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PRECONDITIONING THE COUPLED HEART AND TORSO

BIDOMAIN MODEL WITH AN ALMOST LINEAR COMPLEXITY

CHARLES PIERRE

Abstract. The bidomain model is widely used in electro-cardiology to simulate
spreading of excitation in the myocardium and electrocardiograms. It reads a sys-
tem of two parabolic reaction diffusion equations coupled with an ODE system.
Its discretization displays an ill-conditioned system matrix to be inverted at each
time step: simulation based on the bidomain model therefore are associated with
high computational costs. In this paper we propose a preconditioning for the bido-
main model in an extended framework including a coupling with the surrounding
tissues (the torso). The preconditioning is based on a formulation of the discrete
problem that is shown to be symmetric positive. A block LU decomposition of the
system together with a heuristic approximation (referred to as the monodomain
model) are the key ingredients for the preconditioning definition. Numerical re-
sults are provided for two test cases: a 2D realistic one (based on a segmented
heart medical image geometry) and a 3D academical one. The analysis of the re-
sulting computational cost (both in terms of CPU time and of iteration number)
show an almost linear complexity, i.e. of type n logα(n) .

1. Introduction

The bidomain model [28, 16, 1, 10, 29] is up to now the most physiologically
founded model to describe the heart electrical activity. The bidomain model is here
considered in an extended version referred to as the coupled heart and torso bidomain
model. It includes a coupling of the cardiac electrical activity with the surrounding
tissue electrical activity, allowing in particular electrocardiogram simulations.
The bidomain model mathematical formulation reads a system of two PDEs (par-

abolic reaction diffusion equations) describing the evolution of two potentials: the
intra- and extra-cellular potentials within the myocardium. This system is coupled
with a set of ODEs modelling the kinetic of ionic transfer across the cellular mem-
branes.
The mathematical structure of the bidomain model implies that its discretization

provides an ill conditioned system matrix, to be inverted at each time step. Two
reasons are risen for this. The bidomain model can be formulated as a degener-
ate system of two coupled parabolic equations [25, 10], which degeneracy causes
ill-conditioning. Another formulation of the bidomain model, reading a single scalar
semi-linear parabolic equation, is studied in [4]. This formulation involves a non-
local operator of second order in space, referred to as the bidomain operator. The
bidomain operator is defined as the harmonic mean between two elliptic operators.
The non locality of the bidomain operator generates high computational costs. On
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top of this structural ill-preconditioning, the physical features of the modelled phe-
nomena (because of fast and sharp space and time variations of potential, namely
potential wave fronts) necessitates to resort to fine space and time grids. Ill con-
ditioning together with fine meshes imply very high computational costs for the
bidomain model simulations that remain challenging for 3D realistic settings. For
this, many efforts were devoted to the reduction of this cost, see e.g. [8, 11, 7].

The so called monodomain model provides a very good approximation of the
bidomain model [6, 9, 21, 20]. It has been shown in [20] that a monodomain model
could provide activation time mappings in complex situations with 1% of relative
error as compared to the bidomain model predictions. The monodomain model
reads a single unsteady reaction diffusion equation coupled with the ODE system
modelling the cell membrane. It therefore provides a much more affordable way to
simulate the cardiac electrical activity than the bidomain model, although lacking
physiological foundations. The accuracy of this approximation can in particular
greatly help in building more efficient numerical methods to solve the bidomain
model [27, 19, 13].
In this paper we propose a preconditioner for the bidomain system matrix dis-

playing an almost linear complexity, i.e. of n logα(n)) type, with n the matrix size,
partially based on the monodomain approximation heuristic. Quite general space
discretizations (including classical Lagrange P k finite element or various finite vol-
ume techniques) can be considered. For simplicity we adopted here an Euler semi-
implicit time discretization but the technique generalises to more sophisticated time
schemes. The preconditioning is based on the positive self adjoint formulation of the
bidomain model in [4]. Once discretised, this formulation involves the inversion of
one system matrix per time step that is here shown to be symmetric positive. The
two following points are used to precondition the system matrix.

1- LU factorization. The system matrix displays a 2× 2 block structure that
can be factorised into a block-LU form.

2- Monodomain model heuristic. Among the blocks of the LU factoriza-
tion, all blocks have a clear definition and do not lead to computational
difficulties excepted one block. This block is shown to be symmetric positive
and to be the sum of a mass matrix and of a discrete bidomain operator (dis-
crete analogue of the earlier on evocated bidomain operator) that is shown to
read the harmonic mean between two stiffness matrices. This block, that is
not sparse, is not computed but approximated using the monodomain model
approximation.

The last layer for the preconditioning is the practical definition of local precondition-
ers for stiffness matrices. This is done here using the hierarchical matrices theory
[3, 14, 15].
In a recent paper [12], Gerardo-Giorda et al. introduced a preconditioner for

the bidomain model also based on the monodomain model heuristic and on a lower
block triangular approximation. The LU factorization presented here should pro-
vide more efficient algorithms than the lower bock-triangular approximation since
this factorization is exact. The formulation in [12] is based on a non symmetric for-
mulation whereas we here consider a symmetric positive system matrix. This allows
to resort to more efficient iterative solvers (basically a Conjugate Gradient (CG)
versus a GMRes solver). Although the global complexity might be the same, the
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constants may differ implying a significant gain in term of computational cost. In
earlier computations we experienced that switching from the non symmetric bido-
main formulation in [2] (associated with a GMRes solver) to the positive symmetric
formulation presented here (together with a CG solver) provided a speed up with
factor 5-8. Eventually the positive symmetric formulation presented here naturally
holds for the coupled heart and torso bidomain model whereas the preconditioner
in [2] holds for an isolated heart. Our preconditioning strategy thus can be used
to simulate the heart and torso coupled electrical activity for instance to recover
electrocardiogram recordings.
The paper is organised as follows. The coupled heart and torso bidomain model

is stated in Sec. 2., its numerical discretization follows in Sec. 3. Sec. 4 studies
the mathematical properties of the discretised bidomain problem system matrix: it
is here shown to be symmetric positive, its LU block factorization is then analysed.
The preconditioner is defined in Sec. 5, its practical implementation analysis follows.
The complexity of the preconditioned system matrix inversion is numerically studied
in Sec. 6 using two test cases. The first one is a 2D realistic test case on a geometry
of the heart and of the surrounding organs obtained by segmenting a medical image
[22, 23] and including rotating anisotropy inside the heart. The second one is a 3D
test on a simple cubic geometry (a slab of cardiac tissue).

2. Bidomain model of the heart embedded in the torso

Let us denote by Ω and H two bounded open subsets such that H ⊂ Ω ⊂ R
d with

d = 2, 3 and with smooth boundaries. We moreover assume that ∂Ω ∩ ∂H = ∅. Ω
represents a thorax and H the region occupied by the heart (assumed fixed here).
We also consider T := Ω − H that will be referred to as the torso, see Fig. 1. We
denote Q, QH and QT the time-space cylinder (0, T )×Ω, (0, T )×H and (0, T )× T
respectively.

Two potential fields will be involved, the transmembrane potential v : QH 7→ R

and the potential u : Q 7→ R. When restricted to H (resp. to T ), the potential
u is referred to the extra-cellular potential (resp. extra cardiac potential), v is
the difference of this extra-cellular potential with an intra-cellular potential not
considered here.

The heart has a fibrous organization implying anisotropic electrical conductivi-
ties. The cardiac fibres rotate around the ventricle cavities, see Fig. 1. The fibres
remain tangent to the cardiac boundaries. This anisotropy is taken into account by
introducing in H two tensors σi and σe. Introducing the 4 conductivity parameters
gli,e, g

t
i,e, they read:

σi(x) = Diag(gli, g
t
i), σe(x) = Diag(gle, g

t
e),

in a moving system of coordinates whose principal direction is given by the fibre
orientation at point x. When written in a fixed basis, these tensors thus no longer
are diagonal.

The torso region T is assumed to have an isotropic electrical conductivity. We
define in T the conductivity tensor σT (x) = k(x)Id where the conductivity k : T 7→
R basically is piecewise constant on the different organs considered in T .
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The torso model reads:

(1)

{

div(σT (x)∇u) = 0, (t, x) ∈ QT ,

∇u · n = 0 on ∂Ω,

where n denotes the outward unit normal to ∂Ω.
In the heart region, the bidomain model reads the three following equations in H,

for (t, x) ∈ QH :

(2)











div((σi(x) + σe(x))∇u) = − div(σi(x)∇v),

χ (c∂tv + Iion(v,w)− Ist(t, x)) = div(σi(x)∇(u+ v)),

∂tw = g(v,w).

In line 2, c denotes the cell membrane surface capacitance, χ is the rate of cell
membrane surface per unit volume, Ist : QH 7→ R is the stimulation current (source
term). Iion(v,w) (reaction term) denotes the surface ionic current distribution on
the membrane. The gating variable w : QH 7→ R

p characterizes the state of the
cell membrane, its evolution is ruled by the ODE system in line 3. The definitions
of Iion and of g are fixed by the chosen ionic model in Sec. 6.1.
Equations (2) are coupled with the torso model (1) with the following coupling
condition:

(3) on ∂H :

{

u|H = u|T , σe(x)∇u|H · n = σT (x)∇u|T · n,

σi∇u|H · n+ σi∇v · n = 0.

where n denotes the outward unit normal to ∂H.
The model is closed by imposing initial conditions on v and w,

(4) v(0, x) = v0(x), w(0, x) = w0(x), x ∈ H.

Clearly, the potential field u is defined up to an additive constant. We therefore
impose the normalization condition

(5)

∫

Ω

u(t, ·)dx = 0.

2.1. Weak formulation. We introduce the tensor σ1 on Ω:

σ1(x) =

{

σi(x) + σe(x), x ∈ H

σT (x), x ∈ T
.

The weak formulation of the bidomain model (1), (2), (3) reads: ∀ψ ∈ H1(Ω),
∀φ ∈ H1(H),















∫

Ω

σ1∇u · ∇ψdx+

∫

H

σi∇v · ∇ψdx = 0,

χc∂t

∫

H

vφdx+ χ

∫

H

(Iion(v,w)− Ist(x, t))φdx = −

∫

H

σi∇(u+ v) · ∇φdx,

(6)

The first line in (6) is obtained by multiplying (1) and the first equation in (2) by
a test function ψ ∈ H1(Ω), by integrating on Ω and by using the coupling conditions
(3) and the boundary condition on ∂Ω in (1). The second line in (6) is obtained by
multiplying the second equation in (2) by a test function φ ∈ H1(H), by integrating
on H together with (3).



PRECONDITIONING THE BIDOMAIN MODEL 5

2.2. Case of an isolated heart. We here address the particular case where the
heart is considered as isolated from the surrounding tissues. In this case we have
H = Ω and T = ∅. Equations (2) only are considered and the coupling conditions
(3) are replaced by zero flux boundary conditions on ∂H for v and u.

3. Implementation

For more simplicity, temporal discretization is fixed to a semi implicit Euler
scheme: implicit for the diffusion and explicit on the reaction. The implementation
presented here as well as the associated preconditioner presented in the following
section could however be generalized to more sophisticated time discretization as
discussed in remark 2.
The implementation strategy is similar for various space discretizations including

P k Lagrange finite elements or finite volume scheme such as the CVFE scheme
(Control Volume Finite Element, see eg [5]) that will be used here to compute some
the numerical results or such as the DDFV scheme in [2]. Assumptions (H1) and
(H2) on the space discretization are detailed in Sec. 3.1 whereas the numerical
scheme itself is presented in Sec. 3.2.

3.1. Settings. Let us consider a mesh M of Ω and a mesh MH of the cardiac
region H: we assume that MH is a sub mesh of M, that is to say that all elements
(or cells or control volumes) of MH also are elements of M.
Relatively to the considered space discretization, let us denote by R

M, RMH the
set of discrete functions attached to these two meshes. Their dimensions are re-
spectively denoted N and NH . A “natural” basis usually is provided for R

M and
R

MH , respectively denoted (Ui)1≤i≤N and (UH
i )1≤i≤NH

. In the case of P k finite ele-
ment methods, these functions simply are the standard P k Lagrange basis functions.
Considering these basis induces an isomorphism between R

M and R
N and between

R
MH and R

NH . A discrete function U =
∑N

i=1 ciUi will be considered either as a real
function or as the real vectors (ci)i≤1≤N . Using these identifications, the canonical
Euclidian structures on R

N and R
NH extend to R

M and R
MH . We denote by (·, ·)M

and (·, ·)MH
the associated scalar products.

We make the following first assumption on the space discretization method:

(H1) for all i, 1 ≤ i ≤ NH : Ui|H = UH
i (where Ui|H denotes the restriction of the

function Ui to H).

In the case of the P k finite element methods, this first assumption is true modulo a
reordering of the basis function (Ui)1≤i≤N . Assumption (H1) allows us to define the
restriction operation:

(7) Π : U =
N
∑

i=1

ciUi ∈ R
M 7→ U|H =

NH
∑

i=1

ciU
H
i ∈ R

MH .

Equivalently, Π can be seen as a simple truncation operation:

Π : U = (ci)1≤i≤N ∈ R
M 7→ U|H = (ci)1≤i≤NH

∈ R
MH ,

following the above described identification between R
M and R

N and between R
MH

and R
NH . The transpose mapping TΠ for Π reads:

TΠ : U =

NH
∑

i=1

ciU
H
i ∈ R

MH 7→
NH
∑

i=1

ciUi ∈ R
M.
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We point out that in this discrete setting TΠ does not match the prolongation by
zero outside H. The following property will be useful:

(8) Π TΠ = id
R
MH

.

Let us introduce the mass matricesM , MH and the stiffness matrices S1, Si so that:

∀ U1, U2 ∈ R
M :

∫

Ω

U1U2dx = (MU1, U2)M,

∫

Ω

σ1∇U1 · ∇U2dx = (S1U1, U2)M

∀ V1, V2 ∈ R
MH :

∫

H

V1V2dx = (MHV1, V2)MH
,

∫

H

σi∇V1 · ∇V2dx = (SiV1, V2)MH

The second assumption on the space discretization reads:

(H2) Let us denote IΩ and IH the characteristic functions of Ω and H respectively
(constant functions equal to one):

(9) IΩ ∈ R
M , IH ∈ R

MH .

Assumption (H2) is related with the considered boundary conditions here: homo-
geneous Neumann on ∂Ω and transmission conditions on ∂H. It implies that the
stiffness matrices S1, Si (which are symmetric and non negative) have for kernels
the one dimensional spaces IΩR and IHR respectively.

3.2. Scheme statement. The three unknowns v, u and w of the (continuous)
bidomain model are represented by the discrete functions U ∈ R

M, V ∈ R
MH and

W ∈ [RMH ]p.
We have for U ∈ R

M and V ∈ R
MH :

∫

H

σi∇V · ∇Udx = (SiV,ΠU)MH
= ( TΠSiV, U)M

Discretization of (6) thus reads:

(10)







S1U
n+1 + TΠSiV

n+1 = 0,

χcMH

V n+1 − V n

∆t
+ χMH (Iion(V

n,W n)− Inst) = −SiΠU
n+1 − SiV

n+1
.

We introduce the positive parameter γ:

γ := χc/∆t.

Resolution algorithm. The complete bidomain model (1) (2) (3) is numerically
solved applying the following three operations at each time step.
Being given V n ∈ R

M and W n ∈ [RMH ]p:

Step 1. Compute the right hand side Y :

Y :=

[

0
MH (γV n − χ(Iion(V

n,W n)− Inst))
.

Step 2. find the solution X = T [Un+1, V n+1] to ΛX = Y with

(11) Λ :=

[

S1
TΠSi

SiΠ γMH + Si

]

that satisfies

∫

Ω

Un+1dx = 0.

Step 3. Update the gating variable by computing W n+1 according to line 3 in equa-
tion (2).

�
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This paper is devoted to Step 2 only. Proposition 1 states that step 2 is well
posed.

4. Properties and LU factorization of the system matrix Λ

Let us precise that S1 : RM 7→ R
M and that Si : RMH 7→ R

MH . Then, Λ :
R

M × R
MH 7→ R

M × R
MH .

Proposition 1. The system matrix Λ is symmetric non negative with kernel Ker (Λ) =
IΩR× {0}. By symmetry Λ has for range Ran (Λ) = I⊥Ω × R

MH . For all (Y1, Y2) ∈
I⊥Ω × R

MH , there exists a unique (U, V ) ∈ R
M × R

MH such that

(12) Λ

[

U
V

]

=

[

Y1
Y2

]

and

∫

Ω

Udx = 0.

The resolution of step 2 in the resolution algorithm proceeds in two steps: first
find a solution T [X1, X2], then normalize X1. We now focus on the first step.

Definition 1 (Pseudo-inverses S−̃1
1 and S−̃1

i ). The stiffness matrices S1 and Si are
isomorphisms on I⊥Ω = Ran (S1) and on I⊥H = Ran (Si) respectively. We introduce

their pseudo inverse S−̃1
1 and S−̃1

i : they respectively are equal to the inverse of S1,
Si on I

⊥
Ω , I

⊥
H and equal to 0 on IΩR, IHR.

Considering pΩ (resp pH) the orthogonal projection of RM on I⊥Ω (resp. of RMH on
I⊥H). we have:

S−̃1
1 S1 = S1S

−̃1
1 = pΩ , S−̃1

i Si = SiS
−̃1
i = pH .

Proposition 2. We have the block decomposition Λ = LU with:

(13) L :=

[

S1 0
SiΠ K

]

, U :=

[

idRM S−̃1
1

TΠSi

0 id
R
MH

]

,

The matrix K is symmetric, positive definite. It reads:

(14) K := γMH + Si − SiΠS
−̃1
1

TΠSi.

Remark 1 (About the matrix K). Let us consider the tensor

σe(x) =

{

σe(x), x ∈ H

σT (x), x ∈ T
,

and denote Se the associated stiffness matrix. Since S1 and Se have the same range

I⊥Ω , one can define the pseudo-inverse S−̃1
e for Se with the same meaning as for S1.

The matrix K in (14) can be rewritten as

K = γMH +
(

S−1
i +ΠS−1

e
TΠ

)−1
.

where all inverses are pseudo-inverses. This equality is precisely stated and proven
in the proof of proposition 2. It is interesting to notice that the second term appears
as the “harmonic mean” between the stiffness matrices Si and Se. At the discrete
level, this is a transposition of the “bidomain operator” as defined in [4] that was
introduced as the harmonic mean between two diffusion operators.
From a practical point of view, K is non sparse but will never be computed explicitly,
only approximated in order to get a preconditioner.
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Proposition 3. L has a pseudo inverse L−̃1 in the following sense:

LL−̃1 = L−̃1L =

[

pΩ 0
0 id

R
MH

]

,

U is invertible, U−1 and L−̃1 read:

(15) L−̃1 =

[

S−̃1
1 0

−K−1SiΠS
−̃1
1 K−1

]

, U−1 =

[

idRM −S−̃1
1

TΠSi

0 id
R
MH

]

.

For Y ∈ Ran (Λ), a solution to ΛX = Y is provided by X = U−1L−̃1Y .

Remark 2 (About the time discretization). Skipping to another time discretization
scheme will basically imply two changes: the computation of the right hand side (Step
1 in the resolution algorithm above) and the definition of K. In general the global
structure of the system matrix Λ (which is symmetric non negative) as well as the
positivity of K will not be affected by considering different time discretization: this
is for instance the case for the Cranck-Nicholson scheme or for operator splitting
schemes (Strang formula e.g.).
Consequently the resolution strategy presented in proposition 3 can be adapted to
different time discretization schemes, as well as the preconditioning of K as pointed
out in the following section.

Proof of proposition 1. For X = T (U, V ) ∈ R
M × R

MH , we have:

TXΛX = (S1U,U)M + 2(SiΠU, V )MH
+ (SiV, V )MH

+ γ(MHV, V )MH

We consider Se and σe defined in Rem. 1. Since σ1 − σe is equal to 0 on T and
to σi on H, S1 − Se is non negative.

Equation (8) says that
(

TΠV
)

|H
= Π TΠV = V . Together with σ1 − σe = 0

outside H one gets:

(SiV, V )MH
=

∫

H

(σ1 − σe)∇V · V dx

=

∫

Ω

(σ1 − σe)∇
TΠV · ∇ TΠV dx =

(

(S1 − Se)
TΠV, TΠV

)

M

(SiΠU, V )MH
=

∫

H

(σ1 − σe)∇ΠU · ∇V dx

=

∫

Ω

(σ1 − σe)∇U · ∇ TΠV dx =
(

(S1 − Se)U,
TΠV

)

M
.

From these two equalities we deduce that:

TXΛX = (SeU,U)M +
(

(S1 − Se)(U + TΠV ), (U + TΠV )
)

M
+ γ(MHV, V )MH

so ensuring that Λ is non-negative. Assuming that ΛX = 0 implies that all the
terms on the right of the last equality are equal to zero. The mass matrix being
definite this means V = 0 and so S1U = 0. Thus U ∈ Ker (S1) = IΩR and we then
have Ker (Λ) = IΩR× {0}.

Let X = T [U, V ] be a solution to ΛX = Y for Y ∈ Ran (Λ). A simple com-
putation shows that Z = T [U − αIΩ, V ] is the unique solution to (12) iff α =
(MU, IΩ)M/(MIΩ, IΩ)M, so ending the proof. �
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Proof of proposition 2. We have:

LU =

[

S1 pΩ
TΠSi

SiΠ γMH + Si

]

,

and so LU = Λ iif pΩ
TΠSi =

TΠSi. This last equality holds since for all V ∈ R
MH ,

(

TΠSiV, IΩ
)

Ω
= (SiV,ΠIΩ)H = (SiV, IH)H = 0,

and so Ran
(

TΠSi

)

⊂ I⊥Ω .
The symmetry of K is obvious. Let us prove it is positive definite.

We decompose K = γMH + K0 so with K0 := Si − SiΠS
−̃1
1

TΠSi. We will prove
that K0 (which is symmetric) is non negative. This implies the positivity of K since
γMH is positive definite. Precisely: K0 clearly vanishes on IHR. Then I

⊥
H is stable

by K0. Let us prove that K0 is positive definite on I⊥H .
We consider again Se and σe defined in Rem. 1. Let us first prove that:

(16) K0 = ΠSeS
−̃1
1

TΠSi

Firstly, we have: ∀ U1.U2 ∈ R
M,

∫

Ω

(σ1 − σe)∇U1 · ∇U2dx =

∫

H

σi∇U1 · ∇U2dx,

and so TΠSiΠ = S1 − Se.
Secondly, multiplying K0 by Π TΠ = id

R
MH

on the left gives:

K0 = Π TΠK0 = Si − Π TΠSiΠS
−̃1
1

TΠSi

= Si − Π(S1 − Se)S
−̃1
1

TΠSi

= Si − Π(pΩ − SeS
−̃1
1 ) TΠSi

= ΠSeS
−̃1
1

TΠSi + Si − ΠpΩ
TΠSi.

One already showed in this proof that pΩ
TΠSi =

TΠSi ensuring that ΠpΩ
TΠSi = Si.

This gives us (16).

Clearly S−̃1
e and S−̃1

i are positive definite on I⊥Ω and I⊥H respectively. We moreover
have TΠ(I⊥H) ⊂ I⊥Ω since for all V ∈ I⊥H :

(

TΠV, IΩ
)

Ω
= (V,ΠIΩ)H = (V, IH)H = 0.

Then ΠS−̃1
e

TΠ is positive definite on I⊥H . Let us define A := (S−̃1
i + ΠS−̃1

e
TΠ): I⊥H

is stable by A. A is positive definite and so invertible on I⊥H . We will end this proof
by showing that K0 = A−1 on I⊥H .

K0A = (ΠSeS
−̃1
1

TΠSi)(S
−̃1
i +ΠS−̃1

e
TΠ)

= ΠSeS
−̃1
1

TΠpH +ΠSeS
−̃1
1

TΠSiΠS
−̃1
e

TΠ

= ΠSeS
−̃1
1

TΠpH +ΠSeS
−̃1
1 (S1 − Se)S

−̃1
e

TΠ

= ΠSeS
−̃1
1

TΠpH +ΠSe(pΩS
−̃1
e − S−̃1

i pΩ)
TΠ

= ΠSeS
−̃1
1

TΠpH +ΠSe(S
−̃1
e − S−̃1

i ) TΠ

= ΠpΩ
TΠ+ ΠSeS

−̃1
1

TΠ(pH − id
R
MH

).
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Clearly, pH − id
R
MH

vanishes on I⊥H . Moreover, since TΠ(I⊥H) ⊂ I⊥Ω , ΠpΩ
TΠ is the

identity on I⊥H . Thus K0AV = V for all V ∈ I⊥H . �

5. Preconditioning

5.1. Preconditioner definition.

Definition 2. Let us consider P1 a preconditioner for S1 and PK a preconditioner
for K. We define a global preconditioner PΛ for Λ as:

PΛ = LPUP , LP :=

[

P1 0
SiΠ PK

]

, UP :=

[

idRM P−1
1

TΠSi

0 id
R
MH

]

.(17)

Preconditioning S1 is a well documented operation (see e.g. [24] for the Precon-
ditioning of diffusion operators).
The crucial point is the preconditioning of K. As already observed in Rem. 1, K

has a complex structure:

K = γMH +K0,

where K0 is a non sparse matrix obtained by making the harmonic mean between
Si and Se. Let us consider the tensor σm:

σm(x) := (σ−1
e (x) + σ−1

i (x))−1 , x ∈ H,

which is the harmonic mean between σi and σe. We introduce the stiffness matrix
Sm associated to σm acting on R

MH . We make the following approximation:

K ≃ Km := γMH + Sm.

This approximation is referred to as the monodomain model approximation [9].
The matrix Km has a simple structure. It reads the form of the discretization of
a parabolic equation. It is moreover sparse (with the same pattern as Si). The
preconditioning of such a matrix also is well documented (see again [24]).

5.2. Practical details. Let us start with the practical implementation of P1 and
PK . As already stated: their definitions only involve the preconditioning of stiffness
matrices. Efficient choices are for instance incomplete Cholesky or multigrid pre-
conditioners. We refer to [24] for more details.
The numerical results below have been obtained within the framework of hierarchi-
cal matrices. This method allows to compute approximation for an elliptic matrix of
a given accuracy (in matrix norm). The two basic steps to build this approximation
are: (1) hierarchical construction of a block partition of the matrix, (2) blockwise
approximation by low rank matrices. A Cholesky factorization of this approximation
is here considered. This factorisation is stored into a data sparse format providing a
low storage cost approxination of a full matrix (the L TL factorization of the original
stiffness matrix). Using this factorised approximation as a preconditioner leads to
an almost linear complexity (i.e. n logα(n), with n the matrix size) for tha matrix
inversion. We refer to [3, 14, 15] for more details.
The preconditionners P1 and PK for S1 and K are built in such a way using the
H-Lib code from L. Grasedyck and S. Börm1. Their storage into a L TL sparse-
format then make their inversion easy: these inversions have also been made using
the H-Lib code.

1http://www.hlib.org/
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The practical strategy to solve (11) will be to use an iterative solver to solve the
left preconditioned system:

P−1
Λ ΛX = P−1

Λ Y.

The symmetry and positivity properties of Λ allow to adopt a Conjugate Gradient
(CG) algorithm for this.

Let us point out the cost of our global preconditioner PΛ. Each iteration of the
CG algorithm involves a multiplication by Λ and an inversion of P−1

Λ X = Y . In
terms of storage these matrices do not need to be computed.
Three (sparse) matrices have to be stored for the multiplication by Λ: S1, Si and
MH . The operational cost for a multiplication by Λ is:

- 2 multiplications by Si

- 1 multiplication by S1

- 1 multiplication by MH

To invert PΛX = Y , the two preconditioners P1 and PK also have to be stored. The
inversion is achieved by computing X = U−1

P L−1
P Y with:

(18) L−1
P :=

[

P−1
1 0

−P−1
K SiΠP

−1
1 P−1

K

]

, U−1
P :=

[

idRM −P−1
1

TΠSi

0 id
R
MH

]

.

The inversion has the following operational cost:

- 2 inversions of P1,
- 1 inversion of PK ,
- 2 multiplications by Si,

Globally, one CG iteration costs 6 matrix-vector multiplications and 3 precondi-
tioner inversions. One adds that in the previous cost statements the vector addition
as well as the multiplication by Π and TΠ (which simply are vector truncation or
prolongation by zero) have been neglected with regards to the matrix-vector multi-
plications and preconditioner inversions.

6. Numerical results

The efficiency of the preconditioner presented in Sec. 5 is analyzed in this section.
The bidomain model has been implemented following Sec. 3 and using a finite
volume spatial discretization (namely the CVFE scheme, see e.g. [5]). For this
spatial discretization the degrees of freedom are located at the mesh vertices and
the mass matrices are diagonal. Two test cases are considered: a two dimensional
realistic setting and a three dimensional academical test presented below. For these
two test cases a depolarization potential wave is simulated. This depolarization
wave corresponds to the ventricular electrical excitation that precedes and induces
its contraction, numerically it is by far the stiffest part of the simulation. We then
compute and analyze the cost of the preconditioned system matrix inversion (11)
during the spreading of the depolarization wave.
For both two test cases, we measured the average cost for one system matrix in-

version (11) during the depolarization sequence. We then analyze the dependence
of this cost with the problem size (the number of vertices or # Dof of the mesh
here). The cost has been measured in two ways. Firstly in terms of CPU time. This
method might however be perturbed by cacheing-effects and memory-access differ-
ences for large-scale problems. These perturbations are clearly visible for the largest
3D simulation where more that 11 Gos of memory were involved. For this reason we
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Values Unit

Cell membrane surface-to-volume ratio (2D) χ = 1500 [cm−1]
Cell membrane surface-to-volume ratio (3D) χ = 500 ”
Membrane surface capacitance c = 1. [µ F/cm2]
Longitudinal intra-cellular conductivity gli = 1.741 [mS/cm]
Transverse intra-cellular conductivity gti = 0.1934 ”
Longitudinal extra-cellular conductivity gle = 3.906 ”
Transverse extra-cellular conductivity gte = 1.970 ”
Lung conductivity 0.5 ”
Blood conductivity (ventricle cavities) 6.7 ”
Remaining tissues conductivity 2.2 ”

Table 1. Model parameters

also measured the average number of iterations required per system inversion. The
cost then is defined as the average number of iterations required times the problem
size.

6.1. Test cases. For the two test cases, the reaction terms Iion(v,w) and g(v,w)
in (2) have been set to the Luo and Rudy ionic model of class II [18] designed for
mammalian ventricular cells and for which the system of ODEs in (2) is of size 20
(i.e. w ∈ R

20). The model parameters χ, c as well as the conductivities are displayed
in Tab.1: these values are physiological values taken from [17, 26].

2D test case. The domain Ω is an horizontal slice of a human thorax. This
geometry has been obtained by segmenting a medical image (CT-Scan, courtesy
of the Ottawa Heart Institute) with resolution 0.5 mm. We refer to [22, 23] for
details on the segmentation procedure. The segmented image is depicted in Fig.
1. It includes 4 sub domains: the two ventricles (H), the ventricular cavities, the
lungs and the remaining tissues (T ). Four meshes of Ω will be considered: roughly
from 145 000 to 1 250 000 vertices (see Tab. 2 for exact figures). The anisotropic
structure of the two ventricles is displayed on Fig1: bundles of fibres rotating around
the ventricular cavities have been considered. Inside the torso T , heterogeneous
conductivities have been considered for each sub domains: the lungs, ventricular
cavities and the remaining tissues conductivities are given in Tab. 1.

Figure 1. 2D test case description. Left: fibrous anisotropic struc-
ture of the two ventricles. Middle: 2D geometry Ω and its sub do-
mains. Right: stimulation site locations.
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With these settings, a depolarization potential wave is simulated. For this a stim-
ulation current Ist(x, t) (see equation (2)) is applied during one ms at four locations
(stimulation sites) on the ventricle cavities as depicted on Fig. 1. The spreading of
this potential wave across the myocardium is depicted on Fig. 2. Without entering
the details: the region in blue is at rest potential (v ≃ −90 mV) whereas the region
in red is excited (v ≃ −30 mV). The excitation starts at the stimulation site location
and then spreads throughout the cardiac tissue (from the left to the right).

Figure 2. 2D case: propagation of the depolarization wave across
the cardiac tissues.

3D test case. We consider an academical test case where the geometry is the
unit cube [0, 1]3. A series of 5 meshes has been considered, from 500 to 1 250 000
vertices (see Tab. 2 for exact figures). The heart is here considered as isolated: no
torso T is involved as described in Sec. 2.2. The cardiac tissue is still considered as
anisotropic but the muscular fibres are supposed to have a constant direction along
the x-axis (constant anisotropy).
A depolarization potential wave is simulated by applying a stimulation current at
the centre of the domain.

#DOF Average #iterations

143 053 17.6
344 408 22.2
684 112 25.3
1 257 312 26.8

# DOF Average # iterations

497 9.26
3 220 10.93
22 256 11.15
162 981 11.52
1 253 910 11.56

(a) 2D case (b) 3D case
Table 2. Average number of iterations for one system inversion.

6.2. Results. For the 2D case, the cost is depicted on Fig. 3 (on the left). The
cost is represented in function of the problem size in log / log scale. In term of
CPU time (above) the data fit a linear mapping of slope 1.0 (using a least square
approximation). The linear progression between two successive data points being
bounded between 1.03 and 0.93. Considering the cost in terms of average number of
iterations, the data globally fit a linear mapping of slope 1.21. However, the linear
progression rate between two successive data points decreases from 1.29 to 1.09. The
average number of iterations needed per inversion is given in Tab. 2.
For the 3D case, the cost in term of CPU time did not provide satisfactory results

for the large scale simulations. The cost in term of the average number of iterations
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(a) 2D case (b) 3D case

Figure 3. Cost of one inversion of ΛX = Y as a function of the
problem size in Log/Log scale. Above: the cost is measured in terms
of CPU time consumption (2D case only). Below: the cost is relative
to the average number of iterations needed.

is given in Tab. 2 (on the right) and depicted on Fig. 3 (also on the right). The
cost is again represented in function of the problem size in log / log scale. The data
fit with a straight line of slope 1.03. The linear progression between two successive
data points being bounded between 1.09 and 1.00.
For both test cases, we numerically observed an almost linear dependence of the

system matrix inversion cost with the problem size. From these observations it
seems reasonable to conclude to an almost linear complexity (of type n logα(n) ):
this conclusion being in agreement with theoretical results, the hierarchical matrix
preconditioning for elliptic problems providing such a complexity [14].
However, let us point out that even assuming a linear dependence for the cost

with respect to the number of nodes, this still implies an h−d dependence of the
cost with the mesh size h and with d the dimension. Considering the global cost of
the simulation and not only the cost of one inversion, this now leads to an h−(d+1)

dependence of the cost with the mesh size. Thus a linear dependence of one system
inversion cost with respect to the problem size still leads to really heavy global costs
for this type of problems.
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