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ON DISCRETE-TIME MULTIALLELIC EVOLUTIONARY
DYNAMICS DRIVEN BY SELECTION

THIERRY E. HUILLET

Abstract. We revisit some problems arising in the context of multiallelic
discrete-time evolutionary dynamics driven by fitness. We consider both the

deterministic and the stochastic setups and for the latter both the Wright-

Fisher and the Moran approaches. In the deterministic formulation, we con-
struct a Markov process whose Master equation identifies with the nonlinear

deterministic evolutionary equation. Then, we draw the attention on a class

of fitness matrices that plays some role in the important matter of polymor-
phism: the class of strictly ultrametric fitness matrices. In the random cases,

we focus on fixation probabilities, on various conditionings on non-fixation and

on (quasi-)stationary distributions.

Keywords: Evolutionary genetics, multiallelic fitness landscape, strictly ultra-
metric fitness matrix, polymorphism, Moran and Wright-Fisher models, fixation
probabilities, multiplicative fitness, conditioning, (quasi-)stationary distribution.

Topics: Evolutionary processes (theory), Population dynamics (Theory).

1. Introduction

Population genetics aims at elucidating the fate of genotype frequencies undergo-
ing the basic evolutionary processes when various driving ‘forces’ such as fitness,
mutation or recombination are at stake in the gene pool. This requires to clarify
the updating mechanisms of the gene frequency-distributions over time. Another
important additional driving source is the genetic drift whose nature is exclusively
random. The corresponding field of interest is the statistical theory arising from
this aspect of the gene replacement processes and it requires some use of the Markov
chain theory (see [1]).

In this note, we revisit the basics of both the deterministic and stochastic dynam-
ics arising in discrete-time asexual multiallele evolutionary genetics driven only by
fitness. We do not touch at all upon other important mechanisms such as muta-
tion. We start with the haploid case with K alleles before switching to the more
interesting diploid case.

Let us summarize and comment the material developed in Section 2. In the de-
terministic haploid case, a vector of fitness is attached to the alleles. The interest
is on the evolution of the allelic frequency distribution over time. The updates of
the allele frequency distributions are driven by the relative fitnesses of the alleles,
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ending up in a state where only the fittest monomorphic state will survive. This
state is also an extremal point of the simplex over which the dynamics takes place.
From this dynamics, it appears that the mean fitness increases as time passes by,
the rate of increase being the variance in relative fitness (a well-known particular
incarnation of the Fisher theorem of natural selection). We recall the background
and the evolution equations.

The haploid replicator dynamics, as a nonlinear updating mapping from the simplex
to the simplex, may be viewed as the discrete-time nonlinear Master equation of
some random Markov process. We supply a construction for this process thereby
giving a stochastic interpretation to the original deterministic formulation of the
dynamics.

In the diploid case, there is a similar deterministic updating dynamics but now on
the full array of the genotype frequencies. It involves the fitness matrix attached to
the genotypes. When mating is random so that the Hardy-Weinberg law applies,
we may look at the induced marginal allelic frequencies dynamics. The updating
dynamics looks quite similar to the one occurring in the haploid case except that
the mean fitness is now the mean fitness quadratic form in the current frequencies
whereas marginal fitnesses are no longer constant but affine functions in these
frequencies. As for the haploid case, it is possible to construct a Markov process
whose nonlinear Master equation coincides with the diploid replicator dynamics.
We supply this construction which we believe is new.

In the diploid context, the Fisher theorem still holds true but, as a result of the
fitness landscape being more complex, there is a possibility for a polymorphic equi-
librium state to emerge. Due to its major evolutionary interest, our subsequent
concern is to identify examples of diploid dynamics leading to a unique polymor-
phic state on the simplex, either unstable or stable. We start with the unstable case
and draw the attention on a class of fitness matrices leading to a unique unstable
polymorphic equilibrium state: the class of strictly potential matrices. Strictly ul-
trametric matrices are particular instances of strictly potential matrices ([11]) which
therefore will display unstable polymorphism as well. There is a useful canonical
representation of strictly ultrametric matrices due to ([14]) which we recall which
helps giving specific examples of strictly ultrametric matrices. When dealing with
the class of strictly potential fitness matrices, the mean fitness quadratic form is
definite-positive; we derive a related class of fitness matrices leading to a definite-
negative mean fitness quadratic form. For this class of matrices, there will also be a
unique polymorphic equilibrium state for the diploid dynamics and it will be stable.
We also draw the attention on a sub-class of the latter: the so-called ‘anti-strictly
ultrametric matrices’. For such matrices, among other things, the fitness of each
homozygote should not exceed the ones of all the heterozygotes carrying the allele
of the homozygote. To the best of our knowledge, the large class of potential fitness
matrices as natural candidates for polymorphic states to emerge was not discussed
in the literature.

Section 3 is devoted to the stochastic version of these considerations when the tran-
sitions in the constitutive allelic population sizes are given by a K−dimensional
Wright-Fisher model with total constant-size N (see [1] and [12]). It takes into
account an additional important driving source of evolution, namely the genetic
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drift, whose nature is exclusively random. Under fitness only and in particular
in the absence of mutations, the multiallelic Wright-Fisher model is a transient
Markov chain on a

(
N+K−1

K−1

)
−dimensional state-space whose absorbing states are

the monomorphic states. We give an expression for the fixation probabilities of this
process. Then, we develop four conditioning problems: conditioning on fixating
in a given monomorphic state, conditioning on avoiding the extremal states before
the current instant, conditioning on non-fixation at each transition time and con-
ditioning on avoiding the extremal states in the remote future. For the last three
conditioned processes, the equilibrium structure of the fitness mechanism shows up.

Finally we run into similar considerations for the Moran model. When dealing
with the fixation probabilities in this Moran context, we suggest a new mean-
field approximation of these probabilities which is based on a well-known explicit
formula for the 2-alleles case ([1]). It concerns the case of multiplicative fitnesses
only. Finally, we consider the Moran model conditioned on non-fixation at each
transition time. We exploit the reversible character of this process to derive a new
explicit product formula for its invariant probability measure.

2. Deterministic evolutionary dynamics

We start with the haploid case before moving to the more interesting diploid case.

2.1. Single locus: haploid population with K alleles. Consider K alleles Ak,
k = 1, ...,K attached to a single locus. Suppose the current time-t allelic frequency
distribution is given by the column vector x := xk, k = 1, ...,K 1. We therefore
have x ∈SK =

{
x ≥ 0 : |x| :=

∑K
k=1 xk = 1

}
, the K−simplex as a convex subset

of RK with dimension K − 1. Let w := wk > 0, k = 1, ...,K denote the absolute
fitnesses of the alleles. Let

(1) w (x) :=
∑

l

wlxl = w∗x

be the mean fitness of the population at time t. We shall also need

(2) σ2 (x) =
K∑

k=1

xk (wk − w (x))2 ,

the variance in absolute fitness and

(3) σ2 (x) =
K∑

k=1

xk

(
wk

w (x)
− 1
)2

= σ2 (x) /w (x)2 ,

the variance in relative fitness wk/w (x).

Dynamics. From the deterministic evolutionary genetics point of view, the discrete-
time update of the allele frequency distribution on the simplex SK is given by2

1Throughout, a boldface variable, say x, will represent a column-vector so that its transpose,

say x∗, will be a line-vector.
2The symbol ′ is a common and useful notation to denote the updated frequency
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(4) x′k = pk (x) :=
xkwk

w (x)
, k = 1, ...,K.

The quantity wk

w(x) − 1 therefore interprets as the frequency-dependent Malthus
growth rate parameter of xk. As required, the vector p (x) := pk (x), k = 1, ...,K,
maps SK into SK . In vector form, with Dx :=diag(xk, k = 1, ...,K), the nonlinear
deterministic evolutionary dynamics reads:

x′ = p (x) =
1

w (x)
Dwx =

1
w (x)

Dxw,

or, with ∆x := x′ − x, the increment of x

∆x =
(

1
w (x)

Dw − I
)

x.

Avoiding the trivial case where fitnesses are all equal, without loss of generality, we
can assume that either w1 ≥ ... ≥ wK = 1 or w1 ≤ ... ≤ wK = 1. Thus that allele
A1 or AK has largest fitness.

Mean fitness increase. According to the dynamical system (4), unless the equi-
librium state is attained, the absolute mean fitness w (x) increases:

∆w (x) = w (x′)− w (x) =
∑

k

wk∆xk

=
∑

k

wkxk

(
wk

w (x)
− 1
)

=
∑

k w
2
kxk

w (x)
− w (x) > 0.

The mean fitness is maximal at equilibrium. The rate of increase of w (x) is:

(5)
∆w (x)
w (x)

=
∑

k

xk

(
wk

w (x)
− 1
)2

=
∑

k

(∆xk)2

xk
,

which is the variance in relative fitness σ2 (x) defined in (3). These last two facts
are sometimes termed the 1930s Fisher fundamental theorem of natural selection.
The equilibria of (4) are the extremal states (0−faces) of the boundary of SK . To
make it simple, if there is an allele whose fitness is strictly larger than the ones of
the others, the deterministic evolutionary dynamics (4) will attain an equilibrium
where only the fittest will survive; starting from any initial state of SK which is
not an extremal (or monomorphic) point, the haploid trajectories will converge to
this fittest state.

A stochastic interpretation of the deterministic dynamics (4). A vector x
of SK can be thought of as a probability vector. The dynamical equation (4), as
a nonlinear update mapping from SK to SK , may be viewed as the discrete-time
nonlinear Master equation of some Markov process whose construction we now give.
Suppose we have a population of N haploid individuals each of which can be of
one among K types or colors (carrying one among the K possible alleles). We shall
need to introduce an extra color-state, say ∂ = {0} , which will be absorbing for
the process we shall now construct. Let K (t) := Kn (t) , n = 1, .., N be the random
color distribution of the population at time t, therefore with enlarged state-space
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{0, 1, ..,K} . Assume the individuals are indistinguishable leading to the exchange-
ability property: Kn (t) d= K1 (t), n = 2, .., N (equality in distribution). Let Ut,m,
t = 1, 2, ...;m = 1, .., N be N i.i.d. driving sequences of uniformly distributed ran-
dom variables on [0, 1], independent of K (t) . Let wk := wk/

∑
k wk, k = 1, ..,K.

To decide the allele Km (t+ 1) carried by the individual number m ∈ {1, ..., N} at
time t + 1, with 1 (A) the indicator function of the event A, consider the random
Markovian dynamical system
(6)

1 (Km (t+ 1) = k, τm > t+ 1) = 1

(
wk

N

N∑
n=1

1 (Kn (t) = k, τn > t) > Ut+1,m

)
.

Here k ∈ {1, ..,K} and τn is the first time that Kn (t) hits the absorbing state ∂. As
a result of Kn (t) d= K1 (t), we naturally assume τn

d= τ1, n = 2, .., N. For each n,
our model therefore attributes a positive probability that Kn (t) = 0 for all t ≥ τn.
Although in principle, there is a possibility that the type of the mth particle is the
one of the fictitious unobservable allele A0, as a result of (6), the sample paths of
K (t) leading to this A0 are ruled out because focus is on the observable states only.

In words, for the dynamics (6), the observable event Km (t+ 1) = k is realized
(together then with τm > t+1) if the proportion at t of type-k individuals, weighted
by the corresponding scaled fitness wk, is large enough (compared to Ut+1) and of
course if the whole process was not absorbed at {0} in the previous step. Taking
first the expectation with respect to the driving noise Ut+1,m in (6), we get

P (Km (t+ 1) = k, τm > t+ 1 | K (t) > 0) =
wk

N

N∑
n=1

1 (Kn (t) = k, τn > t) .

Putting zk (t) := P (K1 (t) = k, τ1 > t) , recalling (Kn (t) ; τn) d= (K1 (t) ; τ1) ,
n = 2, .., N, taking the expectation with respect to K (t), we get an unnormalized
version of (4):

zk (t+ 1) = wkzk (t) , k ∈ {1, ..,K} .
We have 1 > P (τ1 > t) =

∑K
k=1 zk (t) =

∑K
k=1 xk (0)wt

k → 0, geometrically fast.
Defining the normalized conditional probabilities

xk (t) =
zk (t)∑K

k=1 zk (t)
= P (K1 (t) = k | τ1 > t) ,

we obtain the normalized haploid dynamics (4)

x′k =
wkxk∑K

k=1 wkxk

, k ∈ {1, ..,K} .

It now may be viewed as the nonlinear Master equation of some stochastic Markov
process. Let us make some miscellaneous remarks.

(i) Clearly this construction makes also sense if N = 1 (a single particle). (ii)
When N is finite, we should stress that the initial condition can be chosen to be de-
terministic, say with: xk (0) = zk (0) = ik/N , for some sequence of integers ik ≥ 0
satisfying i1 + ... + iK = N (i0 = 0) and quantifying the initial population sizes.
It could also be chosen to be random, with xk (0) defining the initial probability
distribution of the alleles. This occurs in the large N limit if ik = bNxk (0)c so
that, ik/N → xk (0) . The latter choice may therefore be interpreted as a large N
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limit of the former one. (iii) In the stochastic interpretation (6) of the deterministic
dynamics (4), xk (t) can be interpreted either as the probability that the random
allele carried by a typical individual is Ak or like the expected proportion of the
individuals of type k within the whole population (a frequentist point of view). (iv)
The appeal to the coffin state ∂ was a necessary step to understand the normal-
ization zk → xk. (iv) Even though K (t) is exchangeable, it is not true that, with
n1 6= n2 any two distinct individuals, their random labels Kn1 (t) and Kn2 (t) are
independent. The random algorithm allowing to update the joint types of Kn1 (t)
and Kn2 (t) could be written down but is much more involved.

2.2. Single locus: diploid population with K alleles. We now run into similar
considerations but with diploid populations.

Joint evolutionary dynamics. Let wk,l ≥ 0, k, l = 1, ...,K stand for the absolute
fitness of the genotypes AkAl attached to a single locus. Assume wk,l = wl,k (wk,l

being proportional to the probability of an AkAl surviving to maturity, it is natural
to take wk,l = wl,k). Let then W be the symmetric fitness matrix with k, l−entry
wk,l.

Assume the current frequency distribution at time t of the genotypes AkAl is given
by xk,l. Let X be the frequencies array with k, l−entry xk,l. The joint evolutionary
dynamics in the diploid case is given by the updating:

(7) x′k,l = xk,l
wk,l

ω (X)

where the mean fitness ω is now given by: ω (X) =
∑

k,l xk,lwk,l. The relative
fitness of the genotype AkAl is wk,l/ω (X). The joint dynamics takes the matrix
form:

X ′ =
1

ω (X)
X ◦W =

1
ω (X)

W ◦X

where ◦ stands for the (commutative) Hadamard product of matrices.

Let J be the flat K ×K matrix whose entries are all 1. Then

∆X := X ′ −X =
1

ω (X)
(X − J) ◦W =

1
ω (X)

W ◦ (X − J) .

We shall also let

(8) σ2 (X) =
K∑

k,l=1

xk,l (wk,l − ω (X))2

stand for the genotypic variance in absolute fitness and

(9) σ2 (X) =
K∑

k,l=1

xk,l

(
ωk,l

ω (X)
− 1
)2

= σ2 (X) /ω (X)2

will stand for the diploid variance in relative fitness.

Consider the problem of evaluating the increase of the mean fitness. We have

(10) ∆ω (X) =
∑
k,l

∆xk,lwk,l =
∑
k,l

xk,l

(
w2

k,l

ω (X)
− wk,l

)
= ω (X)σ2 (X) > 0
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with a relative rate of increase: ∆w (X) /w (X) = σ2 (X) . This is the full diploid
version of the Fisher theorem.

Marginal allelic dynamics. Assuming a Hardy-Weinberg equilibrium, the fre-
quency distribution at time t, say xk,l, of the genotypes AkAl is given by: xk,l =
xkxl where xk =

∑
l xk,l is the marginal frequency of allele Ak in the whole geno-

typic population. The whole frequency information is now enclosed within x := xk,
k = 1, ...,K. For instance, the mean fitness is now given by the quadratic form:
ω (x) :=

∑
k,l xkxlwk,l = x∗Wx, with x∗ the transposed line vector of the column

vector x = X1 (1 the unit K-vector). We shall also let

(11) σ2 (x) =
K∑

k,l=1

xkxl (wk,l − ω (x))2

stand for the genotypic variance in absolute fitness and

(12) σ2 (x) =
K∑

k,l=1

xkxl

(
wk,l

ω (x)
− 1
)2

= σ2 (x) /ω (x)2

will stand for the diploid variance in relative fitness.

Consider now the update of the allelic marginal frequencies x themselves. If we
first define the frequency-dependent marginal fitness of Ak by wk (x) = (Wx)k :=∑

l wk,lxl, the marginal dynamics is given as in (4) by:

(13) x′k = xk
wk (x)
ω (x)

=
1

ω (x)
xk (Wx)k =: pk (x) , k = 1, ...,K.

This dynamics involves a multiplicative interaction between xk and (Wx)k, the kth
entry of the image Wx of x by W . In (13) there is a normalization by the quadratic
form ω (x) = x∗Wx. In vector form (13) reads

x′ =
1

ω (x)
DxWx =

1
ω (x)

DWxx =: p (x)

where p maps SK into SK . Iterating, the time-t frequency distribution is:

x (t) = p (p (...t times... (p (x0)))) .

Except for the fact that the mean fitness ω in (13) is now a quadratic form in x and
that the marginal fitness of Ak is now frequency-dependent, depending linearly on
x, as far as the marginal frequencies are concerned, the updating formalism (13) in
the diploid case looks very similar to the one in (4) describing the haploid case.

In the diploid case, assuming fitnesses to be multiplicative, say with wk,l = wkwl,

then wk(x)
x∗Wx = wk∑

l wlxl
and the dynamics (13) boils down to (4). However, the mean

fitness in this case is ω (x) = (
∑

l wlxl)
2 and not w (x) =

∑
l wlxl as in the haploid

case.

A stochastic interpretation of the deterministic dynamics (13). As for
the haploid case, there is a Markov chain governed by the Master equation (13).
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Consider a population of diploid individuals. The number of alleles N in this pop-
ulation is therefore twice the number of genes. Each allele can be of one among
K types or colors (carrying one among the K possible alleles). As before, we in-
troduce an extra color-state, say ∂ = {0} which is absorbing for the process to
be constructed. For c = 1, 2, let Kc (t) := Kc

n (t) , n = 1, .., N be two indepen-
dent copies of the random color distribution of the allelic population at time t.
Let K (t) =

(
K1 (t) ,K2 (t)

)
. Assume the alleles are indistinguishable within each

sample, leading to: Kc
n (t) d= Kc

1 (t), n = 2, .., N , c = 1, 2. For c = 1, 2, let U c
t,m,

t = 1, 2, ...;m = 1, .., N be two mutually independent i.i.d. driving N−sequences
of uniformly distributed random variables on [0, 1] and independent of K (t) . To
decide the type of the random allele Km (t+ 1), m = 1, ..., N, at time t+1, consider
now the Markovian dynamical system

(14) 1 (Km (t+ 1) = k, τm > t+ 1) =

1

(
1
N

N∑
n=1

1
(
K1

n (t) = k, τ1
n > t

)
> U1

t+1,m

)
1

(
1
N

N∑
n=1

W k,K2
n(t)1(τ2

n>t) > U2
t+1,m

)
.

Here k ∈ {1, ..,K} , τ c
n are the first hitting times of each Kc

n (t) of the absorbing
state ∂, c = 1, 2 and W := W/ ‖W‖ for any matrix norm ‖W‖ , say for example:
‖W‖ =

∑
k,l wk,l. We assume τ c

n
d= τ c

1, n = 2, .., N , c = 1, 2.

In words, for this new dynamics, the observable event Km (t+ 1) = k is seen to be
realized together with τm > t + 1 if two natural independent conditions are now
satisfied which can be read from the two indicator functions in the right-hand side
of (14):

∗ first, the proportion at t of type-k individuals of the first copy should be large
enough (compared to U1

t+1).

∗ second, for the second sample copy K2 (t), the expected fitness of the genotypes
AkAl, l = 1, ..,K, containing allele Ak at t should be large enough (compared to
U2

t+1).

As for the haploid case, it is necessary that both processes K (t) should not be
absorbed at {0} in the previous step. Taking first the expectation with respect to
the independent driving noises U c

t+1,m in (14), we get

P (Km (t+ 1) = k, τm > t+ 1 | K (t) > 0) =

1
N

N∑
n=1

1
(
K1

n (t) = k, τ1
n > t

)
· 1
N

N∑
n=1

W k,K2
n(t)1(τ2

n>t).

Putting zk (t) = P (K1 (t) = k, τ1 > t) , taking the expectation with respect to
K (t) and using our independence and exchangeability hypotheses, we get

zk (t+ 1) = zk (t) · E
[
W k,K2

1 (t)1(τ2
1>t)

]
= zk (t) ·

k∑
l=1

W k,lzl (t) ,

corresponding to an unnormalized version of (13):

zk (t+ 1) = zk (t)
(
Wz (t)

)
k
, k ∈ {1, ..,K} .
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Defining the normalized conditional probabilities

xk (t) =
zk (t)∑K

k=1 zk (t)
= P (K1 (t) = k | τ1 > t) ,

we obtain the normalized nonlinear Markovian diploid dynamics (13)

x′k =
xk (Wx)k∑K

k=1 xk (Wx)k

, k ∈ {1, ..,K} .

Note that this construction makes sense if N = 2 (a single individual and its 2
alleles of K possible types). The need for two copies of K (t) was governed by the
quadratic character of the interaction appearing in the numerator of (13).

Increase of mean fitness. Again, the mean fitness ω (x) , as a Lyapunov function,
increases as time passes by. We indeed have

∆ω (x) = ω (x′)− ω (x) =
1

ω (x)2
∑
k,l

xkwk (x)wk,lxlwl (x)−
∑
k,l

xkwk,lxl > 0,

because, defining 0 < X (x) :=
∑

k,l xk

(
1− wk(x)

ω(x)

)
wk,l

(
1− wl(x)

ω(x)

)
xl, we have

∆ω (x) = X (x) +
2

ω (x)

(∑
k

xkwk (x)2 − ω (x)2
)
> 0.

Its partial rate of increase due to frequency shifts only is δω (x) :=
∑

k ∆xkwk (x) .
It satisfies

(15)
δω (x)
ω (x)

=
∑

k

xk

(
wk (x)
ω (x)

− 1
)2

=
∑

k

(∆xk)2

xk
= σ2

A (x) /2

where σ2
A (x) is the allelic variance in relative fitness

(16) σ2
A (x) := 2

K∑
k=1

xk

(
wk (x)
ω (x)

− 1
)2

.

An alternative representation of the allelic dynamics. There is an alterna-
tive vectorial representation of the dynamics (13). Define the symmetric positive-
definite matrix G (x) = Dx (I − 1x∗) with quadratic entries in the frequencies:

G (x)k,l = xk (δk,l − xl) .

Introduce the quantity VW (x) = 1
2 logω (x) , which is half the logarithm of the

mean fitness. Then, (13) may be recast as the gradient-like dynamics:

(17) ∆x =
1

ω (x)
G (x)Wx = G (x)∇VW (x) ,

with |∆x| = 1∗∆x = 0 as a result of 1∗G (x) = 0∗. Note

∇VW (x)∗ ∆x = ∇VW (x)∗G (x)∇VW (x) ≥ 0.
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The dynamics (17) is of pure gradient-type with respect to the Svirezhev-Shashahani
distance metric dG (x,x′), see [21] and [20]. For this metric, the distance between
x and x′ = x + ∆x of SK is:

dG (x,x′) =
(
∆x∗G−1∆x

)1/2
=

(
K∑

k=1

x−1
k (∆xk)2

)1/2

.

From (15) and (16), this quantity, which is the length of ∆x satisfying |∆x| = 0, is
also the square-root of half the allelic variance (the standard deviation) in relative
fitness.

2.3. Equilibria (diploid case). The mean fitness increase phenomenon occurs till
the evolutionary dynamics reaches an equilibrium state. We wish to briefly discuss
the questions relative to equilibria in the diploid case.

Preliminaries. In contrast with the haploid case, in the diploid situation, the
dynamics (13) can have more complex equilibrium points, satisfying wk (xeq) =
w1 (xeq), k = 2, ...,K and

∑
l xeq,l = 1. To avoid linear manifolds of equilibria,

we first assume that all principal minors of W are non-singular and also that the
fitnesses of all homozygotes wk,k are positive. In this case, from the Bézout theorem,
the number of equilibria is finite and less or equal than the number 2K−1 of faces of
SK . Note that the K extremal endpoints of SK (0−faces) are always monomorphic
fixed points of (13).

An instructive example fulfilling these preliminary conditions is W = I. There
are 2K − 1 equilibrium points (the barycenters of the

(
K

k+1

)
k−dimensional faces,

k = 0, ..,K − 1), but only one polymorphic equilibrium which is the barycenter xB

of SK . This point is the one with minimal fitness and it is unstable. The 0−faces
are stable fixed points whereas the barycenters of the k faces with k ∈ {1, ..,K − 2}
are saddle-points. The simplex SK could be partitioned into pieces each of which
being the attraction basins of the stable 0−face states: in contrast with the haploid
case, the type of the survivor is not necessarily the one of the fittest; it will depend
on the initial condition.

Similar conclusions can be drawn if instead ofW = I, we start withW = (I −Dλ)−1

where λ := (λk, k = 1, ...,K) satisfies 0 ≤ λ < 1 (meaning 0 ≤ λk < 1, ∀k). In this
case again, there is only one unstable polymorphic equilibrium which is easily seen
to be: xeq = (1− λ) / (K − |λ|) ∈ SK .

Due to its evolutionary interest, we would like now to discuss the opportunity for
a polymorphic state to be stable. Under the above assumptions on W , a unique
stable internal (polymorphic) equilibrium state can exist, necessary and sufficient
conditions being (i) there is a unique z > 0 for which Wz = 1 and (ii) W has
exactly one strictly positive dominant eigenvalue and at least one strictly negative
eigenvalue or else the sequence of principal minors of W alternates in sign (see
Kingman, [7]). If this is the case, the equilibrium polymorphic state is xeq = z/ |z| .
It is stable in the sense that it is a local maximum of the mean fitness ω (x) = x∗Wx,
with ω (xeq) = 1/ |z|. Since |W | 6= 0, the linearization of p (x) at xeq has no
eigenvalue of modulus 1 and so xeq is hyperbolic and/or isolated (see [15]). A
stable isolated polymorphic state is asymptotically Lyapunov stable.
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Under these additional assumptions therefore on W , starting from any initial con-
dition in the interior of SK , all trajectories will be attracted by xeq = z/ |z| which
is an isolated global maximum of ω (x) .

When there is no such unique globally stable polymorphic equilibrium, all trajec-
tories will still converge but perhaps to a local equilibrium state where some alleles
get extinct. Which allele and how many alleles are concerned seems to be an un-
solved problem in its full generality.

Special classes of fitness matrices leading to a polymorphic state.

We now draw the attention on a particular class of fitness matrices that lead to
a polymorphic state, either unstable or stable. We start with the unstable case,
extending the above special diagonal case W = (I −Dλ)−1 leading to a unique
unstable polymorphic state.

(i) The unstable case. Let Λ ≥ 0 be a symmetric irreducible strictly substochastic
matrix satisfying: Λ1 := q < 1 : The positive mass-defect vector of Λ is 1− q. Let
λ > 0. Define the symmetric strictly potential matrix: W = λ−1 (I − Λ)−1 ≥ 0,
with W−1 = λ (I − Λ) defining a strictly row-diagonally dominant Stieltjes matrix
with the properties ([14]):

(
W−1

)
k,k

> 0,
(
W−1

)
k,l
≤ 0 for k 6= l and

(
W−1

)
k,k

+∑
l 6=k

(
W−1

)
k,l
> 0 ∀k. Then

(18) λ1 > z = W−11 = λ (I − Λ)1 = λ (1− q) > 0.

The vector z = λ (1− q) is called the equilibrium potential of W. We have: |z| =
λ (K − |q|). For this class of W therefore, Wz = 1 admits a positive solution z.

Conversely, given a non-singular matrix W ≥ 0 satisfying Wz = 1 for some z ≥ 0,
the matrix Λ = I−λ−1W−1 defines a substochastic matrix if and only W−1 satisfies(
W−1

)
k,k

> 0,
(
W−1

)
k,l
≤ 0 for k 6= l and λ ≥ maxk

(
W−1

)
k,k

. Then, W−1 is

row-diagonally dominant and W = λ−1 (I − Λ)−1 is a potential matrix.

Strictly ultrametric (sUm) matrices are special classes of positive-definite and sym-
metric strictly potential matrices ([11]). A sUm matrix W is symmetric with non-
negative entries, satisfying: (i) wk,l ≥ min {wk,j , wj,l}, ∀j, k, l and (ii) wk,k >
maxl 6=k {wk,l}, ∀k (If in condition (ii) , ≥ is substituted for >, then W is simply
an ultrametric matrix and this new condition is implied by (i)). If W is a sUm
matrix, the fitness dynamics will admit an unstable polymorphic equilibrium state,
as a result of W being positive-definite.

Remark: Suppose Λ is substochastic and primitive. Then W = λ−1 (I − Λ)−1
> 0

is an ultrametric matrix. If V is the Hadamard reciprocal of W with entries vk,l =
1/wk,l, it satisfies: vk,l ≤ max {vk,j , vj,l} . Therefore V is an ultrametric distance
associated to the ultrametric potential W . Tree matrices are ultrametric matrices
that are not sUm.

(ii) The stable case. To produce a stable equilibrium state from the sUm matrix
construction, let W = λ−1 (I − Λ)−1 define a symmetric strictly potential matrix
as before. Then, there is a z = λ (1− q) > 0 for which Wz = 1. With α > 1,
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define

(19) W̃ :=
α

|z|
J −W.

With W̃ = [w̃k,l], we have min w̃k,l = α
|z| − maxwk,l and we can choose α > 1 so

that W̃ ≥ 0. We have (α− 1) W̃z = 1 and δ∗W̃δ = −δ∗Wδ < 0 for all δ 6= 0
satisfying |δ| = 0 showing that xeq := z/ |z| = (1− q) / (K − |q|) is now a stable
polymorphic state for W̃ . If W is a sUm matrix, then clearly W̃ satisfies the ‘anti-
sUm’ property expressing a fitness domination of the heterozygotes AkAl over the
homozygotes:

(20) w̃k,l ≤ max {w̃k,j , w̃j,l} ,∀j, k, l and w̃k,k < min
l 6=k
{w̃k,l} , ∀k.

Non-negative symmetric negative-definite anti-sUm fitness matrices W̃ will there-
fore display a stable polymorphic equilibrium state xeq. Note x∗eqW̃xeq = (α− 1) / |z|
is now the maximal value of the mean fitness.

Example: When K = 2, with s > −1, h > 0 and sh > −1, let

W =
[

1 + s 1 + sh
1 + sh 1

]
> 0

define the fitness matrix with selection parameter s and dominance h. This W is
sUm iff s < 0 and h > 1. The equilibrium state is x∗eq := (h/ (2h− 1) ; (h− 1) / (2h− 1))
and it is unstable. This W is anti-sUm iff s > 0 and h > 1. The equilibrium state
is the same but it is now stable.

Note that a singular multiplicative fitness matrix of the form W = ww∗ cannot be
a strictly potential matrix because its determinant |W | is zero.

A general construction to produce sUm and anti-sUm matrices. Consider
the problem consisting in splitting binarily and recursively the set {1, ..,K} till
complete reduction to singletons (leaves) which are left behind in the process. For
instance, consider the refinement sequence with K = 6 of {1, .., 6} ≡ (123456) :

(123456)→ ((23) (1456))→ (((2) (3)) ((16) (45)))→ (((1) (6)) ((4) (5))) .

Starting from the left, there are 2K − 1 = 11 blocks of symbols (the total number
of nodes in the splitting binary tree with K leaves). To each encountered block,
numbered from l = 1 to 2K − 1, starting from the left, attach a vector ul of
size K with ith entry ul (i) = 1 if symbol i is in the block string, 0 otherwise.
For instance, from the above sequence: u∗1 = (1, 1, 1, 1, 1, 1), u∗2 = (0, 1, 1, 0, 0, 0) ,
u∗3 = (1, 0, 0, 1, 1, 1) , ...,u∗10 = (0, 0, 0, 1, 0, 0) , u∗11 = (0, 0, 0, 0, 1, 0). To each such
ul, attach a number sl which is > 0 if |ul| = 1 (the leaves) and ≥ 0 if |ul| > 1
(the internal nodes, including the root). Then ([14]), for any choice of sl respecting
these constraints

W =
2K−1∑
l=1

slulu∗l ≥ 0
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is a sUm matrix and any sUm matrix can be represented in this way. Because for
the ul corresponding to the leaves sl > 0, the diagonal terms of W are necessarily
> 0.

Since for each set {1, ..,K}, there are bK splitting tree sequences where bK satisfies
bK =

∑K−1
k=1

(
K
k

)
bkbK−k, k ≥ 2, b1 = 1, there are many ways to generate a sUm

matrix.

Clearly, for each splitting procedure, with λ−1 :=
∑2K−1

l=1 sl > 0, W may be written
as

W = λ−1

(
J −

2K−1∑
l=2

λsl (J − ulu∗l )

)
≥ 0

where the matrices J − ulu∗l take values in {0, 1} .
Now, with γ−1 > 0, any matrix of the form

W̃ =
(
λ−1 + γ−1

)
J −W = γ−1

(
J +

2K−1∑
l=2

γsl (J − ulu∗l )

)
≥ 0

is an anti-sUm matrix. Assuming γ = 1 and sl = shl, W̃ may be written under
the form: W̃ = J + sA where A :=

∑2K−1
l=2 hl (J − ulu∗l ) . It has at most 2K − 1

independent parameters, namely the hl, l = 2, .., 2K−1 and s. If the hl are known,
then W̃ is a one-parameter family of fitness matrices3.

Examples. Assume also that sl = s/ (2 (K − 1)), ∀l, with s > 0 a selection
parameter. Then, defining the (0, 1]−valued matrix

(21) A :=
1

2 (K − 1)

2K−1∑
l=2

(J − ulu∗l ) > 0,

an anti-sUm matrix of the form W̃ = J + sA will admit a stable polymorphic
equilibrium. Clearly, A itself is anti-sUm. Because of this, there is a zA > 0
such that AzA = 1. Thus (J + sA) zA = (|zA|+ s)1 showing that, with z =
zA/ (|zA|+ s) , W̃z = (J + sA) z = 1. We thus have |z| = |zA| / (|zA|+ s) and so:
xeq = z/ |z| = zA/ |zA|. Furthermore, the equilibrium mean fitness for such models
is x∗eqW̃xeq = 1/ |z| = (|zA|+ s) / |zA| > 1.

For the following simple sequence example with K = 4 (four alleles, say A,C,T,G),
(1234)→ ((1) (234))→ ((24) (3))→ ((2) (4)) we find:

A =
1
6


5 6 6 6
6 3 5 4
6 5 4 5
6 4 5 3


which itself clearly is a symmetric anti-sUm matrix, together with W̃ = J + sA.
For this example, x∗eq = 1

13 (8, 1, 3, 1) and the equilibrium mean fitness is 1 + s/13.

Note that taking sl = s/ (2 (K − 1)) just for the indices l that were initially chosen
to satisfy sl > 0 would also lead to anti-sUm matrices A > 0 and W̃ = J + sA > 0.

3Fitness matrices of the form J + sA were considered in [3] in the context of the estimation of
s problem.
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In this case, the sum (21) defining A, should then be restricted to the indices l from
2 to 2K − 1 for which sl > 0. Proceeding in this extreme way for the above simple
example, we get the borderline anti-sUm shapes

A =
1
6


3 4 4 4
4 3 4 4
4 4 3 4
4 4 4 3

 and W̃ =


s+2
2

3+2s
3

3+2s
3

3+2s
3

3+2s
3

s+2
2

3+2s
3

3+2s
3

3+2s
3

3+2s
3

s+2
2

3+2s
3

3+2s
3

3+2s
3

3+2s
3

s+2
2


Here, x∗eq is simply the barycenter of the 4−simplex.

Remark: The ultrametric conditions (20) should be compared with the so-called
‘triangle inequality’ conditions (leading to stable polymorphism) pointed out in
([10]), which read:

w̃k,l < w̃k,j + w̃l,j ,∀k 6= l and at least one j 6= k, j 6= l

and

w̃k,l >
w̃k,k + w̃l,l

2
,∀k 6= l.

It is clear that the class of anti-sUm matrices is a particular subclass of the Lewontin
one.

3. Stochastic evolutionary dynamics

We now switch to the random point of view of multiallelic evolutionary dynamics
driven by selection. There are two models of interest: the Wright-Fisher and the
Moran models. We start with Wright-Fisher.

3.1. The Wright-Fisher model. The Wright-Fisher model is a discrete space-
time model which takes into account another important driving source of evolution,
namely the genetic drift whose nature is exclusively random.

The Model and its first properties. Consider an allelic population with
constant size N. In the haploid (diploid) case, N is (twice) the number of real
individuals. Let i := ik and i′ := i′k, k = 1, ...,K be two vectors of integers quanti-
fying the size of the allelic populations at two consecutive generations t and t+1. We
shall let SK,N =

{
i integers : |i| =

∑K
k=1 ik = N

}
. Suppose the stochastic evolu-

tionary dynamics is now given by a Markov chain whose one-step transition matrix
P from states I = i to I′ = i′ is given by the multinomial Wright-Fisher model

(22) P
(
I′t+1 = i′ | It = i

)
=: P (i, i′) =

(
N

i′1 · · · i′K

) K∏
k=1

pk

(
i
N

)i′k

.

Therefore, given It = i, to form the next generation, each allele chooses its type
independently of the others with probability p, where p = (pk, k = 1, .,K) is either
given by (4) in the haploid case or by (13) in the diploid case. In the diploid case,
the mechanism p is assumed to present a unique polymorphic state, either stable
or unstable.

The state-space dimension of the Markov chain governed by (22) is n =
(
N+K−1

K−1

)
(the number of compositions of integer N into K non-negative parts which is also
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the number of ways to assign N indistinguishable balls into K distinguishable
boxes). To view P (i, i′) as a standard transition matrix of some Markov chain,
we need first to order the states i and i′ in (22). Starting from the bottom right
corner of P states should be arranged in decreasing order when listing the entries
of P moving up and left along the lines and columns respectively; or equivalently,
starting from the top left corner of P states should be arranged in increasing order
when moving down and right.

For example, we can order the states i ∈ SK,N in decreasing order from n to 1,
as follows. Let H (i) = 1

N

∑K
k=1 (N + 1)−(k−1)

ik be a base-(N + 1) code of the
state i that will serve as a ranking function. The largest state in for which H (i)
is maximal (equal to 1) is i∗n := (N, 0, .., 0). Given a state i, define the subsequent
state in decreasing order as

σ− (i) = arg min
j:H(j)<H(i)

(H (i)−H (j)) .

Then i∗n = (N, 0, .., 0) , i∗n−1 = (N − 1, 1, 0, .., 0) , ..., i∗1 = (0, ..., 0, N) and to pass
from state i to the next state σ− (i) in this decreasing sequence, there is a unique
δi with entries in Z satisfying |δi| = 0 and such that: σ− (i) = i− δi. This way to
order the n states is consistent with the reverse lexicographic order. For instance
if N = 3, K = 4, there are

(
6
3

)
= 20 states ordered in decreasing order as follows:

3000 > 2100 > 2010 > 2001 > 1200 > 1110 > 1101 > 1020 > 1011 > 1002 >

0300 > 0210 > 0201 > 0120 > 0111 > 0102 > 0030 > 0021 > 0012 > 0003.

The way the digits are propagated from left to right is clear and the consecutive
δi can easily be obtained. Proceeding in this way to order states, P (i, i′) is a well-
defined conventional object (matrix).

From (22), the marginal transition matrix from i to I ′k = i′k is binomial bin
(
N, pk

(
i
N

))
with:

P (i, i′k) =
(
N

i′k

)
pk

(
i
N

)(
1− pk

(
i
N

))N−i′k

.

Given I = i, the kth component I ′k of the updated state is random with:

Ei (I ′k/N) = pk

(
i
N

)
and σ2

i (I ′k/N) = pk

(
i
N

)(
1− pk

(
i
N

))
/N,

suggesting that, in the large N population limit, the deterministic evolutionary
dynamics should be recovered. Indeed, from (22), the Laplace-Stieltjes transform
of the joint law of I′t+1 | It = i reads

Ei

(
e−

∑K
k=1 λkI′k/N

)
=

(
K∑

k=1

pk

(
i
N

)
e−λk/N

)N

∼
N↑∞

e−
∑K

k=1 λkpk( i
N ).

From the strong law of large numbers therefore, if ik := bNxkc, k = 1, ...,K, then,
given x = xk, k = 1, ..,K :

I ′k
N

a.s.→
N↑∞

x′k = pk (x)
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which is (13): When the population under study is very large, random fluctuations
as modelled by (22) can be ignored so that the gene frequencies evolves determin-
istically.

Fixation probabilities. Let el be the K−null vector except for its lth entry which
is 1. The extremal pure states Sex

K,N := {iex
l := Nel, l = 1, ...,K} , are all absorbing

for this Markov chain because pk

(
iex
l

N

)
= δk,l and, from (22), any additional fixed

point which p could have on the boundary-faces of SK which are not points does
not give rise to an absorbing state for P . Under our assumptions on p, the chain
is not recurrent, rather it is transient. Depending on the initial condition, say
i0, the chain will necessarily end up in one of the extremal states iex

l , with some
fixation probability, say πl (i0), which can be computed as follows. Let πl := πl (i),
i ∈ SK,N be the harmonic function of the Wright-Fisher Markov chain which is the
smallest solution to the boundary problem:

(23) (I − P )πl = 0 if i ∈ SK,N\Sex
K,N and πl = 1 (i = iex

l ) if i ∈ Sex
K,N .

We also have
P (Iτ = Nel | I0 = i0) = πl (i0) ,

where τ (< ∞ almost surely) is the random hitting time of Sex
K,N for It and the

πl (i0)s are normalized so as
∑

l πl (i0) = 1. Thus πl (i0) are the searched probabil-
ities to end up in state iex

l starting from state i0.

From (23), πl (i0) is known if i0 ∈ Sex
K,N . The remaining unknown restriction, say

πQ
l , of πl = πl (i0) to the non-extremal states is easily seen to be:

(24) πQ
l = (I −Q)−1 piex

l
, i0 ∈ SK,N\Sex

K,N .

In (24), Q is obtained from P after erasing the lines and columns corresponding
to all the K extremal states and piex

l
is the iex

l −column of P where the entries
corresponding to the extremal states have been deleted. When dealing with the
Wright-Fisher model, Q is a positive matrix and also piex

l
> 0, therefore πl (i0) > 0

for all i0 ∈ SK,N\Sex
K,N and this for each l: starting from any state i0 which is

not an extremal state, there is a positive probability to hit any of the extremal
states. Fixation of the state iex

l means extinction of the remaining monomorphic
states. It would therefore be of interest to understand the structure of the set
Al =

{
i0 : πl (i0) >

∑
k 6=l πk (i0)

}
= {i0 : πl (i0) > 1/2} , for each l, which is the

stochastic version of the attraction basin of iex
l ; especially when l is the label of the

extremal state with largest fitness wk,k. If i0 ∈ Al indeed, the probability to end
up in iex

l is larger than the probability to end up in any other extremal state.

Unfortunately, the development of the inverse of I − Q in terms of its adjugate
matrix in (24) shows that these fixation probabilities have a very complex determi-
nantal alternating structure and the question of identifying Al is very complex.

With πl the solution (24) to the Dirichlet problem with boundary conditions (23),
the equilibrium measure of the chain therefore is:

πeq (i0) :=
K∑

l=1

πl (i0) δiex
l
,
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which depends on i0. Necessarily, one allele will fixate and there is no polymorphic
equilibrium state even when dealing with diploid populations. Which allele and
with what probability will depend on the initial condition. Thanks to fluctuations,
the picture therefore looks very different from the one pertaining to the determin-
istic theory.

Of importance also is the time it takes to get extinct. It relies on similar techniques.
For instance, the expected overall fixation time α (i0) := Ei0 (τ) solves the boundary
problem:

(I − P )α = 1, i0 ∈ SK,N\Sex
K,N

α = 0, i0 ∈ Sex
K,N

where α := α (i0), i0 ∈ SK,N . The restriction αQ of α to the non-extremal states
therefore is

αQ = (I −Q)−1 1 , i0 ∈ SK,N\Sex
K,N .

Conditioning It on non-fixation. There are four places where questions relative
to conditioning on fixation are relevant in this context.4

(i) Consider the full fixation vector πl := πl (i0). Remove from πl the states i0
for which πl (i0) = 0 only, keeping the one, iex

l , for which πl (iex
l ) = 1. The size

of this vector, say πR
l , is nR =

(
N+K−1

K−1

)
− K + 1. Let R be the corresponding

nR × nR reduced transition matrix obtained from P after erasing the lines and
columns corresponding to all the K monomorphic states except iex

l . The Markov
chain It conditioned to exit in the extremal state iex

l only admits the stochastic
transition matrix:

Rl := D−1
πR

l

RDπR
l
.

It is obtained from R after a diagonal Doob transform based on πR
l . The chain

governed by Rl admits a unique absorbing state which is iex
l . The entries of Rl are

Rl (i, i′) =
πR

l (i′)
πR

l (i)
R (i, i′)

and for this new conditioned Markov chain, transitions to states i′ for which
πR

l (i′) > πR
l (i) are favored.

(ii) Let us now consider again the fully reduced transition matrix Q obtained from
P after erasing the lines and columns corresponding to all the K monomorphic
states. The matrix Q is substochastic and irreducible, with Q1 < 1. The law of
the process corresponding to It conditioned on avoiding the monomorphic states
before t evolves as follows: With τ := ∧K

l=1τ l the time needed for first hitting one
of the extremal states for It, let πt (i) = P (It = i | τ > t). Then, with πt = πt (i),

4Similar conditioning problems were considered in [4] in the context of the 2-alleles Wright-
Fisher diffusion.
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i ∈ SK,N\Sex
K,N ,

π∗t+1 =
π∗tQ

π∗tQ1
is the nonlinear Master Equation governing its evolution ([13]). The reduced state-
space dimension of this Markov chain is nQ =

(
N+K−1

K−1

)
−K and πt →

t↑∞
π∞ where

π∞ is the left Perron probability eigenvector of Q associated to the dominant Per-
ron eigenvalue ρQ < 1, namely: ρQπ

∗
∞ = π∗∞Q.

5 If the process is started using this
limiting quasi-stationary distribution, it remains in the same state over time and
the fixation time τ is geometrically distributed with success probability ρQ.

(iii) One can define another stochastic process It which admits the stochastic tran-
sition matrix: Q := D−1

Q1Q again defined on the reduced state-space. For each t, we
have:

Q (i, i′) = P (It+1 = i′ | It = i, τ > 1)

and the conditioning on non-fixation occurs at each transition time. This process
is an ergodic Markov chain with invariant probability measure solving π∗eq = π∗eqQ.
It has the following closed-form determinantal expression (see [17], Section 6 and
[16] p. 1559):

(25) πeq (i) =

∣∣∣(I −Q)[i,i]∣∣∣∑
i

∣∣∣(I −Q)
[i,i]

∣∣∣ , i ∈ SK,N\Sex
K,N ,

where
(
I −Q

)
[i,i]

is the submatrix resulting from the deletion of row i and column

i of I −Q. The question as to whether the process governed by Q is reversible or
not arises. Defining the transition matrix of the time-reversed process

←−
Q by:

←−
Q∗ = Dπeq

QD−1
πeq

,

it does not hold that
←−
Q = Q and so detailed balance does not hold. Indeed, Q

is similar to the transition matrix of an ergodic Wright-Fisher model and Wright-
Fisher chains are not reversible.

(iv) If we condition on non-fixation in the remote future (see [9] for additional
details), we get a Markov chain whose stochastic transition matrix is:

Q̃ = ρ−1
Q D−1

ψ∞
QDψ∞ .

Here ψ∞ is the positive right Perron eigenvector of Q associated to the Perron
eigenvalue ρQ < 1 satisfying: ρQψ∞ = Qψ∞. This vector can be chosen so that:∑

k π∞,kψ∞,k = 1, where π∞ is again the left Perron probability eigenvector of
Q associated to ρQ < 1 (See [2]). With π̃t (·) = lims↑∞ P (It = · | τ > t+ s), we
have π̃∗t+1 = π̃∗t Q̃. The process governed by Q̃ is an ergodic Markov chain whose
invariant probability measure is π̃∞ = π∞ ◦ψ∞, the Schur product of π∞ and ψ∞
with kth entry π̃∞,k = π∞,kψ∞,k.

5π∞ is called a Yaglom limit (see [22]) or a quasi-stationary distribution..
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For the last three conditionings, it is difficult to extract some information on the
limiting distribution, either π∞ or πeq or π̃∞, respectively. This is because it
would suppose to solve the eigenvalue problems explicitly which is out of reach,
at least theoretically. However, assuming a diploid population with a polymorphic
equilibrium state xeq for p, we expect that these distributions will present a global
(local) maximum (minimum) near xeq if xeq is stable (unstable). These limiting
distributions should be more sharply peaked around the extremum if we consider
the conditioning (iv) compared to (ii) because, the latter conditioning being more
stringent than the former, it should charge more heavily the sample paths that stay
away from the monomorphic states.

Finally, we would like to stress that all these considerations are also relevant in the
context of another fundamental stochastic model arising in the context of evolu-
tionary genetics. We shall give some elements of how to proceed with this model
presenting very different properties.

3.2. The K−alleles Moran model. We now focus on the Moran model.

The multiallelic Moran model. Let α, β ∈ {1, ...,K} . In the Moran version of
the stochastic evolution, given It = I = i, the only accessible values of I′ are the
neighboring states: i′α,β := i+dα,β where d∗α,β := (0, .., 0,−1, 0, ..., 1, 0, ..., 0) . Here
−1 is in position α and 1 in position β 6= α corresponding to the transfer of an
individual from the box α (if non-empty) to the box β. With n (i) =# {k : ik > 0}
the number of non-empty entries of i, there are n (i) (K − 1) ≤ K (K − 1) accessible
states from i. The Moran stochastic evolutionary dynamics is now given by a
Markov chain whose one-step transition matrix P from states I = i to I′ = i′ is:

(26) P (It+1 = i′ | It = i) = 0 if i′ 6= i′α,β and

P
(
It+1 = i′α,β | It = i

)
=: P

(
i, i′α,β

)
=
iα
N
pβ

(
i
N

)
,

where p =
(
pβ

(
i
N

)
, β = 1, .,K

)
is either given by (4) in the haploid case or by

(13) in the diploid case.

Summing P
(
i, i′α,β

)
over α, β, β 6= α in (26), we get the holding probability

P (It+1 = i | It = i) = 1−
∑

α,β:β 6=α

iα
N
pβ

(
i
N

)
=
∑
α

iα
N
pα

(
i
N

)
,

completing the characterization of the K−alleles Moran model. Under our as-
sumptions on p, the holding probabilities are equal to 1 only for the extremal
states i ∈ Sex

K,N which are therefore the only absorbing states of the Moran chain,
just like for the Wright-Fisher model. The drift at state i is:

E (It+1 − It | It = i) =
∑
α

iα
N

∑
β 6=α

pβ

(
i
N

)
dα,β .
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Let us compute the Laplace-Stieltjes Transform of I′ in the context of a Moran
model. Omitting the argument i

N in pβ

(
i
N

)
, we get the factorized form:

Ei

(
e−

∑
k λkI′k

)
=

∑
α,β:α6=β

e−
∑

k λki′α,β(k)P
(
i, i′α,β

)
+ e−

∑
k λkik

∑
β

iβ
N
pβ

= e−
∑

k λkik

 ∑
α,β:α6=β

e−
∑

k λkdα,β(k)P
(
i, i′α,β

)
+
∑

β

iβ
N
pβ


= e−

∑
k λkik

 ∑
α,β:α6=β

e−(λβ−λα) iα
N
pβ +

∑
β

iβ
N
pβ


= e−

∑
k λkik

∑
β

e−λβpβ

∑
α6=β

iα
N
eλα +

∑
β

iβ
N
pβ


= e−

∑
k λkik

∑
β

e−λβpβ

(∑
α

iα
N
eλα − iβ

N
eλβ

)
+
∑

β

iβ
N
pβ


=
(
e−

∑
k λkik

)(∑
α

iα
N
eλα

)∑
β

e−λβpβ

 .

Putting λl = 0 if l 6= k, the kth marginal reads:

Ei

(
e−λkI′k

)
= e−λkik

(
1− ik

N
+ eλk

ik
N

)(
1− pk + e−λkpk

)
showing that Ik (t) is of the random walk type. Indeed, we get: Pi (I ′k = i′k) = 0 if
i′k 6= ik ± 1 or i′k 6= ik and

Pi (I ′k = ik) =
(

1− ik
N

)
(1− pk) +

ik
N
pk

Pi (I ′k = ik + 1) =
(

1− ik
N

)
pk =

∑
l 6=k

P
(
i, i′l,k

)
Pi (I ′k = ik − 1) =

ik
N

(1− pk) =
∑
l 6=k

P
(
i, i′k,l

)
.

We have

Ei

(
I ′k
N

)
=
ik
N

+
1
N

(
pk −

ik
N

)
; σ2

i

(
I ′k
N

)
=

1
N2

(
ik
N

(
1− ik

N

)
+ pk (1− pk)

)
.

There is only a small correction (of order N−1) of the updated mean to its current
value and fluctuations around the mean are small too (of order N−1). The evolu-
tion process is very slow.

Fixation probabilities. As a random walk model, the Moran model has a much
simpler transition matrix P of the Jacobi type. The equilibrium measure of the
chain again is:

(27) πeq :=
K∑

l=1

πl (i0) δiex
l
,
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where πl again solves the Dirichlet problem (23) but with this new simpler Jacobi
P . For the Moran model, the explicit expression (24) of the fixation probability
simplifies a little bit because piex

l
(i) 6= 0 only for the K − 1 neighboring states of

iex
l that is {i : i + dα,β= iex

l } for some dα,β .

When K = 2 (2 alleles), the random walk transition probabilities (p1 + p2 = 1)

P
(
It+1 = i′1,2 | It = i

)
=: P

(
i, i+

(
−1
1

))
=
i1
N
p2

(
i
N

)
,

P
(
It+1 = i′2,1 | It = i

)
=: P

(
i, i+

(
1
−1

))
=
i2
N
p1

(
i
N

)
,

are the probabilities that the first component It,1 of It moves down and up by one
unit respectively. In this case, the Dirichlet problem giving the fixation probabilities

solves explicitly. With φ (i0) = 1 +
∑i0−1

i=1

∏i
i1=1

i1p2( i
N )

i2p1( i
N ) (φ (0) = 0) the harmonic

function of the 2−alleles chain, we easily get that

π1 (i0, N − i0) =
φ (i0)
φ (N)

is the probability that the extremal state iex
1 = (N, 0) is reached given i0 =

(i0, N − i0) . Assuming a model with multiplicative fitnesses: pα

(
i
N

)
= iα

N
wα

ω( i
N ) ,

then φ takes the simple form (i1 + i2 = N)

φ (i0) = 1 +
i0−1∑
i=1

i∏
i1=1

i1p2

(
i
N

)
i2p1

(
i
N

) = 1 +
i0−1∑
i=1

(
w2

w1

)i

showing (See [1], p. 109) that:

π1 (i0, N − i0) =
1−

(
w2
w1

)i0

1−
(

w2
w1

)N
.

Assuming w1 = 1 + s/N and w2 = 1, putting i0 = [Nx0], for large N , we get [6]

π1 (Nx0, N − i0) ∼
1− e−sx0

1− e−s
.

In the general fitness case:

φ (i0) = 1 +
i0−1∑
i=1

i∏
i1=1

i1p2

(
i
N

)
i2p1

(
i
N

) = 1 +
i0−1∑
i=1

i∏
i1=1

(W i/N)2
(W i/N)1

where, as usual, (W i/N)k =
∑2

l=1 wk,lil/N , k, l = 1, 2, leading to

(W i/N)1 = w1,2 + (w1,1 − w1,2) i1/N
(W i/N)2 = w2,2 + (w2,1 − w2,2) i1/N.

This 2-alleles exact solution can be used in the full diploid K−alleles Moran case
with multiplicative fitnesses. Indeed, from this, with i0 = (i1, .., iK), the fixation
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probability of Al can be conjectured to be approximated qualitatively by:

(28) πl (iex
l ) = 1 and πl (i0) =

1−
(∑

k 6=l ikwk/(N−il)

wl

)il

1−
(∑

k 6=l ikwk/(N−il)

wl

)N
if i0 6= iex

l .

This can be justified as follows: mark one particular box with size il, corresponding
to the allele Al with fitness wl. Then clump the K − 1 remaining boxes into a
single box with size N − il, corresponding to a fictitious allele with average fitness∑

k 6=l ikwk/ (N − il) .We are left with a 2-alleles Moran multiplicative fitness model
for which (from the 2-alleles exact solution) the fixation probability of Al is given
by (28). This formula constitutes sort of a mean field approximation to the full
Dirichlet problem associated to the Moran model.

Assuming wk ∼ 1+sk/N , a Kimura-like approximation of (28) would lead for large
N to:

πl (Nx0) ∼
1− e

xl
1−xl

∑
k 6=l xksk

1− e
1

1−xl

∑
k 6=l xksk

,

where x0 = (x1, .., xK) is now a point of the continuous K−simplex different from
the l−unit vector el := (0, .., 0, 1, 0, .., 0).

From (28), when the fitness of allele Al is large (small), compared to the average
fitness of the remaining alleles, then the fixation probability of Al gets close to 1
(respectively to 0). Note also that the larger il is, the larger the fixation probability
is.

As required also, for all k 6= l, πl (iex
k ) =

(
1−

(
wk

wl

)0
)
/

(
1−

(
wk

wl

)N
)

= 0. As

another particular initial configuration case, suppose we start from the 2-alleles
type state: i0 =: i0 (k, l) = (0, .., 0, N − 1, 0, .., 0, 1, 0, .., 0) where the 1 is in position
l (that is: il = 1) and the entry N − 1 in position k 6= l (that is: ik = N − 1).
Although for this choice of the initial state, the fixation of Ak is very likely, there
still is a positive probability that allele Al gets fixed which is seen to be from (28):

πl (i0 (k, l)) =
1− wk

wl

1−
(

wk

wl

)N
,

depending only on the relative fitnesses of Al and Ak (See [19] and [18] for a similar
expression). As N gets large, this probability gets close to 1 − wk

wl
if wk < wl and

close to
(

wl

wk

)N−1

∼ 0 if wk > wl.

Conversely, assuming the 2-alleles type state i0 to be defined by il = N − 1 and
ik = 1,

πl (i0) =
1−

(
wk

wl

)N−1

1−
(

wk

wl

)N
,

which, as required, gets close to 1 as N gets large if wk < wl and close to wl

wk
if

wk > wl.



MULTIALLELIC FITNESS 23

Conditioning It on non-fixation. The conditioning developments discussed for
the Wright-Fisher model are also relevant in the Moran model context substituting
the P of Moran for the P of Wright-Fisher. Let us revisit the conditioning (iii) .

(iii) With Q now the reduced substochastic matrix of the full Moran transition
matrix defined in (26), consider the stochastic process It with stochastic transition
matrix: Q := D−1

Q1Q defined on the reduced state-space with dimension nQ. The
process It is again an ergodic Markov chain with invariant probability measure
solving π∗eq = π∗eqQ. With

←−
Q the transition matrix of the time-reversed process it

now holds that
←−
Q = Q and so detailed balance holds when dealing with the Moran

case (see also [5]). This will be proved if we can exhibit an equilibrium probability
measure πeq such that

(29) πeq (i)Q (i, i′) = Q (i′, i)πeq (i′) ,

for all neighboring state i′ = i + di of i.

With j =(j1, .., jK) any terminal state, suppose we want to use (29) to compute
πeq (j) starting from the smallest available state in the system which is j0 =
(0, .., 0, 1, N − 1). This is possible because πeq (j) may be represented as

(30) πeq (j) = πeq (j0)
j−dK,1∏
i=j0

Q
(
i, i′
)

Q (i′, i)
,

where πeq (j0) can be chosen so that:
∑

j πeq (j) = 1. Let us give some details.

- Note first, by reversing path, that for two consecutive states
(
i, i′
)
, the ratio

Q(i,i′)
Q(i′,i)

can be computed. We have

Q
(
i, i′
)

Q (i′, i)
=

(Q1)i′
(Q1)i

Q
(
i, i′
)

Q (i′, i)
where i′ = i + di for some di of the form dk,l and therefore

(31) Q
(
i, i′
)

=
ik
N
pl

(
i
N

)
and Q (i′, i) = Q (i′, i′ + dl,k) =

il + 1
N

pk

(
i + dk,l

N

)
.

Clearly, from such a structure of the entries of Q, for each possible transition
i → i′, the ratio Q (i, i′) /Q (i′, i) will only depend separately on a ratio involving
the terminal and the initial states i′ and i (the detailed balance condition holds).

- Second, the sequence of i-s in (30) is governed by the following path starting from
j0 and ending up in the target state j : We can use the following sequence of dk,ls:(

dK,K−1
jK−1−1... dK,K−1

) (
dK,K−2

jK−2... dK,K−1

)
...
(
dK,1

j1... dK,1

)
,

filling up successively the entries of j to the left of the last entry of j0 by using
the N − 1 individuals of the reservoir state j0 = (0, .., 0, 1, N − 1) . By doing so,
each intermediate state i is separated from the next i′ by some clearly identified
di, and after evaluating the probability ratio Q

(
i, i′
)
/Q (i′, i) for each consecutive

states of this sequence, we are done. Because there exists a probability distribution
πeq (j) such that the reversibility identity (29) holds, then this Moran process is
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reversible with (30) as its stationary distribution. Using (31), this constitutes an
exact explicit product-form formula.

4. Concluding remarks

This paper studies a classical population genetic model describing a one-locus mul-
tiallelic population subject to natural selection, random mating and then random
genetic drifts as from the Wright-Fisher and Moran models. Although the two-
alleles version of this model is fairly well-studied and understood, this is not so
much the case of the multiallelic one, especially in the discrete-time context which
we adopt here. Let us summarize our results emphasizing the ones which we believe
are new.

Considering first the deterministic updating mechanisms driven by selection, we
underline that it has the form of a nonlinear Master equation suggesting that it
is possible to construct an underlying Markov process governed by this Master
equation. We briefly and intuitively supply such a construction.

In the diploid context, we pay attention on a class of fitness matrices that leads to
polymorphism. Would the equilibrium polymorphic state be unstable, we suggest
that the class of potential matrices constitute a large such admissible class of fitness
matrices. It contains the class of strictly ultrametric matrices which therefore
deserves some interest. To the best of our knowledge, there is no discussion of such
fitness models in the population genetics context. Would the polymorphic state be
stable, we derive a related class of fitness matrices leading to a definite-negative
mean fitness quadratic form. Some simple examples are supplied and detailed.

The last Section is devoted to the stochastic version of these considerations taking
into account an additional important driving source of evolution, namely the ran-
dom genetic drift. When driven by selection only and in particular in the absence of
mutations, the multiallelic Wright-Fisher model is a transient Markov chain whose
absorbing states are the monomorphic states. We give an expression for the fixa-
tion probabilities for this process. Then, we develop four conditioning problems:
conditioning on fixating in a given monomorphic state, conditioning on avoiding
the extremal states before the current instant, conditioning on non-fixation at each
transition time and conditioning on avoiding the extremal states in the remote fu-
ture. Finally we run into similar considerations but for the Moran model. When
dealing with the fixation probabilities in this Moran context, we suggest a mean-
field approximation of these probabilities which is based on a well-known explicit
formula for the 2-alleles case. It concerns the case of multiplicative fitnesses only.
Finally, we consider the Moran model conditioned on non-fixation at each transi-
tion time. We exploit the reversible character of this process to derive an explicit
product formula for its invariant probability measure.
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