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POPULATION GENETICS MODELS WITH SKEWED
FERTILITIES: A FORWARD AND BACKWARD ANALYSIS

THIERRY HUILLET, MARTIN MOHLE

ABSTRACT. Discrete population genetics models with unequal fertilities are
considered, with an emphasis on skewed Cannings models, skewed conditional
branching process models in the spirit of Karlin and McGregor, and skewed
compound Poisson models. Three particular classes of models with skewed fer-
tilities are investigated, the skewed Wright-Fisher model, the skewed Dirichlet
model, and the skewed Kimura model. For each class the asymptotic behavior
as the total population size N tends to infinity is investigated for power law
fertilities and for geometric fertilities. This class of models can exhibit a rich
variety of sub-linear or even constant effective population sizes. Therefore, the
models are not even necessarily in the domain of attraction of the Kingman
coalescent. For a substantial range of the parameters, discrete-time coalescent
processes with simultaneous multiple collisions arise in the limit.

Running title: Population genetics models with skewed fertilities.

Keywords: Ancestral process; Cannings model; Compound Poisson model;
Dirichlet model; Duality; Evolutionary processes; Exchangeable coalescent;
Karlin and McGregor model; Kimura model; Kingman coalescent; Population
dynamics; Simultaneous multiple collisions; Wright-Fisher model

1. INTRODUCTION

The well-known neutral discrete Wright-Fisher model describes the evolution of a
population of constant size N from generation to generation forwards in time. One
of the main features of this model (and similar models such as the discrete Moran
model) is that each individual has the same propensity to produce offspring.

In this paper discrete population models are studied, in which individuals may have
unequal propensities to reproduce. We shall speak of models with skewed fertilities.
These models turn out to be of interest mainly because of the following two reasons.
First of all, it turns out that the effective population size N, of these models may
differ significantly from the actual total population size N and may not even depend
linearly on N. The fact that models with this behavior may have importance for
biological applications, is for example indicated in papers of Eldon and Wakeley
[7] and Wakeley and Sargsyan [30]. Models with effective population sizes smaller
than N occur also in a different context of age-structure of populations in a paper
of Sagitov and Jagers [26]. Secondly, in the limit as the total population size N
tends to infinity, these models are not necessarily in the domain of attraction (see
Definition 2.3) of the Kingman coalescent. The limiting coalescent processes may
have simultaneous multiple collisions of ancestral lineages. Ancestral processes of
this form are a major research area in coalescent theory and have been studied
intensively over the last twenty years (see, for example, [21] or [27]).
1
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The models we are mainly interested in are obtained by conditioning a sequence
£1,&s, ... of independent random variables on the event that & + -+ &v = N,
with the interpretation that the outcome of &,, under the constraint that & +
-+ 4+ &n = N, is the number of children of the nth individual, n € {1,...,N}.
Since the random variables &7, &s, ... are not necessarily assumed to be identically
distributed, this construction results in unequal propensities of the individuals to
produce offspring. In the spirit of Karlin and McGregor [11] we call this model the
skewed conditional branching process model.

Schweinsberg [28] studies models, in which N individuals are sampled from Sy :=
Xi + -+ Xy offspring, where X, ..., Xy are given i.i.d. random variables. The
effective population sizes of these models satisfy N. = O(N) (see [28, Eq. (18)]),
and, in particular, N, can exhibit a rich variety of sub-linear behavior, however,
these models are different from our models, which are based on conditioning instead
of sampling.

The paper is organized as follows. In Section 2 a skewed Cannings model is in-
troduced and analyzed. The analysis of this model essentially boils down to a
comparison with an associated standard exchangeable Cannings model [4, 5]. Sec-
tion 2 therefore heavily gains from the theory on Cannings models. The results
of Section 2 are applied in Section 3 to the skewed conditional branching process
model. Since this huge class of conditional models has in general a quite com-
plicated probabilistic structure, we further specialize in Section 4 to a subclass of
skewed compound Poisson models. Exact formulae for the transition probabilities
of the forward and the backward process are derived. It is furthermore shown (The-
orem 4.3) that, in the unbiased (non-skewed) case, the model is in the domain of
attraction (see Definition 2.3) of the Kingman coalescent. In all cases we obtain
exact and asymptotic formulae for the effective population size N, which can devi-
ate substantially from the total population size N. The following Sections 5 and 6
are devoted to two particular compound Poisson models, the skewed Wright-Fisher
model and the skewed Dirichlet model. In both models the effective population size
N, is less than or equal to the total population size N, and, depending on the pa-
rameter choices, can indeed be substantially smaller than N, for example N, ~ pN
with p € (0,1), N. = O(N®) with 8 € (0,1), N. = O(log N), or even N, = O(1).
These two models are in particular analyzed for power law skewed fertilities and
for geometrically skewed fertilities. It turns out that for a wide range of parameter
choices, these models are not anymore in the domain of attraction of the Kingman
coalescent. Coalescents allowing for simultaneous multiple collisions arise in the
limit as the total population size tends to infinity. The paper finishes in Section
7 with an analog analysis of the skewed Kimura model, a model which does not
belong to the compound Poisson class, but nevertheless exhibits similarities with
the previously studied models.

Throughout the paper the notation N := {1,2,...}, Ny :={0,1,2,...}, and [N] :=
{1,...,N}, N € N, is used. We furthermore use, for fixed N € N, the symbol
S :={0,...,N} for the state space of several discrete processes considered in this
paper. Moreover, for k € Ng and z € R, () := z(x —1)---(z — k + 1) and
[z]x == z(x +1)---(x + k — 1) denote the descending and ascending factorials
respectively, with the convention that (z)g = [z]g = 1.



POPULATION GENETICS MODELS WITH SKEWED FERTILITIES 3

2. SKEWED CANNINGS MODELS

Consider a population with constant population size N € N evolving in discrete
non-overlapping generations ¢ € Ny. The nth individual, n € [N], of the t¢th
generation gives birth to a random number pu,,(t) of children. Since the population
is assumed to have constant population size N, for each fixed generation ¢ € N,
the random vector u(t) := (u1(t),...,un(t)) must take values in the discrete N-
simplex A(N) consisting of all k = (ky, ..., ky) € N} satisfying ky +---+ky = N.
Note that the random variable u,(t) = u, n(t) is allowed to depend on the total
population size N. However, for simplicity, this dependence on N is usually not
indicated throughout the paper. It is assumed that the model is time-homogeneous
in the sense that the random vectors £(0), (1), ... are independent and identically
distributed. We write i, := p,(0), n € [N], and p := u(0) for convenience. Note
that the model is in principle defined in the same way as an exchangeable Cannings
model [4, 5]. The only generalization is that, for each fixed generation ¢ € Ny, the
offspring variables p1(t), ..., un(t) are not necessarily assumed to be exchangeable.
To the best of our knowledge [17] is the only reference dealing with reproduction
models of this form even in the time-inhomogeneous context in which the total
population size is not necessarily constant equal to N. Particular examples, such
as the skewed Wright-Fisher model, which is studied in Section 5 in more detail,
have been the source of recurrent interest in the literature (see, for example, [3] and
[16]). A main tool exploited in this section is the following shuffling procedure. For
each fixed generation ¢t € Ny let v(t) = (v1(¢),...,vn(f)) be a random permutation
(shuffling) of p(t) = (u1(¢), ..., un(t)). Then v(t) is exchangeable with distribution

1) P(t) = k) = 5 S P(ru() =K), ke A(N),

where mu(t) := (pr1(t), ..., p=n(t)) and the sum extends over all permutations 7
of [N]. We interpret v, (t) as the number of offspring of the nth individual of the
tth generation in an exchangeable Cannings model [4, 5]. As we will see soon, this
exchangeable Cannings population model will turn out to be very helpful to analyze
the original skewed Cannings model. Again we write v, = v,(0), n € [N], and
v :=v(0) for convenience.

Take a sample of n € S individuals of generation 0 and, for t € Ny, let X; denote
the number of descendants of these n individuals in generation t. The process
X 1= (Xt)ten, is called the forward process.

Lemma 2.1. (forward structure) Fiz N € N. The forward process X =
(Xt)ten, s a time-homogeneous Markov chain with state space S and initial state
Xo = n. The transition probabilities P; ; :=P(Xy11 = j| Xy = 1), i,j € S, do not
depend on the initial state n and are given by

(2) P = (]1V) > P(Zunk :j>, i,j€S.
i/ 1<ni<---<n; <N k=1

The states 0 and N are absorbing. Moreover, X is a bounded martingale and,

hence, X; converges almost surely as t — oo to a limiting random variable Xoo. If

P(ur = 1) < 1 for some k € {1,...,N}, then X takes the two values 0 and N

with probability P(Xo =0) =1 —n/N and P(Xo = N) = n/N respectively.
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Proof. Fix i,j € S. The transition probability P; ; must coincide with the corre-
sponding transition probability of the associated exchangeable Cannings model with
offspring distributions (1), since in the considered skewed model all assignments of
offspring to parents are assumed to be equally likely. From the literature on ex-
changeable models (Cannings [4, p. 267]), it follows that P, ; = P(v1+---+v; = j) =
> P(v = k), where the sum extends over all k € A(N) satisfying k1 +---+k; = J.
Plugging in (1) and interchanging the two sums involved yields

P = ]inzzk:ﬂp(ﬂ',u:k‘) = %ZP(Mﬂl"F"""/Jm':j)

Introducing nq := wl,...,n; := mi, and noting that there exist exactly (N — i)!
permutations 7 leaving 71, ..., mi fixed, it follows that
N A

Pm:w > P(;unk=j>=(iv) > P(;unij)

MN1yenny n;=1 1<n1 < <n; <N
all distinct

The chain X is a martingale, since E(X;11 | Xy =4) = Zjesij- = EjeS JP(vy +
oty =4)=Ewi+---+v;) =14,i€S. Since X is bounded (0 < X; < N for
all t € Np), X; converges almost surely to some random variable X, as ¢ — oo,
and (X¢)ten,ufoo} is still a martingale. For the rest of the proof see, for example,
Section 2.1 in [18]. O

Remarks. 1. One may rewrite (2) in condensed form as
1 . .
Pi,j = (]\/')ZP(ZIU’MZJ>7 27.7657
i) M meM
where the sum )" ,, extends over all subsets M of [N] satisfying |M| = i.

2. The associated shuffled Cannings model with exchangeable offspring variables
V1,...,vN introduced in the proof of Lemma 2.1 is useful in many respects. For
instance, in terms of the so-called coalescence probability (see, for example, [19])

E((v1)2) Var (1)

(3) N =TT T N C 1—-E(nre) = —Cov(vy,va),
the variance of X;41, given X; = i, can be expressed as
Var(XtQ_H |Xt = Z) = Var((yl + .o+ l/i)Q)

iVar(vy) +i(i — 1)Cov (v, va)
= Z(N — ].)CN — ’L(Z - 1)CN = Z(N — i)CN.

Defining the heterozygosity of the population at generation ¢ as 2(X;/N)(1—X;/N),
we have

X X, ) ;0 ) )
2E(N<1 N)‘Xo—z) = 2(1—cn) N(l N)’ t € Ng,7 €8,

showing that, if ¢ > 0, the mean heterozygosity tends to 0 exponentially fast as
t — o0o. We will soon provide further information on ¢y when the model is studied
backwards in time.

3. Suppose that P(pr, = 1) < 1 for some k € {1,...,N}. For j € S let 7, ; denote
the first time the process X hits the state j given that it starts in X¢g = n. The
first time X hits the boundaries 0 or N, which is 7, := min(7, o, 7n,~), is finite
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with probability 1. Let ¢, v := P(7,,,0 < Tn,n) denote the extinction probability.
The previous Lemma shows that ¢, v = P(7h0 < Th,n) = P(Xoo =0) =1 —n/N,
ne{0,...,N}.

Instead of looking forwards in time let us now look backwards in time and count,
starting with all N individuals from some generation tg € Ny, the number of an-
cestors of these N individuals ¢ € {0,...,ty} generations backward in time. More
precisely, let )A(t denote the number of ancestors of the IV individuals of generation
to in generation ty — t. The process X = ()A(t)te{07...,t0} is called the backward
process.

Lemma 2.2. (backward structure) The backward process X = ()A(t)te{07.._,t0}
is a time-homogeneous Markov chain with state space S and initial state N. The
transition probabilities P; j :=P(Xy11 = j| Xy =1), 4,5 € S, are given by

. 1 . o
4) P = &5 > ) E(H(i k))a i,j €5,
(2) 1<n;<---<n;<N l1,...,I;EN k=1 k
el =i

with the convention that Igi,o = ;0 (Kronecker symbol). The states 0 and 1 are
absorbing.

Proof. As in the proof of Lemma 2.1 we make use of the associated exchange-
able Cannings model. The backward transition probability ]3Z ;j coincides with the
analog backward transition probability of the associated Cannings model with ex-
changeable offspring vector v having distribution (1). Therefore, from the literature
on exchangeable models (Cannings [4, Theorem 11], Gladstien [9, Examples]), it

follows that

o sy
P, = Y E E H I ) i,j €8,
(i) I, €N k=1 \'k

l1++l7:2

with the convention that 131‘,0 = d;0. Using (1), a similar argument as given in the
proof of Lemma 2.1 for P; ; shows that P; ; can be expressed in terms of the original

offspring vector p via (4). |
Remark. (eigenvalues, duality) The stochastic matrix P = (ﬁi,j)i,jes is lower
left triangular and has hence eigenvalues \; := F;;, ¢ € S. From Lemma 2.2 it
follows that A\g = 1 and that
~ 1 .
N = Py = < Z E(pin, - fin, ) ie{l,...,N}.

( [ ) 1<ni < <n; <N

Note that A\; = 1 and that Ay = ((N)2) ™" Y10, cpyen Eltn, fin,) = E(vi1n) =
1—cn. Since the forward and backward transition matrices P = (P; ;); jes and P=
(ﬁz j)ijes coincide with those of the associated Cannings model with exchangeable
offspring vector v, it is allowed to apply results on exchangeable Cannings models,
in particular duality results such as the duality relation PH = H _13’ , where H =

(Hij)i,jes is (see, for example, [18]) the matrix with entries H;; = (;)/(JJV), i,jes.
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Since H is non-singular, P has the same eigenvalues as P. In particular, cy = 1— X
is the spectral gap of P and P.

The random variable )A(t counts the number of ancestors in generation tg — t, but
it gives no information about whether two individuals ¢ and j, randomly picked
from generation ¢y, share a common parent in generation ty —¢t. In order to encode
this information, a more enriched ancestral process has to be considered, which
is now described. Take a random sample of n € [N] individuals from generation
to € Ny and, for t € {0,...,%}, define a random relation R; on {1,...,n} by
saying that (i,7) € Ry if and only if the individuals 7 and j have a common parent
in generation to —t. Note that Ry = ( N)Rgn) depends on the sample size n and
on the total population size N. The process (R¢)ieqo,....t,} is called the ancestral
process or a discrete coalescent process. It is well known (see, for example, [17])
that (R¢)ieqo,....t} is @ Markov chain with state space &,, the set of equivalence

relations (partitions) on {1,...,n}, and transition probabilities
(5) P(Rt+1:7l|Rt:§) = (I)j(llw"alj)v gan€5n7£g,’77
where
1 N
6 Di(ly,..., ) = ——— E((teny )iy -+ (on 1)
(6) Mees) = e 3 Bl )
all7 di,stijnct

Here j := |n| denotes the number of equivalence classes (blocks) of n and l1,...,1; €

N are the group sizes of merging classes of {. Note that {; + --- 4 {; is the number
of classes (blocks) of £. Comparing (6) with (4) shows that

- il oL, ...,1;) o
(7) Pi,j = ﬁ E ﬁ, Z,jG{l,...,N}.
l1,..,l;EN J
l1+"'+lj=l

For j =1, (4) and (7) reduce to

K2

N
5 . 1 .
Py = ®(i) = i > E((pn)i),  i€{l,...,N}
n=1
The so-called coalescence probability ¢y, i.e. the probability that two individuals,
randomly chosen from some generation, have a common parent, is hence

N
1
CcN = P271:(I)12 = — E 2
® = ;L En)a)
in agreement with (3), and the effective population size is N, := 1/cy. We will
later also make use of the probability that three individuals, randomly chosen from
some generation, share a common parent, which is given by

N
I = o = 913) = 5 S B((m)o).

The transition probabilities (5) do not depend on ¢ and ty. It is hence allowed to
choose tg arbitrary large. We can therefore think of a process (R+)ten, with transi-
tion probabilities (5) and time ¢ € Ny. It is well known (see [21]) that, if dy /eny — 0,
then, for each sample size n € N, the time-scaled process (RE:})CN])tE[O’OO) converges
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weakly to Kingman’s n-coalescent (REH))te[O,oo) as the total population size N tends
to infinity. In [21] there is also a criterion in terms of the quantities (6) provided
ensuring that, for each n € N, the time-scaled process (Rf?/)CN])tE[Om) converges
weakly as N — oo to a more general process (0,1)ic[0,00), Where g, denotes the
restriction from &, the set of all equivalence relations on N, to &, and R = (R¢)¢>0
is a continuous-time coalescent process allowing for simultaneous multiple colli-
sions of ancestral lineages. This asymptotic behavior can only occur if ¢y — 0.
If, instead, ¢y converges to a positive constant, then, a similar criterion for the
quantities (6), also provided in [21], ensures that, for each sample size n € N,

the process (R,En))teNO (without any time-scaling involved) converges weakly to a
discrete-time process (0nR¢)ien,, where (Rt)ic[0,00) is a discrete-time coalescent
allowing for simultaneous multiple collisions of ancestral lineages.

Definition 2.3. a) Let R = (R¢)c(0,00) be a continuous-time coalescent with simul-
taneous multiple collisions. We say that the considered population model is in the
domain of attraction of R, if, for each sample size n € N, the time-scaled ancestral

process (REZL/)CN])te[O,oo) converges weakly to (0nRt)ie[0,00) a5 N — 00.

b) Let R = (Ryt)ten, be a discrete-time coalescent with simultaneous multiple colli-
sions. We say that the considered population model is in the domain of attraction
of R, if, for each sample size n € N, the ancestral process (Ri"))teNO converges
weakly to (0nRt)ten, as N — o00.

In both cases we call the coalescent R the attractor of the considered population
model.

Example 2.4. (extended Moran model) Let U be a random variable taking
values in {0,..., N} and define the offspring vector p = (1, ..., un) via gy =1
forne{l,....N—-U}, pp:=0forn e {N-U+1,...,N —1}, and py :=U.
The associated shuffled exchangeable Cannings model was considered by Eldon and
Wakeley [7]. For U = 0, we obtain the trivial model in which each individual has
exactly one offspring (u, = 1 for all n € [N]). For U = N we obtain a simple
model for which the Nth individual is the parent of all the N children of the next
generation (uy = N). From (2), it follows that the forward chain X has transition
probabilities

P

= (]{[)( Z P(Zunk:j)+ Z P(iunk:J_U)>
7 k k=1

1<n < <ny <N =1 1<n1 < <n;=N

w56 G Zg-0)
me(C)CG)
(NJ_U>+<]]VV__3)> = E<W> if j =1,

=)G=))

&=
TN TN
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For U = 2 this model reduces to the standard skewed Moran model with forward
transition probabilities P; ;1 = i(N—4)/(N(N—-1)),i € {1,...,N}, Piit1 = i(N—
i)/(N(N-1)),i€{0,....,N=1}, P,; =1-2{(N—i)/(N(N-1)),i € {0,...,N},
and P; ; = 0 otherwise. From (4), it follows similarly that, for 7,5 € {1,..., N},

E((51) (-541)

tSN) if j <1,
Py = E((TRUCE))
~ iy =1,
(7)
0 if j > 1.

Note that 13171 = E(U);)/(N);, i € {2,...,N}. In particular, the coalescence
probability is ey = 162’1 =E{UU-1))/(N(N—-1)), in agreement with [7, Equation
(2)]. For example, if U is binomially distributed with parameters N and p € [0, 1],
then ¢y = p?. Note that p = py may depend on N, so this model can have a wide
variety of effective population sizes N, = 1/p%;. For instance, if py = N™%, a > 0,
then N, = N2 is sub-linear for o < 1/2 and super-linear for a > 1/2. If pyy = AV,
A < 1, then N. = A~V grows exponentially. We will come back to this extended
Moran model in the following section.

In the following section we will introduce a skewed conditional branching process
model, which can be viewed as a particular skewed Cannings model. We will later
identify the attractor R of several concrete such population models.

3. SKEWED CONDITIONAL BRANCHING PROCESS MODELS

Let &1,&, ... be independent non-negative integer valued random variables and let
fn denote the probability generating function (pgf) of &, n € N. For any pgf g
and | € Ny we use the standard notation g’ for the Ith power of g (¢° = 1) and the
notation g() for the Ith derivative of g. Moreover, [z!]g(z) denotes the coefficient
in front of 2! in the Taylor expansion of g around zero. For N € N assume that
P& +--+&v = N) > 0and let g = (p1,...,un) be a random vector with
distribution

P(u=k) = P& =ki)---Pén =ky) _ [2M]f1(2) - [a"V]fn(2)
P +---+&v=N) [2N](f1-- - fN) (@)
k = (ki,...,kn) € A(N). The distribution of p is hence that of (&1,...,&n)
conditioned on the event that & + --- + &v = N. Note that, for n € [N], the

marginal variable u, has distribution

P&, = k)P(Eme[N]\{n} Em =N — k)
P+ +&v=N)

(] £ @) () T ey oy o (@)))

= S o) @) , ke{0,...,N}.

For each n € [N] one may interpret y, as the number of offspring of individual n
in a population with non-overlapping generations of constant population size N.
Note that p has pgf

Plp, =k) =

[2N](fi(z21) - fv (w2n))

(8)  E(x--2yY) = [N (fr-- - fa)(x) 7

lz1], .-y 2n] < 1.




POPULATION GENETICS MODELS WITH SKEWED FERTILITIES 9

Let ly,...,ly € Ng and put [ := 1y + -+ + Iy. Applying the ‘derivative operator’
(0" /01 21) - - (9 /O™ ziy) to the left-hand side and the right-hand side of (8), and
noting that it is allowed to interchange this derivative operator with the ‘coefficient
operator’ [#™V] in the numerator on the right-hand side of (8), it follows that

[N (T £ (@)
[N (fr- - fn) ()
Taking the limit z; ' 1,...,zn " 1 shows that u has descending factorial moments

NI ) (g
(9) E((u1)i, - (pn)iy) = [[xN]]((ETT.lJ{;)(;)))’

If the random variables &1, &5, . . . are identically distributed, then the model reduces
to the conditional branching process model first introduced by Moran and Watter-
son [23] and further investigated for example by Karlin and McGregor [11]. In this
case, for each fixed N € N, the random variables u1, ..., uy are exchangeable. Note
however, that in general it is not assumed here that the random variables &, &9, . . .
are identically distributed. In this sense the model is a bit more general than the
conditional branching process model of [23]. Particular classes and examples of the
model, which to the best of our knowledge are new or only briefly mentioned in
the literature, are introduced and analyzed in the following sections, among them
the skewed Wright-Fisher model (Section 5), the skewed Dirichlet model (Section
6), and the skewed Kimura model (Section 7). One may think that, at least for
fixed N, the model can be reduced to a simpler model by randomly permutating
the random variables &;,...,&y. However, this is not the case. If ny,...,ny de-
notes a random permutation of &1, ..., &y, then the random variables 7, ..., 7y are
identically distributed but in general not independent (not even uncorrelated) any-
more. In this sense the model is indeed more general than the conditional branching
process model of Karlin and McGregor.

On the other hand, for arbitrary but fixed N € N, the model is well known from
the literature in the following sense. Fix N € N and let v = (v1,...,vN) be a
random permutation of g = (u1, ..., un). As explained in Section 2, the model can
be interpreted as an exchangeable Cannings model with population size N and off-
spring vector v. Therefore, essentially all results known for exchangeable Cannings
models apply to our model, which simplifies our further analysis significantly. For
example, as explained in Section 2, the transition matrix of the forward process has
entries (2). Noting that, for any subset M of [N],

E((p)n 21" ()i 2 ) =

li,...,In € Np.

. IED(Z:meM &m =J) P(ZmG[N]\]M §m =N —j)
B im =) P&+ +&v=N)
(@I Lnens £ @) NI ey ar frn) ()
[2N](f1 - fn)(2) ’

it follows that the forward transition matrix P = (P; j); jes has entries
1 3 ()T Lnenr fr) @) (Y T ne e fr) (@) i
™) & V)1 fn) (@) Y

where the sum ) ,, extends over all subsets M of [N] satistying |M| = i. We
now turn to the backward chain. From (4) and (9), it follows that the backward

meM

(10) Piﬂ' = € S,
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transition probabilities are of the form

Y
Po =y 2

i/ 1<n; <--<n; <N

V=1 (8 (@) - 119 () e ing,.nyy fm(2))

.y — , 1,j €S,
w2 L LN ) @) g
1yl
it +lj=i
with the convention that ]31'70 = d0;0, © € S. In particular,
N [.N—ij ¢
~ 1 x n \T fm X
P iy = L Sn IO g o)
) 2~ BN ) (@)
and the coalescence probability is given by
. =~ 1 XN: [ 200 (@) T e pap gy Frn ()
N = I21 = .
(N)2 = [aN](f1- - fn) ()
Moreover, the eigenvalues \; := 13“ =®,(1,...,1),i € S, of the matrix P are given

by Ao =1 and

L [y @) S @) e iy S (7))
> (- fa) ()

)
i/ 1<n;<---<n; <N
forie{1,...,N}.

Remark. One may write ﬁ” in the form
~ 1 1

P = VRN @)
DR AR (TR S ) B [ IR A €)§

1<n; <---<n; <N me[N]\{ni,...,n;}

where (see, for example, [20, Eq. (18)])

. l;
i W@ g @

4! ! 1!
I Then 1 J
li4-+lj=1

Sglnu,gj,ﬂﬂ(ivj) =

are some sort of generalized Stirling numbers of the second kind, with the convention
that, fOI"j =0, Sgl,.“,gj}ac(iyj) = d;0, 1 € Np.

Remark. The class of the conditional branching process models covers a wide vari-
ety of Cannings models. However (see the following proposition), not all Cannings
models are conditional branching process models.

Proposition 3.1. The extended Moran model (see Example 2.4) is not a condi-
tional branching process model, provided that P(1 < U < N —1) = 1.

Proof. Suppose that the extended Moran model with population size N is a con-
ditional branching process model. Then, there exist independent and identically
distributed random variables &1, &, ... such that P(§; +---+ &y = N) # 0 and

P(vy = ki, ... ,vn = ky) = PE f’f{:;p&’jf;:N), k € A(N),
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where py :=P(&; = k), k € Ny. In particular,

1
0 # B )
N(yT)
= ]P)(Vlz"':l/NfU:]-aVNfUJrl:"':VNfl:anN:U)

E(py ~'pY Ypw)

P& +---+&nv=N)’

and, hence, p; # 0, since N — U > 1 almost surely by assumption. On the other
hand,

P& +---+é&v=N) P& +---+&v=N)

and, hence, p; = 0, an obvious contradiction. In particular, for N > 3, the standard
exchangeable Moran model (U = 2) is not a conditional branching process model.
O

It seems to be hard to derive further exact results or asymptotic results as N — oo
for the general skewed conditional branching process model. We therefore focus in
the following sections on important subclasses.

4. THE SKEWED COMPOUND POISSON CLASS

Let ¢ be a given power series of the form ¢(z) = > 7°_| ¢,2™/ml, |z| < r with
positive radius r € (0, 0o] of convergence and with non-negative coefficients ¢,, > 0,
m € N. We also assume that ¢; > 0. Let furthermore 61,60s,... € (0,00) be given
strictly positive real parameters. In this section it is assumed that, for each n € N|
the random variable &, of the skewed conditional branching process model (as
described in the previous section) has pgf

12 ho) = 565 = e (-0 (1-22)) <

o(2)
In (12), z is viewed as a fixed parameter. However, for the following approach we
also see z as a variable satisfying |z| < r. In order to state the following lemma we
need to introduce, for § > 0, the Taylor expansion

o0
Uk(a)zk’
k!

(13) exp(09(z)) = 2| <1,

k=0
of exp(6é(z)), seen as a function of z. Note that the coefficients o (6) are strictly
positive and they depend on the sequence ¢, := (¢, )nen. More precisely, the
coefficients o () satisfy the recursion o¢(6) = 1 and

k
(1) 7a®) = 03 () orna®), ket
=0

i.e. 0'1(9) = 9¢1, 0'2(0) = 9¢2 + 92 %, 0'3(0) = 0¢3 + 392¢1¢2 + 03(25:%, and so on.
Note that, for each fixed k € N, 04 () ~ (0¢1)* as § — oco.
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Proposition 4.1. If, for each n € N, the random variable &, has a pgf of the form
(12), then the forward process X of the associated skewed conditional branching
process model has transition probabilities

o (];,) Jj<Z’mEM am) ON—j (Z’ULE[N]\M em)
(15) Pi,j - @; UN(@N) ;

where O 1= 01+ --+0n, the sum )y ,, extends over all subsets M C [N] satisfying
|M| =i, and the coefficients o1, (0) are recursively defined via (14).

i,j €5,

Proof. For j € [N], § > 0 and |z| < 1, it follows from (13) that

) = o0 050
(Plexpitsn) = W13 B = S %
Using, for M C [N], the shortage  := >,/ 0, it follows that
J z) = [2lexp| — z - ¢(z2)
P ) = e (-0 (1- 5
— exp(~00(2)a?] exp(B(za)) = exp(~60(z)) A7,
Thus, (15) follows from (10). O

Remark. For the unbiased case, when the parameter #,, = 0 does not depend on
n € N, (15) reduces to

- (N o;(i0) on—;((N —i)0)
Ha = <J) on(NO) )

i,j€S.

Let us now turn to the backward process.

Proposition 4.2. If, for each n € N, the random variable &, has a pgf of the form
(12), then the backward process X of the associated skewed conditional branching
process model has transition probabilities

S ! Ull(enl)”'o—lj(enj) ..
(16) P, = > > =, 4,j€eS,

s A
i(On) 1<ny<-<n;<N ly,... ;€N 1 J
li+-+lj=1

with the convention that ]31»70 = 0j0, 1 € S. Here Oy := 01+ --- 4+ On and the
coefficients oi(0) are recursively defined via (14). In particular,

~ 1
Py = ‘7201'(911), ic{l,...,N}.

Proof. From Kolchin’s representation formula [13] (see also [25, Chapter 1, Theorem
1.2]), it follows that u = (p1,. .., un) has distribution

N

Plu=h) = 2o TT 250 b= () € AW,

n=1
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Therefore, 1 has joint descending factorial moments

N
(N)iy et
E RS = — =228 _ |1 (0,), li,...,In € No.
(()1y) - (v 1) 011+-~~+lN(@N)nl;[1 1, (0n) 1 ~ €Ng
The probability (6) is therefore of the form
1 N
i(lsnly) = ~m—— E((pni )1y -+ (i 1)
J J (N)l1+"'+lj nl,h;jZI 1 3/
all distinct
1 N
= — Z 01, (Ony) 01, (0n;), l1,...,0; €N

Oy 441, (ON)
all distinct

Using (7), it follows that

~ 3l D(ly, ..., 1;
P = & Z M
;!

. 7! i Z gl (0n1) o glj (9”1)

ni,...,n;=1 11,..,l;€EN
all distinct I 4---41;=1

il 1, (0ny) -+ 01, (0n;)
= Z Z 10 :
7i(On) 1<ni<-<n; <N ly,..,;EN bl

L1t +lj=1

O

Let us now focus on the unbiased case, when all the parameters 6,, = 6 are equal to
some constant 8 € (0,00). It turns out to be convenient to introduce, for any formal
series a(z) = Y po; axz"/k! or, equivalently, for any sequence a. := (a1, as,...), the
Bell polynomials

il . 1! ap, -+ -a .
(17) Bij(a) = ?[z](a(z))J =g >, IR i,J € No.
li,...,l ;€N J

L4l =i

Note that Bog(a) =1, B;o(a)) = Boi(a) =0, B, 1(a)) = a; and B; ;(a)) = a} for
i € N. For more information on these polynomials we refer the reader to [2] and
Chapter 1 of Pitman [25].

The following theorem provides exact and asymptotic formulae for the transition

probabilities F; ; and clarifies that the unbiased compound Poisson class is in the
domain of attraction of the Kingman coalescent.

Theorem 4.3. If 0, =0 € (0,00) for all n € N, then

5 (V) .
(18) P = ai(eN)Bi’j(U'w)) i,j €8,
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where the B; j(0.(0)) are the Bell polynomials of o (6) = (01(0),02(0),...). In
particular,

(19) P = m ie{l,...,N}.

Moreover, fori,j € N with i > j, the asymptotics

5 Bij(0.(6)) 1
. T oy M

N — o0,

holds, and, in the sense of Definition 2.3 a), the model is in the domain of attraction
of the Kingman coalescent in the sense of Definition 2.3 a).

Proof. Since 6,, = 6 does not depend on n, the formula (16) reduces to (18) thanks
to the formula (17) for the Bell polynomials. For j = 1, (18) reduces to (19), since
Bi1(0.(8)) = 0;(8). For i,j € N with ¢ > j and for all N > i it follows that

5 (N); NI _ Bij(a(9) 1

2,7 O'Z(QN) 1,7 (U~ (9)) (6N¢1)Z %57 (0(6)) (9¢1)Z NZi] )
which is (20). For j =1, Eq. (20) reduces to
Fa 0'1(0) 1
D, ~ N .
i1 (0p1)i Ni T — 00

Thus, we obtain
dl ?371 03(9) 1

= == ~ ———~— — 0.
CN P271 9(]5102(9) N
By [19, Theorem 4 (b)], the model is hence in the domain of attraction of the
Kingman coalescent. O

Remark. Theorem 4.3 in particular provides explicit exact formulae for the coa-
lescence probability cy = P 1 and for dy = P31, namely
Nos(6) N (02 + 0°¢7)

(21) N T 5(ON) ~ ONogy + (ON)252

and

g — Nos(®) _ N(0¢3 + 30 p192 + 8°¢F)

N7 03(0N) T ON¢s + 3(0N)2¢16s + (ON)3¢F
Note that only the first three coefficients ¢1, @2, and ¢3 of the function ¢ are
involved here.

Example 4.4. (Wright-Fisher model) For the Wright-Fisher model, ¢(z) = z,

ox(0) = 0%. From B, ;(0,0%,...) =0'B; j(1,1,...) = 6'5(i, j), where the S(i, j) are
the Stirling numbers of the second kind, it follows that

5 (V) (N);

i = 5.5(0.(0)) = -

5J O'Z(QN) 7](0- ( )) (QN)Z

0°S(i,5) = (N);N~'S(i,7),

which is well known. For results concerning the skewed Wright-Fisher model we
refer the reader to Section 5.
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Example 4.5. (Dirichlet model) Suppose that ¢(z) = —log(l — 2), |z| < 1, i.e.
¢m = (m — 1)1, m € N. Then, o,(6) = [0]x, k € N, and, hence,

Py = Mg ey = 2 (Y [Oh, 161,
i = [aN}iB”(W]') [HN]i(j> h;;eN AN
li4-+lj=i

Results on the skewed Dirichlet model are presented in Section 6.

We briefly mention two further examples, showing the wide variety of models we
are concerned with.

Example 4.6. Let o € (0,1] and assume that ¢(z) =1 — (1 — 2)%, |z| < 1. Then,
Sm = (=1)""Ha)m = a[l —a]m—1 >0, m € N. Note that ¢(z) - 1lasz— 1, a
smoothness property of ¢. For z — 1 the random variable &; has a discrete stable
distribution with pgf E(z%) = exp(—0(1 — z)%) (see, for example, Steutel and van
Harn [29, Eq. (3.7)]) and tail asymptotics P(§; > y) ~ Oc,y™ as y — oo, where
Co = sin(ma/2) cos(ra/2)[(«)/(7/2) (apply, for example, Pitman [24, Theorem
1]). Note that ¢; = « and that ¢2 = af with § := 1 — «. Thus, from (21), it
follows that

CN = P271 = N.

N(fap + 0%a?) L+ B 1
ONas + (ON)2a? O

Thus, N, = 1/ex ~ pN with p:= (1 + 3/(0a))~! < 1.

Example 4.7. Let o € (0,00) and assume that ¢(z) = (1 —2)"* -1, |z| < L.

Then, ¢, = [@]m, m € N. Note that ¢(z) — oo as z — 1. The random variable
&1 has a compound Poisson distribution with negative binomial jumps and pgf

E(a%) = exp(—06(2)(1 — ¢(22)/4(2))), |2 < 1. By (21),
_ N(Ba(a+1)+6%a?) a+1\1
o= ONa(a+1) + (ON)2a? ~ < O )N'
Thus, N ~ pN with p:= (1 + (1 +a)/(fa))™! < 1.

Theorem 4.3 clarifies that a large class of unbiased conditional branching process
models is in the domain of attraction of the Kingman coalescent. For the skewed
situation the asymptotical behavior of (16) as N — oo is much more involved. In
the following sections we focus on particular skewed population models. It will
turn out that these models are not necessarily in the domain of attraction of the
Kingman coalescent.

5. SKEWED WRIGHT-FISHER MODEL

Let mq,ma,... € (0,00) be given parameters and assume that &, is Poisson dis-
tributed with parameter m,,, n € N. Since &, has pgf f,(z) = E(zé) = e=mn(1-2),
n € N, it follows that this model belongs to the skewed compound Poisson class
(12) with ¢(2) := z and 6,, := m,,/z. Moreover, from (8) and (9) it follows that
1 has a multinomial distribution with parameters N and sy n,...,5n,n, Where
SpN = myp/(m1 + -+ mpy), n € {1,...,N}. We shall often drop the in-
dex N and use s, instead of s, ny for notational convenience. Fertile individuals
(with large s,) are viewed as fitter in a much debated propensity interpretation
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of fitness, [1]. This fitness of individuals is closer to the Darwinian view of fit-
ness than to the Fisherian view of fitness as a fitness of types. Note that p has

pgf E(z{" - 2AY) = (s121 + -+ + snan)Y, |21, ., ]2n] < 1, and descending
factorial moments E((11)1, -~ (un)in) = (N)ish -85, 1h,...,Ixn € Ny, where

l:=1y+---+Iy. The pgf of the nth marginal g, is E(z£%) = (1 — s, + 2p5,)%,
|zn| < 1, showing that w,, has a binomial distribution with parameters N and s,,.
In particular, E(u,) = Ns, and 02 := Var(u,) = Ns,(1 —s,), n € {1,...,N}.
From the above formula for the descending factorial moments of p, it follows that
E(pin, tiny) = N(N — 1)8p, Sn, for ny,ne € {1,..., N} with ny # ns. In particular,
Cov(fin, s fhny) = —NSp, Sn, for ny # no.

The expression (10) for the forward transition probabilities P; ; simplifies to

(22) P; = (]1V) > (f)(é:lsnk)jﬁ—i:snk)]v_j, i,j €S,

i/ 1<n;<---<n; <N k=1

Similarly, (11) reduces to
B

1
. 1 1. .
(23) = 'L! E W E 877}1 . .S’I’g]" 1,] S S,
LooleN VT 1gn) <ocn <N
li+-+lj=1

which, for j = 1, yields ﬁi,l = ZN st ie{l,...,N}. Fori=2andi=3, we

n=1°n’
obtain
N N
CN = P2’1 = E 872L and dN = P3’1 = E Si.
n=1 n=1

Note that ¢y = Zivzl s2 > 1/N. In particular, N, := 1/ey < N, so the effective
population size is smaller than or equal to the effective population size in the

unbiased case. Applying the Holder inequality >, |anb,| < (32, a2)V/2(3, b2)1/2

with a,, 1= 571/2 and b, := siﬂ shows that ¢y < d%{ or, equivalently, that cy <

dn/en. On the other hand, since the Euclidian 2-norm is larger than or equal to
the Euclidian 3-norm, we obtain c%z > d%g, or, equivalently, dy/cy < c}v/Q. Thus,
ey <dny/en < C}\{Q and, as a consequence, ¢y — 0 is equivalent to dy/cy — 0.
Thus, if cy — 0, then the skewed Wright-Fisher model is in the domain of attraction
of the Kingman coalescent as N tends to infinity.

Choosing i = j in (23) shows that the backward matrix P has eigenvalues \g = 1
and R
A = Pi,i = 4! Z Sny Sy ZG{l,,N}
1<ny < <n <N
By duality [18], these are also the eigenvalues of the forward transition matrix P.
Note that 1 = A\g = Ay > Ay =1 —cy > Ao > --- > An. In particular, the

eigenvalues A1, ..., Ay are pairwise distinct. Coming back to the random variables
1,..., N we see that the average covariances of the u,,’s is
1 2 1—cn
TNy Z COV(Mnnunz) = _Ni Z SniSny = — N .
(3) 1< -1 -1
<ni<n2<N 1<ni1<na<N
Let

N N
_ I ERps) 1
Sv o= D TN Hn = anzlsn“"

n=1
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be the size-biased relative mean offspring fertility. The random variable Sx has pgf

E(5%) = E((z /Ny ... (z5v/N oy — (ZS an/N> ’

showing that E(Sy) = ¢y and that Var(Sy) = (dy — ¢&)/N, which provides an
alternative proof of the inequality dy > c%;.

For the Wright-Fisher model, the moments of X1, given X; = 4, can be related
to the backward probabilities as follows. For j € N, we have

s %= = gy ¥ 5((Sm))

i/ 1<n;<---<n; <N

_ (iv):zlsa,j)(mz 2 (k_>l

1<ni<---<n; <N

Using

7 1 1
Z <ank) = Z(A_[—k)ﬁl,k,
1<n<--<n; <N k=1 P i —k

where 1731’;C is defined in (23), we get

- 1 LN K 5
E(Xg+1‘Xt:i) = TZSZJ lz(l—k)Pl’k

=1 k=1
! S (k5

= ) SUIHNY) 1k
=1 = (V)&

which is a polynomial of degree j in 1.

For the Wright-Fisher model, there are the following two alternative representations
of the backward transition probabilities (23).

(i) It can easily be checked that

(24) P,

1,3

= N7(N);S(i,5,Ns),

where s := (s1,...,sy) and

(25) S(@i,j,s) == ;"[x](]lv) Y e -

J/ 1<n1<---<n; <N k=1

are generalized second kind Stirling numbers. Note that, when E(u,) = Ns, =1
for all n € [N], (25) reduces to the usual second kind Stirling numbers S(3, j) =
(z'/] )[z%](e® — 1) (see [6, vol. I, p. 144]). The unbiased version of (24) is thus
P; j = N74N);S(i,j), which is well-known. Note that (24) and (25) also yield

13 ;= dl[z'2] H (14 2(e"" — 1))
n=1

showing that, as shown in [16],

N
E(Z}?t+1|‘)?t — Z — 1 + Z zSn _ 1)),

n:l
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and for the double pgf

N

Z%E(Zj(’t-f-l‘jzt:i) — H(1+Z(6IS" _1)).

i n=1

This leads in particular to E(X,41|X; = i) = Zgil(l — (1 —s,)%) and

() %)

=10 —-1=s)) = D (1= 50) = (1= (5, +5m2))").

1<na<n <N

HMZ N

(ii) There is a second obvious representation taking into account repetitions, in
the spirit of the Ewens sampling formula [8]. Assume there are a; individuals at
generation ¢, numbered 1 < ny; < --- < ng,; < N, producing exactly [ offspring,
I € {0,...,N}. Clearly, there is no overlap of the above number sequences for
different values of . Then, using (23)

) > Yy (%)
lay=i; 1=1n1,1<-<ng,1l=1k=1

a;=j

.
f=1
n (26), there are

ﬁ(N Ek 1ak) _ (N)J
=1 @ H;:l a!
sums of the type j_, Y ny <.<n,, , 1 so that when s, = 1/N for all n € [N] (the
, ar,
unbiased case),
l
; i Hl— allllal

;1“13

where the last sum is an alternative representation of the second kind Stirling
numbers S(i, j) (see [6, vol. I, p. 145]).

Example 5.1. (power law growth) Fix a constant o € R and assume that m,, :=
E(&,) = n~% n € N. The unbiased case (m,, = 1 for all n € N) corresponds to
a = 0. In the following seven ranges for the parameter o are distinguished.

(i) If @ < 1/3, then My := Y0 mp, ~ N [ (Nz)~%dz = N*=*/(1 - ),

N 2 _
1 1—a)\ N2 (1-a)?
2 = —2a =
27) Nz ;” (Nl—a) 1-20  (1-2a)N

and, similarly,

PN e S 1—a\*Ni3  (1-a) 1
N Mf\’,;n T \N'-e) T-3a = 1-3a N?'
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(i) If a = 1/3, then (27) still holds, i.e. ¢y ~ 4/(3N), but
N 3

1 1 11—« 8 log N

dv = WRZ: . (N) logN' = o2 o

(iii) If 1/3 < @ < 1/2, then (27) still holds, but

1 N 3 1—a\® 1
dy = WZn* >~ <]\71—(X> ((Ba) = (17(]) C(ga)N?)(l—a)’

N p=1
where ¢ denotes the Riemann zeta function.

In all the three cases, i.e. for a < 1/2, we have N, = 1/cny ~ pN with 0 < p :=
(1 —2a)/(1 — a)? < 1. The effective population size is hence asymptotically of a
factor p smaller than the effective population size N in the unbiased case (a = 0).

Moreover, from (23), it follows that the eigenvalues satisfy

~ 1l
>\i = Piﬂ' = ]\;,l Z (nl...ni)*a ~ <N1 a> Z'Zn O‘]\4]\]712

N 1<ni < <n; <N n=t!

where My (n, ) is the number of multiplicative partitions of n into ¢ ordered distinct
factors each belonging to {1,..., N}.

We will now see, that N, can increase, but of order slower than V.

(iv) When a = 1/2, it is readily checked that My ~ 2N/2 ¢y ~ (log N)/(4N),
and dy ~ ((3/2)/(8N3/?). Thus, N, = 1/cy ~ (4N)/(log N) is asymptotically
of a factor 4/(log N) smaller than the standard effective population size N in the
unbiased case.

v) Assume now that 1/2 < a < 1. Then, still My = N: n~ ~ NI=2/(1 - q),
n=1

(1-a
CN = M2 Z ~ N2(1 Z)C( @)

and, similarly,

N
1 -3 (1-a)?
WS gt e (G0)
Note that, with p := 1/((1 — @)?¢(2)) < 1, N. ~ pN?(1=%) grows algebraically
and the order is slower than N.

(vi) For o = 1 it is straightforward to check that My ~ log N, ey ~ ((2)/(log N)?,
and dy ~ ((3)/(log N)3. Note that N, ~ (log N)?/((2) grows quite slow (logarith-
mically).

For all the six cases (i) - (vi) considered so far, i.e. for o < 1, we have ¢y — 0 and
dn/en — 0. Thus, in the sense of Definition 2.3 a), the model is in the domain
of attraction of the Kingman coalescent. Thus, for each sample size n € N, the
[3)CN]),5€[O,OO) converges weakly to the Kingman n-
coalescent as N — oo. All that is left about the details of the original discrete
fertility model (m,, = n~%) is enclosed in the parameter N, = 1/¢y < N, where N
is the time-scale of the unbiased Wright-Fisher model (m,, = 1).

time-scaled backward process (R(
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(vii) Assume now that a > 1. Then, My = 25:1 n~%* — ((a) =: M, and,

~ . ) 1 . C('La) .
Py = ®.(i) = sy, = - n_ 'Y — - 1€ N.

20 RS )y
In particular ey — ¢(2a)/(¢(a))? > 0 and dy — ((3a)/(¢(a))® > 0. The regime
a > 1 thus differs significantly from all the previous studied cases, since the coales-
cence probability converges to a positive constant as N — oo. More generally, for

li,...,l; € N, we have to analyze the behavior of
N
(N) _ Z Iy l;
(I)j (ll,...,lj) = Snl,N”'snj,N
ni,...,n;=1
all distinct

as N — oo. For each fixed n € N we have s, v = n%/My — n /M =
n~*/¢(a) =: pn as N — oco. Note that Y.~ p, = 1. Moreover, s, y < n™®
uniformly for all N, since My > 1. Thus, by dominated convergence, for each
l,...,l; € N, the limit ¢;(l1,...,1;) := limy_oe ®"(I1,...,1;) exists and is of
the form

(28) Sl ) = > pl el
n1,...,m; EN
all distinct
For arbitrary 4, j € N it therefore follows from (23) that
. D _ 1! ¢j(l1,...,lj>
) R R D Dl nreer
l1,...,l;€EN
Lit-+l=i

It is convenient (see, Schweinsberg [27]) to rewrite (28) in integral form as

- 2(dz)
(..., ;) = g Lo, 134(
¢]( 1, ) J) /A xnl xnj (I,I)7

all distinct

where A := {(z1,22,...) t &1 > @2 > - > 0,3 0" x, <1}, (v,2) =Y 00 22 for
z € A and the measure = on A assigns its total mass Z(A) := (p,p) =Y o0, p2 =
¢(2)/(¢(0))? to the single point p = (p1,p2,...) € A. Theorem 2.1 of [21] ensures
that the model, without any time-scaling involved, is in the domain of attraction
(in the sense of Definition 2.3 b)) of the discrete-time =-coalescent with the measure

= as just defined.

Example 5.2. (geometric growth) Fix a constant A € (0,00) and assume that
m, = A", n € N. The unbiased case corresponds to A = 1, so without loss of
generality we assume that A # 1. Two cases need to be distinguished.

(i) Suppose that A € (0,1). Then, My = S0 A" = A1 = AN)/(1 = )) —

n=1
A/(1—X)=:M as N — oo and
5 1 ; L= \"X(1 =)
! M, ; A1 — AN) 1=\
(1=N)F 1—\N (1=

TN (I=ANy © 1N
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In particular,

(1—X)2 122N 1—A

122 1-aN2 7 T+ x

For arbitrary 4,5 € N it follows similarly as in the previous Example 5.1 (vii) that
the limiting formula (29) for ]3” holds, but in the formula (28) for ¢;(l1,...,1;),
the parameter p, has to be replace by p, := A"/M = (1 — M)A\"~! n € N. For
instance, the diagonal entries ]3” of the matrix P satisfy

cy = P =

A}i_rfloopi,i = ¢i(l,...,1) = Z Pny = Pn;
N1y...,n; EN
all distinct
11—\’ o 11— .
- < \ ) Z A = < \ > Z A" A(n, i),
ni,...,n; EN n>i(i+1)/2
all distinct
where A(n,i) is the number of vectors (ni,...,n;) € N¢ with pairwise distinct

components satisfying ny + --- + n; = n. This example essentially coincides with
Example 5.1 (vii). Again (see [21, Theorem 2.1]) the model is the domain of at-
traction (in the sense of Definition 2.3 b)) of a discrete-time =-coalescent, where
the measure = assigns its total mass Z(A) = (p,p) = (1 — A)/(1 + \) to the single
point p := (p1,p2,...) € A.

(ii) Suppose that A € (1,00). Then, My = ZT]:[:I A= AN —1)/(A-1) ~
ANFL/(X —1). The situation is hence a bit more complicated than in the previous

case (i), since My does not converge anymore. We have
N

~ 1 ) 1 AN _q A—1 i AN (/\_1)1'
Py = 7 A= —\'— ~ ( ) A — ~ . .
MN,; M, A-1 AN+1 At —1 At —1
In terms of the inverse parameter b := 1/, this formula takes the form ﬁi’l —

(1 —b)*/(1 — b), which has the same structure as (30), but with X replaced by its
inverse b. It is hence reasonable to proceed in the same way as in the previous case
(i), but with A replaced by b. Thus, for n € N, define p,, := (1-b)b""1 = (A—-1)/\",
n € N. For arbitrary 4,j € N it follows from (23) that (29) holds with

N
R : nili4---+n;l; ! 1
(bj(llw--;lj) = NhEgO M E Al 7= § pnllp,{J
N ni,...,n;=1 NYyeens n; €N
all distinct all distinct

The last equality is slightly more involved than in Example 5.1 (vii) and Example
5.2 (i), since My does not converge. We suggest to check this equality first for
j = 2, which should provide sufficient insight for arbitrary j € N. We provide
in the following the explicit expression for ¢o(l1,12). Note that Y~ pl = (1 —
b!l/(1-b)=\-1)! (N —1),1€N. Thus,

oo oo oo
Go(lilo) = > phiplz = > P > plz = plith
n=1

ni#ns ni=1 no=1

4
n

A=D1 (A-1f  (A-1)hth
Ni—1 N2—1 ot —]

1 1
_ 1)t _
=0 (i ~ )
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The conclusion is that (28) and (29) are satisfied, so the model is in the domain of
attraction of a Z-coalescent, where the measure = assigns its total mass Z(A) :=
(p,p) = >0, p2 = (1-0b)/(1+b) = (A—=1)/(A+1) to the single point p =
(p1,p2,...) € A.

Remarks. 1. Other particular examples could be investigated, for instance a
Wright-Fisher model with oscillating fertilities m, := sin®n, n € N. For this
model, My = 22[:1 my, ~ N/2, 5, ~ 2(sin’n)/N,

~ N 4 1 3
ey = P2y = Zsi ~ N/o sin4(Nx)d;U ~ooN 0,

n=1

and dy = O(N72). Thus, N, = pN with p = 2/3. This model is in the domain
of attraction of the Kingman coalescent. Note that My /N — 1/2. This examples
therefore belongs to the class of models for which My /N — m for some constant
m € (0,00). For skewed Wright-Fisher models having this property, it follows that
(t1,..., 1N, 0,0,...) converges weakly to (11,72, ...), where 11,72, ... are indepen-
dent random variables and 7, is Poisson distributed with parameter m,,/m, n € N.
The random variables u1, ..., uy are therefore asymptotically independent.

2. Assume that m,, = A"" for some A > 1 ( (super-exponential growth of fertilities).
Then, My = 25:1 My ~ AN’ has the same asymptotic behavior as the single last
summand my, and it follows that

1 N
Pi,l = 7 Zm?n - 15 i € N.
MN n=1

In particular, ¢y — 1. For i € N and j € N\ {1} we conclude that 13” < 1713@1 —
0. This model is hence in the domain of attraction of the star-shaped coalescent,
i.e. the E-coalescent with = being the Dirac-measure at the point (1,0,0,...) € A.

3. One could, for example, also be interested in a more general Wright-Fisher model
with multiplicative mixed power-geometric growing fertilities m,, = n=*A™, where
a € R and A > 0. We leave the analysis of such more complicated models for the
future or the interested reader.

6. SKEWED DIRICHLET MODEL

Consider the model where &, has a negative binomial distribution with pgf f,,(z) =
(p/(1 — gx))®, where a,, > 0, p € (0,1), ¢ := 1 — p. Note that m,, := E(§,) =
(p/q)an, n € N, and that this model belongs to the skewed compound Poisson class
(12) with 6,, := an, ¢(z) ;== —log(l1 —2) = > °_, 2™ /m, and z := ¢. In this case u
has the asymmetric Dirichlet multinomial distribution

(T (RN N (g, - [an]ky

(ANJJFVN—1) k) ky! [An]N ’
k= (ki,...,kn) € A(N), where Ay := a1 + -+ + ay. From (10), it follows that

the forward process X has transition probabilities

o
P = L2

i/ 1<n;<---<n; <N

P(u=k) =

(anl +;.+an]‘) (AN*(GT]L\}:L;"jLa"J’ ))
(ANJ;VNfl) '

i,jES.
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Note that pu has joint descending factorial moments

E((p) -+ (uN)iy) =

li,...,In € Ny,
where [ ;= l; + -+ + Ix. In particular, E(u,) = Na,/An, n € {1,...,N}. We
conclude from (11) that the backward process X has transition probabilities

B 7! ’ [an, ], iic S
7D 2 1= wies
[An]: 1< = w
<Ny < <n; KN U0l EN k=1
L=

with the convention that ]31'70 = 0;0. In particular, ]311 = ([An]i)~? Zgzl[an]i,
i1 €{l,...,N}, and hence,

= Py = n(an+1) > 0.
CN 2,1 AN 1 Za ay, +
From a, /Ay < (an +1)/(Ax + 1) it follows that cx > SN (a,/A,)2 > 1/N, or,
equivalently, N. = 1/¢y < N. Moreover,

1 N

dyv — Paq — n(an +1)(an, +2) > 0.
N 3.1 AN(AN+1)(AN+2);Q (a ) )

It is now verified that ¢y — 0 if and only if dy/cy — 0. The basic idea of the
proof is the same as for the skewed Kimura model, however, the technical details
are a bit more involved. We have

o\ 2 N2

n n

max | —— < E —_— < ¢n.

1§n§N(AN> - 1(AN> =
n—=

Thus, maxi<n<n(an/AN) < C}V/2. Moreover,

o= e < L ()
(1<n<N AN> Z /f; ?4”1\; +1 Z :1:; ?473\;—:11
= (L ZZ)CN "y < ' AQTVCN

Thus, dy/en < c}f +2/AnN. Suppose now that ¢y — 0. From the formula for ¢y
it is readily seen that cx > a?/[An]2. Thus, [Ax]2 > a?/cy — oo. It follows that
AN — oo and, hence, dy/cy < 0%2 +2/ANn — 0. Conversely, if dyy /ey — 0, then
ey — 0 (see [19, p. 989)] or [22, Lemma 5.5]). Thus, the two conditions ¢y — 0
and dy /ey — 0 are equivalent.

Example 6.1. (power law growth) Suppose that a, := n™% for some constant
a € R. Five ranges for the parameter « are distinguished. For a € (—o0,0),
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Ay ~ N7 /(1 —a) — oo,

N N
1 , (-2l 1 s (-1
N L Togey My~ g e~ g

n=1 n=1
For a = 0 we have cy = 2/(N +1) ~ 2/N and dy = 6/((N +1)(N +2)) ~ 6/N2. If
a € (0,1), then ey ~ 1/Axy ~ (1 — a)/N'=® and dy ~ 2/A% ~ 2(1 — a)? /N2722,
If « = 1, then ¢y ~ 1/logN — 0 and dy ~ 2/log? N. In all these four cases
considered so far we have ¢y — 0 and dy/cy — 0, so the model is in the domain
of attraction of the Kingman coalescent. Suppose now that o € (1,00). Then,
Ay = Zgzl n" — A= C(a) > 1, 22;1 an(an + 1) = Zg=1(n72a + nia) -
¢(2a) + ((), and, hence, cy — (€(2a) + ¢())/[¢(a)]2 > 0. Similarly, it follows

that
¢(3a) + 3¢(2x) 4 2¢ ()

lim dy = .
N=oo " T ((a)(Ce) + D(¢(a) +2)
For 117...,lj EN\{l} anszi::l1+~~+lj,
1 N
Di(ly,...,l;) = an Q1
ol = g 3 Lol
all distinct
1
- [A]; Z [an, i, - [an, ]y
7117...,71j€N
all distinct

. Z [anl]Q T [an_j]Q [an1 + 2}11—2 e [anj + 2]1.7‘_2

n1,...n €N [Al2; [A+25]i—2;
all distinct

= Z w(ni,...,n;) (DY 2 "Diffz),
’I’Ll,...,’I’LjEN

all distinct
where w(n,...,n;) == [an, ]2+ [an,]o/[Aly; and (Dp,, ..., Dy, 1= 34 Dy,) is

Dirichlet distributed with parameters 2+an,,...,2+a,, and A=>"]_, a,,. Thus,
the limit ¢;(l1,...,1;) == limy_oo ®;(l1,...,1;) exists and is of the form

¢l ...\ 1) = /A a2y T A (L day),

J

where A; = {(@1,...,2;) €[0,1]9 : 21 +--- 4+ z; < 1} and the measure
(31) Aj o= Y w(m,...,n)P(ny,. .. ny)

ni,...,n; EN

all distinct
on the simplex A; is an infinite mixture of the distributions P(ni,...,n;) of
(Dnys- -y Dyp;). Note that the weights w(ny,...,n;) sum up to a finite value,
so A; is a finite measure. The measures A, Ag, ... completely characterize the lim-

iting coalescent process with simultaneous multiple collisions. The model is in the
domain of attraction of this coalescent process. So far we have not been able to
identify the characterizing measure = of this coalescent.

Example 6.2. (geometric growth) Suppose that a, = A™ for some constant A €
(0,00). The unbiased case corresponds to A = 1.
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(i) If A < 1, then Ay — A :=\/(1—X), so Ay converges. We are hence essentially
in the situation of Example 6.1 with o > 1. All results there are valid, but now with
A =MX/(1-)) (instead of A = ((a)) and with a,, = A" (instead of a,, = n%). In
particular, the characterizing measures Aq, Ao, ... of the limiting coalescent process
with simultaneous multiple collisions are again infinite mixtures of the form (31).

(ii) If A > 1, then Ay = 25:1 A"~ ANHL/(N — 1), so Ay does not converge.
We are hence essentially in the situation of Example 5.2 (ii), and it follows in
the same way that the measure = of the limiting Z-coalescent assigns its total
mass Z(A) = (A —1)/(A + 1) to the single point p = (p1,p2,...) € A defined via

prni=A—=1)/A", neN.

7. SKEWED KIMURA MODEL

In this section an example is presented which — in contrast to the skewed Wright-
Fisher model studied in Section 5 and the skewed Dirichlet model considered in
the previous Section 6 — does not belong to the skewed compound Poisson class.
Suppose that for each n € N the random variable £, has a binomial distribution
with pgf f,(z) = (pzr + ¢)%, where a,, € N, p € (0,1) and ¢ := 1 — p. Note that
my, = E(&,) = pan, n € N. Then, p = (p1,...,pun) has a multi-hypergeometric
distribution of the form
() 53)

IP)(.“ = k) = AN ,
(%)
where Ay := a; + -+ + an. Note that P(u, < a,) = 1, i.e. the number u,, of

offspring of individual n is almost surely bounded by a,, n € {1,...,N}. From
(10), it follows that the forward process X has transition probabilities

_ b
P ; (N) Z

i/ 1<n;<---<n; <N (A]\I/v) ’

k= (ki,....ky) € A(N),

((Ln1 +;-+ani) (AN*(GTJL\}:;”+“M ))

i,j €S,

Note that p has joint factorial moments

N
(1) (1) = b () (), e,
w) ) = )
In particular, E(u,) = Nan/An, n € {1,...,N}. From (11), it follows that the

~

backward process X has transition probabilities

~ 1 G, Qn. L

PiJ = (AN) E E I l_J ) 27]€Sa

i ) 1<ni<<n;<N Iy,...,1;€N 1 J
l1++l]=7,

with the convention that ﬁw = 0,0, 1 € S. Note that ﬁi’l = ((An)i)~ ! ij:l(an)i,
i€{l1,...,N}, and, hence,

1 N

N
~ ~ 1
cy = Py = an and dy = P31 = an)3.
N 2,1 (An)s 7;( )2 N 3,1 (An)s nz::l( )3

The coalescence probability ¢y can be smaller than 1/N (choose for example a,, = 2
for all n € Nleading to cy = 1/(2N—1)), so the effective population size N, = 1/cy
can be larger than N. We have ¢y = 0 if and only if a,, =1 for all n € {1,...,N}.
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For the rest of this section it is assumed that a, > 1 for at least one index n € N
such that ¢y > 0 for sufficiently large V. In the following it is verified that ¢y — 0
if and only if dy /ey — 0. From (a, —2)/(An —2) < (an — 1)/(An — 1) < an /AN
it follows that

ap, — 2 an(an, — 1) Y a (an — 1)
n < n n < n n — .
121na§XN <AN—2> - 12}?ng AN(AN—l) - TZAN(AN_l) N

Thus, maxi<n<n((an —2)/(An — 2)) < cjl\{2, and consequently

an(an, — 1)(a, — 2)
d =
N ZANAN—1 YAy — 2)

an — 2 3/2
= <
<1<n<NAN—2>ZAN AN—l <lg}na<XNAN—2>CN = N

or, equivalently, dy /ey < C%Q. Therefore, if cy — 0 then dy /ey — 0. Conversely,

if dy/en — 0, then a fundamental result from coalescent theory (see, for example,
[19, p. 989)] or [22, Lemma 5.5]) ensures that the condition ¢y — 0 is satisfied
(even for arbitrary Cannings models). Thus, whenever ¢y — 0 as N — oo, the
model is in the domain of attraction of the Wright-Fisher diffusion (forwards in
time) and of the Kingman coalescent (backwards in time).

IN

Example 7.1. (power law growth) Fix K € Ny and suppose that a,, = n® . neN.

The unbiased case corresponds to K = 0. Then, Ay = Zgzl nf ~ NEF1/(K +1)
and, hence,

N N 2
1 S () ~ LGm K+1\" N2+ (K +1)% 1
)2 = A3 NE+1 ) 2K +1 2K+1 N’

n=1

Thus N, = pN with p:= (2K + 1)/((K + 1)?) < 1. Similarly,

i 3K K41\’ N3+ (K 4+1)3 1

" NEFT) 3K +1 ~ 3K +1 N?'

In particular, ¢y — 0, so the model is in the domain of attraction of the Wright-
Fisher diffusion (forwards in time) and of the Kingman coalescent (backwards in
time). This example essentially coincides with Example 5.1 (i) with o := —K.

Example 7.2. (geometric growth) Fix an integer parameter A > 2 and suppose
that a, = A", n € N. Then, Ay = >N A" = AAN = 1) /(A= 1) ~ ANFL/(A = 1).

n=1

It is therefore reasonable to proceed as in Example 5.2 (ii). Thus, define b := 1/A
and p, == (1 —=b)b" "1 = (A —1)/A", n € N. We have

2

N .
)\n 1 Z )\ni — 1 )\l )\ZN -1
AL N1

n:l n=1

A—1 ii)\iN A=1)7F  (1-b)
(/\N+1>>\/\i—1 TN T 1w an
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More generally, for [1,...,l; € N, it follows that

1 N
(I)j(llw"alj) = (A ) § (a’nl)ll"'(ang‘)l]‘
NJi n1,e.n ;=1
all distinct
1 N
nily+-+ngl; § l 1
~ A,L All iti p’n}l.p”{J
N ni,...,n;=1 ni,...,n; EN
all distinct all distinct

where the proof of the last convergence works exactly as in Example 5.2 (ii). Thus,
we are indeed in the same situation as in Example 5.2 (ii). The measure = of the
limiting =-coalescent assigns its total mass Z(A) = (A — 1)/(A + 1) to the single
point p = (p1,pa,...) € A.
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