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LOCAL MATCHING INDICATORS FOR TRANSPORT

PROBLEMS WITH CONCAVE COSTS

JULIE DELON, JULIEN SALOMON, AND ANDREĬ SOBOLEVSKĬI

Abstract. In this paper, we introduce a class of local indicators that enable
to compute efficiently optimal transport plans associated to arbitrary weighted
distributions of N demands and M supplies in R in the case where the cost
function is concave. Indeed, whereas this problem can be solved linearly when
the cost is a convex function of the distance on the line (or more generally
when the cost matrix between points is a Monge matrix), to the best of our
knowledge, no simple solution has been proposed for concave costs, which are

more realistic in many applications, especially in economic situations. The
problem we consider may be unbalanced, in the sense that the weight of all
the supplies might be larger than the weight of all the demands. The local
indicators, which can been used hierarchically to solve the transportation prob-
lem for concave costs on the line, also reveal the “hidden convexity” of this
problem.

1. Introduction

The origins of optimal transportation go back to the late eighteen century, when
Monge [16] published his Mémoire sur la théorie des déblais et des remblais (1781).
The problem, which was rediscovered and further studied by Kantorovich in the
1940’s, can be described in the following way. Given two probability distributions
µ and ν on X and c a measurable cost function on X ×X , find a joint probability
measure π onX×X with marginals µ and ν and which minimizes the transportation
cost

(1)

∫ ∫
X×X

c(x, y)dπ(x, y).

Probability measures π with marginals µ and ν are called transport plans. A trans-
port plan that minimizes the cost (1) is said to be optimal.

When the measures µ and ν are discrete (linear combinations of Dirac masses),
the problem can be recast as finite linear programming. For N ≥ 1, consider
two discrete distributions of mass, or histograms, given on R

N : {(pi, si)}, which
represents “supplies” at locations pi with weights si and {(qj , dj)}, which represents
“demands” at locations qj with weights dj (notation from [1]) and assume that all
values of si and dj are positive reals with S :=

∑
i si and D :=

∑
j dj . The problem

consists in minimizing the transport cost

(2)
∑
i,j

c(pi, qj)γij ,

where γij is the amount of mass going from pi to qj , subject to the conditions

(3) γij ≥ 0,
∑
j

γij ≤ si,
∑
i

γij ≤ dj ,
∑
i,j

γij = min(S,D).
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×• ×• ×• ×• ×• ×• ×• ×•

Figure 1. On the left: optimal plan associated to a concave cost.
On the right: optimal plan associated to a convex cost. Supplies
are represented by red points and demands by blue crosses.

The matrix of values γ = {γij} is still called transport plan. When S = D, the
problem is said to be balanced and is only a reformulation of (1) for discrete mea-
sures. When S 6= D, the problem is said to be unbalanced. The cases S < D and
S > D can be treated in the same way. This paper deals with balanced problems
and unbalanced problems of the form S > D.

In the unitary case, i.e. when all the masses si and dj are equal to a single value
v, it turns out that if γ is optimal, for all i, j, γij ∈ {0, v} and for all j there exists
only one i such that γij = v (each demand receives all the mass from one supply).
In the balanced case, the matrix γ is thus a permutation matrix up to the factor v.
In the unbalanced case, the permutation matrix is padded with some zero rows. As
a consequence, the balanced case boils down to an assignment problem, known as
the linear sum assignment problem. Such problems have been thoroughly studied
by the combinatorial optimization community [6].

Optimal transportation problems appear in many fields, such as economy or
physics for instance, see e.g. [4, 9, 13]. In economic examples optimal transport
is often related to the field of logistic where supplies are furnished by producers
at specific places pi and in specific quantities di, while demands corresponds to
consumers locations and needs. Depending on the application, various cost func-
tions c can be used. For instance, concave functions of the distance appear as more
realistic cost functions in many economic situations. Indeed, as underlined by Mc-
Cann [15], a concave cost “translates into an economy of scale for longer trips and
may encourage cross-hauling.”

During the last decades, many authors have taken interest in the study of exis-
tence, uniqueness and properties of optimal plans [2, 11, 14], with a specific interest
for convex costs, i.e. costs c that can be written as convex functions of the distance
on the line. Detailed descriptions of these results can be found in the books [24, 25].
One case of particular interest is the one-dimensional case, which, when c is a con-
vex function of the distance on the line, has been completely understood [22] both
for continuous and discrete settings. Indeed, this problem has an explicit solution
that does not depend on c (provided that it is convex) and consists in a monotone
rearrangement (see Chapter 2.2 of [24]). In the unitary case, this property can
also be seen as a consequence of another interesting result, true for any dimension
N , which says that the linear sum assignement problem is solved by the identical
permutation, provided that the cost matrix (c(pi, qj))i,j is a Monge matrix 1 [6].
Several approaches have been proposed to generalize the convex one-dimensional
result to the case of the circle, where the starting point for the monotone rearrange-
ment is not known, and its choice and hence the optimal plan itself, unlike in the

1A matrix C is said to be a Monge matrix if it satisfies cij + ckl ≤ cil + ckj when i < k and

j < l.
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Figure 2. On the left: solutions associated to the concave cost
c(x, y) = |x−y|0.9, and on the right to the cost c(x, y) = |x−y|0.5.
Supplies are represented by red points and demands by blue
crosses.

case of an interval, do depend on the cost function c. Most of these approaches
concern either the unitary case [12, 27, 26, 7, 8, 23] or the more general discrete
case 2 [17, 19, 20, 18, 21]. Recently an efficient method has been introduced to tackle
this issue in a continuous setting [10]. Unfortunately, these results on the line and
the circle do not extend to non-convex costs, in particular to concave costs (see
Figure 1 for an example). Although it is of broad interest for many applications,
few works treat this case (see however the important paper [15]) and computing
solutions is far from obvious in general. Indeed, contrary to the convex case on
the line, optimal plans strongly depends on the choice of the function c. Consider
the case of two unitary supplies at positions p1 = 0 and p2 = 1.2 and two unitary
demands at positions q1 = 1 and q2 = 2.2 on the line, as drawn on Figure 2. If the
cost function is c(x, y) = |x − y|0.9, the left solution will be optimal, whereas the
other one will be chosen for c(x, y) = |x− y|0.5. For a convex cost, the left solution
would always be chosen.

In practice, when no analytic solution is given (i.e. most of the time), finding
optimal plans can be a tedious task. As underlined before, in a discrete setting,
the problem can be written as a linear programming problem, and optimal plans
can be constructed numerically by using for instance the simplex method or spe-
cialized methods such as the auction algorithms [3] and various algorithms for the
assignment problem (see [6] for details). However these methods do not take into
account essential geometric features of the problem, such as the fact that it is
one-dimensional or that the cost function is concave.

The goal of this paper is to introduce a class of functions that reveals the local
structure of optimal transport plans in the one-dimensional case, when the cost c
is a concave function of the distance. As a by-product, we build an algorithm that
permits to obtain optimal transport plans in the unitary case in less than O(N2)
operations in both balanced and unbalanced cases, where N is the number of points
under consideration. Once generalized to the non unitary case, the complexity of
this algorithm becomes O(N3) in the worst case. However, let us insist that our
aim is not to compete with recent linear assignment algorithms, which may be
more interesting in practice, at least for balanced problems, but rather to achieve a
more complete understanding of the “hidden convexity” of the assignment problem
for concave costs on the line (cf discussion in [5]). Observe that our algorithm
complements the method suggested by McCann [15], although the approach we
follow here is closer to the purely combinatorial approach of [1]. The results of this
last work, in which the cost c(x, y) = |x − y| was considered, are extended here
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to the general framework of strictly concave cost functions. (Note that the very
special case considered in [1] may be also regarded as convex, which allows to apply
the sorting algorithm on the line or results of [10] on the circle.)

The paper is organized as follows. In Section 2, we present the main result of the
paper, which states that consecutive matching points in the optimal plan can be
found thanks to local indicators, independently of other points on the line. Section 3
is devoted to different technical results, necessary to the proof of this result, which
is itself presented in Section 4. Thanks to the low number of evaluations of the cost
function required to apply the indicators, we derive in Section 5 an algorithm that
finds an optimal transport plan in O(N2) operations in the worst case. We briefly
conclude with some remarks on further improvements in Section 6.

2. Setting of the problem and main result

2.1. The optimal transport problem. This paper deals with the problem of
finding an optimal transport plan in the case where the problem contains possibly
more supplies than demands and the transport cost is strictly concave: the larger
the distance to cover is, the less the transport costs per unit distance, while the
marginal cost (the derivative of the cost function) decreases monotonicaly.

Consider two integers M , N and two sets of points P = {pi : i = 1, . . . ,M} and
Q = {qi : i = 1, . . . , N} in R that represent respectively the supply and demand
locations. Let si > 0 be the capacity of ith supply and dj > 0 the capacity of jth
demand. We suppose that S :=

∑
i si ≥ D :=

∑
j dj , i.e. that the problem may be

unbalanced.
We deal with minimizing the cost

(4) C(γ) =
∑
i,j

c(pi, qj)γij ,

where c(pi, qj) ∈ R
+ is the cost resulting from transport of a unit mass between pi

and qj . The quantity γij is the amount of mass going from pi to qj , subject for all
i, j to the conditions

(5) γij ≥ 0,
∑
j

γij ≤ si,
∑
i

γij = dj

(observe that since D ≤ S, these conditions are equivalent to (3)). We call the case
S = D balanced and the case S > D unbalanced. Observe that in the latter case
the total supply is larger that the total demand, and therefore some of the supplies
may remain underused (

∑
j γij < si).

We focus on the case where the function c involves a strictly concave function
as stated in the next definition.

Definition 1. The cost function c in (7) is said to be concave if it is defined by
c(p, q) = g(|p − q|) with p, q ∈ R, where g : R+ → R is a strictly concave non-
decreasing function such that g(0) := limx→0 g(x) ≥ −∞.

Note that strict concavity of g implies its strict monotonicity. Some examples of
such costs are given by g(x) = log x with g(0) = −∞ and g(x) =

√
x with g(0) = 0.

If g(0) > −∞, we assume without loss of generality that g(0) = 0 (this changes the
value of (4) by an amount D g(0) independent of the transport plan).

In what follows, we denote by γ⋆ a given optimal transport plan between P and
Q: C(γ⋆) ≤ C(γ) for all γ satisfying (5). Observe that if two points pi and qj have
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the same position, then there exists an optimal transport plan γ∗ between P and Q
such that γ∗

ij = min{si, dj}, i.e. that all mass shared by the two marginal measures
stays in place [24]. Indeed, suppose that a supply p and a demand q located at the
same point are not matched together but to some other demand and supply p′ and
q′ located at distances x and y respectively. Irrespective of whether g(0) = 0 or
g(0) = −∞, as soon as g is strictly concave, one has

g(0) + g(x+ y) < g(x) + g(y)

for all x, y, which implies that matching p and q is cheaper. Therefore a common
point of P and Q with unequal values si and dj may be replaced with a single
supply of capacity si − dj , if this quantity is positive, or with a single demand of
capacity dj − si. In the following, we will therefore assume that common points do
not exist, i.e. that the sets P and Q are disjoint.

2.2. The non-crossing rule. One significant feature of concave costs is that tra-
jectories of mass elements under an optimal transport plan do not cross each other,
as described by the following lemma.

Lemma 2. Consider two pairs of points (pi, qj) and (pi′ , qj′ ) such that

(6) c(pi, qj) + c(pi′ , qj′ ) ≤ c(pi′ , qj) + c(pi, qj′ ).

Then, the open intervals

I = (min(pi, qj),max(pi, qj)), I ′ = (min(pi′ , qj′ ),max(pi′ , qj′ ))

are nested, in the sense that the following alternative holds:

(1) either I ∩ I ′ is empty,
(2) or one of these intervals is a subset of the other.

This result directly follows from the concavity of the cost function and is often
referred to as the “non-crossing rule” [1, 15]. The proof is based on the same ideas
as used in [15].Essentially, the case pi < qj′ < qj < pi′ and the similar case with
p’s and q’s interchanged are ruled out in view of (6) by monotonicity of g, whereas
the case pi < pi′ < qj < qj′ and the symmetrical one are ruled out by the strict
concavity of g.

In the unbalanced case, some supplies may lie outside all nested segments.

Definition 3. A point r ∈ P ∪ Q is said to be exposed in the transport plan γ if
r /∈ (min(pi, qj),max(pi, qj)) whenever γij > 0.

Lemma 4. In the unbalanced case all underused supplies are exposed in the optimal
transport plan.

Indeed, should an underused supply pi belong to the interval between pi0 and qj0
such that γi0j0 > 0, the amount of mass equal to min{γi0j0 , si −

∑
j γij} could be

remapped to go to qj0 from pi rather than pi0 , thus reducing the total cost of
transport because of the strict monotonicity of the function g.

A first consequence of these rules is usually called the local balance of supplies
and demands: in the unitary case, there are as many supplies as demands between
any two matched points pi0 and qj0 , whereas for general real supplies and demands,
the total supply and the total demand within the interval corresponding to pi0
and qj0 with γi0j0 > 0 may differ but balance can always be achieved by including
suitable shares of si0 and dj0 (for details see subsection 2.4). This consequence
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permits to conclude that the search for optimal transport plans can be restricted
to chains defined in the following two subsections.

2.3. Chains in the unitary case. We start with the unitary case, when si =
dj = 1 for all i, j and therefore S = M and D = N ≤ M . It is well known that if
γ minimizes the cost (4) under conditions (5), then without loss of generality one
can assume that γij ∈ {0, 1} for all i, j, so that the problem can be reformulated
as finding the minimum of the quantity

(7) C(σ) =
∑

1≤j≤N

c(pσ−1(j), qj).

over all partial maps σ : {1, . . . ,M} → {1, . . . , N} whose inverse σ−1 is injective
and defined for all 1 ≤ j ≤ N : namely j = σ(i) and i = σ−1(j) iff γij = 1. We
denote by σ∗ the map for which this minimum is attained.

We now proceed to the definition of chains. Given a supply point pi, define its
left neighbor q′i as the nearest demand point on the left of pi such that the numbers
of supplies and demands in the interval (q′i, pi) are equal; define the right neighbor
q′′i of pi in a similar way. Furthermore define left and right neighbors of a demand
point qj to be the supply points that have qj as respectively their right and left
neighbor. Iterating this procedure, one obtains a subset that is preserved by σ⋆

because of the local balance property.

Definition 5 (unitary case). A chain is a maximal alternating sequence of supplies
and demands of one of the forms

(1) (pi1 , qj1 , . . . , pik , qjk),
(2) (qj1 , pi1 , . . . , qjk , pik),
(3) (pi1 , qj1 , . . . , qjk−1

, pik),

with k ≥ 1 and such that each pair of consecutive points in the sequence is made of
a point and its right neighbor.

Examples of chains are shown in Figure 3. Observe that because of Case (3),
some chains can be composed of only one (unmatched) supply, and no demand.

The importance of chains for transport optimization stems from the fact that,
according to the non-crossing rule, matching in an optimal plan can occur only
between points that belong to the same chain. Indeed, an extension of the proof
of Lemma 3 of [1] shows that the family of chains forms a partition of P ∪ Q. In
particular, if a chain is composed of a single supply, it cannot be matched in any
optimal transport plan and can thus be dismissed from the problem.

Note finally that the construction of the set of chains only depends on relative
positions of supplies and demands and does not involve any evaluation of the cost
function. The exact construction is not described here because it is subsumed by
the algorithm presented in subsection 2.5.

2.4. Chains in real-valued histograms. In this case the notions of right and left
neighbors should be defined for infinitesimal elements of supply and demand. The
corresponding definition may be given in purely intrinsic terms, but the following
graphical representation makes it more evident.

Consider the signed measure
∑

i siδpi
−∑

j djδqj on the real line, where δx is a
unit Dirac mass at x. Plot its cumulative distribution function F , whose graph has
an upward jump at each pi and a downward jumps at each qj , and augment it with
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Figure 3. Example of a problem containing two chains. Top:
chains represented as collections of dashed arcs. Bottom: chains
represented as dashed lines connecting elements of mass that are
left and right neighbors.

vertical segments to make the graph into a continuous curve (Figure 4). Thus, e.g.,
the segment corresponding to a supply point pi connects the points of the graph
with coordinates (pi, F (pi)) and (pi, F (pi+0) = F (pi)+si) (assuming left continuity
of F ). Here and below in figures similar to Figure 4 vertical segments corresponding
to supply points are plotted in red and those corresponding to demand points in
blue (color online).

Infinitesimal elements of supply and demand are pairs of the form (pi, y
′) with

F (pi) ≤ y′ ≤ F (pi + 0) and (qj , y
′′) with F (qi + 0) ≤ y′′ ≤ F (qi). Geometri-

cally a supply element (pi, y
′) (demand element (qj , y

′′)) corresponds to the point
(pi, y

′) (respectively, (qj , y
′′)) in the vertical segment corresponding to the supply pi

(demand qj) in the graph of the cumulative distribution function F (see Figure 4).
For an infinitesimal element of supply (pi, y) define

r(pi, y) = min{qj ∈ Q : qj > pi, F (qj + 0) ≤ y ≤ F (qj)},
ℓ(pi, y) = max{qj ∈ Q : qj < pi, F (qj + 0) ≤ y ≤ F (qj)}

(with the usual convention min∅ =∞, max∅ = −∞) and call the mass elements
(r(pi, y), y) and (ℓ(pi, y), y) respectively the right neighbor and the left neighbor
of (pi, y) if r(pi, y) and ℓ(pi, y) are finite. The definition of right and left neighbors
is then extended to elements of demand by defining r(qj , y) = pi whenever qj =
ℓ(pi, y) > −∞ and ℓ(qj , y) = pi whenever qj = r(pi, y) <∞. Inspection of Figure 4
should make these definitions clear.

Definition 6 (real-valued case). A chain is a sequence of elements of mass that
has one of the forms

(1) ((pi1 , y), (qj1 , y), . . . , (pik , y), (qjk , y)) with ℓ(pi1 , y) = −∞, r(qjk , y) =∞;
(2) ((qj0 , y), (pi1 , y), . . . , (qjk−1

, y), (pik , y)) with ℓ(qj0 , y) = −∞, r(pik , y) =∞;
(3) ((pi1 , y), (qj1 , y), . . . , (qjk−1

, y), (pik , y)) with ℓ(pi1 , y) = −∞, r(pik , y) =∞.

Here k ≥ 1 and qjm−1
= ℓ(pim , y) > −∞, qjm = r(pim , y) <∞ for all m betweem 1

and k except the cases specified above.



8 J. DELON, J. SALOMON, AND A. SOBOLEVSKĬI

y0 = F (q2)

y1 = F (q1)

y2 = F (q4)

y3 = F (p2)

y4 = F (p4 + 0)

y5 = F (q3)

y6 = F (p1)

y7 = F (p4)

y8 = F (p3)

•

•

•

•

×
×

×

×

µ
(p)
1,2

µ
(q)
4,3

Figure 4. Example of construction of chains for a problem with
general masses (color online). Red points and blue crosses mark the
values of the cumulative distribution function F at supply points pi
and demand points qj according to the convention of left continu-
ity. Small white circles represent a pair of neighboring demand
and supply elements. Chains connecting some neighboring mass
elements are shown with dashed lines. All chains have the same
structure in each horizontal stratum delimited with dotted lines.
Capacity mk := yk−1 − yk of stratum k measures the amount of
mass exchanged in that stratum. For example, the subsegment de-

noted µ
(p)
1,2 (resp. µ

(q)
4,3) represents the share of supply located at p1

(resp. of demand located at q4) that participates in the mass ex-
change in stratum 2 (resp. 3). Detailed explanations are given in
the text. Observe that the problem is unbalanced, and chains in
strata 5 and 6 have three supplies and two demands.

Note that chains have similar structure inside strata defined in the above graphi-
cal representation as bands separated by horizontal lines corresponding to ordinates
from the set {F (p1±0), . . . , F (pM±0), F (q1±0), . . . , F (qN ±0)}: within each stra-
tum all left and right neighbors are the same and only the y parameters differ.

2.5. Data structure and algorithm for computing chains. We now describe
how to efficiently compute and store the structure of chains and strata for a given
histogram. This discussion applies both for the real and unitary case (the latter
is degenerate in that all elements of each supply and demand point belong to a
single stratum, cf Figures 3 and 4). Our construction is an adaptation of that of
Aggarwal et al [1, Section 3] with somewhat different terminology and notation.

The basic storage structure can be described as follows. Observe that for a
supply point pi the function r(pi, ·) is piecewise constant and right continuous
on the segment [F (pi), F (pi + 0)]. For each pi build a list consisting of triples
(pi, y

′
i,m, r(pi, y

′
i.m)) in the increasing order of m ≥ 0, where y′i,0 = F (pi) and y′i.m
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×
q1

×
q2

×
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Figure 5. Lists L (solid arrows) and L0 (dashed arrows) encoding
the structure of the histogram from Figure 4. See explanations in
the text.

corresponds to mth jump of r(pi, ·) as the second argument increases. For a demand
point (qj , dj) build a similar list of triples (qj , y

′′
j,m, r(qj , y

′′
j,m)) where y′′j,0 = F (qj)

and y′′j,m decreases with m. Finally build a list L as concatenation of these lists
for all supply and demand points in P ∪ Q in the increasing order of the abscissa.
In Figure 5, which features the same histogram as Figure 4, the elements of the
combined list L are represented with thick solid arrows. Their order corresponds
to traversing the pi’s and qj ’s left to right and for each of these points, to listing
the right neighbors in the increasing order of y for pi and in the decreasing order
of y for qj : in short, to traversing the continuous broken line formed by the graph
of F together with the red and blue vertical segments.

Note that all elements in L that start with pi have one of the two following forms:
(pi, F (pi), qj) with qj = r(pi, F (pi)) or (pi, F (qj +0), qj) with pi = ℓ(qj , F (qj +0)).
Similarly, elements starting with qj have either the form (qj , F (qj), pi) with pi =
r(qj , F (qj)) or (qj , F (pi + 0), pi) with qj = ℓ(pi, F (pi + 0)). Therefore all elements
of L involve one of the values F (pi ± 0) or F (qj ± 0) and hence L has at most
2(M+N) elements. To see this refer to Figure 5 and observe, e.g., that the function
r(pi, ·) has a jump at y only when, during the upward scan of the vertical segment
corresponding to supply pi, one encounters on the right the bottom end of a vertical
segment corresponding to qj = r(pi, y) (i.e., the point with y = F (qj + 0)). A
similar observation holds for downward scan of segments corresponding to demand
elements.

The list L can be regarded as a “dictionary” that allows to look up the right
neighbor of any supply element (p, y) or demand element (q, y). To do this, e.g.,
for (p, y), locate in L an element (p̄, ȳ) immediately preceding (p, y) and return
the element (r(p̄, ȳ), y). Again, inspection of Figure 5 should convince the reader
that this procedure is correct. Note that the search operation in an ordered list of
length O(M +N) requires an O(log(M +N)) number of comparisons.
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The list L can be built in a linear number of operations O(M + N) using the
following algorithm. Here Sp, Sq are stacks storing pairs of the form (r,X) where
r ∈ P ∪Q and X ∈ R.

Algorithm 1. • Set Sp ← ∅, Sq ← ∅, list L ← ∅, f ← S−D, p← maxP ,
q ← maxQ;
• loop A:

– if p = −∞ and q = −∞ then break loop A;
– else if p > q then

∗ set s← supply value of p, P ← P \ {p};
∗ loop B:

· if Sq = ∅ then prepend (p, f − s,∞) to L and break loop B;
· pop the pair (q′, f ′) from stack Sq;
· if f ′ ≤ f − s then prepend (p, f − s, q′) to L, push the pair
(q′, f ′) on stack Sq if f ′ < f − s, and break loop B;
· else prepend (p, f ′, q′) to L;

∗ repeat loop B;
∗ push the pair (p, f) on stack Sp and set f ← f − s, p← maxP ;

– else if p < q then
∗ set d← demand value of q, Q← Q \ {q};
∗ loop C:

· if Sp = ∅ then prepend (q, f +d,∞) to L and break loop C;
· pop the pair (p′, f ′) from stack Sp;
· if f ′ ≥ f + d then prepend (q, f + d, p′) to L, push (p′, f ′)
on stack Sp if f ′ > f + d, and break loop C;
· else prepend (q, f ′, p′) to L;

∗ repeat loop C;
∗ push the pair (q, f) on stack Sq and set f ← f + d, q ← maxQ;

– end if;
• repeat loop A;
• stop.

Observe that if f is initialized with S −D = F (∞), then at the exit of loop A it
will contain F (−∞) = 0. However it is possible to initialize f with any other value,
e.g. 0, in which case its exit value will be smaller exactly by the amount S −D. It
is therefore not necessary to compute this quantity beforehand.

To find leftmost mass elements of chains we also need a list L0 of a similar
format that stores “right neighbors of −∞.” To build this list, a variant of the
above procedure is used. While the list L was built by “prepending” elements,
i.e., adding them in front of the list, the following algorithm uses both prepending
and appending, i.e. adding new elements at the end of the list. The stacks Sp, Sq
and the variable f are assumed to be in the same state as at the end of loop A,
in particular the stacks contain exactly those p and q points whose corresponding
vertical segments are “visible from −∞.”

Algorithm 2. • Set lists L0 ← ∅, L′ ← ∅, L′′ ← ∅;
• repeat until Sq 6= ∅:

– pop the pair (q′, f ′) from stack Sq and append (−∞, f ′, q′) to L′′;
• repeat until Sp 6= ∅:



LOCAL MATCHING INDICATORS FOR TRANSPORT PROBLEMS WITH CONCAVE COSTS11

– pop the pair (p′, f ′) from stack Sp and prepend (−∞, f ′, p′) to L′;
• if L′ = ∅ then

– set (−∞, q′, f ′)← the first element of L′′ and append (−∞, f, q′) to L0;
• else

– set (−∞, p′, f ′)← the last element of L′;
– if L′′ = ∅ then append (−∞, f, p′) to L0;
– else

∗ set (−∞, q′, f ′)← the first element of L′′;
∗ append (−∞, f,min{p′, q′}) to L0;

– end if;
• end if;
• set L0 ← concatenation of L′, L0 and L′′.

Finally the list L is scanned and the values F (pi ± 0), F (qj ± 0), which appear
as second elements of its constituent triples and define locations of the dotted lines
separating strata, are sorted in decreasing order to give the sequence

y0 > y1 > · · · > yK ,

where K is the number of strata, k-th stratum by definition lies between yk−1

and yk, and 1 ≤ K ≤ M + N (K = M + N = 8 in the example of Figures 4, 5).
This is the only stage in the process of building the data structure that requires a
superlinear number of operations, namely O((M +N) log(M +N)).

2.6. Chain decomposition of transport optimization. Observe that the ini-
tial transport optimization problem can be replaced with a problem of transporting
the Lebesgue measure supported on “red” vertical segments (representing supply)
to the Lebesgue measure supported on their “blue” counterparts (representing de-
mand). The cost function c̄ in the new problem is defined for all points of these
vertical segments, i.e., mass elements, but depends only on their horizontal coordi-
nates: c̄(pi, y

′, qj , y
′′) = c(pi, qj).

Define the capacity of k-th stratum as mk = yk−1 − yk and the share of sup-

ply pi (demand qj) in stratum k as µ
(p)
i,k = mk if F (pi) ≤ yk < yk−1 ≤ F (pi + 0)

(respectively, µ
(q)
j,k = mk if F (qi) ≥ yk−1 > yk ≥ F (qi + 0)) and 0 otherwise. For

the vertical segments representing supply and demand graphically, shares are equal
to the lengths of their pieces contained between the dotted lines (Figure 4); we

will use notation µ
(p)
i,k , µ

(q)
j,k for these subsegments as well. Note that

∑
k µ

(p)
i,k = si

(respectively,
∑

k µ
(q)
j,k = dj).

Definition 7. For a given histogram with supplies (pi, si) and demands (qj , dj)
define a stratified transport plan as the set of nonnegative values (γi,k;j,ℓ), where
1 ≤ i ≤ M , 1 ≤ j ≤ N , and 1 ≤ k, ℓ ≤ K, such that the following conditions are
satisfied:

(8)
∑
i,k

γi,k;j,ℓ = µ
(q)
j,ℓ for all j, ℓ,

∑
j,ℓ

γi,k;j,ℓ ≤ µ
(p)
i,k for all i, k.

Note that the numbers

(9) γij =
∑
k,ℓ

γi,k;j,ℓ
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form an admissible transport plan (i.e., all conditions (3) are satisfied). We will call
this plan the projection of the stratified plan in question. The cost of a stratified
transport plan is defined as

∑
i,k,j,ℓ c(pi, qj) γi,k;j,ℓ; of course it coincides with the

cost of its projection.
Conversely, let γ = (γij), 1 ≤ i ≤ M , 1 ≤ j ≤ N be an admissible transport

plan; we call a stratified transport plan that satisfies (9) a stratification of γ. Any
admissible transport plan admits a non-empty set of stratifications. Indeed, it is

easy to check that e.g. for γi,k;j,ℓ = γijµ
(p)
i,kµ

(q)
j,ℓ /sidj all conditions (8)– (9) are

satisfied.
We now prove that any optimal transport plan in the initial problem can be

“lifted” to a bundle of disjoint transport plans operating in individual strata. There-
fore to solve the transport optimization problem for histograms with general real
values of supply and demand, it suffices to split the problem into transportation
problems inside strata, where they reduce to the unitary case because the mass
exchanged in each stratum equals its capacity, and solve these problems one by
one.

Lemma 8. An optimal transport plan γ̄ admits a stratification (γ̄i,k;j,ℓ) that sat-
isfies γ̄i,k;j,ℓ = 0 whenever ℓ 6= k

Proof. Indeed, let (γi,k;j,ℓ) be any stratification of γ̄ and suppose that γi0,k0;j0,ℓ0 > 0
with ℓ0 6= k0. Without loss of generality we restrict the argument to the case
pi0 < qj0 .

Suppose first that ℓ0 > k0, i.e., that the demand subsegment µ
(q)
j0,ℓ0

occupies a

lower stratum than the supply subsegment µ
(p)
i0,k0

. The total supply located between

these subsegments, i.e., the sum of all µ
(p)
i0,k

with k < k0 and µ
(p)
i,k with pi0 < pi < qj0 ,

is then smaller than the total demand between these subsegments, i.e., the sum of

all µ
(q)
j,ℓ with pi0 < qj < qj0 and all µ

(q)
j0,ℓ

with ℓ < ℓ0. (From inspection of Figure 4

it should be easy to see that their difference is equal to
∑

k0≤s<ℓ0
ms, although we

will not need this quantity here.) Since the first condition (8) must be fulfilled for

all j, ℓ, it follows that some demand share µ
(q)
j′,ℓ′ located between µ

(p)
i0,k0

and µ
(q)
j0,ℓ0

in just defined sense must be satisfied with supplies located outside. But this leads
to crossing of the corresponding trajectories (cf Lemma 2), which implies that the
total cost of the plan (γi,k;j,ℓ) can be at least preserved, or even reduced, by a
suitable rescheduling of mass elements.

Now suppose that ℓ0 < k0. This implies the existence of extra supply µ
(p)
i′,k′

between µ
(p)
i0,k0

and µ
(q)
j0,ℓ0

. If this supply share is matched, it has to feed some
demand located outside, which again leads to crossing and can be ruled out just as
above. If this supply share is not matched (which may happen in an unbalanced
problem), then it can be matched to the nearest demand share located between

µ
(p)
i0,k0

and µ
(q)
j0,ℓ0

, thus reducing the total cost. Here the “nearest” demand share

is defined as µ
(q)
j,ℓ with either the smallest qj > pi′ and the smallest ℓ such that

µ
(q)
j,ℓ > 0, or the largest qj < pi′ and the largest ℓ such that µ

(q)
j,ℓ > 0, depending

on which qj is closer to pi′ . In all cases we have a contradiction with the original
assumption. �
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Most of the rest of the paper deals with the research of optimal transport plans
in the case of chains: we focus in the sequel on the cases where P and Q satisfy
M = N (balanced case) and

(10) p1 < q1 < ... < pi < qi < pi+1 < qi+1 < ... < pN < qN ,

or M = N + 1 (unbalanced case) and

(11) p1 < q1 < ... < pi < qi < pi+1 < qi+1 < ... < pN < qN < pN+1.

In these cases the set P ∪Q is called balanced chain and unbalanced chain respec-
tively.

2.7. Main result. Thanks to the non-crossing rule, one knows that in any optimal
transport plan there exist at least two consecutive points (pi, qi) or (qi, pi+1) that
are matched. Starting from this remark, we take advantage of the structure of a
chain to introduce a class of indicators that enable to detect a priori such pairs of
points.

Definition 9 (Local Matching Indicators of order k). Given k > 0, consider 2k+2
consecutive points in a chain. If the first point is a supply pi, define

Ipk (i) = c(pi, qi+k) +
k−1∑
ℓ=0

c(pi+ℓ+1, qi+ℓ)−
k∑

ℓ=0

c(pi+ℓ, qi+ℓ),

else denote the first point qi and define

Iqk(i) = c(pi+k+1, qi) +
k∑

ℓ=1

c(pi+ℓ, qi+ℓ)−
k∑

ℓ=0

c(pi+ℓ+1, qi+ℓ).

This definition is schematically depicted in Figure 6 in the case k = 2.

• • •× × × − • • •× × ×

Figure 6. Schematic representation of an indicator of order 2.

Note that in the first alternative of this definition, we have necessarily 1 ≤ k ≤
N − 1, 1 ≤ i ≤ N −k. In the second alternative, we have necessarily 1 ≤ k ≤ N − 2
and 1 ≤ i ≤ N − k − 1 in the balanced case and 1 ≤ k ≤ N − 1 and 1 ≤ i ≤ N − k
in the unbalanced case. The interest of these functions lies in the next result.

Theorem 10 (Negative Local Matching Indicators of order k). Let k0 ∈ N with
1 ≤ k0 ≤ N − 1 and i0 ∈ N, such that 1 ≤ i0 ≤ N − k0. In the unbalanced case,
suppose in addition that g is strictly monotone.

Assume that

(1) Ipk (i) ≥ 0 for k = 1, ..., k0 − 1, i0 ≤ i ≤ i0 + k0 − k,
(2) Iqk(i

′) ≥ 0 for k = 1, ..., k0 − 1, i0 ≤ i′ ≤ i0 + k0 − k − 1, (resp. 1 ≤ i′ ≤
i0 + k0 − k in the unbalanced case)

(3) Ipk0
(i0) < 0.
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• • •× × × < • • •× × ×

⇓
• • •× × ×

Figure 7. Schematic representation of the result of Theorem 10
in the case k0 = 1.

Then any permutation σ associated to an optimal transport plan satisfies σ(i) =
i− 1 for i = i0 + 1, ..., i0 + k0.

If the third condition is replaced by Iqk0
(i0) < 0 (with the same bounds on k0 and

i0 in the unbalanced case, and with 1 ≤ k0 ≤ N − 2 and 1 ≤ i0 ≤ N − k0 − 1 in
the balanced case), then any permutation σ associated to an optimal transport plan
satisfies σ(i) = i for i = i0 + 1, ..., i0 + k0.

This result is represented in broad outline in Figure 7. For practical purposes,
these indicators allow to find pairs of neighbors that are matched in an optimal
transport plan.

3. Technical results

This section aims at introducing technical results that are required to prove
Theorem 10. We keep the notations introduced therein. We start with a basic
result that plays a significant role in the proof of Theorem 10. As for the non-
crossing rule, the concavity of the cost function is an essential assumption of this
lemma.

Lemma 11. We keep the previous notations. For x, y ∈ R
+, define

ϕp
k,i(x, y) = g(x+y+qi+k−pi)+

k−1∑
ℓ=0

c(pi+ℓ+1, qi+ℓ)−g(x)−g(y)−
k−1∑
ℓ=1

c(pi+ℓ, qi+ℓ),

for k, i ∈ N, such that 1 ≤ k ≤ N − 1 and 1 ≤ i ≤ N − k, and

ϕq
k,i(x, y) = g(x+y+pi+k+1−qi)+

k∑
ℓ=1

c(pi+ℓ, qi+ℓ)−g(x)−g(y)−
k−1∑
ℓ=1

c(pi+ℓ+1, qi+ℓ),

for k, i ∈ N, such that 1 ≤ k ≤ N − 2 and 1 ≤ i ≤ N − k − 1 in the balanced case
and 1 ≤ k ≤ N − 1 and 1 ≤ i ≤ N − k in the unbalanced case. Both functions
ϕp
k,i(x, y) and ϕq

k,i(x, y) are decreasing with respect to each of their two variables.

This lemma is a direct consequence of the concavity of the function g. To deal
with unbalanced chains, we need two additional lemmas, one of them requiring that
g is strictly monotone. The first result is a simple extension of a lemma usually
referred as “The rule of three” in the literature [15].
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Lemma 12 (“rule of three”). Suppose that g is strictly monotone. Under the
assumptions (1–3) of Theorem 10, the following inequalities are satisfied

|qj − pj+1| < min(|pi0 − qj |, |pj+1 − qi0+k0
|), ∀j ∈ {i0, . . . , i0 + k0 − 1}.

If Iqk0
(i′0) < 0 instead of Ipk0

(i0) < 0, the inequalities become

|pj − qj | < min(|qi0 − pj|, |qj − pi0+k0+1|), ∀j ∈ {i0 + 1, . . . , i0 + k0}.
Proof: Assumption (3) of Theorem 10 implies that

c(qj , pj+1) + c(pi0 , qi0+k0
) <

i0+k0∑
i=i0

c(pi, qi)−
i0+k0−1∑

i=i0

c(pi+1, qi) + c(qj , pj+1).

Now, because of Assumption (1), we have Ipj−i0
(i0) ≥ 0 and Ipi0+k0−j−1(j + 1) ≥ 0,

which means that
j∑

i=i0

c(pi, qi) ≤ c(pi0 , qj) +

j−1∑
i=i0

c(pi+1, qi)

and
i0+k0∑
i=j+1

c(pi, qi) ≤ c(pj+1, qi0+k0
) +

i0+k0−1∑
i=j+1

c(pi+1, qi).

Thus,
c(qj , pj+1) + c(pi0 , qi0+k0

) < c(pi0 , qj) + c(pj+1, qi0+k0
).

Since g is strictly increasing and since |pi0−qi0+k0
| ≥ max(|pi0−qj|, |pj+1−qi0+k0

|),
this implies that |pj+1− qj| < min(|pi0 − qj |, |pj+1− qi0+k0

|). The result in the case
Iqk0

(i′0) < 0 can be deduced by symmetry. �

Note that in this proof, only the fact that the cost is an strictly increasing
function of the distance is necessary. In particular the result also holds in the case
where the cost function is increasing and convex.

Lemma 13 (“partial sums”). Under the assumptions of Theorem 10, for any ℓ in
{i0 + 1, . . . , i0 + k0} and ℓ′ in {i0, . . . , i0 + k0 − 1}, the following inequalities are
satisfied:

(12)

ℓ−1∑
i=i0

c(pi, qi) >

ℓ−1∑
i=i0

c(pi+1, qi),

and

(13)

i0+k0∑
i=ℓ′+1

c(pi, qi) >

i0+k0−1∑
i=ℓ′

c(pi+1, qi).

Proof: In order to prove inequality (12), remark that since Ipi0(k0) < 0

ℓ−1∑
i=i0

c(pi, qi) =

i0+k0∑
i=i0

c(pi, qi)−
i0+k0∑
i=ℓ

c(pi, qi)

> c(pi0 , qi0+k0
) +

i0+k0−1∑
i=i0

c(pi+1, qi)−
i0+k0∑
i=ℓ

c(pi, qi),
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for ℓ such that i0 + 1 ≤ ℓ ≤ i0 + k0. Moreover, since Ipi0+k0−ℓ(ℓ) ≥ 0 and g is
increasing,

ℓ−1∑
i=i0

c(pi, qi) > c(pi0 , qi0+k0
) +

i0+k0−1∑
i=i0

c(pi+1, qi)− c(pℓ, qi0+k0
)−

i0+k0−1∑
i=ℓ

c(pi+1, qi),

which leads to the inequality (12). The proof of Equation (13) follows the same
path. �

On the contrary to the previous results, the next lemma will not be used in the
proofs of this paper. We state it since it permits to detect isolated point, hence, it
can be used to save computational time.

Lemma 14 (“isolation rule”). Suppose that g is strictly monotone. If pi is an
unmatched point in the unbalanced chain (11), then if i > 1

c(pi, qi−1) ≥ c(pi−1, qi−1)

and if i < N

c(pi, qi) ≥ c(pi+1, qi).

Proof: Assume for instance that i > 1 and c(pi, qi−1) < c(pi−1, qi−1). Thanks to
Lemma 4, pi is isolated, and consequently σ−1(i − 1) ≤ i − 1. Thus, c(pi, qi−1) <
c(pi−1, qi−1) ≤ c(pσ−1(i−1), qi−1). It is then cheaper to exclude pσ−1(i−1) and match
pi with qi−1, which contradicts the optimality of σ. �

4. Proof of Theorem 10

We are now in the position to prove our main result. In a first part we focus on
the balanced case, and then go to the unbalanced case, which requires more efforts.

4.1. The balanced case. Consider the balanced case, i.e., the situation corre-
sponding to (10). We focus on the case where Ipk0

(i0) < 0. The case Iqk0
(i′0) < 0

can be treated the same way.
The proof consists in proving that Assumptions (1–3) of Theorem 10 imply that

neither demand nor supply points located between pi0 and qi0+k0
can be matched

with points located outside this interval, i.e. that the set Si0 = {pi, i0 + 1 ≤ i ≤
i0 + k0} ∪ {qi, i0 ≤ i ≤ i0 + k0 − 1} is invariant under an optimal transport plan.
In this case, the result follows from Assumption (1–2).

Suppose that Si0 is not preserved by an optimal transport plan σ⋆. Three cases
can occur:

a) There exists i1 ∈ N, such that 1 ≤ i1 ≤ i0 and i0 ≤ σ⋆(i1) ≤ i0 + k0 − 1 and
there exists i′1 ∈ N, such that σ⋆(i1)+1 ≤ i′1 ≤ i0+k0 and i0+k0 ≤ σ⋆(i′1) ≤ N .

b) There exists i2 ∈ N, with i0 + 1 ≤ i2 ≤ i0 + k0 such that 1 ≤ σ⋆(i2) ≤ i0 − 1.
c) There exists i2 ∈ N, with i0 + k0 < i2 ≤ N such that i0 ≤ σ⋆(i2) < i0 + k0.

We first prove that Case a) cannot occur.
In Case a), one can assume without loss of generality that σ⋆(i1) is the largest

index such that 1 ≤ i1 ≤ i0, i0 ≤ σ⋆(i1) ≤ i0 + k0 − 1 and that i′1 is the smallest
index such that σ⋆(i1) + 1 ≤ i′1 ≤ i0 + k0, i0 + k0 ≤ σ⋆(i′1) ≤ N . Assume also that
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we are not in Cases b) or c). With such assumptions, the (possibly empty) subset
{pi, σ⋆(i1) + 1 ≤ i ≤ i′1 − 1} ∪ {qi, σ⋆(i1) + 1 ≤ i ≤ i′1 − 1} is stable by σ⋆. Because
of Assumptions (1–2), no nesting (i.e. no pair of nested matchings) can occur in
this subset, and σ⋆(i) = i for i = σ⋆(i1) + 1, ..., i′1 − 1.

On the other hand, since σ⋆ is optimal, one has:

c(pi1 , qσ⋆(i1))+c(pi′
1
, qσ⋆(i′

1
))+

i′
1
−1∑

i=σ⋆(i1)+1

c(pi, qi) ≤ c(pi1 , qσ⋆(i′
1
))+

i′
1
−1∑

i=σ⋆(i1)

c(pi+1, qi).

Thanks to Lemma 11, one deduces from this last inequality that:

c(pi0 , qσ⋆(i1))+c(pi′
1
, qi0+k0

)+

i′
1
−1∑

i=σ⋆(i1)+1

c(pi, qi) ≤ c(pi0 , qi0+k0
)+

i′
1
−1∑

i=σ⋆(i1)

c(pi+1, qi),

and then:

c(pi0 , qσ⋆(i1)) +

σ⋆(i1)−1∑
i=i0

c(pi+1, qi) + c(pi′
1
, qi0+k0

) +

i0+k0−1∑
i=i′

1

c(pi+1, qi)

+

i′
1
−1∑

i=σ⋆(i1)+1

c(pi, qi) ≤ c(pi0 , qi0+k0
) +

i0+k0−1∑
i=i0

c(pi+1, qi).(14)

According to Assumption (1), Ip
σ⋆(i1)−i0

(i0) ≥ 0 and Ip
i0+k0−i′

1

(i′1) ≥ 0, so that:

σ⋆(i1)∑
i=i0

c(pi, qi) ≤ c(pi0 , qσ⋆(i1)) +

σ⋆(i1)−1∑
i=i0

c(pi+1, qi)

i0+k0∑
i=i′

1

c(pi, qi) ≤ c(pi′
1
, qi0+k0

) +

i0+k0−1∑
i=i′

1

c(pi+1, qi).

Combining these last inequalities with (14) one finds that:

i0+k0∑
i=i0

c(pi, qi) ≤ c(pi0 , qi0+k0
) +

i0+k0−1∑
i=i0

c(pi+1, qi),

which contradicts Assumption (3).
Let us now prove that Cases b) and c) contradict the assumptions. As Cases b)

and c) can be treated in the same way, we only consider Case b). Without loss of
generality, one can assume that i2 is the smallest index such that i0 + 1 ≤ i2 ≤
i0 + k0 and σ⋆(i2) ≤ i0 − 1. Because there are necessarily as many demands as
supplies between qi0 and pi2 , there exists one and only one index i′2 such that
i0 ≤ σ⋆(i′2) ≤ i2 − 1 and 1 ≤ i′2 ≤ i0. Consequently, the (possibly empty) subsets
{pi, i0 + 1 ≤ i ≤ σ⋆(i′2)} ∪ {qi, i0 ≤ i ≤ σ⋆(i′2) − 1} and {pi, σ⋆(i′2) + 1 ≤ i ≤
i2−1}∪{qi, σ⋆(i′2)+1 ≤ i ≤ i2−1} are stable by an optimal transport plan. Because
of Assumptions (1–2), no nesting can occur in these subsets, and σ⋆(i) = i − 1 for
i = i0 + 1, ..., σ⋆(i′2) and σ⋆(i) = i for i = σ⋆(i′2) + 1, ..., i2 − 1.
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On the other hand, since σ⋆ is optimal, one has

c(pi2 , qσ⋆(i2)) + c(pi′
2
, qσ⋆(i′

2
)) +

σ⋆(i′
2
)∑

i=i0+1

c(pi, qi−1) +

i2−1∑
i=σ⋆(i′

2
)+1

c(pi, qi)

≤ c(pi′
2
, qσ⋆(i2)) +

i2∑
i=i0+1

c(pi, qi−1).

Thanks to Lemma 11, one deduces from this last inequality that:

c(pi2 , qσ⋆(i2)) + c(pi0 , qσ⋆(i′
2
)) +

σ⋆(i′
2
)∑

i=i0+1

c(pi, qi−1) +

i2−1∑
i=σ⋆(i′

2
)+1

c(pi, qi)

≤ c(pi0 , qσ⋆(i2)) +

i2∑
i=i0+1

c(pi, qi−1).(15)

Because the cost is supposed to be increasing with respect to the distance, one finds
that c(pi0 , qσ⋆(i2)) ≤ c(pi2 , qσ(i2)), so that (15) implies:

c(pi0 , qσ⋆(i′
2
)) +

σ⋆(i′
2
)∑

i=i0+1

c(pi, qi−1) +

i2−1∑
i=σ⋆(i′

2
)+1

c(pi, qi) ≤
i2∑

i=i0+1

c(pi, qi−1),

and then:

c(pi0 , qσ⋆(i′
2
)) +

σ⋆(i′
2
)∑

i=i0+1

c(pi, qi−1) +

i2−1∑
i=σ⋆(i′

2
)+1

c(pi, qi) +

i0+k0∑
i=i2+1

c(pi, qi−1)

≤
i0+k0∑
i=i0+1

c(pi, qi−1).(16)

According to Assumption (1), Ip
σ⋆(i′

2
)−i0

(i0) ≥ 0, so that:

σ⋆(i′
2
)∑

i=i0

c(pi, qi) ≤ c(pi0 , qσ⋆(i′
2
)) +

σ⋆(i′
2
)−1∑

i=i0

c(pi+1, qi).

Combining these last inequalities with (16) one finds that:

i0+k0∑
i=i0

c(pi, qi) ≤ c(pi0 , qi0+k0
) +

i0+k0−1∑
i=i0

c(pi+1, qi),

which contradicts Assumption (3).
We have then shown that neither demand nor supply points located between pi0

and qi0+k0+1 can be matched with points located outside this interval. The set Si0
is then stable by an optimal transport plan. According to Assumption (1–2), no
nesting can occur in Si0 . The result follows. �
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4.2. The unbalanced case. In this section, we show that Theorem 10 still holds
in the unbalanced case.
Observe first that none of the points pj , i0+1 ≤ j ≤ i0+k0 can remain unmatched
in an optimal transport plan. Indeed, assume on the contrary that there exists ℓ
in {i0+1, . . . , i0+ k0} such that pℓ is unmatched in the optimal transport plan σ⋆.
According to Lemma 13

ℓ−1∑
i=i0

c(pi, qi) >

ℓ−1∑
i=i0

c(pi+1, qi).

Therefore we cannot have σ⋆(i) = i for i = i0, . . . , ℓ − 1: otherwise it would be
possible to rematch all the points qi in this interval to their right neighbors and
reduce the cost. Hence, as the point pℓ is unmatched and isolated, there exists m
in {i0, . . . , ℓ − 1} such that (σ⋆)−1(m) < i0. Choose m to be the greatest value of
the index with this property and observe that we have σ⋆(i) = i) for all i in the
(possibly empty) interval m+1 ≤ i ≤ ℓ− 1. Now, since g is an increasing function,

c(p(σ⋆)−1(m), qm) +

ℓ−1∑
i=m+1

c(pi, qi) > c(pi0 , qm) +

ℓ−1∑
i=i0

c(pi, qi)−
m∑

i=i0

c(pi, qi)

Using again Equation (12) of Lemma 13, one deduces from this last inequality that

c(p(σ⋆)−1(m), qm) +
ℓ−1∑

i=m+1

c(pi, qi) > c(pi0 , qm) +
ℓ−1∑
i=i0

c(pi+1, qi)−
m∑

i=i0

c(pi, qi).

It follows from this and from Ipm−i0
(i0) ≥ 0 that

c(p(σ⋆)−1(m), qm) +

ℓ−1∑
i=m+1

c(pi, qi) > c(pi0 , qm) +

m−1∑
i=i0

c(pi+1, qi)

+
ℓ−1∑
i=m

c(pi+1, qi)−
m∑

i=i0

c(pi, qi)

≥
ℓ−1∑
i=m

c(pi+1, qi).

In other words, it is cheaper to match each qi, m ≤ i ≤ ℓ−1, with its right neighbor
pi+1 and to exclude p(σ⋆)−1(m) than to match each qi with its neighbor pi and to
exclude pℓ. In all cases, the point pℓ cannot remain unmatched.

If the point pi0 is matched in the transport plan σ⋆, then we can conclude
by the already proved first part of Theorem 10 that σ⋆(i) = i − 1 for i = i0 +
1, ..., i0 + k0 (according to Lemma 4 unmatched points are isolated, the existence
of an unmatched pj outside of [pi0 , qi0+k0

] has no consequence on this result).
Now, assume that pi0 remains unmatched and that there existsm in i = i0, ..., i0+

k0 − 1 such that (σ⋆)−1(m) 6= m + 1. Since pi0 is isolated, and since matched
points are either neighbors or separated by more than 2k0 points, (σ⋆)−1(m) >
i0 + k0. One can assume without loss of generality that m is the largest in-
dex in {i0, . . . , i0 + k0 − 1} satisfying (σ⋆)−1(m) > i0 + k0. Now, because of
the rule of three, we know that |pi0+k0

− qi0+k0−1| < |pi0+k0
− qi0+k0

|. Thus
(σ⋆)−1(i0 + k0 − 1) ≤ i0 + k0, otherwise there would exist qj , with j ≥ i0 + k0
such that |pi0+k0

− qj | < |pi0+k0
− qi0+k0−1| (again, because of the rule of three),
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which contradicts the previous inequality. It follows that m < i0 + k0 − 1. Two
cases can occur: either (σ⋆)(i) = i for all i in {m + 1, . . . i0 + k0}, or there exists
one (and only one) supply pk in {m+ 1, i0 + k0} such that σ⋆(k) > i0 + k0. This
cannot happen for two different supplies in {m+1, i0 + k0}, otherwise there would
be another demand qℓ between these supplies such that (σ⋆)−1(ℓ) > i0 + k0.

In the first case, thanks to equation (13)

c(qm, p(σ⋆)−1(m)) +

i0+k0∑
i=m+1

c(pi, qi) > c(qm, p(σ⋆)−1(m)) +

i0+k0−1∑
i=m

c(pi+1, qi)

> c(qi0+k0
, p(σ⋆)−1(m)) +

i0+k0−1∑
i=m

c(pi+1, qi),

which contradicts the optimality of σ⋆.
In the second case, since Ipk0

(i0) < 0,

c(qm, p(σ⋆)−1(m)) +

k−1∑
i=m+1

c(pi, qi) + c(pk, qσ⋆(k)) > c(qm, p(σ⋆)−1(m)) + c(pk, qσ⋆(k))

+c(pi0 , qi0+k0
) +

i0+k0−1∑
i=i0

c(pi+1, qi)−
m∑

i=i0

c(pi, qi)−
i0+k0∑
i=k

c(pi, qi).

Now, since Ipm−i0
(i0) ≥ 0 and Ipi0+k0−k(k) ≥ 0, this inequality yields

c(qm, p(σ⋆)−1(m)) +

k−1∑
i=m+1

c(pi, qi) + c(pk, qσ⋆(k)) > c(qm, p(σ⋆)−1(m))

+c(pk, qσ⋆(k))− c(pk, qi0+k0
) + c(pi0 , qi0+k0

)− c(pi0 , qm) +

k−1∑
i=m

c(pi+1, qi).

The two differences that appear in the right-hand side are positive so that

c(qm, p(σ⋆)−1(m)) +

k−1∑
i=m+1

c(pi, qi) + c(pk, qσ⋆(k)) ≥ c(qσ⋆(k), p(σ⋆)−1(m))

+
k−1∑
i=m

c(pi+1, qi),

which also contradicts the optimality of σ⋆.
By symmetry, the theorem remains valid in the case where Iqk0

(i′0) < 0 instead

of Ipk0
(i0) < 0. �

5. Algorithm

In this section, we derive from Theorem 10 a simple algorithm to compute the
optimal transport plan in the case of chains and give details about its implementa-
tion and complexity. For the sake of simplicity, we only consider the balanced case.
The unbalanced case can be treated in the same way.
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5.1. Computation of optimal transport plans for chains. The recursive use
of the local matching indicators defined in Definition 9 is on the basis of the next
algorithm.

Algorithm 3. • Set P = {p1, ..., pN , q1, ..., qN}, ℓp = (1, ..., N), ℓq = (1, ..., N),
and k = 1;
• while P 6= ∅ and k < N

(1) compute Ipk (i) and Iqk(i
′) for i = 1, ..., N − k and i′ = 1, ..., N − k− 1;

(2) define

Ipk = {i0, 1 ≤ i0 ≤ N − k, Ipk (i0) < 0},
Iqk = {i0, 1 ≤ i0 ≤ N − k − 1, Iqk(i0) < 0};

(3) if Ipk = ∅ and Iqk = ∅, then set k = k + 1;
(4) else do

– for all i0 in Ipk and for i = i0 + 1, ..., i0 + k, do
∗ define σ⋆(ℓpi ) = ℓqi−1,
∗ remove {pℓp

i
, qℓq

i−1

} from P,
∗ remove ℓpi and ℓqi from ℓp and ℓq respectively;

– for all i′0 in Iqk and for i = i′0 + 1, ..., i′0 + k, do
∗ define σ⋆(ℓpi ) = ℓqi ,
∗ remove {pℓpi , qℓqi } from P,
∗ remove ℓpi and ℓqi from ℓp and ℓq respectively;

– set N = 1
2Card(P), and rename the points in P such that

P = {p1, ..., pN , q1, ..., qN},
p1 < q1 < ... < pi < qi < pi+1 < qi+1 < ... < pN < qN ;

– set k = 1;
• if k = N − 1, for i = 1, ..., N set σ⋆(ℓpi ) = ℓqi .

An alternative algorithm consists in testing the sign of each Ipk (i) and Iqk(i
′) as

soon as they have been computed and remove the corresponding pairs of points if
a negative value is found. What follows also holds for this variant.

5.2. About the implementation and the complexity. The cost of the algo-
rithm can be estimated through the number of additions and evaluations of the cost
function that are required to terminate the algorithm. These operations are only
carried out in Step 1, when computing the indicators. This section aims at giving
details about efficient ways to implement this step and about the complexity of the
resulting procedure.

5.2.1. Implementation through a table of indicators. We first define a table that
collect the values of indicators and then describe a way to update it. The aim of
this structure is to avoid redundant computations. We present it in the balanced
case (see (10)).

Consider a table of N − 1 lines, where the lines correspond to the values of the
indicators of order k. The line k has 2N−1−2k entries corresponding to the N−k
values of the indicators Ipk and the N − k − 1 values of the indicators Iqk . At the
beginning of the algorithm, the table is empty and Step 1 consists in filling the line
k of the table. Let us explain how to modify the table in case a negative indicator
has been found.
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Following the assumptions of Theorem 10, consider the case where all the indi-
cators that have been computed currently are positive except the last one, de-
noted by Ipk0

(i0) < 0. According to Step 4, k0 pairs of supply and demand
have to be matched and removed from the current list of points P . Doing this,
the table loses k0 lines. In each line k < N − k0 − 1 of the new table, only
min(i0− k0+ k, 2N − 1− k)−max(i0− k0− k, k+1) values are not valid any more
since the corresponding indicator involves points that have been modified. Other
values are not affected by the withdrawal.

5.2.2. Bounds for the complexity. In the vein of the previous section, we assume
up to now that all the numerical values computed during the algorithm are saved.
In this framework and as in any assignment problem, the number of evaluations of

the cost function cannot exceed N(N+1)
2 .

The most favorable case consists in finding a negative indicator at each step of the
loop. In this case, all points are removed through indicators of order 1. This case
requires O(N) additions and evaluations of the cost function.
On the opposite, the worst case corresponds to the case where all the indicators
are positive. In such a situation, no pairs are removed until the table is full. All
possible transport costs c(pi, qj) are computed. Consequently, this case requires
N(N+1)

2 evaluations of the cost function. The number of additions is also bound by

O(N2) as stated in the next theorem.

Theorem 15. Denote by C+(N) the number of additions required to compute an
optimal transport plan between N supplies and N demands with the algorithm of
Section 5.1. One has:

C+(N) ≤ 3N2 − 6N.

The proof of this result is given in Appendix.

5.2.3. Empirical complexity. In order to estimate the complexity of our algorithm,
we have applied it to an increasing number N of pairs of points. For a fixed value
of N , 100 samples of points have been chosen randomly in [0, 1], and the mean of
the number of additions and evaluations of g has been computed. The results are
shown in Figures 8-9. They show that the less concave the cost function is, the
more accurate the bound O(N2) is.

6. Possible improvements

The use of Algorithms 1–3 enables to tackle transport problems involving real-
valued histograms in O(N3). Nevertheless, we emphasize that this complexity could
be reduced since there is certainly room for improvement in the above algorithmic
strategy. As an example, identical indicators may appear in different strata and
should not be treated independently to save computational time. The investigation
of the interplay between the strata remains for future assessment.
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Appendix : proof of Theorem 15

Before proving Theorem 15, let us state some intermediate results. In what
follows, we denote by c+k (N) the number of additions required to achieve Step 1 of
the algorithm for an arbitrary value of k.
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Lemma 16. Keeping the previous notations, we have:

(17) c+k (N) ≤ 3 (2(N − k)− 1) .

Proof: The proof of (17) in the case k = 1 is left as exercise for the reader. Suppose
that k > 1. Consider for example Ipk (i) and recall that:

(18) Ipk (i) = c(pi, qi+k) +

k−1∑
ℓ=0

c(pi+ℓ+1, qi+ℓ)−
k∑

ℓ=0

c(pi+ℓ, qi+ℓ).

The first term of this formula does not require any addition and most of the other
terms have already been computed during the previous steps. Indeed, the first sum
has been computed to evaluate Iqk−1(i) and the second one has been computed to

evaluate Ipk−1(i). It remains to add c(pi+k, qi+k−1) to it to compute the last sum
of (18). Since at given order k at most 2(N−k)−1 indicators have to be computed,
the result follows. �

We now consider the number of operations required between the beginning of the
algorithm and the first occurrence of Step 4.

Lemma 17. The operations required by the algorithm between its beginning and
the first occurrence of Step 4 can be achieved with ℓ+k0

(N) := 3k0(2N − k0 − 2)
additions, where k0 denote the current value of k when Step 4 occurs.

Proof: Between the beginning of the algorithm and the first occurrence of Step 4,
only positive indicators have been computed, except for the current value of k = k0.
This means that Step 1 has been carried out for k = 1, ..., k0 since the beginning.

The corresponding number of additions is bounded by
∑k0

k=1 c
+
k (N). Thanks to

Lemma 16, the result follows. �

Recall now that after Step 4 having been achieved, the parameter k is set to 1.
The previous arguments consequently applies to evaluate the number of additions
between two occurrences of Step 4, i.e. between two withdrawals. In this way, one
finds that this number is bounded by ℓ+

k′

0

(N ′), where N ′ and k′0 are the current

values of N and k at the last occurrence of Step 4. Note that ℓ+
k′

0

(N ′) is a coarse

upper bound because we are not considering the first occurrence of this step and a
part of the indicators has already been computed as explained in Section 5.2.1.
We are now in the position to prove Theorem 15.
Proof (of Theorem 15): Let k0, k1, . . . , ks be the successive orders at which the
Step 4 of the algorithm is visited. Observe that some of these numbers can be
equal. Assume also that only one negative indicator was found at each of these
orders, which is the worst case for complexity. As a consequence,

∑s

i=0 ki = N ,
and the number of additions required for the whole algorithm is lower than

C+ ≤
s∑

i=0

ℓ+ki
(N −

i−1∑
j=0

kj),
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where ℓ+k is defined in Lemma 17. Using Lemma 17, we compute

C+ ≤
s∑

i=0

3ki(2(N −
i−1∑
j=0

kj)− ki − 2)

=
s−1∑
i=0

3ki(2(N −
i−1∑
j=0

kj)− ki − 2) + 3ks(2(N −
s−1∑
j=0

kj)− ks − 2)

=

s−1∑
i=0

3ki(2(N −
i−1∑
j=0

kj)− ki − 2) + 3(N −
s−1∑
j=0

kj)(N −
s−1∑
j=0

kj − 2)

= 3N2 − 6N − 6

s−1∑
i=0

i−1∑
j=0

kikj − 3

s−1∑
i=0

k2i + 3(

s−1∑
j=0

kj)
2

= 3N2 − 6N.

�
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