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Abstract. In this paper, we introduce a class of indicators that enable to compute efficiently
optimal transport plans associated to arbitrary distributions of N demands and M supplies in R in
the case where the cost function is concave. The computational cost of these indicators is small and
independent of N . A hierarchical use of them enables to obtain an efficient algorithm.

1. Introduction. The origins of optimal transportation go back to the late eigh-
teen century, when Monge [12] published his Mémoire sur la théorie des déblais et des
remblais (1781). The problem, which was rediscovered and further studied by Kan-
torovich in the late 30’s, can be described in the following way. Given two probability
distributions µ and ν on X and c a measurable cost function on X ×X , find a joint
probability measure π on X × X with marginals µ and ν and which minimizes the
transportation cost

∫ ∫
X×X

c(x, y)dπ(x, y). (1.1)

Probability measures π with marginals µ and ν are called transportation plans or
transport plans. A transport plan that minimizes the cost (1.1) is said to be optimal.

When the measures µ and ν are discrete (linear combinations of Dirac masses),
the problem can be recast as a linear optimization one. For N ≥ 1, consider two
discrete distributions of mass, or histograms, given on R

N : {(pi, si)}, which represents
“supplies” at locations pi with weights si and {(qj , dj)}, which represents “demands”
at locations qi with weights si (notation from [1]) and assume that all values of di
and sj are positive reals with D :=

∑
i di and S :=

∑
j sj . The problem consists in

minimizing the transport cost

∑
i,j

c(pi, qj)γij ,

where γij is the amount of mass going from pi to qj , subject to the conditions

γij ≥ 0,
∑
j

γij ≤ di,
∑
i

γij ≤ sj ,
∑
i,j

γij = min(S,D).

The matrix of values γ = {γij} is still called transport plan. When S = D, the problem
is said to be balanced and is only a reformulation of (1.1) for discrete measures.
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Fig. 1.1. On the left: optimal plans associated to a concave cost.On the right: optimal plans

associated to a convex cost. Supplies are represented by points and demands by crosses.

When S 6= D, the problem is said to be unbalanced. The cases S < D and S > D can
be treated in the same way. This paper deals with balanced problems and unbalanced
problems of the form S > D.

In the unitary case, i.e. when all the masses si and di are equal to a single value
v, it turns out that if γ is optimal, for all i, j, γi,j ∈ {0, v} and for all j there exists
only one i such that γi,j = v (each demand receives all the mass from one supply).
In the balanced case, the matrix γ is thus a permutation matrix. In the unbalanced
case, the permutation matrix is truncated. As a consequence, this particular case
boils down to an assignment problem. Such problems have been thoroughly studied
by the combinatorial optimization community [5].

Optimal transportation problems appear in many fields, such as economy or
physics for instance, see e.g. [9, 6, 4]. In economic examples optimal transport is
often related to the field of logistic where supplies are furnished by producers at spe-
cific places pi and in specific quantities di, while demands corresponds to consumers
locations and needs. Depending on the application, various cost functions c can be
used. For instance, concave functions of the distance appear as more realistic cost
functions in many economic situations. Indeed, as underlined by McCann [11], a
concave cost “translates into an economy of scale for longer trips and may encourage
cross-hauling.”

During the last decades, many authors have taken interest in the study of exis-
tence, uniqueness and properties of optimal plans [10, 8, 2], with a specific interest for
convex costs. Detailed descriptions of these results can be found in the books [14, 15].
One case of particular interest is the one-dimensional case, which, when c is a convex
function of the distance on the line, has been completely understood [13]. Indeed, this
problem has an explicit solution that does not depend on c (provided that it is con-
vex) and consisting in a monotone rearrangement (see Chapter 2.2 of [14]). Recently,
and efficient method has been introduced to tackle this issue on the circle [7], where
the starting point for the monotone rearrangement is not known, and its choice and
hence the optimal plan itself, unlike in the case of an interval, do depend on the cost
function. Unfortunately, these results do not extend to non-convex costs, in particular
to concave costs (see Figure 1.1 for an example). Although it is of broad interest for
many applications, few papers have taken interest in this case [11] and computing
solutions is far from obvious in general. Indeed, and contrary to the convex case on
the line, optimal plans strongly depends on the choice of the function c. Consider
the case of two unitary supplies at positions p1 = 0 and p2 = 1.2 and two unitary
demands at positions q1 = 1 and q2 = 2.2 on the line, as drawn on Figure 1.2. If the
cost function is c(x, y) = |x−y|0.9, the left solution will be optimal, whereas the other
one will be chosen for c(x, y) = |x − y|0.5. For a convex cost, the left solution would
always be chosen.

In practice, when no analytic solution is given (i.e. most of the time), finding
optimal plans can be a tedious task. As underlined before, in a discrete setting, the
problem can be written as a linear programming problem, and optimal plans can
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Fig. 1.2. On the left: solutions associated to the concave cost c(x, y) = |x− y|0.9, and on the

right to the cost c(x, y) = |x− y|0.5. Supplies are represented by points and demands by crosses.

be estimated numerically, by using simplex or auction algorithms [3] for instance.
Most of the time, these estimations lead to expansive computations. The assignment
problem can be solved with dedicated approaches, such as the Hungarian method or
more involved algorithms (see [5] for details).

The goal of this paper is to introduce a class of functions that reveals the local
structure of optimal transport plans (either on the line, or on the circle), when the cost
c is a concave function of the distance. The study will be first limited to the case of
unitary masses, either in the balanced or unbalanced case. As a by-product, we build
an algorithm that permits to obtain in both cases optimal transport plans in less than
O(N2) operations, where N is the number of demands under consideration. However,
let us insist that our aim is not to compete with recent linear assignment algorithms,
which may be more interesting in practice, at least for balanced problems. Observe
that our algorithm complements the method suggested by McCann [11], although the
approach we follow here is closer to the purely combinatorial approach of [1]. The
results of this last work are extended here to the general framework of concave cost
functions.

The paper is organized as follows. In Section 2, we present the main result of
the paper, which states that consecutive matching points in the optimal plan can be
found thanks to local indicators, independently of other points on the line. Section 3
is devoted to different technical results, necessary to the proof of this result, which
is itself presented in Section 4. Thanks to the low number of evaluations of the
cost function required to apply the indicators, we derive in Section 5 an algorithm
that finds an optimal transport plan in O(N2) operations in the worst case. Finally,
Section 6 is devoted to extensions of these results to the circle and to the non-integer
case.

2. Setting of the problem and main result.

2.1. The optimal transport problem. This paper deals with the problem
of finding an optimal transport plan in the case where the problem contains possibly
more supplies than demands and the transport cost is concave: the larger the distance
to cover is, the less the transport costs per unit distance.

Consider two integers M ≥ N and P = (pi)i=1,...,M and Q = (qi)i=1,...,N , two
sets of points in R that represent respectively unitary supply and unitary demand
locations. The problem we deal with consists in minimizing the cost

C(γ) =
∑
i,j

c(pi, qj)γij , (2.1)

where c(pi, qj) ∈ R
+ is the cost resulting from transport of a unit mass between pi

and qj . The quantity γij is the amount of mass going from pi to qj , subject for all

3



i, j to the conditions

γij ≥ 0,
∑
j

γij ≤ 1,
∑
i

γij = 1. (2.2)

The case N = M will be called the balanced case, while the case M > N will be called
the unbalanced case. Observe that since the total number of supplies is larger than the
total number of demands, some of the supplies may remain unmatched (∀j, γij = 0).
It is well known that if γ minimizes the cost (2.1) under conditions (2.2), then without
loss of generality one can assume that γij ∈ {0, 1} ∀i, j, so that one can reformulate
the problem as finding

min
σ∈ΣM

C(σ),

where ΣM is the set of all permutations of {1, . . . ,M} and where

C(σ) =
∑

i/σ(i)∈{1,...N}

c(pi, qσ(i)). (2.3)

We focus on the case where the function c involves a concave function as stated
in the next definition.

Definition 2.1. The cost function c in (2.3) is said to be concave if it is defined
by c(p, q) = g(|p − q|) with p, q ∈ R, where g : R+ → R is a concave non-decreasing
function such that g(0) := limx→0 g(x) ≥ −∞.

Some examples of such costs are given by g(x) = log(x) with g(0) = −∞ and
g(x) =

√
x or g(x) = |x| with g(0) = 0. If g(0) > −∞, then we assume without loss

of generality that g(0) = 0 (this changes the value of (2.1) by an amount N g(0) inde-
pendent of the transport plan). In what follows, we denote by σ⋆ the map associated
to a given optimal transport plan between P and Q: C(σ⋆) ≤ C(σ) for all σ ∈ ΣM .

Observe that if two points pi and qj have the same position, then there exists an
optimal transport plan σ between P and Q such that σ(i) = j. This results from a
well known property of concave costs, for which all the mass shared by the measures
P and Q stays in place [14] : suppose that a supply p and a demand q located at
the same point are not matched together but with other demand and supply p′ and
q′ located at distances x and y respectively. Either if g(0) = 0 or g(0) = −∞ and as
soon as g is concave, one has

∀x, y > 0, g(0) + g(x+ y) ≤ g(x) + g(y),

which implies that matching p and q is cheaper. In the following and before Sec-
tion 6.2, we will always assume that P ∩Q = ∅.

2.2. Non-crossing rule and Chains. In this section, we present a way to
subdivide the initial set of points P ∪ Q into a family of particular subsets called
Chains that are preserved by optimal transport plans. As a result, we obtain a
precomputation step that enables to break down an optimal transport problem into
a set of smaller and independent problems.

One significant feature of concave costs is that optimal trajectories do not cross
each other, as described by the following lemma.

Lemma 2.2. Consider two pairs of points (pi, qσ⋆(i)) and (pi′ , qσ⋆(i′)) such that
pi < qσ⋆(i), pi′ < qσ⋆(i′) and

c(pi, qσ⋆(i)) + c(pi′ , qσ⋆(i′)) < c(pi′ , qσ⋆(i)) + c(pi, qσ⋆(i′)). (2.4)
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Fig. 2.1. Example of a problem containing two chains.

Then, the segments [pi, qσ⋆(i)], [pi′ , qσ⋆(i′))] are either disjoint or nested, in the sense
that following alternative holds:

1. [pi, qσ⋆(i)] ∩ [pi′ , qσ⋆(i′))] = ∅,
2. [pi, qσ⋆(i)] ⊂ [pi′ , qσ⋆(i′))] or [pi′ , qσ⋆(i′))] ⊂ [pi, qσ⋆(i)].

The same conclusion holds if (2.4) is replaced by the analogous non-strict inequality
but the function g is strictly monotone.

This result directly follows from the concavity of the cost function and is often
referred to as the “non-crossing rule” [1, 11]. The ideas of the proof can be found in
[1] or in the proof of Lemma 6.3.

In the unbalanced case, some points may not belong to a nested segment.
Definition 2.3. A point r ∈ P ∪Q is said to be isolated if

∀i, σ⋆(i) ∈ {1, ..., N}, r /∈ [min(pi, qσ⋆(i)),max(pi, qσ⋆(i))].

If g is strictly monotone, such points can be caracterized as follows.
Lemma 2.4. If g is strictly monotone, then unmatched supplies are isolated.
The proof is easy and left to the reader.

A first consequence of these rules is usually called the local balance of supplies and
demands: in the unitary case, there are as many supplies as demands between any
two matched points pi0 and qj0 . This consequence permits to conclude that the search
for optimal transport plans can be restricted to chains, as defined in the following.

Given a supply point pi, define its left neighbor q′i as the nearest demand point
on the left of pi such that the numbers of supplies and demands between q′i and pi
are equal; define the right neighbor q′′i of pi in a similar way. Iterating this procedure,
one obtains a subset that is preserved by σ⋆.

Definition 2.5. A chain is a maximal alternating sequence of supplies and
demands of one of the forms

1. (pi1 , qj1 , ..., pik , qjk) ,
2. (qj1 , pi1 , ..., qjk , pik) ,
3. (pi1 , qj1 , ..., qjk−1

, pik) ,
with k ≥ 1 and such that each pair of consecutive points in the sequence is made of a
point and its right neighbor.

Examples of chains are shown in Figure 2.1. Observe that because of Case (3),
some chains can be composed of only one supply, and no demand. An extension of the
proof of Lemma 3 of [1] shows that the family of chains forms a partition of P ∪ Q.
This partition is particularly adapted to our transport problem as one can easily
prove that each chain is preserved by an optimal transport plan, hence a possible
parallelization of the resolution. The construction of the set of chains only depends
on relative positions of supplies and demands and does not involve any evaluation of
the cost function. It can be achieved in O(N +M) operations: a possible algorithm
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consists in considering sequentially (say from the left to the right) the points of the
set P ∪Q, and, at the same time, building all the chains iteratively either by adding
the current point to an existing chains, or by initiating a new chain in such a way
that the local balance of supplies and demands is fulfilled.
Note also that if a chain is composed of only one supply, this supply can not be
matched in an optimal transport plan, and can consequently be dismissed of the
original problem at this step.

Most of the rest of the paper deals with the research of optimal transport plans
in the case of chains: except in Section 6.2, we focus in the sequel on the cases where
P and Q satisfy M = N (balanced case) and

p1 < q1 < ... < pi < qi < pi+1 < qi+1 < ... < pN < qN , (2.5)

or M = N + 1 (unbalanced case) and

p1 < q1 < ... < pi < qi < pi+1 < qi+1 < ... < pN < qN < pN+1. (2.6)

In these cases the set P ∪Q is called balanced chain and unbalanced chain respectively.

2.3. Main result. Thanks to the non-crossing rule, one knows that there exist
at least two consecutive points (pi, qi) or (qi, pi+1) that are matched in any optimal
transport plan. Starting from this remark, we take advantage of the structure of a
chain to introduce a class of indicators that enable to detect a priori such pairs of
points.

Definition 2.6 (Local Matching Indicators of order k). Given k > 0, consider
2k + 2 consecutive points in a chain. If the first point is a supply pi, define

Ipk (i) = c(pi, qi+k) +

k−1∑
ℓ=0

c(pi+ℓ+1, qi+ℓ)−
k∑

ℓ=0

c(pi+ℓ, qi+ℓ),

else denote the first point qi and define

Iqk(i) = c(pi+k+1, qi) +

k∑
ℓ=1

c(pi+ℓ, qi+ℓ)−
k∑

ℓ=0

c(pi+ℓ+1, qi+ℓ).

This definition is schematically depicted in Figure 2.2 in the case k = 2.

• • •× × × − • • •× × ×

Fig. 2.2. Schematic representation of an indicator of order 2.

Note that in the first alternative of this definition, we have necessarily 1 ≤ k ≤
N − 1, 1 ≤ i ≤ N − k. In the second alternative, we have necessarily 1 ≤ k ≤ N − 2
and 1 ≤ i ≤ N − k− 1 in the balanced case and 1 ≤ k ≤ N − 1 and 1 ≤ i ≤ N − k in
the unbalanced case. The interest of these functions lies in the next result.

Theorem 2.7 (Negative Local Matching Indicators of order k). Let k0 ∈ N with
1 ≤ k0 ≤ N − 1 and i0 ∈ N, such that 1 ≤ i0 ≤ N − k0. In the unbalanced case,
suppose in addition that g is strictly monotone.

Assume that

6



• • •× × × ≤ • • •× × ×

⇓
• • •× × ×

Fig. 2.3. Schematic representation of the result of Theorem 2.7 in the case k = 1.

1. Ipk (i) ≥ 0 for k = 1, ..., k0 − 1, i0 ≤ i ≤ i0 + k0 − k,
2. Iqk(i

′) ≥ 0 for k = 1, ..., k0−1, i0 ≤ i′ ≤ i0+k0−k−1, (resp. 1 ≤ i′ ≤ i0+k0−k
in the unbalanced case)

3. Ipk0
(i0) < 0.

Then any permutation σ associated to an optimal transport plan satisfies σ(i) =
i− 1 for i = i0 + 1, ..., i0 + k0.

If the third condition is replaced by Iqk0
(i0) < 0 (with the same bounds on k0 and

i0 in the unbalanced case, and with 1 ≤ k0 ≤ N − 2 and 1 ≤ i0 ≤ N − k0 − 1 in
the balanced case), then any permutation σ associated to an optimal transport plan
satisfies σ(i) = i for i = i0 + 1, ..., i0 + k0.

This result is represented in broad outline in Figure 2.3. For practical purposes,
these indicators allow to find pairs of neighbors that are matched in an optimal trans-
port plan.

3. Technical results. These section aims at introducing technical results that
are required to prove Theorem 2.7. We keep the notations introduced therein. We
start with a basic result that plays a significant role in the proof of Theorem 2.7. As
for the non-crossing rule, the concavity of the cost function is an essential assumption
of this lemma.

Lemma 3.1. We keep the previous notations. For x, y ∈ R
+, define

ϕp
k,i(x, y) = g(x+ y+ qi+k − pi) +

k−1∑
ℓ=0

c(pi+ℓ+1, qi+ℓ)− g(x)− g(y)−
k−1∑
ℓ=1

c(pi+ℓ, qi+ℓ),

for k, i ∈ N, such that 1 ≤ k ≤ N − 1 and 1 ≤ i ≤ N − k, and

ϕq
k,i(x, y) = g(x+y+pi+k+1−qi)+

k∑
ℓ=1

c(pi+ℓ, qi+ℓ)−g(x)−g(y)−
k−1∑
ℓ=1

c(pi+ℓ+1, qi+ℓ),

for k, i ∈ N, such that 1 ≤ k ≤ N − 2 and 1 ≤ i ≤ N − k− 1 in the balanced case and
1 ≤ k ≤ N − 1 and 1 ≤ i ≤ N − k in the unbalanced case. Both functions ϕp

k,i(x, y)

and ϕq
k,i(x, y) are decreasing with respect to each of their two variables.

This lemma is a direct consequence of the concavity of the function g. To deal
with unbalanced chains, we need two additional lemmas, one of them requiring that g
is strictly monotone. The first result is a simple extension of a lemma usually referred
as ”The rule of three” in the literature [11].
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Lemma 3.2 (“rule of three”). Suppose that g is strictly monotone. Under the
assumptions (1–3) of Theorem 2.7, the following inequalities are satisfied

|qj − pj+1| < min(|pi0 − qj |, |pj+1 − qi0+k0 |), ∀j ∈ {i0, . . . , i0 + k0 − 1}.

If Iqk0
(i′0) < 0 instead of Ipk0

(i0) < 0, the inequalities become

|pj − qj | < min(|qi0 − pj |, |qj − pi0+k0+1|), ∀j ∈ {i0 + 1, . . . , i0 + k0}.

Proof: Assumption (3) of Theorem 2.7 implies that

c(qj , pj+1) + c(pi0 , qi0+k0) <

i0+k0∑
i=i0

c(pi, qi)−
i0+k0−1∑

i=i0

c(pi+1, qi) + c(qj , pj+1).

Now, because of Assumption (1), we have Ipj−i0
(i0) ≥ 0 and Ipi0+k0−j−1(j + 1) ≥ 0,

which means that

j∑
i=i0

c(pi, qi) ≤ c(pi0 , qj) +

j−1∑
i=i0

c(pi+1, qi)

and

i0+k0∑
i=j+1

c(pi, qi) ≤ c(pj+1, qi0+k0) +

i0+k0−1∑
i=j+1

c(pi+1, qi).

Thus,

c(qj , pj+1) + c(pi0 , qi0+k0) < c(pi0 , qj) + c(pj+1, qi0+k0).

Since g is strictly increasing and since |pi0 − qi0+k0 | ≥ max(|pi0 − qj |, |pj+1 − qi0+k0 |),
this implies that |pj+1 − qj | < min(|pi0 − qj |, |pj+1 − qi0+k0 |). The result in the case
Iqk0

(i′0) < 0 can be deduced by symmetry. �

Note that in this proof, only the fact that the cost is an strictly increasing function
of the distance is necessary. In particular the result also holds in the case where the
cost function is increasing and convex.

Lemma 3.3 (“partial sums”). Under the assumptions of Theorem 2.7, for any ℓ
in {i0 + 1, . . . , i0 + k0} and ℓ′ in {i0, . . . , i0 + k0 − 1}, the following inequalities are
satisfied:

ℓ−1∑
i=i0

c(pi, qi) >

ℓ−1∑
i=i0

c(pi+1, qi), (3.1)

and

i0+k0∑
i=ℓ′+1

c(pi, qi) >

i0+k0−1∑
i=ℓ′

c(pi+1, qi). (3.2)
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Proof: In order to prove inequality (3.1), remark that since Ipi0 (k0) < 0

ℓ−1∑
i=i0

c(pi, qi) =

i0+k0∑
i=i0

c(pi, qi)−
i0+k0∑
i=ℓ

c(pi, qi)

> c(pi0 , qi0+k0) +

i0+k0−1∑
i=i0

c(pi+1, qi)−
i0+k0∑
i=ℓ

c(pi, qi),

for ℓ such that i0+1 ≤ ℓ ≤ i0+k0. Moreover, since Ipi0+k0−ℓ(ℓ) ≥ 0 and g is increasing,

ℓ−1∑
i=i0

c(pi, qi) > c(pi0 , qi0+k0) +

i0+k0−1∑
i=i0

c(pi+1, qi)− c(pℓ, qi0+k0)−
i0+k0−1∑

i=ℓ

c(pi+1, qi),

which leads to the inequality (3.1). The proof of Equation (3.2) follows the same
path. �

On the contrary to the previous results, the next lemma will not be used in the
proofs of this paper. We state it since it permits to detect isolated point, hence, it
can be used to save computational time.

Lemma 3.4 (“isolation rule”). Suppose that g is strictly monotone. If pi is an
unmatched point in the unbalanced chain (2.6), then if i > 1

c(pi, qi−1) ≥ c(pi−1, qi−1)

and if i < N

c(pi, qi) ≥ c(pi+1, qi).

Proof: Assume for instance that i > 1 and c(pi, qi−1) < c(pi−1, qi−1). Thanks to
Lemma 2.4, pi is isolated, and consequently σ−1(i − 1) ≤ i − 1. Thus, c(pi, qi−1) <
c(pi−1, qi−1) ≤ c(pσ−1(i−1), qi−1). It is then cheaper to exclude pσ−1(i−1) and match
pi with qi−1, which contradicts the optimality of σ. �

4. Proof of Theorem 2.7. We are now in the position to prove our main result.
In a first part we focus on the balanced case, and then go to the unbalanced case,
which requires more efforts.

4.1. The balanced case. Consider the balanced case, i.e., the situation corre-
sponding to (2.5). We focus on the case where Ipk0

(i0) < 0. The case Iqk0
(i′0) < 0 can

be treated the same way.
The proof consists in proving that Assumptions (1–3) of Theorem 2.7 imply that

neither demand nor supply points located between pi0 and qi0+k0 can be matched
with points located outside this interval, i.e. that the set Si0 = {pi, i0 + 1 ≤ i ≤
i0 + k0} ∪ {qi, i0 ≤ i ≤ i0 + k0 − 1} is stable under an optimal transport plan. In this
case, the result follows from Assumption (1–2).

Suppose that Si0 is not preserved by an optimal transport plan σ⋆. Three cases
can occur:
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a) There exists i1 ∈ N, such that 1 ≤ i1 ≤ i0 and i0 ≤ σ⋆(i1) ≤ i0 + k0 − 1 and there
exists i′1 ∈ N, such that σ⋆(i1) + 1 ≤ i′1 ≤ i0 + k0 and i0 + k0 ≤ σ⋆(i′1) ≤ N .

b) There exists i2 ∈ N, with i0 + 1 ≤ i2 ≤ i0 + k0 such that 1 ≤ σ⋆(i2) ≤ i0 − 1.
c) There exists i2 ∈ N, with i0 + k0 < i2 ≤ N such that i0 ≤ σ⋆(i2) < i0 + k0.
We first prove that Case a) cannot occur.

In Case a), one can assume without loss of generality that σ⋆(i1) is the largest
index such that 1 ≤ i1 ≤ i0, i0 ≤ σ⋆(i1) ≤ i0 + k0 − 1 and that i′1 is the smallest
index such that σ⋆(i1) + 1 ≤ i′1 ≤ i0 + k0, i0 + k0 ≤ σ⋆(i′1) ≤ N . Assume also that
we are not in Cases b) or c). With such assumptions, the (possibly empty) subset
{pi, σ⋆(i1) + 1 ≤ i ≤ i′1 − 1} ∪ {qi, σ⋆(i1) + 1 ≤ i ≤ i′1 − 1} is stable by σ⋆. Because
of Assumptions (1–2), no nesting (i.e. no pair of nested matchings) can occur in this
subset, and σ⋆(i) = i for i = σ⋆(i1) + 1, ..., i′1 − 1.

On the other hand, since σ⋆ is supposed to be optimal, one has:

c(pi1 , qσ⋆(i1)) + c(pi′1 , qσ⋆(i′1)
) +

i′1−1∑
i=σ⋆(i1)+1

c(pi, qi) ≤ c(pi1 , qσ⋆(i′1)
) +

i′1−1∑
i=σ⋆(i1)

c(pi+1, qi).

Thanks to Lemma 3.1, one deduces from this last inequality that:

c(pi0 , qσ⋆(i1)) + c(pi′1 , qi0+k0) +

i′1−1∑
i=σ⋆(i1)+1

c(pi, qi) ≤ c(pi0 , qi0+k0) +

i′1−1∑
i=σ⋆(i1)

c(pi+1, qi),

and then:

c(pi0 , qσ⋆(i1)) +

σ⋆(i1)−1∑
i=i0

c(pi+1, qi) + c(pi′1 , qi0+k0) +

i0+k0−1∑
i=i′1

c(pi+1, qi)

+

i′1−1∑
i=σ⋆(i1)+1

c(pi, qi) ≤ c(pi0 , qi0+k0) +

i0+k0−1∑
i=i0

c(pi+1, qi). (4.1)

According to Assumption (1), Ipσ⋆(i1)−i0
(i0) ≥ 0 and Ipi0+k0−i′1

(i′1) ≥ 0, so that:

σ⋆(i1)∑
i=i0

c(pi, qi) ≤ c(pi0 , qσ⋆(i1)) +

σ⋆(i1)−1∑
i=i0

c(pi+1, qi)

i0+k0∑
i=i′1

c(pi, qi) ≤ c(pi′1 , qi0+k0) +

i0+k0−1∑
i=i′1

c(pi+1, qi).

Combining these last inequalities with (4.1) one finds that:

i0+k0∑
i=i0

c(pi, qi) ≤ c(pi0 , qi0+k0) +

i0+k0−1∑
i=i0

c(pi+1, qi),

which contradicts Assumption (3).
Let us now prove that Cases b) and c) contradict the assumptions. As Cases b)

and c) can be treated in the same way, we only consider Case b). Without loss of
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generality, one can assume that i2 is the smallest index such that i0+1 ≤ i2 ≤ i0+k0
and σ⋆(i2) ≤ i0 − 1. Because there are necessarily as many demands as supplies
between qi0 and pi2 , there exists one and only one index i′2 such that i0 ≤ σ⋆(i′2) ≤
i2 − 1 and 1 ≤ i′2 ≤ i0. Consequently, the (possibly empty) subsets {pi, i0 + 1 ≤ i ≤
σ⋆(i′2)} ∪ {qi, i0 ≤ i ≤ σ⋆(i′2)− 1} and {pi, σ⋆(i′2) + 1 ≤ i ≤ i2 − 1} ∪ {qi, σ⋆(i′2) + 1 ≤
i ≤ i2 − 1} are stable by an optimal transport plan. Because of Assumptions (1–2),
no nesting can occur in these subsets, and σ⋆(i) = i − 1 for i = i0 + 1, ..., σ⋆(i′2) and
σ⋆(i) = i for i = σ⋆(i′2) + 1, ..., i2 − 1.

On the other hand, since σ⋆ is supposed to be optimal, one has

c(pi2 , qσ⋆(i2)) + c(pi′2 , qσ⋆(i′2)
) +

σ⋆(i′2)∑
i=i0+1

c(pi, qi−1) +

i2−1∑
i=σ⋆(i′2)+1

c(pi, qi)

≤ c(pi′2 , qσ⋆(i2)) +

i2∑
i=i0+1

c(pi, qi−1).

Thanks to Lemma 3.1, one deduces from this last inequality that:

c(pi2 , qσ⋆(i2)) + c(pi0 , qσ⋆(i′2)
) +

σ⋆(i′2)∑
i=i0+1

c(pi, qi−1) +

i2−1∑
i=σ⋆(i′2)+1

c(pi, qi)

≤ c(pi0 , qσ⋆(i2)) +

i2∑
i=i0+1

c(pi, qi−1). (4.2)

Because the cost is supposed to be increasing with respect to the distance, one finds
that c(pi0 , qσ⋆(i2)) ≤ c(pi2 , qσ(i2)), so that (4.2) implies:

c(pi0 , qσ⋆(i′2)
) +

σ⋆(i′2)∑
i=i0+1

c(pi, qi−1) +

i2−1∑
i=σ⋆(i′2)+1

c(pi, qi) ≤
i2∑

i=i0+1

c(pi, qi−1),

and then:

c(pi0 , qσ⋆(i′2)
) +

σ⋆(i′2)∑
i=i0+1

c(pi, qi−1) +

i2−1∑
i=σ⋆(i′2)+1

c(pi, qi) +

i0+k0∑
i=i2+1

c(pi, qi−1)

≤
i0+k0∑
i=i0+1

c(pi, qi−1). (4.3)

According to Assumption (1), Ipσ⋆(i′2)−i0
(i0) ≥ 0, so that:

σ⋆(i′2)∑
i=i0

c(pi, qi) ≤ c(pi0 , qσ⋆(i′2)
) +

σ⋆(i′2)−1∑
i=i0

c(pi+1, qi).

Combining these last inequalities with (4.3) one finds that:

i0+k0∑
i=i0

c(pi, qi) ≤ c(pi0 , qi0+k0) +

i0+k0−1∑
i=i0

c(pi+1, qi),
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which contradicts Assumption (3).
We have then shown that neither demand nor supply points located between pi0

and qi0+k0+1 can be matched with points located outside this interval. The set Si0 is
then stable by an optimal transport plan. According to Assumption (1–2), no nesting
can occur in Si0 . The result follows. �

4.2. The unbalanced case. In this section, we show that Theorem 2.7 still
holds in the unbalanced case.
Observe first that none of the points pj , i0 + 1 ≤ j ≤ i0 + k0 can remain unmatched
in an optimal transport plan. Indeed, assume on the contrary that there exists ℓ
in {i0 + 1, . . . , i0 + k0} such that pℓ is unmatched in the optimal transport plan σ⋆.
According to Lemma 3.3

ℓ−1∑
i=i0

c(pi, qi) >

ℓ−1∑
i=i0

c(pi+1, qi).

Therefore we cannot have σ⋆(i) = i for i = i0, . . . , ℓ−1: otherwise it would be possible
to rematch all the points qi in this interval to their right neighbors and reduce the
cost. Hence, as the point pℓ is unmatched and isolated, there exists m in {i0, . . . , ℓ−1}
such that (σ⋆)−1(m) < i0. Choose m to be the greatest value of the index with this
property and observe that we have σ⋆(i) = i) for all i in the (possibly empty) interval
m+ 1 ≤ i ≤ ℓ− 1. Now, since g is an increasing function,

c(p(σ⋆)−1(m), qm) +

ℓ−1∑
i=m+1

c(pi, qi) > c(pi0 , qm) +

ℓ−1∑
i=i0

c(pi, qi)−
m∑

i=i0

c(pi, qi)

Using again Eq. (3.1) of Lemma 3.3, one deduces from this last inequality that

c(p(σ⋆)−1(m), qm) +

ℓ−1∑
i=m+1

c(pi, qi) > c(pi0 , qm) +

ℓ−1∑
i=i0

c(pi+1, qi)−
m∑

i=i0

c(pi, qi).

It follows from this and from Ipm−i0
(i0) ≥ 0 that

c(p(σ⋆)−1(m), qm) +

ℓ−1∑
i=m+1

c(pi, qi) > c(pi0 , qm) +

m−1∑
i=i0

c(pi+1, qi)

+
ℓ−1∑
i=m

c(pi+1, qi)−
m∑

i=i0

c(pi, qi)

≥
ℓ−1∑
i=m

c(pi+1, qi).

In other words, it is cheaper to match each qi, m ≤ i ≤ ℓ− 1, with its right neighbor
pi+1 and to exclude p(σ⋆)−1(m) than to match each qi with its neighbor pi and to
exclude pℓ. In all cases, the point pℓ cannot remain unmatched.

If the point pi0 is matched in the transport plan σ⋆, then we can conclude by the
already proved first part of Theorem 2.7 that σ⋆(i) = i−1 for i = i0+1, ..., i0+k0 (ac-
cording to Lemma 2.4 unmatched points are isolated, the existence of an unmatched
pj outside of [pi0 , qi0+k0 ] has no consequence on this result).
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Now, assume that pi0 remains unmatched and that there existsm in i = i0, ..., i0+
k0−1 such that (σ⋆)−1(m) 6= m+1. Since pi0 is isolated, and since matched points are
either neighbors or separated by more than 2k0 points, (σ⋆)−1(m) > i0+k0. One can
assume without loss of generality that m is the largest index in {i0, . . . , i0 + k0 − 1}
satisfying (σ⋆)−1(m) > i0 + k0. Now, because of the rule of three, we know that
|pi0+k0 − qi0+k0−1| < |pi0+k0 − qi0+k0 |. Thus (σ⋆)−1(i0 + k0 − 1) ≤ i0 + k0, otherwise
there would exist qj , with j ≥ i0+k0 such that |pi0+k0−qj | < |pi0+k0−qi0+k0−1| (again,
because of the rule of three), which contradicts the previous inequality. It follows that
m < i0+k0−1. Two cases can occur: either (σ⋆)(i) = i for all i in {m+1, . . . i0+k0}, or
there exists one (and only one) supply pk in {m+1, i0+k0} such that σ⋆(k) > i0+k0.
This cannot happen for two different supplies in {m + 1, i0 + k0}, otherwise there
would be another demand qℓ between these supplies such that (σ⋆)−1(ℓ) > i0 + k0.

In the first case, thanks to equation (3.2)

c(qm, p(σ⋆)−1(m)) +

i0+k0∑
i=m+1

c(pi, qi) > c(qm, p(σ⋆)−1(m)) +

i0+k0−1∑
i=m

c(pi+1, qi)

> c(qi0+k0 , p(σ⋆)−1(m)) +

i0+k0−1∑
i=m

c(pi+1, qi),

which contradicts the optimality of σ⋆.
In the second case, since Ipk0

(i0) < 0,

c(qm, p(σ⋆)−1(m)) +

k−1∑
i=m+1

c(pi, qi) + c(pk, qσ⋆(k)) > c(qm, p(σ⋆)−1(m)) + c(pk, qσ⋆(k))

+c(pi0 , qi0+k0) +

i0+k0−1∑
i=i0

c(pi+1, qi)−
m∑

i=i0

c(pi, qi)−
i0+k0∑
i=k

c(pi, qi).

Now, since Ipm−i0
(i0) ≥ 0 and Ipi0+k0−k(k) ≥ 0, this inequality yields

c(qm, p(σ⋆)−1(m)) +

k−1∑
i=m+1

c(pi, qi) + c(pk, qσ⋆(k)) > c(qm, p(σ⋆)−1(m))

+c(pk, qσ⋆(k))− c(pk, qi0+k0) + c(pi0 , qi0+k0)− c(pi0 , qm) +

k−1∑
i=m

c(pi+1, qi).

The two differences that appear in the right-hand side are positive so that

c(qm, p(σ⋆)−1(m)) +

k−1∑
i=m+1

c(pi, qi) + c(pk, qσ⋆(k)) ≥ c(qσ⋆(k), p(σ⋆)−1(m))

+

k−1∑
i=m

c(pi+1, qi),

which also contradicts the optimality of σ⋆.
By symmetry, the theorem remains valid in the case where Iqk0

(i′0) < 0 instead of
Ipk0

(i0) < 0. �
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5. Algorithm. In this section, we derive from Theorem 2.7 a simple algorithm
to compute the optimal transport plan in the case of chains and give details about
its implementation and complexity. For the sake of simplicity, we only consider the
balanced case. The unbalanced case can be treated in the same way.

5.1. Computation of optimal transport plans for chains. The recursive
use of the local matching indicators defined in Definition 2.6 is on the basis of the
next algorithm.

Algorithm: Set P = {p1, ..., pN , q1, ..., qN}, ℓp = (1, ..., N), ℓq = (1, ..., N), and
k = 1.

While P 6= ∅ and k ≤ N − 1 do

1. Compute Ipk (i) and Iqk(i
′) for i = 1, ..., N − k and i′ = 1, ..., N − k − 1.

2. Define

Ip
k = {i0, 1 ≤ i0 ≤ N − k, Ipk (i0) < 0},

Iq
k = {i0, 1 ≤ i0 ≤ N − k − 1, Iqk(i0) < 0},

and do
(a) If Ip

k = ∅ and Iq
k = ∅, set k = k + 1.

(b) Else do
• for all i0 in Ip

k and for i = i0 + 1, ..., i0 + k, do
– define σ⋆(ℓpi ) = ℓqi−1,
– remove {pℓp

i
, qℓq

i−1
} from P ,

– remove ℓpi and ℓqi from ℓp and ℓq respectively.
• for all i′0 in Iq

k and for i = i′0 + 1, ..., i′0 + k, do
– define σ⋆(ℓpi ) = ℓqi ,
– remove {pℓp

i
, qℓq

i
} from P ,

– remove ℓpi and ℓqi from ℓp and ℓq respectively.
• set N = 1

2Card(P), and rename the points in P such that

P = {p1, ..., pN , q1, ..., qN},

p1 < q1 < ... < pi < qi < pi+1 < qi+1 < ... < pN < qN .

• set k = 1.

If k = N − 1, for i = 1, ..., N set σ⋆(ℓpi ) = ℓqi .

An alternative algorithm consists in testing the sign of each Ipk (i) and Iqk(i
′) as

soon as they have been computed and remove the corresponding pairs of points if a
negative value is found. What follows also holds for this variant.

5.2. About the implementation and the complexity. The cost of the al-
gorithm can be estimated through the number of additions and evaluations of the
cost function that are required to terminate the algorithm. These operations are only
carried out in Step 1, when computing the indicators. This section aims at giving
details about efficient ways to implement this step and about the complexity of the
resulting procedure.
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5.2.1. Implementation through a table of indicators. We first define a
table that collect the values of indicators and then describe a way to update it.
The aim of this structure is to avoid redundant computations. We present it in the
balanced case (see (2.5)).

Consider a table of N − 1 lines, where the lines correspond to the values of the
indicators of order k. The line k has 2N − 1− 2k entries corresponding to the N − k
values of the indicators Ipk and the N − k − 1 values of the indicators Iqk . At the
beginning of the algorithm, the table is empty and Step 1 consists in filling the line k
of the table. Let us explain how to modify the table in case a negative indicator has
been found.

Following the assumptions of Theorem 2.7, consider the case where all the indica-
tors that have been computed currently are positive except the last one, denoted by
Ipk0

(i0) < 0. According to Step 2b, k0 pairs of supply and demand have to be matched
and removed from the current list of points P . Doing this, the table loses k0 lines. In
each line k < N−k0−1 of the new table, only min(i0−k0+k, 2N−1−k)−max(i0−
k0− k, k+1) values are not valid any more since the corresponding indicator involves
points that have been modified. Other values are not affected by the withdrawal.

5.2.2. Bounds for the complexity . In the vein of the previous section, we
assume up to now that all the numerical values computed during the algorithm are
saved. In this framework and as in any assignment problem, the number of evalua-

tions of the cost function cannot exceed N(N+1)
2 .

The most favorable case consists in finding a negative indicator at each step of the
loop. In this case, all points are removed through indicators of order 1. This case
requires O(N) additions and evaluations of the cost function.
On the opposite, the worst case corresponds to the case where all the indicators are
positive. In such a situation, no pairs are removed until the table is full. All possi-

ble transport costs c(pi, qj) are computed. Consequently, this case requires N(N+1)
2

evaluations of the cost function. The number of additions is also bound by O(N2) as
stated in the next theorem.

Theorem 5.1. Denote by C+(N) the number of additions required to compute
an optimal transport plan between N supplies and N demands with the algorithm of
Section 5.1. One has:

C+(N) ≤ 3N2 − 6N.

The proof of this result is given in Appendix.

5.2.3. Empirical complexity. In order to estimate the complexity of our al-
gorithm, we have applied it to an increasing number N of pairs of points. For a fixed
value of N , 100 samples of points have been chosen randomly in [0, 1], and the mean
of the number of additions and evaluations of g has been computed. The results are
shown in Figures 5.1-5.2. They show that the less concave the cost function is, the
more accurate the bound O(N2) is.

6. Extensions. In this section, we explain a way to adapt our result to tackle
optimal transport problems on the circle and in the case of integer masses.

6.1. The case of the circle. In many applications, see [7] and the references
therein, a rapid computation of optimal transport plans on the circle is required. This
section is devoted to the adaptation of our main result to this case.
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6.1.1. Notations and result. Define a unit circle T as the segment [0, 1] with
identified endpoints. The positive direction on the segment is identified with the
clockwise direction on the circle. Consider two integers N ≤ M and P = (pi)i=1,...,M

and Q = (qi)i=1,...,N , two sets of points in T that represent respectively unitary supply
and unitary demand locations. As before, we consider the problem of finding

min
σ∈ΣM

C(σ),

where ΣM is the set of all permutations of {1, . . . ,M} and where

C(σ) =
∑

i/σ(i)∈{1,...N}

c(pi, qσ(i)). (6.1)
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In this equation, the cost c is defined as follows.
Definition 6.1. The cost function in (6.1) is defined on [0, 1] by

c(p, q) = min{g(|p− q|), g(1− |p− q|)}

with 0 ≤ p, q < 1, where g(·) is a concave non-decreasing real-valued function of a real
positive variable such that g(0) := limx→0 g(x) ≥ −∞.

Following Aggarwal et al. [1], we remark that any two distinct points p, q in T split
the circle into two arcs, one going clockwise from p to q and denoted cw(p, q) and the
other going counterclockwise from p to q and denoted ccw(p, q). We call the shortest
of the two arcs the path between p and q and denote it by x(p, q): if 0 < p− q < 1

2 or
if 1

2 < q − p, then x(p, q) = ccw(p, q) and otherwise x(p, q) = cw(p, q), including the
case |p− q| = 1

2 .
Assume that the endpoints are not included into arcs.
Definition 6.2. We call two pairs (p, q) and (p′, q′) crossed when p′, q′ belong

to different arcs in the splitting defined by p, q and nested otherwise [1]. Two nested
pairs (p, q) and (p′, q′) are called weakly crossed if either p = q′ or p′ = q and properly
nested if this is not the case.

For the sake of sufficiency, we give below an equivalent of the non-crossing rule
and its proof in the case of the circle.

Lemma 6.3. Let p 6= q, p′ 6= q′ and suppose that (p, q) and (p′, q′) are crossed
(possibly weakly). Then

c(p, q) + c(p′, q′) ≥ c(p, q′) + c(p′, q).

This holds with a strict inequality if the function g is strictly monotone.
This is equivalent to the following statement.
Corollary 6.4 (Non-crossing rule). Let p 6= q, p′ 6= q′ and suppose that

c(p, q) + c(p′, q′) < c(p, q′) + c(p′, q). (6.2)

Then (p, q) and (p′, q′) are properly nested. The same conclusion holds if (6.2) is
replaced by analogous non-strict inequality but the function g is striclty monotone.
Proof (of Lemma 6.3): We apply a minor modification of the proof of [11, Lemma
2.1 (i)]. There are in total sixteen cases to consider, depending on whether x(p, q) =
cw(p, q) or ccw(p, q), whether x(p′, q′) = cw(p′, q′) or ccw(p′, q′), and whether x(p, q)
contains p′ or q′ in the case of proper crossing or whether p′ = q or p = q′ in the case
of weak crossing. However all these cases fall within one of the two following crossing
patterns.

Pattern I. Let x(p, q) = cw(p, q), x(p′, q′) = ccw(p′, q′) and either q′ ∈ x(p, q)
(which implies q ∈ x(p′, q′) because of the assumed crossing) or p = q′ in the case of
weak crossing. Using homogeneity of the cost function (6.1) choose representatives of
the four points in [0, 1] such that p ≤ q′ < q ≤ p′, where 0 ≤ q′ − p < q − p ≤ 1

2 and
0 ≤ p′ − q < p′ − q′ ≤ 1

2 . Monotonicity of the function g implies

c(p, q) = g(q − p) ≥ g(q′ − p) = c(p, q′),

c(p′, q′) = g(p′ − q′) ≥ g(p′ − q) = c(p′, q).

It therefore follows that

c(p, q) + c(p′, q′) ≥ c(p, q′) + c(p′, q). (6.3)
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The cases in which p′ ∈ x(p, q) or p′ = q and/or directions of the arcs are opposite
can be treated similarly by interchanging ps and qs and/or primed and non-primed
quantities: both of these transformations preserve the cost as defined in (6.1). Thus
the present crossing pattern represents eight of sixteen possible cases.

Pattern II. Assume that x(p, q) and x(p′, q′) both go clockwise and that p′ ∈
x(p, q) or p′ = q. The four representatives in [0, 1] may now be chosen such that
p < p′ ≤ q < q′, where 0 < q − p ≤ 1

2 , 0 < q′ − p′ ≤ 1
2 , and q′ − p ≤ 1. Take 0 < t < 1

such that

q − p = (1 − t)(q′ − p) + t(q − p′).

Subtracting both sides of this equality from the larger quantity q + q′ − p− p′ gives

q′ − p′ = t(q′ − p) + (1− t)(q − p′).

Concavity of the function g now implies that

g(q − p) ≥ (1− t)g(q′ − p) + t g(q − p′),

g(q′ − p′) ≥ t g(q′ − p) + (1− t)g(q − p′),

from which

g(q − p) + g(q′ − p′) ≥ g(q′ − p) + g(q − p′). (6.4)

Observe that since 0 < q − p ≤ 1
2 and 0 < q′ − p′ ≤ 1

2 , one has c(p, q) = g(q − p) and
c(p′, q′) = g(q′ − p′), whereas g(q′ − p) ≥ c(p, q′) and g(p′ − q) ≥ c(p′, q) by definition.
Therefore (6.4) implies (6.3). The remaining cases are covered by interchanging ps
and qs and/or primed and non-primed quantities.

Finally let g be strictly monotone. In this case, all the above arguments hold
with strict inequalities and the contradiction is achieved even when Inequality (6.2)
is non-strict. �

Thanks to this adaptation of the non-crossing rule, one can also define chains in
the case of the circle, and restrict oneself to the two cases where P and Q satisfy
M = N (balanced case) and

0 < p1 < q1 < ... < pi < qi < pi+1 < qi+1 < ... < pN < qN ≤ 1, (6.5)

or M = N + 1 (unbalanced case) and

0 < p1 < q1 < ... < pi < qi < pi+1 < qi+1 < ... < pN < qN < pN+1 ≤ 1.

We still call the set P ∪Q balanced chain in the first case and unbalanced chain in the
second case.

6.1.2. The balanced case. In what follows for r ∈ Z and 1 ≤ i ≤ N , the point
pi is also denoted by pi+rN . The same notation is used for the points of Q.

In this setting, the indicators are defined as follows.
Definition 6.5 (Local Matching Indicators of order k). Given 0 < k ≤ N − 1,

consider 2k + 2 consecutive points in the chain (6.5) such that the path between the
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first and the last point of the chain is of length equal or smaller than 1
2 . If the first

point is a supply pi with 1 ≤ i ≤ N , define

Ipk (i) = c(pi, qi+k) +

k−1∑
ℓ=0

c(pi+ℓ+1, qi+ℓ)−
k∑

ℓ=0

c(pi+ℓ, qi+ℓ),

else denote the first point qi with 1 ≤ i ≤ N and define

Iqk(i) = c(pi+k+1, qi) +

k∑
ℓ=1

c(pi+ℓ, qi+ℓ)−
k∑

ℓ=0

c(pi+ℓ+1, qi+ℓ).

The condition k ≤ N−1 guarantees that all the points used to define the indicators
are distinct.

We can now give a version of Theorem 2.7 adapted to the circle case.
Theorem 6.6 (Negative Local Matching Indicators of order k). Let k0 ∈ N with

1 ≤ k0 ≤ N − 1 and i0 ∈ N with 1 ≤ i0 ≤ N (resp. i′0 ∈ N with 1 ≤ i′0 ≤ N ).
Assume that
1. Ipk (i) ≥ 0 for k = 1, ..., k0 − 1, for all i ∈ N, 1 ≤ i ≤ N such that Ipk (i) is

defined,
2. Iqk(i

′) ≥ 0 for k = 1, ..., k0 − 1, for all i′ ∈ N, 1 ≤ i′ ≤ N , such that Iqk(i
′) is

defined,
3. Ipk0

(i0) < 0 (resp. Iqk0
(i′0) < 0).

Then any permutation σ associated to an optimal transport plan satisfies σ(i) = i −
1[N ] for i = i0 + 1 [N ], ..., i0 + k0 [N ] (resp. σ(i) = i [N ] for i = i0 + 1 [N ], ..., i0 +
k0 [N ]).

In this Theorem, i [N ] denotes the rest of the integer division of i by N .
Proof: The proof of this result is similar to the one of Theorem 2.7. We consider the
case where Ipk0

(i0) < 0. The case Iqk0
(i′0) < 0 can be treated the same way.

The proof consists again in proving that Assumptions (1–3) imply that neither
demand nor supply points located in x(pi0 , qi0+k0+1) can be matched with points
located outside this interval, i.e. that the set Si0 = {pi, pi ∈ x(pi0 , qi0+k0+1)}∪{qi, qi ∈
x(pi0 , qi0+k0+1)} is stable by an optimal transport plan. In this case, the result follows
from Assumption (1–2). Note that because of the condition on the length of the path
of the sequence considered in an indicator as defined in Definition 6.5, all indicators
involving only points located in x(pi, qi+k) are defined as soon as Ipk (i) is defined.

Suppose that Si0 is not preserved by an optimal transport plan σ⋆. Three cases
can occur:
a) There exists i1 ∈ N, such that qσ⋆(i1) ∈ x(pi0 , qi0+k0) and pi0 ∈ x(pi1 , qσ⋆(i1)) and

there exists i′1 ∈ N, such that pi′1 ∈ x(qσ⋆(i1), pi0+k0) and qi0+k0 ∈ x(pi′1 , qσ⋆(i′1)
).

b) There exists i2 ∈ N, such that pi2 ∈ x(pi0 , qi0+k0) and pi0 ∈ x(qσ⋆(i2), pi2).
c) There exists i2 ∈ N, such that qσ⋆(i2) ∈ x(pi0 , qi0+k0) and qi0+k0 ∈ x(qσ⋆(i2), pi2).
Following the lines of the proof given in Section 4.1, one notes that all the lengths
that are considered are smaller than 1

2 . Consequently c(p, q) = g(|p−q|) for every pair
(p, q) that is considered and Lemma 3.1 can be used together with the non-decreasing
property of the cost. The result follows. �

As it was the case for the real line, one can derive from this theorem an algorithm to
compute an optimal plan. Actually, the only adaptation concerns the length of the
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indicators, that must not exceed 1
2 and the end of the algorithm: In the case of the

circle, if all indicators are positive at one point, then only two possibilities can occur,
each remaining supply being matched either with its left neighbor, or with its right
one. Since a great part of the cost should be already computed at this step, this case
does not damage the efficiency of the algorithm.

6.1.3. The unbalanced case. In the unbalanced case, the precomputation of
chains can reveal one unmatched point, i.e. a chain containing only one point, say
pi0 . In such a case, no path between two matched points in an optimal transport
plan contains pi0 . Consequently, one can simply recast the problem on the real line
by cutting the circle in pi0 and apply the unbalanced version of the algorithm of
Section 5.1.

Otherwise, we can show that Theorem 6.6 can be generalized to the unbalanced
case when assuming that g is strictly monotone. Indeed, the proof of Section 4.2 is
still valid provided that the lengths of the chains that are considered are equal or
smaller than 1

2 .

6.2. The integer case. We present now a simple strategy to tackle the case
where the masses are not unitary but integer. In this section, we denote by CP,Q

the cost defined in (2.3) where P and Q still stand for the locations of the possibly
non-unitary masses. In the same way, we still denote by σ⋆ the optimal transport
plan.

Given ε > 0, the method we follow consists in scattering each non-unitary integer
mass in unitary masses located in different places in an interval of size ε around the
original position. We denote by P ε and Qε the corresponding location of unitary
demands and supply respectfully, and by σε the optimal transport plan associated to
this new configuration. Note that σε can be computed by the algorithms presented
in this paper.

Lemma 6.7. For any η > 0, there exists ε such that:

CP,Q(σ
⋆) + η ≥ CP,Q(σ

ε) ≥ CP,Q(σ
⋆).

Proof: Note first that given a transport plan σ, the mapping ε 7→ CP ε,Qε(σ) is a
continuous function. Consequently, there exists ε0 such that: ∀ε > 0, ε0 > ε,

CP,Q(σ
⋆) +

1

2
η ≥ CP ε,Qε(σ⋆). (6.6)

Moreover, because the set of permutations of ΣM is finite, one can also assume that

∀σ ∈ ΣM , CP ε,Qε(σ) ≥ CP,Q(σ) −
1

2
η.

hence

CP ε,Qε(σε) ≥ CP,Q(σ
ε)− 1

2
η. (6.7)

Because CP ε,Qε(σ⋆) ≥ CP ε,Qε(σε), Inequalities 6.6 and 6.7 give rise to

CP,Q(σ
⋆) + η ≥ CP,Q(σ

ε).

The second inequality follows from the optimality of σ⋆. �

In the case there exists a unique optimal transport plan, it follows from this lemma
that for ε small enough σε = σ⋆.
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Appendix : proof of Theorem 5.1. Before proving Theorem 5.1, let us state
some intermediate results. In what follows, we denote by c+k (N) the number of addi-
tions required to achieve Step 1 of the algorithm for an arbitrary value of k.

Lemma 6.8. Keeping the previous notations, we have:

c+k (N) ≤ 3 (2(N − k)− 1) . (6.8)

Proof: The proof of (6.8) in the case k = 1 is left as exercise for the reader. Suppose
that k > 1. Consider for example Ipk (i) and recall that:

Ipk (i) = c(pi, qi+k) +

k−1∑
ℓ=0

c(pi+ℓ+1, qi+ℓ)−
k∑

ℓ=0

c(pi+ℓ, qi+ℓ). (6.9)

The first term of this formula does not require any addition and most of the other
terms have already been computed during the previous steps. Indeed, the first sum
has been computed to evaluate Iqk−1(i) and the second one has been computed to
evaluate Ipk−1(i). It remains to add c(pi+k, qi+k−1) to it to compute the last sum
of (6.9). Since at given order k at most 2(N − k)− 1 indicators have to be computed,
the result follows. �

We now consider the number of operations required between the beginning of the
algorithm and the first occurrence of Step 2.2b.

Lemma 6.9. The operations required by the algorithm between its beginning and
the first occurrence of Step 2.2b can be achieved with ℓ+k0

(N) := 3k0(2N − k0 − 2)
additions, where k0 denote the current value of k when Step 2.2b occurs.

Proof: Between the beginning of the algorithm and the first occurrence of Step 2.2b,
only positive indicators have been computed, except for the current value of k = k0.
This means that Step 1 has been carried out for k = 1, ..., k0 since the beginning.
The corresponding number of additions is bounded by

∑k0

k=1 c
+
k (N). Thanks to

Lemma 6.8, the result follows. �

Recall now that after Step 2.2b having been achieved, the parameter k is set to 1. The
previous arguments consequently applies to evaluate the number of additions between
two occurrences of Step 2.2b, i.e. between two withdrawals. In this way, one finds
that this number is bounded by ℓ+k′

0
(N ′), where N ′ and k′0 are the current values of

N and k at the last occurrence of Step 2.2b. Note that ℓ+k′
0
(N ′) is a coarse upper

bound because we are not considering the first occurrence of this step and a part of
the indicators has already been computed as explained in Section 5.2.1.
We are now in the position to prove Theorem 5.1.
Proof (of Theorem 5.1): Let k0, k1, . . . , ks be the successive orders at which the
Step 2.2b of the algorithm is visited. Observe that some of these numbers can be
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equal. Assume also that only one negative indicator was found at each of these or-
ders, which is the worst case for complexity. As a consequence,

∑s
i=0 ki = N , and

the number of additions required for the whole algorithm is lower than

C+ ≤
s∑

i=0

ℓ+ki
(N −

i−1∑
j=0

kj),

where ℓ+k is defined in Lemma 6.9. Using Lemma 6.9, we compute

C+ ≤
s∑

i=0

3ki(2(N −
i−1∑
j=0

kj)− ki − 2)

=
s−1∑
i=0

3ki(2(N −
i−1∑
j=0

kj)− ki − 2) + 3ks(2(N −
s−1∑
j=0

kj)− ks − 2)

=

s−1∑
i=0

3ki(2(N −
i−1∑
j=0

kj)− ki − 2) + 3(N −
s−1∑
j=0

kj)(N −
s−1∑
j=0

kj − 2)

= 3N2 − 6N − 6

s−1∑
i=0

i−1∑
j=0

kikj − 3

s−1∑
i=0

k2i + 3(

s−1∑
j=0

kj)
2

= 3N2 − 6N.

�
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