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POPULATION GENETICS MODELS WITH SKEWED
FERTILITIES: A FORWARD AND BACKWARD ANALYSIS

THIERRY HUILLET, MARTIN MÖHLE

Abstract. Discrete population genetics models with unequal fertilities are
considered, with an emphasis on skewed Cannings models, skewed conditional
branching process models in the spirit of Karlin and McGregor, and skewed
compound Poisson models. Three particular classes of models with skewed fer-
tilities are investigated, the skewed Wright-Fisher model, the skewed Dirichlet
model, and the skewed Kimura model. For each class the asymptotic behavior
as the total population size N tends to infinity is investigated for power law
fertilities and for geometric fertilities. This class of models can exhibit a rich
variety of sub-linear or even constant effective population sizes. Therefore, the
models are not even necessarily in the domain of attraction of the Kingman
coalescent. For a substantial range of the parameters, discrete-time coalescent
processes with simultaneous multiple collisions arise in the limit.

Running title: Population genetics models with skewed fertilities.
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1. Introduction

The well-known neutral discrete Wright-Fisher model describes the evolution of a
population of constant size N from generation to generation forwards in time. One
of the main features of this model (and similar models such as the discrete Moran
model) is that each individual has the same propensity to produce offspring.

In this paper discrete population models are studied, in which individuals may have
unequal propensities to reproduce. We shall speak of models with skewed fertilities.
These models turn out to be of interest mainly because of the following two reasons.
First of all, it turns out that the effective population size Ne of these models may
differ significantly from the actual total population size N and may not even depend
linearly on N . The fact that models with this behavior may have importance for
biological applications, is for example indicated in papers of Eldon and Wakeley
[7] and Wakeley and Sargsyan [30]. Models with effective population sizes smaller
than N occur also in a different context of age-structure of populations in a paper
of Sagitov and Jagers [26]. Secondly, in the limit as the total population size N
tends to infinity, these models are not necessarily in the domain of attraction (see
Definition 2.3) of the Kingman coalescent. The limiting coalescent processes may
have simultaneous multiple collisions of ancestral lineages. Ancestral processes of
this form are a major research area in coalescent theory and have been studied
intensively over the last twenty years (see, for example, [21] or [27]).
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The models we are mainly interested in are obtained by conditioning a sequence
ξ1, ξ2, . . . of independent random variables on the event that ξ1 + · · · + ξN = N ,
with the interpretation that the outcome of ξn, under the constraint that ξ1 +
· · · + ξN = N , is the number of children of the nth individual, n ∈ {1, . . . , N}.
Since the random variables ξ1, ξ2, . . . are not necessarily assumed to be identically
distributed, this construction results in unequal propensities of the individuals to
produce offspring. In the spirit of Karlin and McGregor [11] we call this model the
skewed conditional branching process model.

Schweinsberg [28] studies models, in which N individuals are sampled from SN :=
X1 + · · ·+ XN offspring, where X1, . . . , XN are given i.i.d. random variables. The
effective population sizes of these models satisfy Ne = O(N) (see [28, Eq. (18)]),
and, in particular, Ne can exhibit a rich variety of sub-linear behavior, however,
these models are different from our models, which are based on conditioning instead
of sampling.

The paper is organized as follows. In Section 2 a skewed Cannings model is in-
troduced and analyzed. The analysis of this model essentially boils down to a
comparison with an associated standard exchangeable Cannings model [4, 5]. Sec-
tion 2 therefore heavily gains from the theory on Cannings models. The results
of Section 2 are applied in Section 3 to the skewed conditional branching process
model. Since this huge class of conditional models has in general a quite com-
plicated probabilistic structure, we further specialize in Section 4 to a subclass of
skewed compound Poisson models. Exact formulae for the transition probabilities
of the forward and the backward process are derived. It is furthermore shown (The-
orem 4.3) that, in the unbiased (non-skewed) case, the model is in the domain of
attraction (see Definition 2.3) of the Kingman coalescent. In all cases we obtain
exact and asymptotic formulae for the effective population size Ne, which can devi-
ate substantially from the total population size N . The following Sections 5 and 6
are devoted to two particular compound Poisson models, the skewed Wright-Fisher
model and the skewed Dirichlet model. In both models the effective population size
Ne is less than or equal to the total population size N , and, depending on the pa-
rameter choices, can indeed be substantially smaller than N , for example Ne ∼ ρN
with ρ ∈ (0, 1), Ne = O(Nβ) with β ∈ (0, 1), Ne = O(log N), or even Ne = O(1).
These two models are in particular analyzed for power law skewed fertilities and
for geometrically skewed fertilities. It turns out that for a wide range of parameter
choices, these models are not anymore in the domain of attraction of the Kingman
coalescent. Coalescents allowing for simultaneous multiple collisions arise in the
limit as the total population size tends to infinity. The paper finishes in Section
7 with an analog analysis of the skewed Kimura model, a model which does not
belong to the compound Poisson class, but nevertheless exhibits similarities with
the previously studied models.

Throughout the paper the notation N := {1, 2, . . .}, N0 := {0, 1, 2, . . .}, and [N ] :=
{1, . . . , N}, N ∈ N, is used. We furthermore use, for fixed N ∈ N, the symbol
S := {0, . . . , N} for the state space of several discrete processes considered in this
paper. Moreover, for k ∈ N0 and x ∈ R, (x)k := x(x − 1) · · · (x − k + 1) and
[x]k := x(x + 1) · · · (x + k − 1) denote the descending and ascending factorials
respectively, with the convention that (x)0 = [x]0 = 1.
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2. Skewed Cannings models

Consider a population with constant population size N ∈ N evolving in discrete
non-overlapping generations t ∈ N0. The nth individual, n ∈ [N ], of the tth
generation gives birth to a random number µn(t) of children. Since the population
is assumed to have constant population size N , for each fixed generation t ∈ N,
the random vector µ(t) := (µ1(t), . . . , µN (t)) must take values in the discrete N -
simplex ∆(N) consisting of all k = (k1, . . . , kN ) ∈ NN

0 satisfying k1 + · · ·+kN = N .
Note that the random variable µn(t) = µn,N (t) is allowed to depend on the total
population size N . However, for simplicity, this dependence on N is usually not
indicated throughout the paper. It is assumed that the model is time-homogeneous
in the sense that the random vectors µ(0), µ(1), . . . are independent and identically
distributed. We write µn := µn(0), n ∈ [N ], and µ := µ(0) for convenience. Note
that the model is in principle defined in the same way as an exchangeable Cannings
model [4, 5]. The only generalization is that, for each fixed generation t ∈ N0, the
offspring variables µ1(t), . . . , µN (t) are not necessarily assumed to be exchangeable.
To the best of our knowledge [17] is the only reference dealing with reproduction
models of this form even in the time-inhomogeneous context in which the total
population size is not necessarily constant equal to N . Particular examples, such
as the skewed Wright-Fisher model, which is studied in Section 5 in more detail,
have been the source of recurrent interest in the literature (see, for example, [3] and
[16]). A main tool exploited in this section is the following shuffling procedure. For
each fixed generation t ∈ N0 let ν(t) = (ν1(t), . . . , νN (t)) be a random permutation
(shuffling) of µ(t) = (µ1(t), . . . , µN (t)). Then ν(t) is exchangeable with distribution

(1) P(ν(t) = k) =
1

N !

∑
π

P(πµ(t) = k), k ∈ ∆(N),

where πµ(t) := (µπ1(t), . . . , µπN (t)) and the sum extends over all permutations π
of [N ]. We interpret νn(t) as the number of offspring of the nth individual of the
tth generation in an exchangeable Cannings model [4, 5]. As we will see soon, this
exchangeable Cannings population model will turn out to be very helpful to analyze
the original skewed Cannings model. Again we write νn := νn(0), n ∈ [N ], and
ν := ν(0) for convenience.

Take a sample of n ∈ S individuals of generation 0 and, for t ∈ N0, let Xt denote
the number of descendants of these n individuals in generation t. The process
X := (Xt)t∈N0 is called the forward process.

Lemma 2.1. (forward structure) Fix N ∈ N. The forward process X =
(Xt)t∈N0 is a time-homogeneous Markov chain with state space S and initial state
X0 = n. The transition probabilities Pi,j := P(Xt+1 = j |Xt = i), i, j ∈ S, do not
depend on the initial state n and are given by

(2) Pi,j =
1(
N
i

)
∑

1≤n1<···<ni≤N

P
( i∑

k=1

µnk
= j

)
, i, j ∈ S.

The states 0 and N are absorbing. Moreover, X is a bounded martingale and,
hence, Xt converges almost surely as t →∞ to a limiting random variable X∞. If
P(µk = 1) < 1 for some k ∈ {1, . . . , N}, then X∞ takes the two values 0 and N
with probability P(X∞ = 0) = 1− n/N and P(X∞ = N) = n/N respectively.
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Proof. Fix i, j ∈ S. The transition probability Pi,j must coincide with the corre-
sponding transition probability of the associated exchangeable Cannings model with
offspring distributions (1), since in the considered skewed model all assignments of
offspring to parents are assumed to be equally likely. From the literature on ex-
changeable models (Cannings [4, p. 267]), it follows that Pi,j = P(ν1+· · ·+νi = j) =∑

k P(ν = k), where the sum extends over all k ∈ ∆(N) satisfying k1 + · · ·+ki = j.
Plugging in (1) and interchanging the two sums involved yields

Pi,j =
1

N !

∑
π

∑

k

P(πµ = k) =
1

N !

∑
π

P(µπ1 + · · ·+ µπi = j).

Introducing n1 := π1, . . . , ni := πi, and noting that there exist exactly (N − i)!
permutations π leaving π1, . . . , πi fixed, it follows that

Pi,j =
(N − i)!

N !

N∑
n1,...,ni=1
all distinct

P
( i∑

k=1

µnk
= j

)
=

1(
N
i

)
∑

1≤n1<···<ni≤N

P
( i∑

k=1

µnk
= j

)
.

The chain X is a martingale, since E(Xt+1 |Xt = i) =
∑

j∈S jPi,j =
∑

j∈S jP(ν1 +
· · · + νi = j) = E(ν1 + · · · + νi) = i, i ∈ S. Since X is bounded (0 ≤ Xt ≤ N for
all t ∈ N0), Xt converges almost surely to some random variable X∞ as t → ∞,
and (Xt)t∈N0∪{∞} is still a martingale. For the rest of the proof see, for example,
Section 2.1 in [18]. ¤

Remarks. 1. One may rewrite (2) in condensed form as

Pi,j =
1(
N
i

)
∑

M

P
( ∑

m∈M

µm = j

)
, i, j ∈ S,

where the sum
∑

M extends over all subsets M of [N ] satisfying |M | = i.

2. The associated shuffled Cannings model with exchangeable offspring variables
ν1, . . . , νN introduced in the proof of Lemma 2.1 is useful in many respects. For
instance, in terms of the so-called coalescence probability (see, for example, [19])

(3) cN :=
E((ν1)2)
N − 1

=
Var(ν1)
N − 1

= 1− E(ν1ν2) = −Cov(ν1, ν2),

the variance of Xt+1, given Xt = i, can be expressed as

Var(X2
t+1 |Xt = i) = Var((ν1 + · · ·+ νi)2)

= iVar(ν1) + i(i− 1)Cov(ν1, ν2)
= i(N − 1)cN − i(i− 1)cN = i(N − i)cN .

Defining the heterozygosity of the population at generation t as 2(Xt/N)(1−Xt/N),
we have

2E
(

Xt

N

(
1− Xt

N

)∣∣∣∣X0 = i

)
= 2(1− cN )t i

N

(
1− i

N

)
, t ∈ N0, i ∈ S,

showing that, if cN > 0, the mean heterozygosity tends to 0 exponentially fast as
t →∞. We will soon provide further information on cN when the model is studied
backwards in time.

3. Suppose that P(µk = 1) < 1 for some k ∈ {1, . . . , N}. For j ∈ S let τn,j denote
the first time the process X hits the state j given that it starts in X0 = n. The
first time X hits the boundaries 0 or N , which is τn := min(τn,0, τn,N ), is finite
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with probability 1. Let qn,N := P(τn,0 < τn,N ) denote the extinction probability.
The previous Lemma shows that qn,N = P(τn,0 < τn,N ) = P(X∞ = 0) = 1− n/N ,
n ∈ {0, . . . , N}.
Instead of looking forwards in time let us now look backwards in time and count,
starting with all N individuals from some generation t0 ∈ N0, the number of an-
cestors of these N individuals t ∈ {0, . . . , t0} generations backward in time. More
precisely, let X̂t denote the number of ancestors of the N individuals of generation
t0 in generation t0 − t. The process X̂ := (X̂t)t∈{0,...,t0} is called the backward
process.

Lemma 2.2. (backward structure) The backward process X̂ = (X̂t)t∈{0,...,t0}
is a time-homogeneous Markov chain with state space S and initial state N . The
transition probabilities P̂i,j := P(X̂t+1 = j | X̂t = i), i, j ∈ S, are given by

(4) P̂i,j =
1(
N
i

)
∑

1≤n1<···<nj≤N

∑

l1,...,lj∈N
l1+···+lj=i

E
( j∏

k=1

(
µnk

lk

))
, i, j ∈ S,

with the convention that P̂i,0 = δi0 (Kronecker symbol). The states 0 and 1 are
absorbing.

Proof. As in the proof of Lemma 2.1 we make use of the associated exchange-
able Cannings model. The backward transition probability P̂i,j coincides with the
analog backward transition probability of the associated Cannings model with ex-
changeable offspring vector ν having distribution (1). Therefore, from the literature
on exchangeable models (Cannings [4, Theorem 11], Gladstien [9, Examples]), it
follows that

P̂i,j =

(
N
j

)
(
N
i

)
∑

l1,...,lj∈N
l1+···+lj=i

E
( j∏

k=1

(
νk

lk

))
, i, j ∈ S,

with the convention that P̂i,0 = δi0. Using (1), a similar argument as given in the
proof of Lemma 2.1 for Pi,j shows that P̂i,j can be expressed in terms of the original
offspring vector µ via (4). ¤

Remark. (eigenvalues, duality) The stochastic matrix P̂ = (P̂i,j)i,j∈S is lower
left triangular and has hence eigenvalues λi := P̂i,i, i ∈ S. From Lemma 2.2 it
follows that λ0 = 1 and that

λi = P̂i,i =
1(
N
i

)
∑

1≤n1<···<ni≤N

E(µn1 · · ·µni), i ∈ {1, . . . , N}.

Note that λ1 = 1 and that λ2 = ((N)2)−1
∑

1≤n1<n2≤N E(µn1µn2) = E(ν1ν2) =
1−cN . Since the forward and backward transition matrices P = (Pi,j)i,j∈S and P̂ =
(P̂i,j)i,j∈S coincide with those of the associated Cannings model with exchangeable
offspring vector ν, it is allowed to apply results on exchangeable Cannings models,
in particular duality results such as the duality relation PH = HP̂ ′, where H =
(Hij)i,j∈S is (see, for example, [18]) the matrix with entries Hij =

(
i
j

)
/
(
N
j

)
, i, j ∈ S.
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Since H is non-singular, P has the same eigenvalues as P̂ . In particular, cN = 1−λ2

is the spectral gap of P and P̂ .

The random variable X̂t counts the number of ancestors in generation t0 − t, but
it gives no information about whether two individuals i and j, randomly picked
from generation t0, share a common parent in generation t0− t. In order to encode
this information, a more enriched ancestral process has to be considered, which
is now described. Take a random sample of n ∈ [N ] individuals from generation
t0 ∈ N0 and, for t ∈ {0, . . . , t0}, define a random relation Rt on {1, . . . , n} by
saying that (i, j) ∈ Rt if and only if the individuals i and j have a common parent
in generation t0 − t. Note that Rt = (N)R(n)

t depends on the sample size n and
on the total population size N . The process (Rt)t∈{0,...,t0} is called the ancestral
process or a discrete coalescent process. It is well known (see, for example, [17])
that (Rt)t∈{0,...,t0} is a Markov chain with state space En, the set of equivalence
relations (partitions) on {1, . . . , n}, and transition probabilities

(5) P(Rt+1 = η |Rt = ξ) = Φj(l1, . . . , lj), ξ, η ∈ En, ξ ⊆ η,

where

(6) Φj(l1, . . . , lj) :=
1

(N)l1+···+lj

N∑
n1,...,nj=1
all distinct

E((µn1)l1 · · · (µnj )lj ).

Here j := |η| denotes the number of equivalence classes (blocks) of η and l1, . . . , lj ∈
N are the group sizes of merging classes of ξ. Note that l1 + · · ·+ lj is the number
of classes (blocks) of ξ. Comparing (6) with (4) shows that

(7) P̂i,j =
i!
j!

∑

l1,...,lj∈N
l1+···+lj=i

Φj(l1, . . . , lj)
l1! · · · lj ! , i, j ∈ {1, . . . , N}.

For j = 1, (4) and (7) reduce to

P̂i,1 = Φ1(i) =
1

(N)i

N∑
n=1

E((µn)i), i ∈ {1, . . . , N}.

The so-called coalescence probability cN , i.e. the probability that two individuals,
randomly chosen from some generation, have a common parent, is hence

cN := P̂2,1 = Φ1(2) =
1

(N)2

N∑
n=1

E((µn)2),

in agreement with (3), and the effective population size is Ne := 1/cN . We will
later also make use of the probability that three individuals, randomly chosen from
some generation, share a common parent, which is given by

dN := P̂3,1 = Φ1(3) =
1

(N)3

N∑
n=1

E((µn)3).

The transition probabilities (5) do not depend on t and t0. It is hence allowed to
choose t0 arbitrary large. We can therefore think of a process (Rt)t∈N0 with transi-
tion probabilities (5) and time t ∈ N0. It is well known (see [21]) that, if dN/cN → 0,
then, for each sample size n ∈ N, the time-scaled process (R(n)

[t/cN ])t∈[0,∞) converges
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weakly to Kingman’s n-coalescent (R(n)
t )t∈[0,∞) as the total population size N tends

to infinity. In [21] there is also a criterion in terms of the quantities (6) provided
ensuring that, for each n ∈ N, the time-scaled process (R(n)

[t/cN ])t∈[0,∞) converges
weakly as N → ∞ to a more general process (%nRt)t∈[0,∞), where %n denotes the
restriction from E , the set of all equivalence relations on N, to En, and R = (Rt)t≥0

is a continuous-time coalescent process allowing for simultaneous multiple colli-
sions of ancestral lineages. This asymptotic behavior can only occur if cN → 0.
If, instead, cN converges to a positive constant, then, a similar criterion for the
quantities (6), also provided in [21], ensures that, for each sample size n ∈ N,
the process (R(n)

t )t∈N0 (without any time-scaling involved) converges weakly to a
discrete-time process (%nRt)t∈N0 , where (Rt)t∈[0,∞) is a discrete-time coalescent
allowing for simultaneous multiple collisions of ancestral lineages.

Definition 2.3. a) Let R = (Rt)t∈[0,∞) be a continuous-time coalescent with simul-
taneous multiple collisions. We say that the considered population model is in the
domain of attraction of R, if, for each sample size n ∈ N, the time-scaled ancestral
process (R(n)

[t/cN ])t∈[0,∞) converges weakly to (%nRt)t∈[0,∞) as N →∞.

b) Let R = (Rt)t∈N0 be a discrete-time coalescent with simultaneous multiple colli-
sions. We say that the considered population model is in the domain of attraction
of R, if, for each sample size n ∈ N, the ancestral process (R(n)

t )t∈N0 converges
weakly to (%nRt)t∈N0 as N →∞.

In both cases we call the coalescent R the attractor of the considered population
model.

Example 2.4. (extended Moran model) Let U be a random variable taking
values in {0, . . . , N} and define the offspring vector µ = (µ1, . . . , µN ) via µn := 1
for n ∈ {1, . . . , N − U}, µn := 0 for n ∈ {N − U + 1, . . . , N − 1}, and µN := U .
The associated shuffled exchangeable Cannings model was considered by Eldon and
Wakeley [7]. For U ≡ 0, we obtain the trivial model in which each individual has
exactly one offspring (µn = 1 for all n ∈ [N ]). For U ≡ N we obtain a simple
model for which the Nth individual is the parent of all the N children of the next
generation (µN = N). From (2), it follows that the forward chain X has transition
probabilities

Pi,j

=
1(
N
i

)
( ∑

1≤n1<···<ni<N

P(
i∑

k=1

µnk
= j) +

∑

1≤n1<···<ni=N

P(
i−1∑

k=1

µnk
= j − U)

)

=
1(
N
i

)E
((

N − U

j

)(
U − 1
i− j

)
+

(
N − U

j − U

)(
U − 1

(i− 1)− (j − U)

))

=





1(
N
i

)E
((

N − U

j

)(
U − 1
i− j

))
if j < i,

1(
N
i

)E
((

N − U

j

)
+

(
N − U

N − j

))
= E

(
(i)U + (N − i)U

(N)U

)
if j = i,

1(
N
i

)E
((

N − U

N − j

)(
U − 1
j − i

))
if j > i.
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For U ≡ 2 this model reduces to the standard skewed Moran model with forward
transition probabilities Pi,i−1 = i(N−i)/(N(N−1)), i ∈ {1, . . . , N}, Pi,i+1 = i(N−
i)/(N(N −1)), i ∈ {0, . . . , N −1}, Pi,i = 1−2i(N − i)/(N(N −1)), i ∈ {0, . . . , N},
and Pi,j = 0 otherwise. From (4), it follows similarly that, for i, j ∈ {1, . . . , N},

P̂i,j =





E
((

N−U
j−1

)(
U

i−j+1

))
(
N
i

) if j < i,

E
((

N−U
i

)
+ U

(
N−U
i−1

))
(
N
i

) if j = i,

0 if j > i.

Note that P̂i,1 = E((U)i)/(N)i, i ∈ {2, . . . , N}. In particular, the coalescence
probability is cN = P̂2,1 = E(U(U−1))/(N(N−1)), in agreement with [7, Equation
(2)]. For example, if U is binomially distributed with parameters N and p ∈ [0, 1],
then cN = p2. Note that p = pN may depend on N , so this model can have a wide
variety of effective population sizes Ne = 1/p2

N . For instance, if pN = N−α, α > 0,
then Ne = N2α is sub-linear for α < 1/2 and super-linear for α > 1/2. If pN = λN ,
λ < 1, then Ne = λ−2N grows exponentially. We will come back to this extended
Moran model in the following section.

In the following section we will introduce a skewed conditional branching process
model, which can be viewed as a particular skewed Cannings model. We will later
identify the attractor R of several concrete such population models.

3. Skewed conditional branching process models

Let ξ1, ξ2, . . . be independent non-negative integer valued random variables and let
fn denote the probability generating function (pgf) of ξn, n ∈ N. For any pgf g
and l ∈ N0 we use the standard notation gl for the lth power of g (g0 = 1) and the
notation g(l) for the lth derivative of g. Moreover, [xl]g(x) denotes the coefficient
in front of xl in the Taylor expansion of g around zero. For N ∈ N assume that
P(ξ1 + · · · + ξN = N) > 0 and let µ = (µ1, . . . , µN ) be a random vector with
distribution

P(µ = k) :=
P(ξ1 = k1) · · ·P (ξN = kN )
P(ξ1 + · · ·+ ξN = N)

=
[xk1 ]f1(x) · · · [xkN ]fN (x)

[xN ](f1 · · · fN )(x)
,

k = (k1, . . . , kN ) ∈ ∆(N). The distribution of µ is hence that of (ξ1, . . . , ξN )
conditioned on the event that ξ1 + · · · + ξN = N . Note that, for n ∈ [N ], the
marginal variable µn has distribution

P(µn = k) =
P(ξn = k)P(

∑
m∈[N ]\{n} ξm = N − k)

P(ξ1 + · · ·+ ξN = N)

=
([xk]fn(x))([xN−k](

∏
m∈[N ]\{n} fm(x)))

[xN ](f1 · · · fN )(x)
, k ∈ {0, . . . , N}.

For each n ∈ [N ] one may interpret µn as the number of offspring of individual n
in a population with non-overlapping generations of constant population size N .
Note that µ has pgf

(8) E(zµ1
1 · · · zµN

N ) =
[xN ](f1(xz1) · · · fN (xzN ))

[xN ](f1 · · · fN )(x)
, |z1|, . . . , |zN | ≤ 1.
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Let l1, . . . , lN ∈ N0 and put l := l1 + · · · + lN . Applying the ‘derivative operator’
(∂l1/∂l1z1) · · · (∂lN /∂lN zN ) to the left-hand side and the right-hand side of (8), and
noting that it is allowed to interchange this derivative operator with the ‘coefficient
operator’ [xN ] in the numerator on the right-hand side of (8), it follows that

E((µ1)l1z
µ1−l1
1 · · · (µN )lN zµN−lN

N ) =
[xN−l](

∏N
i=1 f

(li)
i (xzi))

[xN ](f1 · · · fN )(x)
.

Taking the limit z1 ↗ 1, . . . , zN ↗ 1 shows that µ has descending factorial moments

(9) E((µ1)l1 · · · (µN )lN ) =
[xN−l](

∏N
i=1 f

(li)
i (x))

[xN ](f1 · · · fN )(x)
, l1, . . . , lN ∈ N0.

If the random variables ξ1, ξ2, . . . are identically distributed, then the model reduces
to the conditional branching process model first introduced by Moran and Watter-
son [23] and further investigated for example by Karlin and McGregor [11]. In this
case, for each fixed N ∈ N, the random variables µ1, . . . , µN are exchangeable. Note
however, that in general it is not assumed here that the random variables ξ1, ξ2, . . .
are identically distributed. In this sense the model is a bit more general than the
conditional branching process model of [23]. Particular classes and examples of the
model, which to the best of our knowledge are new or only briefly mentioned in
the literature, are introduced and analyzed in the following sections, among them
the skewed Wright-Fisher model (Section 5), the skewed Dirichlet model (Section
6), and the skewed Kimura model (Section 7). One may think that, at least for
fixed N , the model can be reduced to a simpler model by randomly permutating
the random variables ξ1, . . . , ξN . However, this is not the case. If η1, . . . , ηN de-
notes a random permutation of ξ1, . . . , ξN , then the random variables η1, . . . , ηN are
identically distributed but in general not independent (not even uncorrelated) any-
more. In this sense the model is indeed more general than the conditional branching
process model of Karlin and McGregor.

On the other hand, for arbitrary but fixed N ∈ N, the model is well known from
the literature in the following sense. Fix N ∈ N and let ν = (ν1, . . . , νN ) be a
random permutation of µ = (µ1, . . . , µN ). As explained in Section 2, the model can
be interpreted as an exchangeable Cannings model with population size N and off-
spring vector ν. Therefore, essentially all results known for exchangeable Cannings
models apply to our model, which simplifies our further analysis significantly. For
example, as explained in Section 2, the transition matrix of the forward process has
entries (2). Noting that, for any subset M of [N ],

P(
∑

m∈M

µm = j) =
P(

∑
m∈M ξm = j)P(

∑
m∈[N ]\M ξm = N − j)

P(ξ1 + · · ·+ ξN = N)

=
([xj ](

∏
m∈M fm)(x))([xN−j ](

∏
m∈[N ]\M fm)(x))

[xN ](f1 · · · fN )(x)
,

it follows that the forward transition matrix P = (Pi,j)i,j∈S has entries

(10) Pi,j =
1(
N
i

)
∑

M

([xj ](
∏

m∈M fm)(x)) ([xN−j ](
∏

m∈[N ]\M fm)(x))

[xN ](f1 · · · fN )(x)
, i, j ∈ S,

where the sum
∑

M extends over all subsets M of [N ] satisfying |M | = i. We
now turn to the backward chain. From (4) and (9), it follows that the backward
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transition probabilities are of the form

P̂i,j =
1(
N
i

)
∑

1≤n1<···<nj≤N

∑

l1,...,lj∈N
l1+···+lj=i

[xN−i](f (l1)
n1 (x) · · · f (lj)

nj (x)
∏

m∈[N ]\{n1,...,nj} fm(x))

l1! · · · lj ! [xN ](f1 · · · fN )(x)
, i, j ∈ S,(11)

with the convention that P̂i,0 = δi0, i ∈ S. In particular,

P̂i,1 = Φ1(i) =
1

(N)i

N∑
n=1

[xN−i](f (i)
n (x)

∏
m∈[N ]\{n} fm(x))

[xN ](f1 · · · fN )(x)
, i ∈ S,

and the coalescence probability is given by

cN = P̂2,1 =
1

(N)2

N∑
n=1

[xN−2](f ′′n (x)
∏

m∈[N ]\{n} fm(x))

[xN ](f1 · · · fN )(x)
.

Moreover, the eigenvalues λi := P̂i,i = Φi(1, . . . , 1), i ∈ S, of the matrix P̂ are given
by λ0 = 1 and

λi =
1(
N
i

)
∑

1≤n1<···<ni≤N

[xN−i](f ′n1
(x) · · · f ′ni

(x)
∏

m∈[N ]\{n1,...,ni} fm(x))

[xN ](f1 · · · fN )(x)

for i ∈ {1, . . . , N}.
Remark. One may write P̂i,j in the form

P̂i,j =
1(
N
i

) 1
[xN ](f1 · · · fN )(x)

∑

1≤n1<···<nj≤N

[xN−i](Sfn1 ,...,fnj
,x(i, j)

∏

m∈[N ]\{n1,...,nj}
fm(x)),

where (see, for example, [20, Eq. (18)])

Sg1,...,gj ,x(i, j) :=
i!
j!

∑

l1,...,lj∈N
l1+···+lj=i

g
(l1)
1 (x)
l1!

· · · g
(lj)
j (x)
lj !

are some sort of generalized Stirling numbers of the second kind, with the convention
that, for j = 0, Sg1,...,gj ,x(i, j) = δi0, i ∈ N0.

Remark. The class of the conditional branching process models covers a wide vari-
ety of Cannings models. However (see the following proposition), not all Cannings
models are conditional branching process models.

Proposition 3.1. The extended Moran model (see Example 2.4) is not a condi-
tional branching process model, provided that P(1 ≤ U ≤ N − 1) = 1.

Proof. Suppose that the extended Moran model with population size N is a con-
ditional branching process model. Then, there exist independent and identically
distributed random variables ξ1, ξ2, . . . such that P(ξ1 + · · ·+ ξN = N) 6= 0 and

P(ν1 = k1, . . . , νN = kN ) =
pk1 · · · pkN

P(ξ1 + · · ·+ ξN = N)
, k ∈ ∆(N),
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where pk := P(ξ1 = k), k ∈ N0. In particular,

0 6= E
(

1
N

(
N−1
U−1

)
)

= P(ν1 = · · · = νN−U = 1, νN−U+1 = · · · = νN−1 = 0, νN = U)

=
E(pU−1

0 pN−U
1 pU )

P(ξ1 + · · ·+ ξN = N)
,

and, hence, p1 6= 0, since N − U ≥ 1 almost surely by assumption. On the other
hand,

0 = P(ν1 = · · · = νN = 1) =
P(ξ1 = 1) · · ·P(ξN = 1)
P(ξ1 + · · ·+ ξN = N)

=
pN
1

P(ξ1 + · · ·+ ξN = N)
,

and, hence, p1 = 0, an obvious contradiction. In particular, for N ≥ 3, the standard
exchangeable Moran model (U ≡ 2) is not a conditional branching process model.

¤

It seems to be hard to derive further exact results or asymptotic results as N →∞
for the general skewed conditional branching process model. We therefore focus in
the following sections on important subclasses.

4. The skewed compound Poisson class

Let φ be a given power series of the form φ(z) =
∑∞

m=1 φmzm/m!, |z| < r with
positive radius r ∈ (0,∞] of convergence and with non-negative coefficients φm ≥ 0,
m ∈ N. We also assume that φ1 > 0. Let furthermore θ1, θ2, . . . ∈ (0,∞) be given
strictly positive real parameters. In this section it is assumed that, for each n ∈ N,
the random variable ξn of the skewed conditional branching process model (as
described in the previous section) has pgf

(12) fn(x) = E(xξn) = exp
(
− θnφ(z)

(
1− φ(zx)

φ(z)

))
, |x| ≤ 1.

In (12), z is viewed as a fixed parameter. However, for the following approach we
also see z as a variable satisfying |z| < r. In order to state the following lemma we
need to introduce, for θ > 0, the Taylor expansion

(13) exp(θφ(z)) =
∞∑

k=0

σk(θ)
k!

zk, |z| < r,

of exp(θφ(z)), seen as a function of z. Note that the coefficients σk(θ) are strictly
positive and they depend on the sequence φ. := (φn)n∈N. More precisely, the
coefficients σk(θ) satisfy the recursion σ0(θ) = 1 and

(14) σk+1(θ) = θ

k∑

l=0

(
k

l

)
φk−l+1σl(θ), k ∈ N0,

i.e. σ1(θ) = θφ1, σ2(θ) = θφ2 + θ2φ2
1, σ3(θ) = θφ3 + 3θ2φ1φ2 + θ3φ3

1, and so on.
Note that, for each fixed k ∈ N, σk(θ) ∼ (θφ1)k as θ →∞.
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Proposition 4.1. If, for each n ∈ N, the random variable ξn has a pgf of the form
(12), then the forward process X of the associated skewed conditional branching
process model has transition probabilities

(15) Pi,j =

(
N
j

)
(
N
i

)
∑

M

σj(
∑

m∈M θm)σN−j(
∑

m∈[N ]\M θm)

σN (ΘN )
, i, j ∈ S,

where ΘN := θ1+· · ·+θN , the sum
∑

M extends over all subsets M ⊆ [N ] satisfying
|M | = i, and the coefficients σk(θ) are recursively defined via (14).

Proof. For j ∈ [N ], θ > 0 and |x| ≤ 1, it follows from (13) that

[xj ] exp(θφ(zx)) = [xj ]
∞∑

k=0

σk(θ)
k!

(zx)k = zj σj(θ)
j!

.

Using, for M ⊆ [N ], the shortage θ :=
∑

m∈M θm, it follows that

[xj ](
∑

m∈M

fm)(x) = [xj ] exp
(
− θφ(z)

(
1− φ(zx)

φ(z)

))

= exp(−θφ(z))[xj ] exp(θφ(zx)) = exp(−θφ(z))zj σj(θ)
j!

.

Thus, (15) follows from (10). ¤

Remark. For the unbiased case, when the parameter θn = θ does not depend on
n ∈ N, (15) reduces to

Pi,j =
(

N

j

)
σj(iθ)σN−j((N − i)θ)

σN (Nθ)
, i, j ∈ S.

Let us now turn to the backward process.

Proposition 4.2. If, for each n ∈ N, the random variable ξn has a pgf of the form
(12), then the backward process X̂ of the associated skewed conditional branching
process model has transition probabilities

(16) P̂i,j =
i!

σi(ΘN )

∑

1≤n1<···<nj≤N

∑

l1,...,lj∈N
l1+···+lj=i

σl1(θn1) · · ·σlj (θnj )
l1! · · · lj ! , i, j ∈ S,

with the convention that P̂i,0 = δi0, i ∈ S. Here ΘN := θ1 + · · · + θN and the
coefficients σk(θ) are recursively defined via (14). In particular,

P̂i,1 =
1

σi(ΘN )

N∑
n=1

σi(θn), i ∈ {1, . . . , N}.

Proof. From Kolchin’s representation formula [13] (see also [25, Chapter 1, Theorem
1.2]), it follows that µ = (µ1, . . . , µN ) has distribution

P(µ = k) =
N !

σN (ΘN )

N∏
n=1

σkn(θn)
kn!

, k = (k1, . . . , kN ) ∈ ∆(N),
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Therefore, µ has joint descending factorial moments

E((µ1)l1) · · · (µN )lN ) =
(N)l1+···+lN

σl1+···+lN (ΘN )

N∏
n=1

σln(θn), l1, . . . , lN ∈ N0.

The probability (6) is therefore of the form

Φj(l1, . . . , lj) =
1

(N)l1+···+lj

N∑
n1,...,nj=1
all distinct

E((µn1)l1 · · · (µnj
)lj )

=
1

σl1+···+lj (ΘN )

N∑
n1,...,nj=1
all distinct

σl1(θn1) · · ·σlj (θnj
), l1, . . . , lj ∈ N.

Using (7), it follows that

P̂i,j =
i!
j!

∑

l1,...,lj∈N
l1+···+lj=i

Φj(l1, . . . , lj)
l1! · · · lj !

=
i!

j!σi(ΘN )

N∑
n1,...,nj=1
all distinct

∑

l1,...,lj∈N
l1+···+lj=i

σl1(θn1) · · ·σlj (θnj )
l1! · · · lj !

=
i!

σi(ΘN )

∑

1≤n1<···<nj≤N

∑

l1,...,lj∈N
l1+···+lj=i

σl1(θn1) · · ·σlj (θnj )
l1! · · · lj ! .

¤

Let us now focus on the unbiased case, when all the parameters θn = θ are equal to
some constant θ ∈ (0,∞). It turns out to be convenient to introduce, for any formal
series a(z) =

∑∞
k=1 akzk/k! or, equivalently, for any sequence a. := (a1, a2, . . .), the

Bell polynomials

(17) Bi,j(a.) :=
i!
j!

[zi](a(z))j =
i!
j!

∑

l1,...,lj∈N
l1+···+lj=i

al1 · · · alj

l1! · · · lj ! , i, j ∈ N0.

Note that B0,0(a.) = 1, Bi,0(a.) = B0,i(a.) = 0, Bi,1(a.) = ai and Bi,i(a.) = ai
1 for

i ∈ N. For more information on these polynomials we refer the reader to [2] and
Chapter 1 of Pitman [25].

The following theorem provides exact and asymptotic formulae for the transition
probabilities P̂i,j and clarifies that the unbiased compound Poisson class is in the
domain of attraction of the Kingman coalescent.

Theorem 4.3. If θn = θ ∈ (0,∞) for all n ∈ N, then

(18) P̂i,j =
(N)j

σi(θN)
Bi,j(σ.(θ)) i, j ∈ S,



14 THIERRY HUILLET, MARTIN MÖHLE

where the Bi,j(σ.(θ)) are the Bell polynomials of σ.(θ) := (σ1(θ), σ2(θ), . . .). In
particular,

(19) P̂i,1 =
Nσi(θ)
σi(θN)

, i ∈ {1, . . . , N}.

Moreover, for i, j ∈ N with i ≥ j, the asymptotics

(20) P̂i,j ∼ Bi,j(σ.(θ))
(θφ1)i

1
N i−j

, N →∞,

holds, and, in the sense of Definition 2.3 a), the model is in the domain of attraction
of the Kingman coalescent in the sense of Definition 2.3 a).

Proof. Since θn = θ does not depend on n, the formula (16) reduces to (18) thanks
to the formula (17) for the Bell polynomials. For j = 1, (18) reduces to (19), since
Bi,1(σ.(θ)) = σi(θ). For i, j ∈ N with i ≥ j and for all N ≥ i it follows that

P̂i,j =
(N)j

σi(θN)
Bi,j(σ.(θ)) ∼ N j

(θNφ1)i
Bi,j(σ.(θ)) =

Bi,j(σ.(θ))
(θφ1)i

1
N i−j

,

which is (20). For j = 1, Eq. (20) reduces to

P̂i,1 ∼ σi(θ)
(θφ1)i

1
N i−1

, N →∞.

Thus, we obtain

dN

cN
=

P̂3,1

P̂2,1

∼ σ3(θ)
θφ1σ2(θ)

1
N

→ 0.

By [19, Theorem 4 (b)], the model is hence in the domain of attraction of the
Kingman coalescent. ¤

Remark. Theorem 4.3 in particular provides explicit exact formulae for the coa-
lescence probability cN = P̂2,1 and for dN = P̂3,1, namely

(21) cN =
Nσ2(θ)
σ2(θN)

=
N(θφ2 + θ2φ2

1)
θNφ2 + (θN)2φ2

1

and

dN =
Nσ3(θ)
σ3(θN)

=
N(θφ3 + 3θ2φ1φ2 + θ3φ3

1)
θNφ3 + 3(θN)2φ1φ2 + (θN)3φ3

1

.

Note that only the first three coefficients φ1, φ2, and φ3 of the function φ are
involved here.

Example 4.4. (Wright-Fisher model) For the Wright-Fisher model, φ(z) = z,
σk(θ) = θk. From Bi,j(θ, θ2, . . .) = θiBi,j(1, 1, . . .) = θiS(i, j), where the S(i, j) are
the Stirling numbers of the second kind, it follows that

P̂i,j =
(N)j

σi(θN)
Bi,j(σ.(θ)) =

(N)j

(θN)i
θiS(i, j) = (N)jN

−iS(i, j),

which is well known. For results concerning the skewed Wright-Fisher model we
refer the reader to Section 5.
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Example 4.5. (Dirichlet model) Suppose that φ(z) = − log(1− z), |z| < 1, i.e.
φm = (m− 1)!, m ∈ N. Then, σk(θ) = [θ]k, k ∈ N, and, hence,

P̂i,j =
(N)j

[θN ]i
Bi,j([θ].) =

i!
[θN ]i

(
N

j

) ∑

l1,...,lj∈N
l1+···+lj=i

[θ]l1 · · · [θ]lj
l1! · · · lj ! .

Results on the skewed Dirichlet model are presented in Section 6.

We briefly mention two further examples, showing the wide variety of models we
are concerned with.

Example 4.6. Let α ∈ (0, 1] and assume that φ(z) = 1− (1− z)α, |z| < 1. Then,
φm = (−1)m−1(α)m = α[1 − α]m−1 ≥ 0, m ∈ N. Note that φ(z) → 1 as z → 1, a
smoothness property of φ. For z → 1 the random variable ξ1 has a discrete stable
distribution with pgf E(xξ1) = exp(−θ(1− x)α) (see, for example, Steutel and van
Harn [29, Eq. (3.7)]) and tail asymptotics P(ξ1 > y) ∼ θcαy−α as y → ∞, where
cα := sin(πα/2) cos(πα/2)Γ(α)/(π/2) (apply, for example, Pitman [24, Theorem
1]). Note that φ1 = α and that φ2 = αβ with β := 1 − α. Thus, from (21), it
follows that

cN = P̂2,1 =
N(θαβ + θ2α2)

θNαβ + (θN)2α2
∼

(
1 +

β

θα

)
1
N

.

Thus, Ne = 1/cN ∼ ρN with ρ := (1 + β/(θα))−1 < 1.

Example 4.7. Let α ∈ (0,∞) and assume that φ(z) = (1 − z)−α − 1, |z| < 1.
Then, φm = [α]m, m ∈ N. Note that φ(z) → ∞ as z → 1. The random variable
ξ1 has a compound Poisson distribution with negative binomial jumps and pgf
E(xξ1) = exp(−θφ(z)(1− φ(zx)/φ(z))), |x| ≤ 1. By (21),

cN =
N(θα(α + 1) + θ2α2)

θNα(α + 1) + (θN)2α2
∼

(
1 +

α + 1
θα

)
1
N

.

Thus, Ne ∼ ρN with ρ := (1 + (1 + α)/(θα))−1 < 1.

Theorem 4.3 clarifies that a large class of unbiased conditional branching process
models is in the domain of attraction of the Kingman coalescent. For the skewed
situation the asymptotical behavior of (16) as N → ∞ is much more involved. In
the following sections we focus on particular skewed population models. It will
turn out that these models are not necessarily in the domain of attraction of the
Kingman coalescent.

5. Skewed Wright-Fisher model

Let m1,m2, . . . ∈ (0,∞) be given parameters and assume that ξn is Poisson dis-
tributed with parameter mn, n ∈ N. Since ξn has pgf fn(x) = E(xξn) = e−mn(1−x),
n ∈ N, it follows that this model belongs to the skewed compound Poisson class
(12) with φ(z) := z and θn := mn/z. Moreover, from (8) and (9) it follows that
µ has a multinomial distribution with parameters N and s1,N , . . . , sN,N , where
sn,N := mn/(m1 + · · · + mN ), n ∈ {1, . . . , N}. We shall often drop the in-
dex N and use sn instead of sn,N for notational convenience. Fertile individuals
(with large sn) are viewed as fitter in a much debated propensity interpretation
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of fitness, [1]. This fitness of individuals is closer to the Darwinian view of fit-
ness than to the Fisherian view of fitness as a fitness of types. Note that µ has
pgf E(zµ1

1 · · · zµN

N ) = (s1z1 + · · · + sNzN )N , |z1|, . . . , |zN | ≤ 1, and descending
factorial moments E((µ1)l1 · · · (µN )lN ) = (N)ls

l1
1 · · · slN

N , l1, . . . , lN ∈ N0, where
l := l1 + · · · + lN . The pgf of the nth marginal µn is E(zµn

n ) = (1 − sn + znsn)N ,
|zn| ≤ 1, showing that µn has a binomial distribution with parameters N and sn.
In particular, E(µn) = Nsn and σ2

n := Var(µn) = Nsn(1 − sn), n ∈ {1, . . . , N}.
From the above formula for the descending factorial moments of µ, it follows that
E(µn1µn2) = N(N − 1)sn1sn2 for n1, n2 ∈ {1, . . . , N} with n1 6= n2. In particular,
Cov(µn1 , µn2) = −Nsn1sn2 for n1 6= n2.

The expression (10) for the forward transition probabilities Pi,j simplifies to

(22) Pi,j =
1(
N
i

)
∑

1≤n1<···<ni≤N

(
N

j

)( i∑

k=1

snk

)j(
1−

i∑

k=1

snk

)N−j

, i, j ∈ S.

Similarly, (11) reduces to

(23) P̂i,j = i!
∑

l1,...,lj∈N
l1+···+lj=i

1
l1! · · · lj !

∑

1≤n1<···<nj≤N

sl1
n1
· · · slj

nj
, i, j ∈ S,

which, for j = 1, yields P̂i,1 =
∑N

n=1 si
n, i ∈ {1, . . . , N}. For i = 2 and i = 3, we

obtain

cN = P̂2,1 =
N∑

n=1

s2
n and dN = P̂3,1 =

N∑
n=1

s3
n.

Note that cN =
∑N

n=1 s2
n ≥ 1/N . In particular, Ne := 1/cN ≤ N , so the effective

population size is smaller than or equal to the effective population size in the
unbiased case. Applying the Hölder inequality

∑
n |anbn| ≤ (

∑
n a2

n)1/2(
∑

n b2
n)1/2

with an := s
1/2
n and bn := s

3/2
n shows that cN ≤ d

1/2
N , or, equivalently, that cN ≤

dN/cN . On the other hand, since the Euclidian 2-norm is larger than or equal to
the Euclidian 3-norm, we obtain c

1/2
N ≥ d

1/3
N , or, equivalently, dN/cN ≤ c

1/2
N . Thus,

cN ≤ dN/cN ≤ c
1/2
N and, as a consequence, cN → 0 is equivalent to dN/cN → 0.

Thus, if cN → 0, then the skewed Wright-Fisher model is in the domain of attraction
of the Kingman coalescent as N tends to infinity.

Choosing i = j in (23) shows that the backward matrix P̂ has eigenvalues λ0 = 1
and

λi := P̂i,i = i!
∑

1≤n1<···<ni≤N

sn1 · · · sni , i ∈ {1, . . . , N}

By duality [18], these are also the eigenvalues of the forward transition matrix P .
Note that 1 = λ0 = λ1 > λ2 = 1 − cN > λ2 > · · · > λN . In particular, the
eigenvalues λ1, . . . , λN are pairwise distinct. Coming back to the random variables
µ1, . . . , µN we see that the average covariances of the µn’s is

1(
N
2

)
∑

1≤n1<n2≤N

Cov(µn1 , µn2) = − 2
N − 1

∑

1≤n1<n2≤N

sn1sn2 = −1− cN

N − 1
.

Let

SN :=
1
N

N∑
n=1

E(µn)
N

µn =
1
N

N∑
n=1

snµn



POPULATION GENETICS MODELS WITH SKEWED FERTILITIES 17

be the size-biased relative mean offspring fertility. The random variable SN has pgf

E(zSN ) = E((zsn/N )µ1 · · · (zsN /N )µN ) =
( N∑

n=1

snzsn/N

)N

,

showing that E(SN ) = cN and that Var(SN ) = (dN − c2
N )/N , which provides an

alternative proof of the inequality dN ≥ c2
N .

For the Wright-Fisher model, the moments of Xt+1, given Xt = i, can be related
to the backward probabilities as follows. For j ∈ N, we have

E(Xj
t+1 | Xt = i) =

1(
N
i

)
∑

1≤n1<···<ni≤N

E
(( i∑

k=1

µnk

)j)

=
1(
N
i

)
j∑

l=1

S(l, j)(N)l

∑

1≤n1<···<ni≤N

( i∑

k=1

snk

)l

.

Using
∑

1≤n1<···<ni≤N

( i∑

k=1

snk

)l

=
l∑

k=1

(
N − k

i− k

)
P̂l,k,

where P̂l,k is defined in (23), we get

E(Xj
t+1 | Xt = i) =

1(
N
i

)
j∑

l=1

S(l, j)(N)l

l∑

k=1

(
N − k

i− k

)
P̂l,k

=
j∑

l=1

S(l, j)(N)l

l∑

k=1

(i)k

(N)k
P̂l,k,

which is a polynomial of degree j in i.

For the Wright-Fisher model, there are the following two alternative representations
of the backward transition probabilities (23).

(i) It can easily be checked that

(24) P̂i,j = N−i(N)jS(i, j, Ns),

where s := (s1, . . . , sN ) and

(25) S(i, j, s) :=
i!
j!

[xi]
1(
N
j

)
∑

1≤n1<···<nj≤N

j∏

k=1

(exsnk − 1)

are generalized second kind Stirling numbers. Note that, when E(µn) = Nsn = 1
for all n ∈ [N ], (25) reduces to the usual second kind Stirling numbers S(i, j) =
(i!/j!)[xi](ex − 1)j (see [6, vol. I, p. 144]). The unbiased version of (24) is thus
P̂i,j = N−i(N)jS(i, j), which is well-known. Note that (24) and (25) also yield

P̂i,j = i![xizj ]
N∏

n=1

(1 + z(exsn − 1))

showing that, as shown in [16],

E(z bXt+1 |X̂t = i) = i![xi]
N∏

n=1

(1 + z(exsn − 1)),
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and for the double pgf

∑

i

xi

i!
E(z bXt+1 |X̂t = i) =

N∏
n=1

(1 + z(exsn − 1)).

This leads in particular to E(X̂t+1|X̂t = i) =
∑N

n=1(1− (1− sn)i) and

E
((

X̂t+1

2

)
| X̂t = i

)

=
N∑

n=1

(n− 1)(1− (1− sn)i)−
∑

1≤n2<n1≤N

(
(1− sn1)

i − (1− (sn1 + sn2))
i
)
.

(ii) There is a second obvious representation taking into account repetitions, in
the spirit of the Ewens sampling formula [8]. Assume there are al individuals at
generation t, numbered 1 ≤ n1,l < · · · < nal,l ≤ N , producing exactly l offspring,
l ∈ {0, . . . , N}. Clearly, there is no overlap of the above number sequences for
different values of l. Then, using (23)

(26) P̂i,j = i!
∑

Pi
l=1 lal=i

Pi
l=1 al=j

;

i∑

l=1

∑
n1,l<···<nal,l

i∏

l=1

al∏

k=1

(
sl

nk,l

l!

)
.

In (26), there are
i∏

l=1

(
N −∑l−1

k=1 ak

al

)
=

(N)j∏i
l=1 al!

sums of the type
∑i

l=1

∑
n1,l<···<nal,l

1 so that when sn = 1/N for all n ∈ [N ] (the
unbiased case),

P̂i,j = N−i(N)j

∑
Pi

l=1 lal=i
Pi

l=1 al=j

;

i!∏i
l=1 al!l!al

,

where the last sum is an alternative representation of the second kind Stirling
numbers S(i, j) (see [6, vol. I, p. 145]).

Example 5.1. (power law growth) Fix a constant α ∈ R and assume that mn :=
E(ξn) = n−α, n ∈ N. The unbiased case (mn = 1 for all n ∈ N) corresponds to
α = 0. In the following seven ranges for the parameter α are distinguished.

(i) If α < 1/3, then MN :=
∑N

n=1 mn ∼ N
∫ 1

0
(Nx)−αdx = N1−α/(1− α),

(27) cN =
1

M2
N

N∑
n=1

n−2α ∼
(

1− α

N1−α

)2
N1−2α

1− 2α
=

(1− α)2

(1− 2α)N

and, similarly,

dN =
1

M3
N

N∑
n=1

n−3α ∼
(

1− α

N1−α

)3
N1−3α

1− 3α
=

(1− α)3

1− 3α

1
N2

.
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(ii) If α = 1/3, then (27) still holds, i.e. cN ∼ 4/(3N), but

dN =
1

M3
N

N∑
n=1

1
n
∼

(
1− α

N1−α

)3

log N =
8
27

log N

N2
.

(iii) If 1/3 < α < 1/2, then (27) still holds, but

dN =
1

M3
N

N∑
n=1

n−3α ∼
(

1− α

N1−α

)3

ζ(3α) = (1− α)3ζ(3α)
1

N3(1−α)
,

where ζ denotes the Riemann zeta function.

In all the three cases, i.e. for α < 1/2, we have Ne = 1/cN ∼ ρN with 0 < ρ :=
(1 − 2α)/(1 − α)2 ≤ 1. The effective population size is hence asymptotically of a
factor ρ smaller than the effective population size N in the unbiased case (α = 0).

Moreover, from (23), it follows that the eigenvalues satisfy

λi = P̂i,i =
i!

M i
N

∑

1≤n1<···<ni≤N

(n1 · · ·ni)−α ∼
(

1− α

N1−α

)i

i!
(N)i∑

n=i!

n−αMN (n, i),

where MN (n, i) is the number of multiplicative partitions of n into i ordered distinct
factors each belonging to {1, . . . , N}.
We will now see, that Ne can increase, but of order slower than N .

(iv) When α = 1/2, it is readily checked that MN ∼ 2N1/2, cN ∼ (log N)/(4N),
and dN ∼ ζ(3/2)/(8N3/2). Thus, Ne = 1/cN ∼ (4N)/(log N) is asymptotically
of a factor 4/(log N) smaller than the standard effective population size N in the
unbiased case.

(v) Assume now that 1/2 < α < 1. Then, still MN =
∑N

n=1 n−α ∼ N1−α/(1− α),

cN =
1

M2
N

N∑
n=1

n−2α ∼ (1− α)2

N2(1−α)
ζ(2α)

and, similarly,

dN =
1

M3
N

N∑
n=1

n−3α ∼ (1− α)3

N3(1−α)
ζ(3α)

Note that, with ρ := 1/((1 − α)2ζ(2α)) < 1, Ne ∼ ρN2(1−α) grows algebraically
and the order is slower than N .

(vi) For α = 1 it is straightforward to check that MN ∼ log N , cN ∼ ζ(2)/(log N)2,
and dN ∼ ζ(3)/(log N)3. Note that Ne ∼ (log N)2/ζ(2) grows quite slow (logarith-
mically).

For all the six cases (i) - (vi) considered so far, i.e. for α ≤ 1, we have cN → 0 and
dN/cN → 0. Thus, in the sense of Definition 2.3 a), the model is in the domain
of attraction of the Kingman coalescent. Thus, for each sample size n ∈ N, the
time-scaled backward process (R(n)

[t/cN ])t∈[0,∞) converges weakly to the Kingman n-
coalescent as N → ∞. All that is left about the details of the original discrete
fertility model (mn = n−α) is enclosed in the parameter Ne = 1/cN ≤ N , where N
is the time-scale of the unbiased Wright-Fisher model (mn = 1).
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(vii) Assume now that α > 1. Then, MN =
∑N

n=1 n−α → ζ(α) =: M , and,

P̂i,1 = Φ1(i) =
N∑

n=1

si
n =

1
M i

N

N∑
n=1

n−iα → ζ(iα)
(ζ(α))i

, i ∈ N.

In particular cN → ζ(2α)/(ζ(α))2 > 0 and dN → ζ(3α)/(ζ(α))3 > 0. The regime
α > 1 thus differs significantly from all the previous studied cases, since the coales-
cence probability converges to a positive constant as N → ∞. More generally, for
l1, . . . , lj ∈ N, we have to analyze the behavior of

Φ(N)
j (l1, . . . , lj) =

N∑
n1,...,nj=1
all distinct

sl1
n1,N · · · slj

nj ,N

as N → ∞. For each fixed n ∈ N we have sn,N = n−α/MN → n−α/M =
n−α/ζ(α) =: pn as N → ∞. Note that

∑∞
n=1 pn = 1. Moreover, sn,N ≤ n−α

uniformly for all N , since MN ≥ 1. Thus, by dominated convergence, for each
l1, . . . , lj ∈ N, the limit φj(l1, . . . , lj) := limN→∞ Φ(N)

j (l1, . . . , lj) exists and is of
the form

(28) φj(l1, . . . , lj) =
∑

n1,...,nj∈N
all distinct

pl1
n1
· · · plj

nj
.

For arbitrary i, j ∈ N it therefore follows from (23) that

(29) lim
N→∞

P̂i,j =
i!
j!

∑

l1,...,lj∈N
l1+···+lj=i

φj(l1, . . . , lj)
l1! · · · lj ! .

It is convenient (see, Schweinsberg [27]) to rewrite (28) in integral form as

φj(l1, . . . , lj) =
∫

∆

∑

n1,...,nj∈N
all distinct

xl1
n1
· · ·xlj

nj

Ξ(dx)
(x, x)

,

where ∆ := {(x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,
∑∞

n=1 xn ≤ 1}, (x, x) :=
∑∞

n=1 x2
n for

x ∈ ∆ and the measure Ξ on ∆ assigns its total mass Ξ(∆) := (p, p) =
∑∞

n=1 p2
n =

ζ(2α)/(ζ(α))2 to the single point p = (p1, p2, . . .) ∈ ∆. Theorem 2.1 of [21] ensures
that the model, without any time-scaling involved, is in the domain of attraction
(in the sense of Definition 2.3 b)) of the discrete-time Ξ-coalescent with the measure
Ξ as just defined.

Example 5.2. (geometric growth) Fix a constant λ ∈ (0,∞) and assume that
mn = λn, n ∈ N. The unbiased case corresponds to λ = 1, so without loss of
generality we assume that λ 6= 1. Two cases need to be distinguished.

(i) Suppose that λ ∈ (0, 1). Then, MN =
∑N

n=1 λn = λ(1 − λN )/(1 − λ) →
λ/(1− λ) =: M as N →∞ and

P̂i,1 =
1

M i
N

N∑
n=1

λin =
(

1− λ

λ(1− λN )

)i
λi(1− λiN )

1− λi

=
(1− λ)i

1− λi

1− λiN

(1− λN )i
∼ (1− λ)i

1− λi
.(30)
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In particular,

cN = P̂2,1 =
(1− λ)2

1− λ2

1− λ2N

(1− λN )2
∼ 1− λ

1 + λ
.

For arbitrary i, j ∈ N it follows similarly as in the previous Example 5.1 (vii) that
the limiting formula (29) for P̂i,j holds, but in the formula (28) for φj(l1, . . . , lj),
the parameter pn has to be replace by pn := λn/M = (1 − λ)λn−1, n ∈ N. For
instance, the diagonal entries P̂i,i of the matrix P̂ satisfy

lim
N→∞

P̂i,i = φi(1, . . . , 1) =
∑

n1,...,ni∈N
all distinct

pn1 · · · pni

=
(

1− λ

λ

)i ∑

n1,...,ni∈N
all distinct

λn1+···+ni =
(

1− λ

λ

)i ∑

n≥i(i+1)/2

λnA(n, i),

where A(n, i) is the number of vectors (n1, . . . , ni) ∈ Ni with pairwise distinct
components satisfying n1 + · · · + ni = n. This example essentially coincides with
Example 5.1 (vii). Again (see [21, Theorem 2.1]) the model is the domain of at-
traction (in the sense of Definition 2.3 b)) of a discrete-time Ξ-coalescent, where
the measure Ξ assigns its total mass Ξ(∆) = (p, p) = (1− λ)/(1 + λ) to the single
point p := (p1, p2, . . .) ∈ ∆.

(ii) Suppose that λ ∈ (1,∞). Then, MN =
∑N

n=1 λn = λ(λN − 1)/(λ − 1) ∼
λN+1/(λ− 1). The situation is hence a bit more complicated than in the previous
case (i), since MN does not converge anymore. We have

P̂i,1 =
1

M i
N

N∑
n=1

λin =
1

M i
N

λi λ
iN − 1
λi − 1

∼
(

λ− 1
λN+1

)i

λi λiN

λi − 1
∼ (λ− 1)i

λi − 1
.

In terms of the inverse parameter b := 1/λ, this formula takes the form P̂i,1 →
(1− b)i/(1− bi), which has the same structure as (30), but with λ replaced by its
inverse b. It is hence reasonable to proceed in the same way as in the previous case
(i), but with λ replaced by b. Thus, for n ∈ N, define pn := (1−b)bn−1 = (λ−1)/λn,
n ∈ N. For arbitrary i, j ∈ N it follows from (23) that (29) holds with

φj(l1, . . . , lj) := lim
N→∞

1
M i

N

N∑
n1,...,nj=1
all distinct

λn1l1+···+nj lj =
∑

n1,...,nj∈N
all distinct

pl1
n1
· · · plj

nj
.

The last equality is slightly more involved than in Example 5.1 (vii) and Example
5.2 (i), since MN does not converge. We suggest to check this equality first for
j = 2, which should provide sufficient insight for arbitrary j ∈ N. We provide
in the following the explicit expression for φ2(l1, l2). Note that

∑∞
n=1 pl

n = (1 −
b)l/(1− bl) = (λ− 1)l/(λl − 1), l ∈ N. Thus,

φ2(l1, l2) =
∑

n1 6=n2

pl1
n1

pl2
n2

=
∞∑

n1=1

pl1
n1

∞∑
n2=1

pl2
n2
−

∞∑
n=1

pl1+l2
n

=
(λ− 1)l1

λl1 − 1
(λ− 1)l2

λl2 − 1
− (λ− 1)l1+l2

λl1+l2 − 1

= (λ− 1)l1+l2

(
1

(λl1 − 1)(λl2 − 1)
− 1

λl1+l2 − 1

)
.
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The conclusion is that (28) and (29) are satisfied, so the model is in the domain of
attraction of a Ξ-coalescent, where the measure Ξ assigns its total mass Ξ(∆) :=
(p, p) =

∑∞
n=1 p2

n = (1 − b)/(1 + b) = (λ − 1)/(λ + 1) to the single point p =
(p1, p2, . . .) ∈ ∆.

Remarks. 1. Other particular examples could be investigated, for instance a
Wright-Fisher model with oscillating fertilities mn := sin2 n, n ∈ N. For this
model, MN =

∑N
n=1 mn ∼ N/2, sn ∼ 2(sin2 n)/N ,

cN = P̂2,1 =
N∑

n=1

s2
n ∼ 4

N

∫ 1

0

sin4(Nx)dx ∼ 3
2N

→ 0,

and dN = O(N−2). Thus, Ne = ρN with ρ = 2/3. This model is in the domain
of attraction of the Kingman coalescent. Note that MN/N → 1/2. This examples
therefore belongs to the class of models for which MN/N → m for some constant
m ∈ (0,∞). For skewed Wright-Fisher models having this property, it follows that
(µ1, . . . , µN , 0, 0, . . .) converges weakly to (η1, η2, . . .), where η1, η2, . . . are indepen-
dent random variables and ηn is Poisson distributed with parameter mn/m, n ∈ N.
The random variables µ1, . . . , µN are therefore asymptotically independent.

2. Assume that mn = λn2
for some λ > 1 ( (super-exponential growth of fertilities).

Then, MN =
∑N

n=1 mn ∼ λN2
has the same asymptotic behavior as the single last

summand mN , and it follows that

P̂i,1 =
1

M i
N

N∑
n=1

mi
n → 1, i ∈ N.

In particular, cN → 1. For i ∈ N and j ∈ N\{1} we conclude that P̂i,j ≤ 1− P̂i,1 →
0. This model is hence in the domain of attraction of the star-shaped coalescent,
i.e. the Ξ-coalescent with Ξ being the Dirac-measure at the point (1, 0, 0, . . .) ∈ ∆.

3. One could, for example, also be interested in a more general Wright-Fisher model
with multiplicative mixed power-geometric growing fertilities mn = n−αλn, where
α ∈ R and λ > 0. We leave the analysis of such more complicated models for the
future or the interested reader.

6. Skewed Dirichlet model

Consider the model where ξn has a negative binomial distribution with pgf fn(x) =
(p/(1 − qx))an , where an > 0, p ∈ (0, 1), q := 1 − p. Note that mn := E(ξn) =
(p/q)an, n ∈ N, and that this model belongs to the skewed compound Poisson class
(12) with θn := an, φ(z) := − log(1− z) =

∑∞
m=1 zm/m, and z := q. In this case µ

has the asymmetric Dirichlet multinomial distribution

P(µ = k) =

(
a1+k1−1

k1

) · · · (aN+kN−1
kN

)
(
AN+N−1

N

) =
N !

k1! · · · kN !
[a1]k1 · · · [aN ]kN

[AN ]N
,

k = (k1, . . . , kN ) ∈ ∆(N), where AN := a1 + · · · + aN . From (10), it follows that
the forward process X has transition probabilities

Pi,j =
1(
N
i

)
∑

1≤n1<···<nj≤N

(an1+···+anj

j

)(AN−(an1+···+anj
)

N−j

)
(
AN+N−1

N

) , i, j ∈ S.
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Note that µ has joint descending factorial moments

E((µ1)l1 · · · (µN )lN ) =
(N)l

[AN ]l

N∏
n=1

[an]ln , l1, . . . , lN ∈ N0,

where l := l1 + · · · + lN . In particular, E(µn) = Nan/AN , n ∈ {1, . . . , N}. We
conclude from (11) that the backward process X̂ has transition probabilities

P̂i,j =
i!

[AN ]i

∑

1≤n1<···<nj≤N

∑

l1,...,lj∈N
l1+···+lj=i

j∏

k=1

[ank
]lk

lk!
, i, j ∈ S,

with the convention that P̂i,0 = δi0. In particular, P̂i,1 = ([AN ]i)−1
∑N

n=1[an]i,
i ∈ {1, . . . , N}, and hence,

cN = P̂2,1 =
1

AN (AN + 1)

N∑
n=1

an(an + 1) > 0.

From an/AN ≤ (an + 1)/(AN + 1) it follows that cN ≥ ∑N
n=1(an/An)2 ≥ 1/N , or,

equivalently, Ne = 1/cN ≤ N . Moreover,

dN = P̂3,1 =
1

AN (AN + 1)(AN + 2)

N∑
n=1

an(an + 1)(an + 2) > 0.

It is now verified that cN → 0 if and only if dN/cN → 0. The basic idea of the
proof is the same as for the skewed Kimura model, however, the technical details
are a bit more involved. We have

max
1≤n≤N

(
an

AN

)2

≤
N∑

n=1

(
an

AN

)2

≤ cN .

Thus, max1≤n≤N (an/AN ) ≤ c
1/2
N . Moreover,

dN =
N∑

n=1

an(an + 1)(an + 2)
AN (AN + 1)(AN + 2)

≤
N∑

n=1

an(an + 1)
AN (AN + 1)

(
an

AN
+

2
AN

)

≤
(

max
1≤n≤N

an

AN

) N∑
n=1

an(an + 1)
AN (AN + 1)

+
2

AN

N∑
n=1

an(an + 1)
AN (AN + 1)

=
(

max
1≤n≤N

an

AN

)
cN +

2
AN

cN ≤ c
3/2
N +

2
AN

cN .

Thus, dN/cN ≤ c
1/2
N + 2/AN . Suppose now that cN → 0. From the formula for cN

it is readily seen that cN ≥ a2
1/[AN ]2. Thus, [AN ]2 ≥ a2

1/cN →∞. It follows that
AN →∞ and, hence, dN/cN ≤ c

1/2
N + 2/AN → 0. Conversely, if dN/cN → 0, then

cN → 0 (see [19, p. 989)] or [22, Lemma 5.5]). Thus, the two conditions cN → 0
and dN/cN → 0 are equivalent.

Example 6.1. (power law growth) Suppose that an := n−α for some constant
α ∈ R. Five ranges for the parameter α are distinguished. For α ∈ (−∞, 0),
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AN ∼ N1−α/(1− α) →∞,

cN ∼ 1
A2

N

N∑
n=1

a2
n ∼ (1− α)2

1− 2α

1
N

and dN ∼ 1
A3

N

N∑
n=1

a3
n ∼ (1− α)3

1− 3α

1
N2

.

For α = 0 we have cN = 2/(N +1) ∼ 2/N and dN = 6/((N +1)(N +2)) ∼ 6/N2. If
α ∈ (0, 1), then cN ∼ 1/AN ∼ (1− α)/N1−α and dN ∼ 2/A2

N ∼ 2(1− α)2/N2−2α.
If α = 1, then cN ∼ 1/ log N → 0 and dN ∼ 2/ log2 N . In all these four cases
considered so far we have cN → 0 and dN/cN → 0, so the model is in the domain
of attraction of the Kingman coalescent. Suppose now that α ∈ (1,∞). Then,
AN =

∑N
n=1 n−α → A := ζ(α) > 1,

∑N
n=1 an(an + 1) =

∑N
n=1(n

−2α + n−α) →
ζ(2α) + ζ(α), and, hence, cN → (ζ(2α) + ζ(α))/[ζ(α)]2 > 0. Similarly, it follows
that

lim
N→∞

dN =
ζ(3α) + 3ζ(2α) + 2ζ(α)
ζ(α)(ζ(α) + 1)(ζ(α) + 2)

.

For l1, . . . , lj ∈ N \ {1} and N ≥ i := l1 + · · ·+ lj ,

Φj(l1, . . . , lj) =
1

[AN ]i

N∑
n1,...,nj=1
all distinct

[an1 ]l1 · · · [anj ]lj

→ 1
[A]i

∑

n1,...,nj∈N
all distinct

[an1 ]l1 · · · [anj ]lj

=
∑

n1,...,nj∈N
all distinct

[an1 ]2 · · · [anj ]2
[A]2j

[an1 + 2]l1−2 · · · [anj + 2]lj−2

[A + 2j]i−2j

=
∑

n1,...,nj∈N
all distinct

w(n1, . . . , nj)E(Dl1−2
n1

· · ·Dlj−2
nj

),

where w(n1, . . . , nj) := [an1 ]2 · · · [anj ]2/[A]2j and (Dn1 , . . . , Dnj , 1 −
∑j

k=1 Dnk
) is

Dirichlet distributed with parameters 2+an1 , . . . , 2+anj and A−∑j
k=1 ank

. Thus,
the limit φj(l1, . . . , lj) := limN→∞ Φj(l1, . . . , lj) exists and is of the form

φj(l1, . . . , lj) =
∫

∆j

xl1−2
1 · · ·xlj−2

j Λj(dx1, . . . , dxj),

where ∆j := {(x1, . . . , xj) ∈ [0, 1]j : x1 + · · ·+ xj ≤ 1} and the measure

(31) Λj :=
∑

n1,...,nj∈N
all distinct

w(n1, . . . , nj)P (n1, . . . , nj)

on the simplex ∆j is an infinite mixture of the distributions P (n1, . . . , nj) of
(Dn1 , . . . , Dnj ). Note that the weights w(n1, . . . , nj) sum up to a finite value,
so Λj is a finite measure. The measures Λ1,Λ2, . . . completely characterize the lim-
iting coalescent process with simultaneous multiple collisions. The model is in the
domain of attraction of this coalescent process. So far we have not been able to
identify the characterizing measure Ξ of this coalescent.

Example 6.2. (geometric growth) Suppose that an = λn for some constant λ ∈
(0,∞). The unbiased case corresponds to λ = 1.
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(i) If λ < 1, then AN → A := λ/(1−λ), so AN converges. We are hence essentially
in the situation of Example 6.1 with α > 1. All results there are valid, but now with
A = λ/(1 − λ) (instead of A = ζ(α)) and with an = λn (instead of an = nα). In
particular, the characterizing measures Λ1, Λ2, . . . of the limiting coalescent process
with simultaneous multiple collisions are again infinite mixtures of the form (31).

(ii) If λ > 1, then AN =
∑N

n=1 λn ∼ λN+1/(λ − 1), so AN does not converge.
We are hence essentially in the situation of Example 5.2 (ii), and it follows in
the same way that the measure Ξ of the limiting Ξ-coalescent assigns its total
mass Ξ(∆) = (λ − 1)/(λ + 1) to the single point p = (p1, p2, . . .) ∈ ∆ defined via
pn := (λ− 1)/λn, n ∈ N.

7. Skewed Kimura model

In this section an example is presented which — in contrast to the skewed Wright-
Fisher model studied in Section 5 and the skewed Dirichlet model considered in
the previous Section 6 — does not belong to the skewed compound Poisson class.
Suppose that for each n ∈ N the random variable ξn has a binomial distribution
with pgf fn(x) = (px + q)an , where an ∈ N, p ∈ (0, 1) and q := 1 − p. Note that
mn := E(ξn) = pan, n ∈ N. Then, µ = (µ1, . . . , µN ) has a multi-hypergeometric
distribution of the form

P(µ = k) =

(
a1
k1

) · · · (aN

kN

)
(
AN

N

) , k = (k1, . . . , kN ) ∈ ∆(N),

where AN := a1 + · · · + aN . Note that P(µn ≤ an) = 1, i.e. the number µn of
offspring of individual n is almost surely bounded by an, n ∈ {1, . . . , N}. From
(10), it follows that the forward process X has transition probabilities

Pi,j =
1(
N
i

)
∑

1≤n1<···<ni≤N

(an1+···+ani
j

)(AN−(an1+···+ani
)

N−j

)
(
AN

N

) , i, j ∈ S.

Note that µ has joint factorial moments

E
((

µ1

l1

)
· · ·

(
µN

lN

))
=

(
N

l1+···+lN

)
(

AN

l1+···+lN

)
(

a1

l1

)
· · ·

(
aN

lN

)
, l1, . . . , lN ∈ N0,

In particular, E(µn) = Nan/AN , n ∈ {1, . . . , N}. From (11), it follows that the
backward process X̂ has transition probabilities

P̂i,j =
1(

AN

i

)
∑

1≤n1<···<nj≤N

∑

l1,...,lj∈N
l1+···+lj=i

(
an1

l1

)
· · ·

(
anj

lj

)
, i, j ∈ S,

with the convention that P̂i,0 = δi0, i ∈ S. Note that P̂i,1 = ((AN )i)−1
∑N

n=1(an)i,
i ∈ {1, . . . , N}, and, hence,

cN = P̂2,1 =
1

(AN )2

N∑
n=1

(an)2 and dN = P̂3,1 =
1

(AN )3

N∑
n=1

(an)3.

The coalescence probability cN can be smaller than 1/N (choose for example an = 2
for all n ∈ N leading to cN = 1/(2N−1)), so the effective population size Ne = 1/cN

can be larger than N . We have cN = 0 if and only if an = 1 for all n ∈ {1, . . . , N}.
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For the rest of this section it is assumed that an > 1 for at least one index n ∈ N
such that cN > 0 for sufficiently large N . In the following it is verified that cN → 0
if and only if dN/cN → 0. From (an − 2)/(AN − 2) ≤ (an − 1)/(AN − 1) ≤ an/AN

it follows that

max
1≤n≤N

(
an − 2
AN − 2

)2

≤ max
1≤n≤N

an(an − 1)
AN (AN − 1)

≤
N∑

n=1

an(an − 1)
AN (AN − 1)

= cN .

Thus, max1≤n≤N ((an − 2)/(AN − 2)) ≤ c
1/2
N , and consequently

dN =
N∑

n=1

an(an − 1)(an − 2)
AN (AN − 1)(AN − 2)

≤
(

max
1≤n≤N

an − 2
AN − 2

) N∑
n=1

an(an − 1)
AN (AN − 1)

=
(

max
1≤n≤N

an − 2
AN − 2

)
cN ≤ c

3/2
N ,

or, equivalently, dN/cN ≤ c
1/2
N . Therefore, if cN → 0 then dN/cN → 0. Conversely,

if dN/cN → 0, then a fundamental result from coalescent theory (see, for example,
[19, p. 989)] or [22, Lemma 5.5]) ensures that the condition cN → 0 is satisfied
(even for arbitrary Cannings models). Thus, whenever cN → 0 as N → ∞, the
model is in the domain of attraction of the Wright-Fisher diffusion (forwards in
time) and of the Kingman coalescent (backwards in time).

Example 7.1. (power law growth) Fix K ∈ N0 and suppose that an = nK , n ∈ N.
The unbiased case corresponds to K = 0. Then, AN =

∑N
n=1 nK ∼ NK+1/(K +1)

and, hence,

cN =
1

(AN )2

N∑
n=1

(nK)2 ∼ 1
A2

N

N∑
n=1

n2K ∼
(

K + 1
NK+1

)2
N2K+1

2K + 1
=

(K + 1)2

2K + 1
1
N

.

Thus Ne = ρN with ρ := (2K + 1)/((K + 1)2) < 1. Similarly,

dN ∼ 1
A3

N

N∑
n=1

n3K ∼
(

K + 1
NK+1

)3
N3K+1

3K + 1
=

(K + 1)3

3K + 1
1

N2
.

In particular, cN → 0, so the model is in the domain of attraction of the Wright-
Fisher diffusion (forwards in time) and of the Kingman coalescent (backwards in
time). This example essentially coincides with Example 5.1 (i) with α := −K.

Example 7.2. (geometric growth) Fix an integer parameter λ ≥ 2 and suppose
that an = λn, n ∈ N. Then, AN =

∑N
n=1 λn = λ(λN − 1)/(λ− 1) ∼ λN+1/(λ− 1).

It is therefore reasonable to proceed as in Example 5.2 (ii). Thus, define b := 1/λ
and pn := (1− b)bn−1 = (λ− 1)/λn, n ∈ N. We have

P̂i,1 = Φ1(i) =
1

(AN )i

N∑
n=1

(λn)i ∼ 1
Ai

N

N∑
n=1

λni =
1

Ai
N

λi λ
iN − 1
λi − 1

∼
(

λ− 1
λN+1

)i

λi λiN

λi − 1
∼ (λ− 1)i

λi − 1
=

(1− b)i

1− bi
=

∞∑
n=1

pi
n.
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More generally, for l1, . . . , lj ∈ N, it follows that

Φj(l1, . . . , lj) =
1

(AN )i

N∑
n1,...,nj=1
all distinct

(an1)l1 · · · (anj
)lj

∼ 1
Ai

N

N∑
n1,...,nj=1
all distinct

λn1l1+···+nj lj →
∑

n1,...,nj∈N
all distinct

pl1
n1
· · · plj

nj
.

where the proof of the last convergence works exactly as in Example 5.2 (ii). Thus,
we are indeed in the same situation as in Example 5.2 (ii). The measure Ξ of the
limiting Ξ-coalescent assigns its total mass Ξ(∆) = (λ − 1)/(λ + 1) to the single
point p = (p1, p2, . . .) ∈ ∆.
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