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PRECONDITIONING THE COUPLED HEART AND TORSO
BIDOMAIN MODEL WITH AN ALMOST LINEAR COMPLEXITY

CHARLES PIERRE

Abstract. The bidomain model is widely used in electro-cardiology to simulate
spreading of excitation in the myocardium and electrocardiograms. It reads a sys-
tem of two parabolic reaction diffusion equations coupled with an ODE system.
Its discretisation displays an ill-conditioned system matrix to be inverted at each
time step: simulations based on the bidomain model therefore are associated with
high computational costs. In this paper we propose a preconditioning for the bido-
main model in an extended framework including a coupling with the surrounding
tissues (the torso). The preconditioning is based on a formulation of the discrete
problem that is shown to be symmetric positive semi-definite. A block LU de-
composition of the system together with a heuristic approximation (referred to as
the monodomain approximation) are the key ingredients for the preconditioning
definition. Numerical results are provided for two test cases. A 2D test case on a
realistic slice of the thorax based on a segmented heart medical image geometry.
A 3D test case involving a small cubic slab of tissue with orthotropic anisotropy.
The analysis of the resulting computational cost (both in terms of CPU time and
of iteration number) shows an almost linear complexity with the problem size, i.e.
of type n logα(n), which complexity is optimal for such problems.

1. Introduction

The bidomain model [39, 23, 1, 15, 40, 30, 10] is up to now the most physiolog-
ically founded model to describe the heart electrical activity. The bidomain model
is here considered in an extended version referred to as the coupled heart and torso
bidomain model. It includes a coupling of the cardiac electrical activity with the
surrounding tissue electrical activity, allowing in particular electrocardiogram sim-
ulations.
The bidomain model mathematical formulation reads a system of two PDEs (par-
abolic reaction diffusion equations) describing the evolution of two potentials: the
intra- and extra-cellular potentials within the myocardium. This system is coupled
with a set of ODEs modelling the kinetic of ionic transfer across the cellular mem-
brane.
The mathematical structure of the bidomain model implies that its discretisation
provides an ill conditioned system matrix, to be inverted at each time step. Two
reasons are risen for this. The bidomain model can be formulated as a degener-
ate system of two coupled parabolic equations [15], which degeneracy causes ill-
conditioning. Another formulation of the bidomain model, reading a single scalar
semi-linear parabolic equation, is studied in [8]. This formulation involves a non-
local operator of second order in space, referred to as the bidomain operator. The
bidomain operator is defined as the harmonic mean between two elliptic operators.
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2 C. PIERRE

The non locality of the bidomain operator generates high computational costs.
On top of this structural ill-conditioning, the physical features of the modelled phe-
nomena (because of fast and sharp space and time variations of potential, namely
potential wave fronts) necessitates to resort to fine space and time grids. Ill condi-
tioning together with fine meshes imply very high computational costs for the bido-
main model simulations that remain challenging for 3D realistic settings. For this,
many efforts were devoted to the reduction of this cost, see e.g. [13, 16, 12, 38, 26, 18].

Few papers are dealing with the preconditioning of the bidomain model. In [27]
Pavarino and Scacchi proposed a preconditioner designed to a parallel implemen-
tation of the bidomain model. In [17] Gerardo-Giorda et al. introduced a very
interesting preconditioning strategy discussed deeper on at the end of this section.
The aim of this paper is to define a general preconditioning for the bidomain system
of equations. This preconditioning is based on two simple ideas (detailed hereafter
in this section): an algebraic block-LU factorisation together with an approxima-
tion heuristic. For its implementation in practise, it only remains to define two local
block preconditioners for two matrices: obtained by discretising an elliptic and a
parabolic type equations. A wide class of preconditioners for such problems already
has been developed, either sequential or parallel, with available implemented ver-
sions (see e.g. [21, 34, 36, 4, 22], details follow). We actually can resort to any
of these preconditioners to embed it into the bidomain model preconditioning here
presented.
In this sense, our preconditioning framework provides a lifting from preconditioners
for elliptic problems to preconditioners for the bidomain model.
The natural question raised by this is: “can we recover the (already available) high
performances of elliptic problem preconditioners for the bidomain equations ?”. This
question is here addressed from the point of view of complexity. Let A denote a
sparse matrix with size n obtained by discretising an elliptic equation. Optimal
complexity to perform X 7→ A−1X is in O(n log(n)α) referred to as almost linear
complexity (developments on complexity matters are given in Sec. 5.3). Optimal
complexity has been obtained for elliptic problems for instance using multi-grid ap-
proaches [21, 36] or hierarchical matrix factorisations [22, 5, 19, 20]. In this paper
we numerically prove that almost linear complexity can be reached for the bidomain
model embedding a hierarchical Cholesky decomposition into our general bidomain
model preconditioning.

Several (equivalent) mathematical formulations of the bidomain model have been
proposed: we refer to [10] for a comprehensive review. The bidomain model can
be set as a system of two coupled degenerate parabolic equations: this formulation
has been used to prove existence of solutions in [15, 7] and numerically used e.g. in
[35, 14, 27].
A second formulation reads the form of a coupled parabolic-elliptic system of two
equations. This formulation has been widely used either for theoretical or numerical
purposes. Within this coupled parabolic-elliptic formalism, it has been showed in [8]
that the bidomain model displays a self-adjoint positive semi-definite structure. We
consider here a general discretisation of this formulation. This discrete formulation
of the bidomain model is shown to be symmetric positive semi-definite: this property
holds including the coupling of the heart with the surrounding tissues. This discrete
formulation of the bidomain model has already been used e.g. in [3, 6]



PRECONDITIONING THE BIDOMAIN MODEL 3

Still within this coupled parabolic-elliptic formalism, other (non-symmetric) versions
also have been widely used: for instance in [17, 2].
Embedding the strong structural properties of the bidomain model (i.e. symmetry
and positivity) at the discrete level is quite natural and should provide an efficient
implementation. We personally experienced the difference between the symmetric
positive formulation here adopted and the non-symmetric one in [2]. A gain in CPU
time of factor more than 5 was made with the symmetric positive version and for a
similar resolution strategy.

Let us now detail the general preconditioning strategy. It relies on the symmetric
positive semi-definite formulation of the coupled heart and torso bidomain model.
Various space discretisations (including classical Lagrange P k finite elements or var-
ious finite volume techniques) can be considered. For simplicity we adopted here
an Euler semi-implicit time discretisation but the technique generalises to more so-
phisticated time schemes. Once discretised, this formulation involves the inversion
of one system matrix per time step, that is here shown to be symmetric positive
semi-definite. The two following points are used to precondition the system matrix.

1- LU factorisation. The system matrix displays a 2× 2 block structure that
can be factorised into a block-LU form.

2- Monodomain model heuristic. Among the blocks of the LU factori-
sation, all blocks have a simple definition, are sparse and do not lead to
computational difficulties except one block. This block is shown to be sym-
metric positive definite and to be the sum of a mass matrix and of a discrete
bidomain operator (discrete analogue of the earlier on mentioned bidomain
operator) that is shown to read the harmonic mean between two stiffness
matrices. This block, that is not sparse, is not computed but approximated
using the monodomain model approximation detailed below.

The monodomain model approximation basically consists in approximating the bido-
main operator in [8] (the harmonic mean between two diffusion operators) by a sim-
ple diffusion operator. The diffusivity tensor for the monodomain model approxima-
tion will here be set to the harmonic mean of the intra and extra cellular conductivity
tensors. This approximation is an heuristic, exact in case of equal anisotropy ratio
between the intra and extra cellular media. The monodomain model can provide an
accurate approximation of the bidomain model [11, 14, 29, 28]. It has been shown in
[28] that a monodomain model could provide activation time mappings in complex
situations with 1% of relative error as compared to the bidomain model predictions.

In a recent paper [17], Gerardo-Giorda et al. introduced a preconditioner for the
bidomain model also based on a monodomain model heuristic and on a lower block
triangular approximation. Let us point out the differences between these two pa-
pers. The LU factorisation presented here should provide more efficient algorithms
than the lower bock-triangular approximation since this factorisation is exact. The
heuristic in [17] is slightly different from the one here. The conductivity inside the
monodomain model in [17] is proportional to the intra-cellular conductivity only.
Since the bidomain operators essentially realises some homogenisation of both the
intra and extra cellular conductivities, it seems more appropriate to consider both
these two conductivity tensors to get a more accurate approximation. We instead
considered the harmonic mean of the intra and extra cellular conductivity tensors.
The formulation in [17] is based on a non symmetric formulation whereas we here
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considered a symmetric positive semi-definite system matrix. We then can benefit
from symmetry and positivity properties in terms of computational efficiency, for
instance resorting to a conjugate gradient linear solver. The preconditioning in [17]
holds for an isolated heart only. Our version applies to the coupled heart and torso
bidomain model. A draft of quantitative comparison between these two precondi-
tioning is made in the conclusion section 6.3.

The paper is organised as follows. The coupled heart and torso bidomain model is
stated in Sec. 2. Its numerical discretisation follows in Sec. 3. In Sec. 4 are stated
and proved the mathematical properties of the discretised bidomain problem system
matrix: it is shown to be symmetric positive semi-definite, its LU block factorisation
is then analysed. The general preconditioning of the bidomain model is defined in
Sec. 5, sub section 5.3 is devoted to its practical implementation. Numerical results
are in Sec. 6. Two test cases are presented in 6.1. The first one is a 2D realistic
test case on a geometry of the heart and of the surrounding organs obtained by seg-
menting a medical image [32, 33] and including rotating anisotropy inside the heart.
The second one is a 3D cubic slab of cardiac tissue with rotating anisotropy. The
complexity of the preconditioned system matrix inversion is numerically studied in
Sec. 6.2. Results are discussed in the conclusion section 6.3.

2. Bidomain model of the heart embedded in the torso

Let us denote by Ω and H two bounded open subsets such that H ⊂ Ω ⊂ Rd with
d = 2, 3 and with smooth boundaries. We moreover assume that ∂Ω ∩ ∂H = ∅: Ω
represents a thorax and H the region occupied by the heart (assumed fixed here).
We also consider T := Ω −H that will be referred to as the torso, see Fig. 1. We
denote Q, QH and QT the time-space cylinders (0, T )×Ω, (0, T )×H and (0, T )×T
respectively.

Two potential fields will be involved, the transmembrane potential v : QH 7→ R
and the potential u : Q 7→ R. When restricted to H (resp. to T ), the potential
u is referred to the extra-cellular potential (resp. extra cardiac potential). The
transmembrane potential v = ui − u|H is the difference between an intra-cellular
potential ui : QH 7→ R and the extra-cellular potential u|H ; the intra-cellular
potential will not be considered in the following mathematical formulation of the
problem.

The heart has a fibrous organisation implying anisotropic electrical conductivi-
ties. The cardiac fibres rotate around the ventricle cavities, see Fig. 1. The fibres
remain tangent to the cardiac boundaries. This anisotropy is taken into account by
introducing in H two tensors σi and σe. Introducing the 4 conductivity parameters
gli,e, g

t
i,e, they read:

σi(x) = Diag(gli, g
t
i), σe(x) = Diag(gle, g

t
e),

in a moving system of coordinates whose principal orientation is given by the fibre
orientation at point x. Of course, when written in a fixed basis, these tensors thus
no longer are diagonal. Physically, the parameters gli,e and gti,e are the electrical
conductivities longitudinally and transversely to the fibre direction (subscript l and
t) and respectively to the intra- or extra-cellular media (index i or e).

The torso region T is assumed to have an isotropic but heterogeneous electrical
conductivity. We define in T the conductivity tensor σT (x) = k(x)Id where the
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conductivity k : T 7→ R basically is piecewise constant on the different organs
considered in T .

The torso model reads:

(1)

{
div(σT (x)∇u) = 0, (t, x) ∈ QT ,

∇u · n = 0 on ∂Ω,

where n denotes the outward unit normal to ∂Ω.
In the heart region, the bidomain model reads the three following equations in H,

for (t, x) ∈ QH :

(2)


div((σi(x) + σe(x))∇u) = − div(σi(x)∇v),

χ (c∂tv + Iion(v,w)− Ist(t, x)) = div(σi(x)∇(u+ v)),

∂tw = g(v,w).

In line 2, c denotes the cell membrane surface capacitance, χ is the rate of cell
membrane surface per unit volume, Ist : QH 7→ R is the stimulation current (source
term). Iion(v,w) (reaction term) denotes the surface ionic current distribution on
the membrane. The gating variable w : QH 7→ Rp characterises the state of the
cell membrane, its evolution is ruled by the ODE system in line 3. The definitions
of Iion and of g are fixed by the chosen ionic model in Sec. 6.1.
Equations (2) are coupled with the torso model (1) with the following coupling
condition:

(3) on ∂H :

{
u|H = u|T , σe(x)∇u|H · n = σT (x)∇u|T · n,

σi∇u|H · n + σi∇v · n = 0.

where n denotes the outward unit normal to ∂H.
The model is closed by imposing initial conditions on v and w,

(4) v(0, x) = v0(x), w(0, x) = w0(x), x ∈ H.
Clearly, the potential field u is defined up to an additive constant. We therefore
impose the normalisation condition

(5)

∫
Ω

u(t, ·)dx = 0.

2.1. Weak formulation. We introduce the tensor σ1 on Ω:

σ1(x) =

{
σi(x) + σe(x), x ∈ H

σT (x), x ∈ T
.

The weak formulation of the bidomain model (1), (2), (3) reads: ∀ψ ∈ H1(Ω),
∀φ ∈ H1(H),

∫
Ω

σ1∇u · ∇ψdx+

∫
H

σi∇v · ∇ψdx = 0,

χc∂t

∫
H

vφdx+ χ

∫
H

(Iion(v,w)− Ist(x, t))φdx = −
∫
H

σi∇(u+ v) · ∇φdx,
(6)

The first line in (6) is obtained by multiplying (1) and the first equation in (2) by
a test function ψ ∈ H1(Ω), by integrating on Ω and by using the coupling conditions
(3) and the boundary condition on ∂Ω in (1). The second line in (6) is obtained by
multiplying the second equation in (2) by a test function φ ∈ H1(H), by integrating
on H together with (3).
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2.2. Case of an isolated heart. We here address the particular case where the
heart is considered as isolated from the surrounding tissues. In this case we have
H = Ω and T = ∅. Equations (2) only are considered and the coupling conditions
(3) are replaced by zero flux boundary conditions on ∂H for v and u.

3. Implementation

For more simplicity, temporal discretisation is fixed to a semi implicit Euler
scheme: implicit for the diffusion and explicit on the reaction. The implementation
presented here as well as the associated preconditioner presented in the following
section could however be generalised to more sophisticated time discretisation as
discussed in remark 2.

The implementation strategy is similar for various space discretisations including
P k Lagrange finite elements or finite volume scheme such as the CVFE scheme
(Control Volume Finite Element, see e.g. [9]) that will be used here for the numerical
results or such as the DDFV scheme in [2]. Assumptions (H1) and (H2) on the
space discretisation are detailed in Sec. 3.1 whereas the numerical scheme itself is
presented in Sec. 3.2.

3.1. Settings. Let us consider a mesh M of Ω and a mesh MH of the cardiac
region H: we assume that MH is a sub mesh of M, that is to say that all elements
(or cells or control volumes) of MH also are elements of M.

Relatively to the considered space discretisation, let us denote by RM, RMH the
set of discrete functions attached to these two meshes. Their dimensions are re-
spectively denoted N and NH . A “natural” basis usually is provided for RM and
RMH , respectively denoted (Ui)1≤i≤N and (UH

i )1≤i≤NH
. In the case of P k finite ele-

ment methods, these functions simply are the standard P k Lagrange basis functions.
Considering these basis induces an isomorphism between RM and RN and between
RMH and RNH . A discrete function U =

∑N
i=1 ciUi will be considered either as a real

function or as the real vectors (ci)i≤1≤N . Using these identifications, the canonical
Euclidian structures on RN and RNH extend to RM and RMH . We denote by (·, ·)M
and (·, ·)MH

the associated scalar products.
We make the following first assumption on the space discretisation method:

(H1) for all i, 1 ≤ i ≤ NH : Ui|H = UH
i (where Ui|H denotes the restriction of the

function Ui to H).

In the case of the P k finite element methods, this first assumption is true modulo a
reordering of the basis function (Ui)1≤i≤N . Assumption (H1) allows us to define the
restriction operation:

(7) Π : U =
N∑
i=1

ciUi ∈ RM 7→ U|H =

NH∑
i=1

ciU
H
i ∈ RMH .

Equivalently, Π can be seen as a simple truncation operation:

Π : U = (ci)1≤i≤N ∈ RM 7→ U|H = (ci)1≤i≤NH
∈ RMH ,

following the above described identification between RM and RN and between RMH

and RNH . The transpose mapping TΠ for Π reads:

TΠ : U =

NH∑
i=1

ciU
H
i ∈ RMH 7→

NH∑
i=1

ciUi ∈ RM.
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We point out that in this discrete setting TΠ does not match the prolongation by
zero outside H. The following property will be useful:

(8) Π TΠ = idRMH .

Let us introduce the mass matrices M , MH and the stiffness matrices S1, Si so that:

∀ U1, U2 ∈ RM :

∫
Ω

U1U2dx = (MU1, U2)M,

∫
Ω

σ1∇U1 · ∇U2dx = (S1U1, U2)M

∀ V1, V2 ∈ RMH :

∫
H

V1V2dx = (MHV1, V2)MH
,

∫
H

σi∇V1 · ∇V2dx = (SiV1, V2)MH

The second assumption on the space discretisation reads:

(H2) Let us denote IΩ and IH the characteristic functions of Ω and H respectively
(constant functions equal to one):

(9) IΩ ∈ RM , IH ∈ RMH .

Assumption (H2) is related with the considered boundary conditions here: homo-
geneous Neumann on ∂Ω and transmission conditions on ∂H. It implies that the
stiffness matrices S1, Si (which are symmetric positive semi-definite) have for kernels
the one dimensional spaces IΩR and IHR respectively.

3.2. Scheme statement. The three unknowns v, u and w of the (continuous)
bidomain model are represented by the discrete functions U ∈ RM, V ∈ RMH and
W ∈ [RMH ]p.
We have for all test function Ψ ∈ RM:∫

H

σi∇V · ∇Ψdx = (SiV,ΠΨ)MH
= ( TΠSiV,Ψ)M

Discretisation of (6) thus reads:

(10)


S1U

n+1 + TΠSiV
n+1 = 0,

χcMH
V n+1 − V n

∆t
+ χMH (Iion(V n,W n)− Inst) = −SiΠUn+1 − SiV n+1

.

We introduce the positive parameter γ:

γ := χc/∆t.

Resolution algorithm. The complete bidomain model (1) (2) (3) is numerically
solved applying the following three operations at each time step.
Being given V n ∈ RM and W n ∈ [RMH ]p:

Step 1. Compute the right hand side Y :

Y :=

[
0
MH (γV n − χ(Iion(V n,W n)− Inst))

.

Step 2. find the solution X = T [Un+1, V n+1] to ΛX = Y with

(11) Λ :=

[
S1

TΠSi
SiΠ γMH + Si

]
that satisfies

∫
Ω

Un+1dx = 0.

Step 3. Update the gating variable by computing W n+1 according to line 3 in equa-
tion (2).

�
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This paper is devoted to Step 2 only. Proposition 1 states that step 2 is well
posed.

4. Properties and LU factorisation of the system matrix Λ

Let us precise that S1 : RM 7→ RM and that Si : RMH 7→ RMH . Then, Λ :
RM × RMH 7→ RM × RMH .

Proposition 1. The system matrix Λ is symmetric positive semi-definite with kernel
Ker (Λ) = IΩR× {0}. By symmetry Λ has for range Ran (Λ) = I⊥Ω × RMH . For all
(Y1, Y2) ∈ I⊥Ω × RMH , there exists a unique (U, V ) ∈ RM × RMH such that

(12) Λ

[
U
V

]
=

[
Y1

Y2

]
and

∫
Ω

Udx = 0.

The resolution of step 2 in the resolution algorithm proceeds in two steps: first
find a solution T [X1, X2], then normalise X1. We now focus on the first step.

Definition 1 (Pseudo-inverses S−̃1
1 and S−̃1

i ). The stiffness matrices S1 and Si are
isomorphisms on I⊥Ω = Ran (S1) and on I⊥H = Ran (Si) respectively. We introduce

their pseudo inverses S−̃1
1 and S−̃1

i : they respectively are equal to the inverse of S1,
Si on I⊥Ω , I⊥H and equal to 0 on IΩR, IHR.
Considering pΩ (resp. pH) the orthogonal projection of RM on I⊥Ω (resp. of RMH

on I⊥H), we have:

S−̃1
1 S1 = S1S

−̃1
1 = pΩ , S−̃1

i Si = SiS
−̃1
i = pH .

Proposition 2. We have the block decomposition Λ = LU with:

(13) L :=

[
S1 0
SiΠ K

]
, U :=

[
idRM S−̃1

1
TΠSi

0 idRMH

]
,

The matrix K is symmetric, positive definite. It reads:

(14) K := γMH + Si − SiΠS−̃1
1

TΠSi.

Remark 1 (About the matrix K). Let us consider the tensor

σe(x) =

{
σe(x), x ∈ H
σT (x), x ∈ T

,

and denote Se the associated stiffness matrix. Since S1 and Se have the same range

I⊥Ω , one can define the pseudo-inverse S−̃1
e for Se with the same meaning as for S1.

The matrix K in (14) can be rewritten as

K = γMH +
(
S−1
i + ΠS−1

e
TΠ
)−1

.

where all inverses are pseudo-inverses. This equality is precisely stated and proved
in the proof of proposition 2.
It is interesting to notice that the second term appears as the “harmonic mean”
between the stiffness matrices Si and Se. At the discrete level, this is a transposition
of the “bidomain operator” as defined in [8] that was introduced as the harmonic
mean between two diffusion operators.
From a practical point of view, K is non sparse but will never need to be computed
explicitly, only approximated in order to get a preconditioner.
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Proposition 3. L has a pseudo inverse L−̃1 in the following sense:

LL−̃1 = L−̃1L =

[
pΩ 0
0 idRMH

]
,

U is invertible, U−1 and L−̃1 read:

(15) L−̃1 =

[
S−̃1

1 0

−K−1SiΠS
−̃1
1 K−1

]
, U−1 =

[
idRM −S−̃1

1
TΠSi

0 idRMH

]
.

For Y ∈ Ran (Λ), a solution to ΛX = Y is provided by X = U−1L−̃1Y .

Remark 2 (About the time discretisation). Choosing another time discretisation
scheme will basically imply two changes: the computation of the right hand side (Step
1 in the resolution algorithm above) and the definition of K. In general the global
structure of the system matrix Λ (which is symmetric positive semi-definite) as well
as the positivity of K will not be affected by considering different time discretisation:
this is for instance the case for the Crank-Nicholson scheme or for operator splitting
schemes (Strang formula e.g.).
Consequently the resolution strategy presented in proposition 3 can be adapted to
different time discretisation schemes, as well as the preconditioning of K as pointed
out in the following section.

Proof of proposition 1. For X = T (U, V ) ∈ RM × RMH , we have:

TXΛX = (S1U,U)M + 2(SiΠU, V )MH
+ (SiV, V )MH

+ γ(MHV, V )MH

We consider Se and σe defined in Rem. 1. Since σ1 − σe is equal to 0 on T and
to σi on H, S1 − Se is positive semi-definite.

Equation (8) says that
(
TΠV

)
|H = Π TΠV = V . Together with σ1 − σe = 0

outside H one gets:

(SiV, V )MH
=

∫
H

(σ1 − σe)∇V · V dx

=

∫
Ω

(σ1 − σe)∇ TΠV · ∇ TΠV dx =
(
(S1 − Se) TΠV, TΠV

)
M

(SiΠU, V )MH
=

∫
H

(σ1 − σe)∇ΠU · ∇V dx

=

∫
Ω

(σ1 − σe)∇U · ∇ TΠV dx =
(
(S1 − Se)U, TΠV

)
M
.

From these two equalities we deduce that:

TXΛX = (SeU,U)M +
(
(S1 − Se)(U + TΠV ), (U + TΠV )

)
M

+ γ(MHV, V )MH

so ensuring that Λ is positive semi-definite. Assuming that ΛX = 0 implies that all
the terms on the right of the last equality are equal to zero. The mass matrix being
definite this means V = 0 and so S1U = 0. Thus U ∈ Ker (S1) = IΩR and we then
have Ker (Λ) = IΩR× {0}.

Let X = T [U, V ] be a solution to ΛX = Y for Y ∈ Ran (Λ). A simple com-
putation shows that Z = T [U − αIΩ, V ] is the unique solution to (12) iff α =
(MU, IΩ)M/(MIΩ, IΩ)M, so ending the proof. �
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Proof of proposition 2. We have:

LU =

[
S1 pΩ

TΠSi
SiΠ γMH + Si

]
,

and so LU = Λ iif pΩ
TΠSi = TΠSi. This last equality holds since for all V ∈ RMH ,(

TΠSiV, IΩ

)
Ω

= (SiV,ΠIΩ)H = (SiV, IH)H = 0,

and so Ran
(
TΠSi

)
⊂ I⊥Ω .

The symmetry of K is obvious. Let us prove it is positive definite.

We decompose K = γMH +K0 so with K0 := Si−SiΠS−̃1
1

TΠSi. We will prove that
K0 (which is symmetric) is positive semi-definite. This implies the positivity of K
since γMH is positive definite. Precisely: K0 clearly vanishes on IHR. Then I⊥H is
stable by K0. Let us prove that K0 is positive definite on I⊥H .

We consider again Se and σe defined in Rem. 1. Let us first prove that:

(16) K0 = ΠSeS
−̃1
1

TΠSi

Firstly, we have: ∀ U1.U2 ∈ RM,∫
Ω

(σ1 − σe)∇U1 · ∇U2dx =

∫
H

σi∇U1 · ∇U2dx,

and so TΠSiΠ = S1 − Se.
Secondly, multiplying K0 by Π TΠ = idRMH on the left gives:

K0 = Π TΠK0 = Si − Π TΠSiΠS
−̃1
1

TΠSi

= Si − Π(S1 − Se)S−̃1
1

TΠSi

= Si − Π(pΩ − SeS−̃1
1 ) TΠSi

= ΠSeS
−̃1
1

TΠSi + Si − ΠpΩ
TΠSi.

One already showed in this proof that pΩ
TΠSi = TΠSi ensuring that ΠpΩ

TΠSi = Si.
This gives us (16).

Clearly S−̃1
e and S−̃1

i are positive definite on I⊥Ω and I⊥H respectively. We moreover
have TΠ(I⊥H) ⊂ I⊥Ω since for all V ∈ I⊥H :(

TΠV, IΩ

)
Ω

= (V,ΠIΩ)H = (V, IH)H = 0.

Then ΠS−̃1
e

TΠ is positive definite on I⊥H . Let us define A := (S−̃1
i + ΠS−̃1

e
TΠ): I⊥H

is stable by A. A is positive definite and so invertible on I⊥H . We will end this proof
by showing that K0 = A−1 on I⊥H .

K0A = (ΠSeS
−̃1
1

TΠSi)(S
−̃1
i + ΠS−̃1

e
TΠ)

= ΠSeS
−̃1
1

TΠpH + ΠSeS
−̃1
1

TΠSiΠS
−̃1
e

TΠ

= ΠSeS
−̃1
1

TΠpH + ΠSeS
−̃1
1 (S1 − Se)S−̃1

e
TΠ

= ΠSeS
−̃1
1

TΠpH + ΠSe(pΩS
−̃1
e − S−̃1

i pΩ) TΠ

= ΠSeS
−̃1
1

TΠpH + ΠSe(S
−̃1
e − S−̃1

i ) TΠ

= ΠpΩ
TΠ + ΠSeS

−̃1
1

TΠ(pH − idRMH ).
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Clearly, pH − idRMH vanishes on I⊥H . Moreover, since TΠ(I⊥H) ⊂ I⊥Ω , ΠpΩ
TΠ is the

identity on I⊥H . Thus K0AV = V for all V ∈ I⊥H . �

5. Preconditioning

The previously studied algebraic properties of the system matrix Λ naturally
suggest a block-LU designed preconditioner for Λ, it is here defined in Sec. 5.1.
This general algebraic setting is the first key ingredient towards the preconditioning
of the bidomain model.
The second key ingredient is a heuristic approximation of the matrix K, presented
in Sec. 5.2.
The last layer to practically implement the subsequent preconditioning indeed is
discussed in Sec. 5.3.

5.1. Preconditioner definition. The practical strategy to solve (11) will be to use
an iterative solver for the left preconditioned system:

P−1
Λ ΛX = P−1

Λ Y,

for a global preconditioner PΛ defined as follows.

Definition 2. Let us consider P1 a preconditioner for S1 and PK a preconditioner
for K. We define a global preconditioner PΛ for Λ as:

PΛ = LPUP , LP :=

[
P1 0
SiΠ PK

]
, UP :=

[
idRM P−1

1
TΠSi

0 idRMH

]
.(17)

The inversion of PΛ is achieved as follows. The solution X to PΛX = Y is given by
X = U−1

P L−1
P Y with:

(18) L−1
P :=

[
P−1

1 0
−P−1

K SiΠP
−1
1 P−1

K

]
, U−1

P :=

[
idRM −P−1

1
TΠSi

0 idRMH

]
.

Neglecting the vector additions, the operational cost to compute X = ΛY is:

- 2 multiplications by Si
- 1 multiplication by S1

- 1 multiplication by MH ,

whereas the operational cost to compute X = P−1
Λ Y is:

- 2 inversions of P1,
- 1 inversion of PK ,
- 2 multiplications by Si,

The symmetry and positivity properties of Λ allow to resort to a Preconditioned
Conjugate Gradient (PCG) algorithm to solve (11). The cost for this iterative
solver (again neglecting scalar products and vector additions) is for each step: one
multiplication by Λ and one inversion of P−1

Λ X = Y .

5.2. Heuristic approximation of K. The hard task for the definition of PΛ in
(17) is the definition of PK . As developed in Rem. 1, K has a complex structure:

K = γMH +K0,

where K0 is a non sparse matrix obtained by making the harmonic mean between
Si and Se. Since K is a full matrix, it will never be computed and the alternative
strategy to define PK is to derive an approximation of K displaying a sparse pattern.
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Let us consider the tensor σm:

σm(x) := (σ−1
e (x) + σ−1

i (x))−1 , x ∈ H,

which is the harmonic mean between σi and σe. We introduce the stiffness matrix
Sm associated to σm acting on RMH . We make the following approximation:

K ' Km := γMH + Sm.

This approximation is referred to as the monodomain model approximation [14].
The matrix Km has a simple structure. It reads the form of the discretisation of a
parabolic equation. It is moreover symmetric, positive definite and sparse (with the
same pattern as Si).

5.3. Practical implementation of P1 and PK. The two preconditioners P1 and
PK will be built from the matrices S1 and Km respectively. These matrices (sparse,
symmetric positive semi-definite) have classical structures arising from the discreti-
sation of elliptic and parabolic problems respectively. A wide literature has been
devoted to the preconditioning of such matrices: among classical choices we not
comprehensively quote incomplete decomposition methods (incomplete LU or in-
complete Cholesky, see e.g. [34]) multi-grid or multi-level methods, see [21, 36].
Fixing one of these classical possible choices actually provide a fully defined imple-
mentation of the here presented bidomain model preconditioning.
We insist on the flexibility of this bidomain model preconditioning. This flexibility
relies on the freedom for the choice of P1 and PK . This choice has to be set by the
user that therefore can use his favourite preconditioning class.

Remark 3 (Parallelisation). At this stage, let us underline the consequences on
parallelisation induced by this flexibility characteristic of the bidomain model pre-
conditioning. Once embedded into some iterative solver (e.g. CG or GMRes) the
resolution of system (11) preconditioned by PΛ only requires:

- matrix vector multiplications by Λ,
- inversions of PΛX = Y : as detailed in Sec. 5.3 this operation consists in

matrix vector multiplication and inversions of P1X = Y and of PKX = Y ,
- various remaining operations, such as scalar products..

Except the inversions of P1X = Y and of PKX = Y , all these operations have
trivial parallelisation. But since P1 and PK are preconditioners for classical elliptic
or parabolic discretised PDEs, classical parallel versions for P1 and PK already are
available. For instance a review of algebraic methods (such as parallel version of in-
complete factorisations) is provided in [4, 34]. Another wide class of parallelisation
strategies based on domain decomposition is analysed in [31] and also described in
[34]. For instance the multi-level additive Schwarz preconditioner, such as presented
in [27] and applied to the bidomain model, also could be incorporated inside the here
presented general preconditioning framework.
For this reason, we do think that the general preconditioning strategy (block LU de-
composition of Λ and heuristic approximation of K) for the bidomain model naturally
fits with the constraints of parallelism, though a sequential framework is sufficient to
obtain a first evaluation of its efficiency in practise.

For the numerical results in Sec. 6 we will use the hierarchical matrix method to
precondition S1 and Km. Let us first justifies this choice.
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Optimal complexity to solve a discretised elliptic problem AX = Y is O(n) with n
the system size: sinceX 7→ AX hasO(n) complexity one cannot hope better for Y 7→
A−1Y (A being sparse whereas A−1 is full). Although this optimal can be reached
for some particular problems (for instance in case A is tri-diagonal), in practise the
most efficient algorithms have almost linear complexity : that is O(n log(n)α) with α
a constant. A natural question raised then is: being given such a method to build
P1 and PK , do we recover almost linear complexity for the bidomain model ?

Hierarchical matrices preconditioning strategy [22, 5, 19, 20] provides such an al-
most linear complexity (among various possible choices such as multi-grid methods
[21]). This method proceeds in two steps. Firstly compute an approximation of the
considered matrix (here S1 or Km). This approximation is built using hierarchical
matrices arithmetic (basically including block partition of the matrix and defining
a block-wise approximation by low rank matrices), ensuring low storage cost. This
approximation accuracy is controlled by the accuracy parameter ε: in matrix norm
the accuracy goes to 0 with ε. Secondly perform the exact decomposition (either LU
or Cholesky) of this approximation. Hierarchical Cholesky decomposition has been
used here to build P1 and PK . Taking advantage of the hierarchical arithmetic, both
the construction, storage and inversion of the preconditioners are in O(n log(n)α),
precisely with α = 2 (resp. 4) for the decomposition and α = 1 (resp. 2) for the
storage/inversion in dimension 2 (resp. 3).
The setting of the accuracy parameter ε strongly impacts the preconditioning effi-
ciency. Naturally the PCG convergence rate increases as ε goes to 0. A convergence
in one single PCG iteration is expected provided a small enough value for ε. Mean-
while the preconditioner inversion cost increases as ε 7→ 0: thus the highest PCG
convergence rate may not correspond to the most efficient setting of the precondi-
tioner. An optimal value for ε (not too small but not too large) has to be searched.
PCG convergence rate for such optimal value are shown in Sec. 6.2 for which 3 PCG
iterations typically have to be performed.

In practise the construction of P1 and PK was made using the H-Lib library from
L. Grasedyck and S. Börm1. The sequential version of the code has been used: a
parallel version also is available.

6. Numerical results

The efficiency of the preconditioner presented in Sec. 5 is analysed in this section.
The bidomain model has been implemented following Sec. 3 and using a finite
volume spatial discretisation (namely the CVFE scheme, see e.g. [9]). For this
spatial discretisation the degrees of freedom are located at the mesh vertices and
the mass matrices are diagonal. Two test cases are considered: a two dimensional
realistic setting including a whole thorax slice and a three dimensional one describing
a cubic slab of tissue. Test cases are detailed in Sec. 6.1. For these two test
cases a depolarisation potential wave is simulated. The spreading of depolarisation
numerically is by far the stiffest part of the simulation.
The cost for the inversion of the preconditioned system (11) is measured during the
spreading of the depolarisation wave. The dependence of this cost with the problem
size is then analysed. For this a series of meshes Mn is considered with an increasing
number of vertices DOF(n). We here aim to validate an almost linear dependence

1http://www.hlib.org/



14 C. PIERRE

Values Unit
Cell membrane surface-to-volume ratio (2D) χ = 1500 [cm−1]
Cell membrane surface-to-volume ratio (3D) χ = 500 ”
Membrane surface capacitance c = 1.0 [µ F/cm2]
Longitudinal intra-cellular conductivity gli = 1.741 [mS/cm]
Transverse intra-cellular conductivity gti = 0.1934 ”
Longitudinal extra-cellular conductivity gle = 3.906 ”
Transverse extra-cellular conductivity gte = 1.970 ”
Lung conductivity 0.5 ”
Blood conductivity (ventricle cavities) 6.7 ”
Remaining tissues conductivity 2.2 ”

Table 1. Model parameters

of the cost with DOF(n).
The cost has been measured in two ways. Firstly in terms of CPU time. The
averaged CPU time spent on the inversion of system (11) during the depolarisation
sequence is denoted CPU(n). The logarithmic growth rate rn of CPU(n) relatively
to DOF(n) will be considered:

(19) rn =
log(CPU(n)/CPU(n− 1))

log(DOF(n)/DOF(n− 1)
.

The CPU time measurements however might be perturbed by cacheing-effects and
memory-access differences for large-scale problems. To cope with this, the cost also
is evaluated in terms of number of iterations. The averaged number of iterations
required by the PCG algorithm to invert (11) during the depolarisation sequence is
denoted Iter(n). Each step of the PCG algorithm requires one multiplication by Λ
and one inversion of PΛ. These operations respectively are of linear and almost linear
complexity with DOF(n). Thus a constant or logarithmic behaviour is expected for
Iter(n) to validate an almost linear complexity of the preconditioning.
Numerical results for the preconditioning complexity are presented and discussed in
Sec. 6.2 and 6.3 respectively.

6.1. Test cases. For the two test cases, the reaction terms Iion(v,w) and g(v,w)
in (2) have been set to the Luo and Rudy ionic model of class II [25] designed for
mammalian ventricular cells and for which the system of ODEs in (2) is of size 20
(i.e. w ∈ R20). The model parameters χ, c as well as the conductivities are displayed
in Tab.1: these values are physiological values taken from [24, 37].

2D test case. The domain Ω is an horizontal slice of a human thorax. This
geometry has been obtained by segmentation of a medical image (CT-Scan, cour-
tesy of the Ottawa Heart Institute) with resolution 0.5 mm. We refer to [32, 33]
for details on the segmentation procedure. The segmented image is depicted in Fig.
1. It includes 4 sub-domains: the two ventricles (H) and the torso (T ) made of the
ventricular cavities, the lungs and the remaining tissues.
Four meshes (Mn)n=1...4 of Ω will be considered: with DOF(1)=143 053, DOF(2)=344
408, DOF(3)=684 112 and DOF(4)=1 257 312. The associated time steps respec-
tively are ∆t = 0.07, 0.05, 0.035 and 0.025 Milli seconds (ms).
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V1 V2
V3

V4

V5

V6

Figure 1. 2D test case description. Left: fibrous anisotropic struc-
ture of the two ventricles. Middle: 2D geometry Ω and its sub-
domains. body surface potential (ECG) are recorded at the vertices
V1 to V6. Right: stimulation site locations.

The anisotropic structure of the two ventricles is displayed on Fig. 1: bundles of fi-
bres rotating around the ventricular cavities have been considered. Inside the torso
T , heterogeneous conductivities have been considered for each sub-domains: the
lungs, ventricular cavities and the remaining tissues conductivities are given in Tab.
1.
With these settings, a depolarisation potential wave is simulated. For this a stim-
ulation current Ist(x, t) (see equation (2)) is applied during 1 ms at four locations
(stimulation sites) on the ventricle cavities as depicted on Fig. 1; the right ventricle
being stimulated 5 ms later than the left one.
The spreading of this potential wave across the myocardium is depicted on Fig. 2.
The transmembrane potential v in the heart is depicted 15, 30 and 45 ms after stimu-
lation on the left. Without entering the details: the region in blue is at rest potential
(v ' −90 mV) whereas the region in red is excited (v ' 50 mV). Downward: the
excitation wave starts at the stimulation site location and then spreads throughout
the cardiac tissue. The activation time φ(x) is computed point-wise as the time
t = φ(x) so that v(φ(x), x) = −20 mV (the time at which the depolarisation wave
reaches the point x). Activation time are depicted on Fig. 3.
The modifications on the extra-cellular (and extra-cardiac) potential u on Ω (heart
and torso) induced by the transmembrane depolarisation wave spreading also is
depicted on Fig. 2. The body surface potential (ECG) is recorded at 6 points
on ∂Ω, their location is depicted on Fig. 1 (points V1 to V6). These potentials
(u(t, V i))i=1...6 are recorded at each time step along a complete cardiac cycle (in-
cluding depolarisation and repolarisation). Results are depicted on Fig. 3 on the
right for the two electrodes V2 and V6.

3D test case. We here consider a small slab of tissue: a cubic domain with one
centimetre width (Ω = [0, 1]3). A series of 5 meshes (Mn)n=1...5 has been consid-
ered, from 500 to 1 250 000 vertices (see Tab. 2 for exact figures). The mesh size
being divided by 2 from Mn to Mn+1, the time stepping ∆t also is divided by 2 and
ranges from 0.2 to 0.0125 ms from the coarsest to the finest mesh. The heart is here
considered as isolated: no torso T is involved as described in Sec. 2.2. The cardiac
tissue anisotropy is set to be of orthotropic type, as defined in [14]. Muscular fibres
are horizontal and independent of x and y. The fibre directions linearly rotate from
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Figure 2. 2D simulation. Left: depolarisation sequence of the heart,
the transmembrane potential v is represented 15, 30 and 45 ms after
stimulation. Right: associated potential u in the heart and in the
extra cardiac region.

+π/4 to −π/4 as z goes from 0 to 1. Precisely the fibre direction f is given by

f = cos
(π

4
(1− 2z)

)
ex + sin

(π
4

(1− 2z)
)

ey, with ex = (1, 0, 0) and ey = (0, 1, 0)

the two first base vectors. Orthotropic anisotropy represents the physiologically ob-
served rotation of the cardiac fibres from +π/4 to −π/4 from the endo-cardium to
the epi-cardium.
A depolarisation potential wave is simulated by applying a stimulation current at
the centre of the domain during 1 ms.
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Figure 3. 2D simulation. Left: activation time in the heart, isolines
in black are separated by 10 ms. Right: ECG recordings, the extra-
cardiac potential is recorded on the torso surface at two points located
at electrodes V2 (above) and V6 (below), see figure 1 for the electrode
location.

The spreading of transmembrane depolarisation wave is depicted on Fig. 4. Acti-
vation time are here represented for three slices of the domain Ω = [0, 1]3: z = 0,
z = 0.5 and z = 1. Each slice respectively corresponds to the endo-cardium, middle
wall and epi-cardium. The fibre angle with ex is clearly visible on each slice: +π/4
for z = 0 (left), 0 for z = 0.5 (middle) and −π/4 for z = 1 (right).

Figure 4. 3D simulation. Activation times for three slices of the
domain Ω = [0, 1]3: z = 0, z = 0.5 and z = 1 from left to right.
Isolines (in black) are separated by 1 ms.

6.2. Results. All figures and tables reported here have been obtained fixing a tol-
erance of 10−6 for the system (11) inversion; the residual being defined as ‖ΛX −
Y ‖/‖Y ‖ in Euclidian vector norm. The hierarchical Cholesky decompositions for
P1 and PK have been built for various values of the accuracy parameter ε. As al-
ready mentioned in Sec. 5.3, decreasing the value of ε increases the accuracy of
the hierarchical Cholesky decomposition but also increases its inversion cost. All
computations were ran on a clustered platform with processor cores of type AMD
Opteron, 2.3 GHz.
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n DOF(n) Iter(n)
ε = 10−2 ε = 10−3 ε = 10−4

1 143 053 3.19 3.00 3.00
2 344 408 3.82 3.00 3.00
3 684 112 4.00 3.00 3.00
4 1 257 312 4.54 3.00 3.00

n DOF(n) Iter(n)
ε = 10−1 ε = 10−2 ε = 10−3

1 497 2.40 2.00 2.00
2 3 220 4.03 2.79 2.76
3 22 256 5.14 3.00 3.00
4 162 981 7.43 3.24 3.00
5 1 253 910 11.20 3.96 2.00

(a) 2D case (b) 3D case

Table 2. Average number of iterations for one system inversion.

Number of iterations. We first investigate the cost for system (11) during the
depolarisation sequence in terms of number of iterations Iter(n) for the PCG algo-
rithm. As already developed in this section preamble, the global cost theoretically
is in O(Iter(n)DOF(n) log(DOF(n))α).

The numerical results are reported in Tab. 5. In dimension 2, for ε = 10−2

Iter(n) globally is multiplied by 1.18 between the coarsest and the finest meshes
when meanwhile the problem size is multiplied by almost 9. For ε ≤ 10−3 Iter(n)
remains constant. In dimension 3 Iter(n) increases very slowly: for ε = 10−2 (resp.
10−1) it is multiplied by 2 (resp. 4.66) when the problem size is multiplied by more
than 2 500; for ε = 10−2 it even decreases.

(a) 2D case (b) 3D case

Figure 5. Plot of DOF(n)×Iter(n) as a function of DOF(n) in (dec-
imal) Log/Log Scale. Left: 2D case for ε = 10−2. Right: 3D case for
the three values of ε = 10−2, 10−3 and 10−3.

The very slow variation of Iter(n) with DOF(n) (when it is not constant) appears
in good agreement with a O(log(DOF(n))β) assumption ensuring almost linear com-
plexity of the preconditioning global cost. It is unfortunately not possible to numer-
ically estimate β from these results since log(log(DOF(n))) has a too small range
of variation. To have a deeper insight on the behaviour of Iter(n) when it does not
remain constant we instead consider the cost indicator DOF(n)×Iter(n). An almost
linear behaviour of this indicator is expected. It has been represented as a function
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of DOF(n) in decimal logarithmic scale on Fig. 5. In dimension 2 the curve has
a global estimated slope of 1.15 using a linear least square best approximation. In
dimension 3 the slopes respectively have been estimated to 1.19, 1.07 and 1.0 for
ε = 10−1, 10−2 and 10−3. Again, these results are in good agreement with the almost
linear complexity assumption on the preconditioning.

n DOF(n) CPU(n)
ε = 10−2 ε = 10−3 ε = 10−4

1 143 053 1.73 1.57 1.78
2 344 408 6.32 4.34 4.42
3 684 112 10.49 8.75 8.39
4 1 257 312 23.96 17.04 13.46

n rn
ε = 10−2 ε = 10−3 ε = 10−4

2 1.47 1.16 1.04
3 0.74 1.02 0.93
4 1.36 1.09 0.78

Table 3. CPU Time, 2D case. Left: averaged CPU time in seconds
for one system inversion. Right: logarithmic growth of CPU(n)with
respect to DOF(n).

n DOF(n) CPU(n)
ε = 10−1 ε = 10−2 ε = 10−3

1 497 2.0 10−3 1.7 10−3 1.8 10−3

2 3 220 5.1 10−2 4.1 10−2 4.2 10−2

3 22 256 6.9 10−1 4.4 10−1 4.9 10−1

4 162 981 8.6 4.6 5.5
5 1 253 910 102.96 59.8 32.2

n rn
ε = 10−1 ε = 10−2 ε = 10−3

2 1.75 1.70 1.70
3 1.34 1.22 1.27
4 1.27 1.19 1.21
5 1.22 1.25 0.86

Table 4. CPU Time, 3D case. Left: averaged CPU time in seconds
for one system inversion. Right: logarithmic growth of CPU(n)with
respect to DOF(n).

CPU time consumption. The cost CPU(n) is reported in Tab. 3 (resp. Tab.
4) in dimension 2 (resp. 3) together with the logarithmic growth rate rm of CPU(n)
with respect to DOF(n) defined in (19). As for the iteration number, the behaviour
of CPU(n) is clearer for the smallest values of ε. For ε ≤ 10−3 (resp. ε ≤ 10−2) in
dimension 2 (resp. 3), rn decreases with n and goes to 1 or even below 1.

The data in Tabs. 3 and 4 have been plotted on Fig. 6. The curve slopes have
been estimated using a least square best linear approximation. In dimension 2 the
slopes respectively are of 1.17, 1.09 and 0.94 for ε = 10−2, 10−3 and 10−4. In dimen-
sion 3 they respectively are of 1.27, 1.21 and 1.12 for ε = 10−1, 10−2 and 10−3 (and
neglecting the first data point).
Firstly, since rn roughly decreases (starting with rates higher than 1.7 in dimen-
sion 3), these computed slopes indeed are upper-bounds on the complexity. Sec-
ondly CPU time is not a fully reliable cost measurement: because of cacheing-effects
memory-access differences for large-scale problems and because of the cluster load.
For these two reasons we conclude that these CPU data are in good agreement with



20 C. PIERRE

(a) 2D case (b) 3D case

Figure 6. Cost of one inversion of ΛX = Y in terms of CPU Time
as a function of the problem size in (decimal) Log/Log scale.

an almost linear complexity of the preconditioned system inversion, confirming the
study of Iter(n).

PCG convergence rate. The convergence rate of the residual towards 0 for
the preconditioned conjugate gradient algorithm has been measured in dimension 2
and 3 for the accuracy parameter set to ε = 10−3. The (decimal) logarithm of the
residual has been plotted as a function of the iteration number on Fig. 7 for the four
considered meshes in dimension 2 and for 3 meshes in dimension 3. Due to the very
small number of iterations needed, this convergence rate obviously is quite large.
In dimension 3, for the finest mesh M5 with 1 250 000 vertices, the residual is
divided by more than 150 at step one and by more than 75 at step 2. For the two
other meshes, each PCG iteration divides the residual by at least 100.
In dimension 2, for all four meshes log(residual) displays the same global slope with
respect to the number of iterations that is equal to 1.6. Globally the residual is
divided by 40 at each time step. More precisely the residual is usually divided by
100 at the first step, by 30 at the second one and by 20 at the third one.

Cost calibration and profiling. Neither the CPU time nor the number of it-
erations actually provides an absolute evaluation for the preconditioning cost in the
following sense. CPU time measurements are device dependent and the iteration
number does not take into account the cost for the inversion of P1 and PK that
may be large. These indicators are relevant and sufficient to evaluate the asymp-
totic complexity with DOF(n) but do not allow practical comparison with other
techniques.

To address this question we proceed as follows. Firstly we consider the complete
algorithm profiling: we measure the amount of time spent on each task (RHS com-
putation, system inversion, normalisation...) at each time step and average these
durations along the depolarisation sequence. Secondly we compare the amount of
time inside the PCG algorithm spent on the two predominant operations X 7→ P−1

Λ X
and X 7→ ΛX. The ratio between these two times provides a calibration of the pre-
conditioner PΛ inversion cost in terms of matrix vector multiplication by Λ, which
last operation has a fully established operational cost.
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(a) 2D case (b) 3D case

Figure 7. PCG convergence rate. Convergence of the residual of the
preconditioned system (11) as a function of the number of iterations.
On both the 2D and the 3D cases, the preconditioner is set with
ε = 10−3. Left, 2D case: convergence is shown for each of the four 2d
meshes. Right, 3D case: convergence is depicted for the coarsest mesh
(mesh 1), for the finest mesh (mesh 5) and on the intermediate mesh
3.

We point out that this ratio makes sense because of the almost linear complexity
with DOF(n). Practically it varies sufficiently slowly with DOF(n) to derive a typ-
ical ratio for practically used problem size.
In dimension 2 (resp. 3), these typical figures are as follows:

- 70% (resp. 85 %) of the whole computational effort is dedicated on the
system (11) inversion,

- each operation X 7→ P−1
Λ X has cost 15 (resp. 25) matrix-vector multiplica-

tion by Λ,
- considering an average number of iteration equal to 3, inverting X 7→ Λ−1X

has the same cost has 50 (resp. 80) matrix-vector multiplication by Λ.

6.3. Conclusion. We introduced in this paper a new preconditioning for the bido-
main model based on an algebraic block-LU decomposition of its system matrix Λ
and a heuristic approximation. The complexity for solving the preconditioned sys-
tem ΛX = Y with respect to the matrix size has been numerically analysed using
both a 2D and a 3D test case and a hierarchical Cholesky preconditioning. This
complexity has been numerically showed to be almost linear; which is optimal in
this context (see discussion in Sec. 5.3).

We firstly would like to recall that the notion of complexity is not sufficient to
compare algorithms in practise. The only certainty is that the resolution strategy
presented here will asymptotically become more efficient than a second algorithm
with worst complexity (as the problem size goes to infinity). Being fixed a problem,
the second algorithm might be more efficient. The calibration and profiling provided
in Sec. 6.2 might however help towards such comparisons and especially with the
preconditioning developed in [17]. Firstly the data given in this paper do not in-
dicate almost linear complexity. Precisely, CPU time data rather fit a complexity
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of 1.4 with the problem size. Despite the limitations on CPU time measurements
we already mentioned, it is likely that this complexity is greater than 1. Iteration
numbers also are reported (on a test case quite close to the 3D test case here on the
mesh M4) that are of order 6 with a flexible GMRes. Flexible GMRes performs m
matrix-vector multiplications and preconditioner inversions per iteration with m the
restart number, typically of order 25. This would mean 150 matrix-vector multipli-
cations and preconditioner inversions. Each preconditioner inversion itself uses an
iLU(0) PCG: thus one matrix-vector multiplication and one iLU(0) inversion per
iteration. Even assuming a fast convergence of the PCG in a few steps, this may lead
to a calibration of the cost in terms of matrix-vector multiplications several times
larger than the one we obtained (equal to 80). The comparison of CPU times on the
same case (almost the same processor has been used for the two papers) confirms
this option.

We eventually would like to underline that almost linear complexity for the res-
olution of (11) does not mean almost linear complexity for the resolution of the
bidomain model. Assuming for more simplicity a linear dependence for the cost
with respect to the number of nodes, this still implies an h−d dependence of the
cost with the mesh size h and with d the dimension. Considering the global cost of
the simulation and not only the cost of one inversion, this now leads to an h−(d+1)

dependence of the cost with the mesh size.
For instance, considering some precision criterion e based on the activation time,
that is of order 2 with h as established in [2, 28], the complexity for the bidomain
model with respect to e remains of e−3/2 and e−2 in dimension 2 and 3 respectively.
Thus a linear dependence of one system inversion cost with respect to the problem
size still leads to really heavy global costs for this type of problems.
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