j l (3) 
the task of computing the optimal rotation W * is iteratively performed by several sweep of the n(n-1) 2 rotations, each rotation G(i, j, θ k i,j ) decreasing the criterion for the axis pair (i, j), 1 ≤ i < j ≤ n at sweep k. The whole rotation W * is performed by multiplying the individual one.

W * = k n-1 i=1 n j=i+1 G(i, j, θ k i,j )
Note that the rotation G(i, j, θ k i,j ) not commute and the product is write from rigth to left.

Computing the rotation

G(i, j, θ k i,j ) at sweep k
For fixed (i, j), the optimal rotation G(i, j, θ k i,j ) is determined by the angle θ k i,j . To simplify notation, we replace θ k i,j by θ so G(i, j, θ) = G(i, j, θ k i,j ). Noting that for updating Y , when multiplying by G(i, j, θ), the components of Y remain unchanged excepted for rows i and j, the computing of the optimal angle θ is done on the reduced 2D data given by (3) :

Y k i,j = Y 1 Y 2 = cos(θ) sin(θ) -sin(θ) cos θ) Y (i, .) Y (j, .) (4) 
The criterion on reduced 2D data is given by :

J(θ) = 1 2 (Y k i,j ) -2 F = 1 2 l Y 2 1l 1 Y 1l <0 + Y 2 jl 1 Y jl <0 (5) 
where

1 Yx<0 = 1 if Y x < 0 0 otherwise .
Differentiating (4) with respect to θ and noticing that

Y 1l = Y (i, l) cos(θ)+Y (j, l) sin(θ) =⇒ dY 1l dθ = -Y (i, l) sin(θ)+Y (j, l) cos(θ) = Y 2l Y 2l = -Y (i, l) sin(θ)+Y (j, l) cos(θ) =⇒ dY 2l dθ = -Y (i, l) cos(θ)-Y (j, l) sin(θ) = -Y 1l we get dJ dθ = l Y 1l Y 2l [1 Y 1l <0 1 Y 2l >0 -1 Y 1l >0 1 Y 2l <0 ] (6) 
and

d 2 J dθ 2 = l Y 2 2l -Y 2 1l [1 Y 1l <0 1 Y 2l >0 -1 Y 1l >0 1 Y 2l <0 ] (7) 
A Newton method is used for optimizing θ leading to :

θ = - dJ dθ / d 2 J dθ 2 (8) 
Note that d 2 J dθ 2 = 0 if all the samples are in the positive and/or the negative quadrant or all the samples are on the first and/or the second bisector. In this case it is not necessary to perform the rotation because it would not decrease the criterion.

Proposed algorithm

The Givens based parametization/Newton optimization method is described in the following algorithm : 

Start

Computational complexity

The proposed algorithm complexity is evaluated by counting the number of floating point operations (flops). One flop corresponds to one multiplication followed by one addition. We suppose that we have p samples (p >> n), the whole computational complexity is compute by adding individual complixity term and keeping only the term having p.

Proposed Axis pair rotation method

Note that for updating W and Y when rotating axis (i, j), it is only necessary to update the rows i and j.

1. dJ dθ -→ O(4p) 2. d 2 J dθ 2 -→ O(2p) 3. θ = θ -dJ dθ / d 2 J dθ 2 -→ O(1) 4. updating W -→ O(4n) 5. updating Y -→ O(4p)
For one sweep, the proposed algorithm has a complexity of O( n(n-1) 2 10p) = O(5n(n -1)p).

Geodesic search method

The computational complexity of the geodesic search method [START_REF] Plumbley | Optimization using Fourier Expansion over a Geodesic for Non-Negative ICA[END_REF] designed by Plumbley is evaluated as follow : Comparing to the geodesic search approach, the axis pair rotation method is less complex especially when having small number of sources (n ≤ 5) and the two algorithms have similar computational complexity otherwise.

1. θ = 1 2 Y -Y T -Y (Y -) T F -→ O(n 2 p) 2. H = Y -Y T -Y (Y -) T /θ -→ O(n 2

2 -→ O( 1 ) 6 .

 216 ) 3. dJ dt = -2θ -→ O(1) 4. d 2 J dt 2 = KoHY F + < Y -, H 2 Y >-→ O(2n 2 p) 5. t = -arctan dJ dt / d 2 J dt B = tH -→ O(n 2 ) 7. R = exp(B) -→ O(n 3 ) 8. W = RW -→ O(n 3 ) 9. Y = RY -→ O(n 2 p)The geodesic search method has a complexity of O(4n 2 p).