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SIEGMUND DUALITY WITH APPLICATIONS TO THE
NEUTRAL MORAN MODEL CONDITIONED ON NEVER BEING

ABSORBED

THIERRY HUILLET

Abstract. We shall first consider the classical neutral Moran model with

two alleles whose fate is either to become extinct or to reach fixation. We
will study an ergodic version of the Moran model obtained by conditioning it

to never hit the boundaries, making use of a Doob transform. We shall call

it the recurrent Moran model. We will show that the Siegmund dual of the
recurrent Moran process exists and is a substochastic birth and death chain.

Conditioning this process to exit in its natural absorbing state, we construct
a process with a unique absorbing state which is intertwined to the original

recurrent Moran process. The time needed for the intertwined process to first

hit its absorbing state is related to the time to reach stationarity for the re-
current Moran process. Using spectral information on the intertwined chain,

we extract limiting information on this first hitting time that shows that there

is no abrupt relaxation to equilibrium for the recurrent Moran chain. This
makes use of the relation between duality and intertwining and strong station-

ary times. Other related transition times of the recurrent Moran chain are also

briefly investigated, namely: the first return time to the ground state and the
expected time needed to move from one end to the other end of the state-space.

Running title: Siegmund duality and the recurrent Moran Model

Keywords: Population dynamics, Moran model, Birth and death chains,
Fluctuation theory, Relaxation to equilibrium, Siegmund dual, Strong station-

arity times.

AMS 60J10, 60J70, 92B05; PACS numbers: 02.50.Ey, 87.23.Kg, 87.10.Mn

1. Introduction and outline of the results

Consider a population constituted of N individuals (alleles) of two types. Suppose
at all time n there are Zn individuals of type 1 and N − Zn individuals of type 2.
Elementary population genetics aims at elucidating the fate of the type 1 allele fre-
quency Zn, when various driving ‘forces’ are at stake in the gene pool. One major
driving source we shall stick to in this manuscript is the genetic drift whose nature
is exclusively random. In this context, we shall first consider the classical neutral
Moran model with two alleles (see [14] or [28]). This process is a well-known birth
and death chain on the state-space {0, .., N}. The process Zn either becomes ex-
tinct or it fixes; it has two natural boundaries {0, N} which are both absorbing. We
will next introduce an ergodic version of Zn obtained by conditioning Zn to never
hit the boundaries, making use of a Doob transform. We shall call the resulting
process, say Xn, the recurrent Moran process. Its state-space is now {1, .., N − 1}.
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2 THIERRY HUILLET

The recurrent Moran process Xn will be the main concern of this paper. Its main
features are first derived in Section 2.

Then we run into the rich duality idea between Markov chains. Dual processes
occur in many applications; for typical examples and use of dual processes, we
refer the reader to the mathematics and physics literature on interacting particle
systems (see for example [7], [32], [27], [31], [18], [4] and [22]). Other examples
occur in the population genetics context (see for example [10], [11], [29], [19] and
[20]) and essentially go back to Siegmund similar early concerns for stochastically
monotone processes (see [30] and [5]).

In this Note, we will focus on the Siegmund duality and on its use in our genetics
problem. We will show that the Siegmund dual of the recurrent Moran process Xn

exists and is a substochastic birth and death chain. It loses mass at state {1} and is
absorbed in state {N − 1} . We shall call this process X̂n. By adding an extra coffin
state, say {0}, we will consider an enlarged proper Markov chain X̂+

n , now with the
two absorbing states {0} and {N − 1} . While conditioning the enlarged process X̂+

n

to exit in its natural absorbing state {N − 1}, we shall construct another proper
stochastic process X̃n, but now with this unique absorbing state. This new process
X̃n turns out to be intertwined with the original recurrent Moran process Xn. It
is again a birth and death chain.

The intertwining construction shows that the original positive recurrent birth and
death chain Xn may also be viewed as the output (through a stochastic link) of a
dual hidden Markov chain X̃n which is absorbed in a single state. Its peculiarity
is that Xn is a Markov output of X̃n which is itself Markov. As a result of this
intertwining construction, the time needed for X̃n to first hit its absorbing state is
related to the time to reach stationarity for the recurrent Moran process Xn under
study. This is when both intertwined processes Xn and X̃n start in the same state
{1}. Because we deal here with a birth and death chain Xn with known spectral
characteristics, the estimation of the hitting time for X̃n is somehow made easier
(see [24] and [16]). These constructions are described in Section 3; they are in the
spirit of [1] and [7] and actually serve as an additional illustration of the theory.

Using spectral information on the intertwined chain X̃n, we will show in Section 4
that there is no abrupt relaxation to equilibrium for Xn (no cutoff phenomenon1 in
the sense of Diaconis, [6]). More precisely, we will show that the expected value of
the time τ̃1,N−1 for X̃n to first hit its absorbing state {N − 1} , starting from state
{1} , grows like N2, just like its standard deviation. We will identify the limit law
of τ̃1,N−1 (normalized by its mean value) as a quadratically weighted sum of ex-
ponentially distributed random variables. The random time τ̃1,N−1 being a strong
stationarity time, the ergodic chain Xn enters gradually into its invariant measure
after about N2 steps. By the end of this Section 4, we add some considerations
on the scaling limit attached to the recurrent Moran model Xn. These follow from
the observation that the shifted recurrent Moran model is a Moran model with
mutations.
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In Section 5, other transition times of the chain Xn are briefly investigated. It is
shown that the first return time to state {1} grows like N2 whereas the expected
time for Xn to move from one end {1} to the other end {N − 1} of the state-space
grows like N3.

Remark1: Similar considerations for the nonneutral ergodic Moran model includ-
ing mutations (described in [23]) can be found in [12] and [11]. It includes the
Ehrenfest urn model and the Bernoulli-Laplace urn model (see [15], [9]), both being
simple heat exchange models of statistical physics. In this context, the conclusions
are radically different: the Moran model with mutations exhibits a cutoff phenome-
non. This ergodic chain (of a different nature from the Xn under study here) enters
abruptly into its invariant measure after about N

2µ logN steps, where µ is the total
mutation pressure.

2. The neutral Moran model conditioned on non-absorption

Consider a population constituted of N individuals (alleles) of two types. Suppose
at time n there are Zn = x individuals of type 1 and N−x individuals of type 2. We
are first interested in the random Moran neutral evolution of type 1 individuals,
namely of Zn, n ≥ 0. It can be described as follows: Pick at random 2 distinct
individuals from the whole 2-types population at time n. Assume that one is bound
to die, the other one is bound to survive in the next generation and produce an
additional offspring so that, at step n+1, the total population size remains constant.
From this model, given Zn = x, the updated number of type 1 individuals is

(1) Zn+1 = x+ 1 with probability αx =
(
1− x

N

) x

N

(2) Zn+1 = x− 1 with probability βx =
x

N

(
1− x

N

)

(3) Zn+1 = x with probability ρx =
( x
N

)2

+
(
1− x

N

)2

The neutral Moran process Zn is thus a transient birth and death Markov chain.
It is a cornerstone model of population genetics (the so-called random genetic drift
model). See [14], p. 104, [28] or [17] for example. Its stochastic transition matrix
reads (the empty entries are 0).

Π =


1 0
β1 ρ1 α1

. . . . . . . . .
βN−1 ρN−1 αN−1

0 1

 .

The eigenvalues of Π are easily seen to be θk = 1 − k(k−1)
N2 , k = 0, .., N (see [14],

p. 106). Note that θ0 = θ1 = 1, translating the fact that the two states {0, N} are
absorbing for Zn. We shall let τx,0, τx,N be the first random times at which Zn hits
{0} and {N} respectively, starting from Z0 = x. We shall also let τx = τx,0 ∧ τx,N ,
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with τx <∞ almost surely. Let

Π =


ρ1 α1

β2 ρ2 α2

. . . . . . . . .
βN−2 ρN−2 αN−2

βN−1 ρN−1


be obtained from Π after removing its first and last rows and columns. This matrix
of size N − 1 is substochastic in the sense that it loses mass at states {1, N − 1} .

Let π
′

be the transpose row-vector of some column-vector π. Let π
′

and ψ be
defined as the left and right (row and column) eigenvectors associated to the spectral
radius (largest eigenvalue) θ2 of Π, namely:

(4) π′Π = θ2π
′ and Π

−
ψ = θ2ψ.

We have θ2 = 1 − 2/N2 and ψ =
(
ψx, x = 1, .., N − 1

)
, where ψx = x

N

(
1− x

N

)
.

Note also that π = (πx, x = 1, .., N − 1) , where πx = 1
N−1 . Regardless of the

starting point x, we therefore have

Px (Zn = z | τx > n) → πz =
1

N − 1
as n→∞,

and π has an interpretation in terms of the uniform Yaglom limiting measure of
Zn on {1, .., N − 1}.
Let P be the birth and death stochastic matrix defined from Π by applying the
Doob transform

(5) P = θ−1
2 D−1

ψ
ΠDψ,

where Dψ ≡ diag
(
ψ1, .., ψN−1

)
. We have

P =


r1 p1

q2 r2 p2

. . . . . . . . .
qN−2 rN−2 pN−2

qN−1 rN−1


where

(6) px = θ−1
2 αx

ψx+1

ψx

= θ−1
2

x+ 1
N

(
1− x+ 1

N

)

(7) qx = θ−1
2 βx

ψx+1

ψx

= θ−1
2

x− 1
N

(
1− x− 1

N

)

(8) rx = θ−1
2 ρx = θ−1

2

[( x
N

)2

+
(
1− x

N

)2
]

The invariant measure π =(πx, x = 1, .., N − 1) of the corresponding random walk
(say Xn) governed by P is given by πx = π1

∏x−1
y=1

py

qy+1
. πx can also be expressed
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in terms of the normalized Hadamard product of π and ψ :

(9) πx =
πxψx∑N−1

x=1 πxψx

=
6x (N − x)

N (N − 1) (N + 1)
.

This invariant probability measure is a special incarnation of the bivariate gener-
alized hypergeometric distribution (a discrete version of the beta(2, 2) distribution
supported by the unit interval). Note that the recurrent Moran model governed by
P is reversible as a result of P obeying detailed balance which is true for all birth
and death chains.

Clearly, the eigenvalues of P are

tk = θ−1
2

(
1− k (k + 1)

N2

)
, k = 1, .., N − 1

which may be recast as

(10) tk = 1− (k − 1) (k + 2)
N2 − 2

, k = 1, .., N − 1.

Note that t1 = 1, t2 = 1 − 4
N2−2 < 1 and the spectral gap of P is 1 − t2 = 4

N2−2 .

We have tN−1 = N
N2−2 > 0 so that all eigenvalues of P are > 0.

The random walk Xn, governed by P, corresponds to the random neutral Moran
process Zn conditioned to never become extinct nor fixed in the remote future2. See
[25] for a continuous-time version of this construction. It is again a birth and death
Markov chain but with the modified transition probabilities (6, 8). Because it is
a positive recurrent ergodic Markov chain, we shall call the process Xn governed
by P the recurrent neutral Moran process (or shortly the recurrent Moran model).
Note that if X0

d∼ π (meaning that the distribution of X0 is π), then Xn
d∼ π for

all n ≥ 1 : the distribution of Xn remains unchanged at all times.

We can check from (6, 7) that for all N ≥ 3 and for all x ∈ {1, .., N − 2}
(11) px + qx+1 ≤ 1

which means that the random walk Xn is stochastically monotone in the sense that
for all n ≥ 0 and y ≥ 1, the function x→ Px (Xn ≤ y) is a non-increasing function
of x. This fact may also be viewed as a direct consequence of P having all its eigen-
values positive. This property will prove essential in the following statement that
a Siegmund dual to Xn exists, [30]. See [5] for similar considerations for birth and
death chains on the half-line.

Remark2: The original idea of conditioning a Markov chain to never become
extinct in the remote future seems to be due to Spitzer (unpublished) in the sixties
and then Lamperti-Ney, [26]; see Athreya-Ney [2], p 56−59. It was first introduced
in the context of the celebrated Bienyamé-Galton-Watson branching process.

3. The Siegmund dual to the recurrent Moran model

In this Section, we shall illustrate the power of the duality/intertwining relationship
by considering the simplest Siegmund dual of a birth and death chain, with the
recurrent neutral Moran birth and death example in mind. This will prove useful
to address the question of computing the strong stationary time distribution that



6 THIERRY HUILLET

helps quantifying the ‘distance’ to equilibrium of the original positive recurrent
birth and death process.

Definition 1. [27]: Two discrete-time Markov processes
(
Xn, X̂n;n ≥ 0

)
, with

state-spaces (X ,Y) , possibly with substochastic transition kernels, are said to be
dual with respect to some non-singular duality kernel H ≥ 0 on the product space
X × Y if ∀x ∈ X , ∀y ∈ Y, ∀n ∈ N :

(12) ExH (Xn, y) = EyH
(
x, X̂n

)
.

When the state-spaces (X ,Y) = {1, .., N − 1}2 are finite and identical, the duality
kernel is a square-matrix and the transition matrix of the dual process X̂n, say P̂ ,
is obtained from the one P of the original process Xn by:

(13) P̂ ′ = H−1PH,

where P̂ ′ stands for the transpose of P̂ .

The Siegmund dual [30]. The Siegmund duality kernel is:

(14) H (x, y) = 1 (x ≤ y) .

If, for a given process Xn, a process X̂n exists satisfying the above conditions (12)
or (13), then X̂n is called the Siegmund dual of Xn. Clearly, in the birth and death
case for Xn, the condition is that Xn should be stochastically monotone in that,
for all y ≥ 1 and n ≥ 0, the function x → Px (Xn ≤ y) should be non-increasing
with x. This is because

Px (Xn ≤ y) = Py

(
X̂n ≥ x

)
,

as a result of (12) and (14).

For the positive recurrent Moran process and for the Siegmund kernel, the transition
matrix P̂ of the dual process X̂n reads:

P̂ =


r1 − q2 q2
p2 r̂2 q3

. . . . . . . . .
pN−2 r̂N−2 qN−1

0 1

 ,
where r̂x ≡ 1 − (px + qx+1), x ∈ {2, ..., N − 2} (and q̂x = px, x = 2, .., N − 2,
p̂x = qx+1, x = 1, ..., N − 2). It is again the one of a birth and death process.
Indeed, in this case, H is an upper-right triangular matrix with non-zero entries
1, whereas the non-null entries of H−1 are the diagonal (with entries 1) and the
upper-diagonal with entries −1. The displayed structure of P̂ follows from this and
the duality relation (13).

For the dual process X̂n to exist, we thus need to make sure that px + qx+1 ≤ 1
for x ∈ {1, .., N − 2} . This is a necessary and sufficient condition to guarantee the
stochastic monotonicity of Xn. But this holds true if Xn is the recurrent Moran
model defined in the previous section.
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From the structure of P̂ , it is apparent that the dual process loses mass at y = 1
and is absorbed in y = N −1. Let us therefore add a coffin state, say + ≡ {0} , and
consider the enlarged stochastic matrix which we shall call P̂+ :

P̂+ =



1 0
1− r1 r1 − q2 q2

p2 r̂2 q3
. . . . . . . . .

pN−2 r̂N−2 qN−1

0 1


,

The corresponding proper birth and death chain, call it X̂+
n , has now two absorbing

states, one at {0}, one at {N − 1} . We shall now construct another random walk
by conditioning X̂+

n to be absorbed in {N − 1} . This will be done with the help of
its scale function of X̂+

n .

The scale function of X̂+
n . Let now ϕ̂ (x), x = 0, 1, ..., N − 1 be the scale (or

harmonic) function of X̂+
n , solving P̂+ϕ̂ = ϕ̂ while imposing ϕ̂ (0) = 0. We can

easily check that:

(15) ϕ̂ (0) = 0, ϕ̂ (x) =
1
π1

x∑
y=1

πy, x = 1, .., N − 1.

The scale function of X̂+
n expresses in terms of the cumulative probability distri-

bution πc
x ≡

∑x
y=1 πy of the invariant measure of the process Xn.

Let τ̂x ≡ τ̂x,1 ∧ τ̂x,N−1 be the smallest of the first hitting time for X̂+
n of {0} and

{N − 1} , starting from x ∈ {1, ..., N − 2}. We have:

(16) Px

(
X̂+

τ̂x
= N − 1

)
= P (τ̂x,N−1 < τ̂x,1) =

ϕ̂ (x)
ϕ̂ (N − 1)

= πc
x.

The probability that X̂+
n is absorbed in {N − 1} can therefore be expressed in

terms of the scale function ϕ̂ of X̂+
n . Let πc = (πc

x, x = 0, .., N − 1) and Dπc =
diag

(
πc

1, .., π
c
N−1

)
.

Doob h−transform, [13]. Define a new transition matrix P̃+ by

(17) P̃+ = D−1
πc P̂+Dπc .

P̃+ is a stochastic matrix. The entries of P̃+ read

P̃+ =



1 0
0 r1 − q2 p1 + q2

πc
1

πc
2
p2 r̂2

πc
3

πc
2
q3

. . . . . . . . .
πc

N−3
πc

N−2
pN−2 r̂N−2

πc
N−1

πc
N−2

qN−1

0 1


,

where the state {0} becomes isolated and disconnected. Deleting the first row and
column (corresponding to the extra state{0}) of P̃+, we get a stochastic transition
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matrix, call it P̃ , of some process X̃n on the state-space {1, ..., N − 1} which cor-
responds to X̂+

n conditioned to first hit state {N − 1} before state {0} . The state
{1} of this conditioned birth and death process is now partially reflecting whereas
its only remaining absorbing state is {N − 1}. See [21] for a similar conditioning
in the context of the Ehrenfest urn model.

We now state that P̃ and P (characterized by (6, 8)) are intertwined through a
stochastic link Λ.

Proposition 1. (i) The matrices P̃ and P are similar (with the same eigenvalues),
that is

(18) P̃ = ΛPΛ−1.

With π as in (10), the link matrix Λ is given by: Λ (x̃, x) = πx

πc
x̃
1 (x ≤ x̃) . It cor-

responds to the entries of a lower-triangular stochastic matrix. Its interpretation is
in terms of the conditional probability

(19) Λ (x̃, x) = P
(
Xn = x | X̃n = x̃

)
, for all n ≥ 1.

(ii) The link matrix Λ satisfies

(20) Λ (N − 1, x) = πx, x = 0, .., N.

(iii) π̃′0 = π′0 = e′0 ≡ (1, 0, ..., 0) are admissible initial distributions for the chains
X̃n and Xn, satisfying

(21) π′0 = π̃′0Λ.

Proof : (i) Using (17) and (13)

P̃ = D−1
πc P̂Dπc = D−1

πc H ′P ′H ′−1Dπc .

The random walk Xn being reversible (detailed balance holds), P ′ = DπPD
−1
π .

Thus:
P̃ =

(
D−1
πc H ′Dπ

)
P
(
D−1
π H ′−1Dπc

)
= ΛPΛ−1

where Λ = D−1
πc H ′Dπ. The entries of Λ are Λ (x̃, x) = πx

πc
x̃
1 (x ≤ x̃), satisfying∑

x≤x̃
πx

πc
x̃

= 1. Thus Λ is stochastic as its row sums all sum to 1.

Suppose X0
d∼ π0, X̃0

d∼ π̃0 and assume the initial distributions π0 and π̃0 are
Λ−compatible, that is π′0 = π̃′0Λ. Using (18), P̃nΛ = ΛPn for all n ≥ 1. This means
π′n = π̃′nΛ, for all n ≥ 1, where πn (.) = Pπ0

(Xn = ·) , π̃n (.) = Pπ̃0

(
X̃n = ·

)
are

the laws at time n of Xn and X̃n. Thus Λ (x̃, x) = P
(
Xn = x | X̃n = x̃

)
, for all

n ≥ 1.

(ii) The last row of Λ is given by Λ (N − 1, x) = πx so that once X̃n hits state
{N − 1}, the law of Xn is π.

(iii) The first row of Λ is (1, 0, ..., 0) so that e′0 = e′0Λ. Thus both chains Xn and
X̃n may consistently start in state {1} . M

So P̃ (as the algebraic composition of the Siegmund dual of P with a Doob-
transform) can be obtained from P through a stochastic link Λ.
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Intertwining and strong stationary time. The intertwining construction shows
that the original positive recurrent birth and death chain Xn with transition matrix
P may also be viewed as the output (through the stochastic link Λ) of a dual
hidden Markov chain X̃n governed by P̃ = ΛPΛ−1 and absorbed in the single
state {N − 1} . This is a setup reminiscent of filtering theory with X̃n the hidden
process and Xn the observable. The peculiarity of the intertwining construction
is that Xn is a Markov output which is itself Markov. We emphasize that there
is so far no clear ‘genetical’ interpretation of the process governed by P̃ . Because
the starting point process governed by P may be viewed as a Markovian output of
the P̃−process, this suggests that the latter process should have a very basic (still
missing) meaning.

What we only get is that once X̃n hits its absorbing state {N − 1}, the random walk
Xn is distributed like π, provided both Xn and X̃n were both started in {1} . This
suggests that, given X0 = X̃0 = 1, the time needed for Xn to enter its invariant
probability measure should be related to the entrance time of the hidden process
X̃n into its absorbing state {N − 1} .

4. Time to reach stationarity for the recurrent Moran model

We shall let

(22) τ̃1,N−1 = inf
(
n : X̃n = N − 1 | X̃0 = 1

)
be the first hitting time of {N − 1} of X̃n, starting from the state {1} . The random
time τ̃1,N−1 gives some information on the speed of convergence of the law of the
original process Xn to its invariant measure. It is a strong stationary time in
the sense of Diaconis and Fill, [7]. The facts (18, 19, 20, 21) indeed guarantee
that τ̃1,N−1 is a strong stationary time of Xn in the sense that Xτ̃1,N−1

d∼ π and
is independent of τ̃1,N−1 (see [7] Theorems 2.4 and 2.17 or [16] Theorem 2.1).
Equivalently (see [1], Prop. 3.2), it holds that:

(23) sep (πn,1,π) ≤ P (τ̃1,N−1 > n) ≤ E (τ̃1,N−1) /n

where πn,1 (·) = P1 (Xn = ·) is the law of Xn started in {1}, π its invariant measure.
In (23), the separation discrepancy is defined by:

sep (πn,1,π) ≡ sup
y

[1− πn (y) /πy] .

It satisfies sep(πn,1,π) ≥ ‖πn,1 − π‖TV where ‖πn,1 − π‖TV = 1
2

∑
y |πn,1 (y)− πy|

is the total variation distance between πn and π.

Furthermore, from (18, 21), there is a unique ‘witness’ state d for Xn, here with
d = N − 1, such that either

P1

(
X̃n = N − 1

)
≡ π̃n,1 (N − 1) = 0 ⇒ πn,1 (d) = 0

or
π̃n,1 (N − 1) > 0 ⇒ πn,1 (d) = π̃n,1 (N − 1)πd > 0,

showing that this random time is stochastically the smallest since the first inequality
in (23) turns out to be an equality (see Remark 2.39 of [7] and Proposition 13 of
[22]).
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In our context of the birth and death chain X̃n absorbed in {N − 1}, the probability
generating function of τ̃1,N−1 ≥ N − 2 is explicitly given by, [24], [16]:

(24) E
(
zτ̃1,N−1

)
=

N−1∏
k=2

(1− tk) z
1− tkz

, z ∈ [0, 1] ,

where 0 < tk < 1, k = 2, ..., N − 1 are the N − 2 distinct eigenvalues of both P̃
and P , avoiding t1 = 1 described in (10). Because the eigenvalues tk are positive,
then τ̃1,N−1

d=
∑N−1

k=2 τk where the τks are independent with τk
d∼ geom(1− tk) ,

the geometric distribution with success parameter 1− tk on the half-line {1, 2, ...} .
The formula (24) also reads

E
(
zτ̃1,N−1

)
=

N−1∑
l=2

Al
z (1− tl)
1− tlz

,

where
Al =

∏
k 6=l

1− tk
tl − tk

.

Therefore

(25) P (τ̃1,N−1 > n) =
N−1∑
l=2

∏
k 6=l

1− tk
tl − tk

tnl , n ≥ N − 1.

Thus, t−n
2 P (τ̃1,N−1 > n) →n↑∞

∏N−1
k=3

1−tk

t2−tk
and τ̃1,N−1 has geometric tails with

exponent t2. We also have:

(26) µN ≡ E (τ̃1,N−1) =
N−1∑
k=2

(1− tk)−1 and

(27) σ2
N ≡ σ2 (τ̃0,N ) =

N−1∑
k=2

tk (1− tk)−2 =
N−1∑
k=2

(1− tk)−2 −
N−1∑
k=2

(1− tk)−1
.

Note that since t2 is the dominant eigenvalue

(28) σ2 (τ̃1,N−1) ≤
E (τ̃1,N−1)

1− t2
.

We can summarize these results (in the spirit of [1], [7] and [16]) as follows:

Proposition 2. The Siegmund dual for the recurrent Moran birth and death chain
Xn exists. There exists a Markov chain X̃n, intertwined with Xn, with {N − 1} as
an absorbing state and fully described in Proposition 1. The random time τ̃1,N−1

is a fastest strong stationary time for Xn whose law is characterized either by (24)
or (25) involving the spectrum (given in (10)), of either P or P̃ , the transition
matrices governing the two processes.

Conditions for a cutoff phenomenon. Because the eigenvalues tk of P are
known explicitly from (10), it is possible to compute µN = E (τ̃1,N−1) and σ2

N =
σ2 (τ̃1,N−1) and decide whether or not

(29) E (τ̃1,N−1) →∞ and σ2

(
τ̃1,N−1

E (τ̃1,N−1)

)
→ 0 as N →∞,
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meaning σN/µN → 0 as N →∞.

Would these conditions both hold, then τ̃1,N−1
E(τ̃1,N−1)

→ 1 in probability and bµN/2c
would be expected to be a cutoff time for Xn started in {1} in the sense ([6]) that:
With nN (x) = b(µN + xσN )c, then∥∥πnN (x),1 − π

∥∥
TV

→
N↑∞

c (x)

where c (x) →x↑∞ 0 and c (x) →x↑−∞ 1. The chain would then exhibit a sharp
cutoff: if n < nN (x) , ‖πn,1 − π‖ would keep close to its maximal value 1, whereas
if n > nN (x) it would suddenly drop to a smaller value.

When there is cutoff, the expected mixing time (measured in terms of sep(πn,1,π))
is µN whereas the spectral gap is 1 − t2, the product of the 2 of which tends
to ∞. Recalling σ2 (τ̃1,N−1) ≤ µN

1−t2
, then σ2 (τ̃1,N−1/µN ) = µ−2

N σ2 (τ̃1,N−1) ≤
1/ ((1− t2)µN ) and the condition

(1− t2)µN →∞

is a sufficient condition for σ2 (τ̃1,N−1/µN ) → 0. If this condition holds, the con-
tribution of

∑N−1
k=3 (1− tk)−1 to µN dominates the lead term (1− t2)

−1 (see [8] for
recent developments and precisions).

For some birth and death models, it may happen that µN → ∞ and σN/µN 9 0
as N →∞. In such cases, there is no cutoff and this is precisely what happens for
the recurrent Moran model under concern.

Computing the mean and variance of τ̃1,N−1 for the recurrent Moran
model. For the case of the recurrent Moran model, using (10): 1− tk = k(k+1)−2

N2−2

and the large N values of µN and σ2
N can be estimated. Using indeed the integral

approximation

µN ∼ (N − 2)
(
N2 − 2

) ∫ 1

0

dx

(2 + x (N − 2)) (3 + x (N − 2))− 2

(where we used the change of variables k−2
N−2 = x and µN ∼ αN ⇔ µN/αN → 1 as

N →∞), with c1 ≡ 2 log 2
3 , we easily get

µN ∼ N

∫ 1

0

dx

(x+ 1/N) (x+ 4/N)
= c1N

2.

In this situation, the contribution of
∑N−1

k=3 (1− tk)−1 to µN contribute equally
likely with the lead term (1− t2)

−1
. Note also that for this model, (1− t2)µN ∼

4c1 9 ∞ as N →∞ suggesting that there is no cutoff.

Using similar techniques indeed, with c2 ≡ 5
36 + 4 log 2

27 , we get

σ2
N ∼ N

∫ 1

0

dx

(x+ 1/N)2 (x+ 4/N)2
∼ c2N

4

showing that σ2
(

τ̃1,N−1
E(τ̃1,N−1)

)
∼ c2

c2
1

9 0 as N →∞.

Thus τ̃1,N−1
E(τ̃1,N−1)

9 1 in probability and there is no cutoff phenomenon. In fact, in
the recurrent Moran case, we have
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Proposition 3.
τ̃1,N−1

E (τ̃1,N−1)
d→ T as N →∞

where the limit T is random with

T
d=
∑
l≥1

1
l (l + 3)

El (c1)

where the El (c1) are independent and identically distributed (iid) random variables,
with common distribution P (E1 (c1) > x) = e−c1x.

Proof: Indeed, from the large N approximation tk/ (1− tk) ∼ N2

k(k+1)−2 and mak-
ing use of (24), for all t ∈ R, we get

E
(
e
it

τ̃1,N−1
µN

)
= e

it N−2
µN

N−1∏
k=2

(1− tk) e
it

µN

1− tke
it

µN

∼ e
it

c1N

N−1∏
k=2

1
1− tk

1−tk

it
c1N2

∼
N−2∏
l=1

1
1− it

c1l(l+3)

→ Φ (t) ,

where Φ (t) =
∏∞

l=1
1

1− i(t/c1)
l(l+3)

. Φ (t) is the characteristic function of the random

variable

T =
∑
l≥1

1
l (l + 3)

El (c1) ,

where the El (c1) are iid random variables, with common distribution P (E1 (c1) > x) =
e−c1x. The limiting T is thus a weighted sum of iid exponentially-distributed ran-
dom variables with quadratic weights. Such random variables are known to have
all their integral moments finite (see [3]). For instance

E (T ) =
1
c1

∑
l≥1

1
l (l + 3)

=
1

3c1

∑
l≥1

1
l
−
∑
l≥4

1
l

 =
11

18c1
. M

We conclude from (23) that as N is large

sep (πn,1,π) = P (τ̃1,N−1 > n) ∼ FT

(
n

c1N2

)
where FT (x) = P (T > x) is the complementary probability distribution of T > 0.
This shows that, for the recurrent neutral Moran model, the transition to station-
arity occurs gradually after about c1N2 steps. There is no abrupt entrance of this
particular chain into the invariant measure (no cutoff phenomenon).

A plausible scaling limit. Let Yn = Xn− 1 be a shifted version of the recurrent
model with state-space {0, ..., N − 2} . First, we observe that Yn is a Moran model
with mutations (see [14] p. 107). Indeed, from (6, 8), the transition probabilities of
Yn read: py = θ−1

2
y+2
N

(
1− y+2

N

)
, qy = θ−1

2
y
N

(
1− y

N

)
, ry = 1−(py + qy) . Recalling

θ2 = 1− 2
N2−2 , these may be recast as

py =
(

1− y

N − 2

)
π

(
y

N − 2

)
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qy =
y

N − 2

(
1− π

(
y

N − 2

))
ry =

y

N − 2
π

(
y

N − 2

)
+
(

1− y

N − 2

)(
1− π

(
y

N − 2

))
,

where
π (u) = µ1 (1− u) + (1− µ2)u

is an affine mutation mapping from [0, 1] to [0, 1] , with mutation probabilities from
type 2 to 1 and from type 1 to 2

µ1 =
2 (N − 2)
N2 − 2

∼ 2
N

and µ2 =
2 (N − 1)
N2 − 2

∼ 2
N
.

Let now ∆ > 0 be a small constant. Let t = n∆ be a discretization of time and
consider the scaled process Ut = Yn∆/ (N − 2) ∈ [0, 1] . Given Ut = u, assume

Ut+∆ = u± 1
N

with probability ∆ · p(N−2)u (respectively ∆ · q(N−2)u)

= u with probability 1−∆ · r(N−2)u.

Then Eu (Ut+∆ − u) = ∆
N−2

(
p(N−2)u − q(N−2)u

)
= ∆

N−2 (π (u)− u), with π (u) −
u ∼ 1

N (2− 4u) for large N. Thus

1
∆

Eu (Ut+∆ − u) ∼ 1
N2

(2− 4u) .

Similarly, Eu

[
(Ut+∆ − u)2

]
= ∆

(N−2)2

(
1− r(N−2)u

)
leading to the dominant order

in N to
1
∆

Eu

[
(Ut+∆ − u)2

]
∼ 2
N2

u (1− u) .

Following ([28], Chapter 2), this shows (by passing to the limit in ∆), that Ut ∈ [0, 1]
obeys the Wright-Fisher-like diffusion approximation equation driven by Brownian
motion (Bt)

dUt =
2
N2

(1− 2Ut) dt+
1
N

√
2Ut (1− Ut)dBt.

Performing the time substitution τ = N−2t and defining Vτ = UN2τ , Vτ obeys the
diffusion equation

dVτ = 2 (1− 2Vτ ) dτ +
√

2Vτ (1− Vτ )dBτ

with a unit time τ corresponding to N2 generations in the discrete model. The
above considerations on the time to reach stationarity of Xn suggests that Vτ enters
gradually into its invariant measure (which is 6v (1− v) dv) by time O (1) .

5. Other transition times for the recurrent Moran model

Consider the ergodic Moran birth and death Markov chain Xn on the state-space
{1, .., N − 1} . It is well-known that the mean return time to state {1} is E (τ1,1) =
1

π1
. Thus, using (9)

E (τ1,1) ∼
N2

6
as N →∞.

We wish now to estimate the time it takes for Xn to move from one end of the
state-space to the other, that is from state {1} to {N − 1} . Let τ1,N−1 be this
random time. We shall prove the following estimation of its mean value:



14 THIERRY HUILLET

Proposition 4.

E (τ1,N−1) ∼
N3

6
as N →∞.

Proof: Let indeed τx,x+1 be the random time to first hit the state {x+ 1} starting
from the state {x} . Depending on whether the move starting in x is up, down or
no move, τx,x+1 is either 1 or 1 + τ

′

x,x+1 (with τ
′

x,x+1 a statistical copy of τx,x+1)
or 1 + τx−1,x + τ

′

x,x+1. If we let µx be the mean value of τx,x+1, we thus get
µx = px + rx (1 + µx) + qx

(
1 + µx−1 + µx

)
, x ≥ 2. This leads to the recurrence

(µ1 = 1/p1):

µx =
qx
px
µx−1 +

1
px
, x ≥ 2.

This recurrence can be solved to give

µx =
1

pxπx

x∑
y=1

πy.

Thus

E (τ1,N−1) =
N−2∑
x=1

µx =
N−2∑
x=1

1
pxπx

x∑
y=1

πy.

Looking at this sum formula, one expects that its leading term is 1
pN−2πN−2

∑N−2
y=1 πy

because this is where
∑x

y=1 πy is the largest and πx the smallest. Looking at the
expressions of px and πx at x = N −2 in (6, 9), this crude estimation would lead to
E (τ1,N−1) ∼ N3/12 but this is not quite true because the other terms contribute
equally likely.

In fact, the computations can be done explicitly. From (9), we have

x∑
y=1

πy =
x (x+ 1) (3N − (2x+ 1))

N (N − 1) (N + 1)

and so

E (τ1,N−1) =
θ2N

2

6

N−2∑
x=1

3N − (2x+ 1)
(N − x) (N − x− 1)

=
θ2N

2

6

N−2∑
y=1

N + 1 + 2y
y (y + 1)

=
θ2N

2

6

(
N−2∑
y=1

N + 1
y

−
N−2∑
y=1

N − 1
y + 1

)

=
θ2N

2

6
[(N + 1)HN−2 − (N − 1) (HN−1 − 1)]

where HN is the N−harmonic number. Thus

E (τ1,N−1) =
θ2N

2

6

[
2HN−1 −

N + 1
N − 1

+N − 1
]

∼ N3

6
as N →∞. M
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