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Abstract. The problem of estimating a sparse channel, i.e. a channel
with a few non-zero taps, appears in many fields of communication in-
cluding acoustic underwater or wireless transmissions. In this paper, we
have developed an algorithm based on Iterative Alternating Minimiza-
tion technique which iteratively detects the location and the value of the
channel taps. In fact, at each iteration we use an approximate Maximum
A posteriori Probability (MAP) scheme for detection of the taps, while
a least square method is used for estimating the values of the taps at
each iteration. For approximate MAP detection, we have proposed three
different methods leading to three variants for our algorithm. Finally, we
experimentally compared the new algorithms to the Cramér-Rao lower
bound of the estimation based on knowing the locations of the taps. We
experimentally show that by selecting appropriate preliminaries for our
algorithm, one of its variants almost reaches the Cramér-Rao bound for
high SNR, while the others always achieve good performance.

1 Introduction

In this paper, we are going to investigate the problem of sparse channel estima-
tion which appears in acoustic underwater or wireless transmissions [1]. In this
problem, we want to estimate channel taps by observing the output of the chan-
nel while the channel is sparse, i.e. it has a few non-zero taps. Mathematically,
we have the following model:

y(k) = u(k) ∗ h(k) + n(k) . (1)

in which y(k) is the output signal of the channel, h(k) is the K-sparse1 channel
with N taps, u(k) is L-length training sequence at the input of the channel and
? This work has been partially funded by Iran NSF (INSF) and also by ISMO and

French embassy in Tehran in the framework of a GundiShapour collaboration pro-
gram.

1 By K-sparse we mean that there are at most K non-zero elements in h =
[h(0), h(1), . . . , h(N)]T .
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n(k) is a Gaussian noise. By observing all of the M = N +L−1 output symbols
of the channel, we have the following model in matrix form:

y = Uh + n = Uhb + n . (2)

in which y is the M×1 vector of output symbols of the channel, n ∼ N(σ2IM , 0)
is an M ×1 Gaussian noise vector and U is the M ×N full-rank training matrix
(as in [2]). Additionally, Uh , Udiag(h) and b ∈ {0, 1}N is a binary vector that
indicates the locations of non-zero taps i.e. :

∀i ∈ {1, 2, . . . N} : bi =
{

1 if hi 6= 0,
0 if hi = 0.

(3)

The goal of our problem is to find an appropriate estimation for h based on the
observation vector, y. If the estimator has no prior information about h i.e. it is
unstructured, then it is well known [2] that the Least Square (LS) estimator will
attain the best estimate for h in the sense of Mean Square Error (MSE). This
estimator finds the solution of the following problem:

ĥ = argmin
h

‖y −Uh‖22 . (4)

It is possible to show [2] that the above LS estimator achieves the Cramér-
Rao lower bound of the problem. For the case when the estimators have prior
knowledge about the location or number of taps of h, it is possible that we obtain
better estimations compared to the least square solution. Indeed, if a genie aids
us with the location of the non-zero taps of h, then the Structural Least Square
(SLS) estimator, which will find the solution of the following problem:

ĥτ = argmin
hτ

‖y −Uτhτ‖22 . (5)

will be an efficient estimator [1]. In (5), τ ⊂ {1, 2, . . . N} is the support of h, Uτ

is a sub-matrix of U that includes columns corresponding to the indices in τ and
hτ is a K × 1 vector that contains the non-zero taps of h. Here, by ‘efficient’ we
mean that this estimator will reach CRB of the estimation problem in which, the
estimator will estimate h based on y and τ . In literature, this bound is known
as CRB-S[2].

By comparing the Cramér-Rao bound of the unstructured estimation prob-
lem, known as CRB-US, with CRB-S, it is shown that CRB-S is much less than
CRB-US [2] and their difference will increase as the h becomes sparser. Conse-
quently, it is conceivable that we design an estimation technique based on y and
some prior information about the sparsity degree of h so that its MSE will be
close to CRB-S. Unfortunately, structured LS estimator which achieves CRB-S
is not practical, because its estimation is based on knowing the exact location of
the taps. The design of a practical estimator with MSE close to that of SLS esti-
mator is of interest. So, many efforts have been done to find a practical solution
for this estimation problem based on minimum knowledge about the sparsity of
the original vector. Candès et al. [3] and Haupt et al. [4] proposed estimators that
can achieve CRB-S to a factor of log M . Similarly, Babadi et al. [5] showed that
with the use of an estimator known as ‘Typical’ Estimator we can asymptotically
achieve the Cramér-Rao bound of the genie aided estimation. Additionally, the
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work done by Carbonelli et al. [2] proposed practical algorithms for this problem
which can reach close to CRB-S in the MSE sense.

In this paper, we try to find practical solutions for the problem of estimating
the channel taps from noisy outputs of the channel. Our proposed algorithm is
based on Alternating Minimization [6] technique for joint estimation of b and
h at each iteration step. More precisely, our algorithm detects non-zero taps
locations i.e. b, iteratively based on a MAP scheme. Simultaneously, we will use
the detected locations for finding the original sparse vector using an structured
least square estimation at each iteration. For approximate MAP detection, we
propose three methods. We will compare the MSE curve of all of the variations
of the proposed algorithm to that of CRB-S, CRB-US and also with MSE curve
of ITD-SE algorithm introduced in [2] and we will discuss our results.

So, this paper is organized as follows. In the next section, we will investigate
our proposed MAP estimation of the taps based on the Bernoulli model for
the channel taps. We will introduce an alternating minimization technique that
we used at each iteration for joint estimation of the location and the value of
the taps. Then, we will develop our algorithms to find an approximate MAP
solution for b in each iteration. We will discuss the theory behind each one and
the steps of the proposed variants of the main algorithm. Finally, we have an
experimental results section in which we compare our algorithm with CRB-S,
CRB-US and ITD-SE and we will discuss the results. Note that experimental
results are computed on simulated data.

2 Iterative Approximate MAP-SLS Algorithms

2.1 MAP Detection and Iterative Alternating Minimization

In this section we introduce our main strategy for jointly estimating of the chan-
nel taps and the location of the taps i.e. h and b in the model described in
(2). We use an iterative procedure based on alternating minimization for jointly
finding both of the h and b. To develop our algorithm, first assume that we have
an appropriate estimate for b i.e. b̂ at a given iteration step. So, we estimate h
at this iteration by finding the solution of the following problem:

ĥ = argmin
h

‖y−Udiag(b̂)h‖2 = argmin
h

‖y−Ub̂h‖2 = (Ub̂
T Ub̂)†Ub̂

T y . (6)

in which (.)† denotes the pseudo-inverse operator. Note that this estimate is
equal to the structured least square solution based on the location vector b. On
the other hand, if we have an appropriate estimation for h at a given iteration
step and we want to obtain a more accurate estimate for b, then we can make
a MAP estimation for b based on the following observation:

y ≈ Uĥb + n . (7)

for the MAP estimation, we need prior knowledge on the probability distribution
of b. In this paper, we assume an i.i.d Bernoulli distribution for the channel
location vector, b, based on the sparsity degree of the channel. Mathematically,
if we define Pa = K

N < 1
2 then we assume that P{bi = 1} = Pa and so:

P{b} =
N∏

i=1

P{bi} = (1− Pa)(N−‖b‖0)P ‖b‖0a . (8)
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the probability of vector b is computed for a given vector with exactly K com-
ponents and not any vector with exactly K components. Now, we can find the
MAP solution as:

b̂MAP = argmax
b∈{0,1}N

P{y|ĥ,b}P{b} = argmax
b∈{0,1}N

exp (− 1
2σ2

‖y −Uĥb‖22)(
Pa

1− Pa
)‖b‖0

= argmin
b∈{0,1}N

‖y −Uĥb‖22 + λ‖b‖0 . (9)

in which λ = 2σ2 ln( 1−Pa

Pa
) > 0, according to the fact that Pa < 1

2 . Note that in
(9) we minimize a function which is a combination of sparsity degree of b and l2-
norm of error y−Uĥb. Indeed, λ is an increasing function of σ which intuitively
seems correct: as the noise increases, the importance of sparsity becomes greater
in the estimation according to the fact that y is more noisy.

It is important to mention that the problem in (9), is exponentially com-
plex with respect to N according to the search over {0, 1}N for finding b̂MAP.
Although this problem seems to be impossible to solve, one may use an approx-
imation method to find the MAP solution, as we will do in this paper.

To find the solutions of (9) and (6) simultaneously, we use an iterative al-
ternating minimization approach. In fact, at each iteration step, by the use of
the approximation for b in the previous iteration, we will find the solution to
(6), then by using this solution we will find an approximate solution for (9). We
have proposed 3 methods for finding an approximate solution to (9) i.e. MAP
detection of the location vector at each iteration step of the proposed alternating
minimization method. These methods are based on the algorithms introduced in
[7] for finding the the user activity vector in CDMA2, although they have been
changed for being applied to our problem.

Finally, for the initialization of the algorithm, we use b̂0 = [1, . . . , 1]T . This
algorithm, which we call Approximate MAP-SLS, is summarized in Algorithm 1
with all its variants. Each of its variants, uses one of the the proposed methods
for approximate MAP detection, which are described in the following sections.

2.2 Approximate l2-MAP With Threshold

Based on the idea of Ridge Detector introduced in [7], we replace ‖b‖0 by ‖b‖22
and then, we will find the solution of this new problem in the real field. In fact,
we find the solution of the following problem:

b̂r = argmin
b∈RN

‖y −Uĥb‖22 + λ‖b‖22 . (10)

By taking the gradient of the target function for optimization with respect to b,
we can find a closed form solution for (10). So, we have:

b̂r = (Uĥ
T Uĥ + λI)−1Uĥ

T y .3 (11)

After that, we will obtain b̂ by quantizing the solution of (11). More accurately:

∀i ∈ {1, 2, . . . N} : b̂i =
{

1 if b̂r(i) ≥ γ(σ),
0 if b̂r(i) < γ(σ).

(12)

2 Code Division Multiple Access.
3 Note that Uĥ

T Uĥ + λI is non-singular, because all of its eigenvalues are greater or
equal to λ > 0 and so, we can use inverse operation in (11).
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in which, γ(σ) is a threshold. By the use of simulation, we see that by choosing
a suitable function for γ(σ), we can find an approximately accurate estimate for
b, although there is no mathematical convenient way to show the accuracy of
our proposed algorithm. This algorithm is so simple, although it needs a suitable
function for γ(σ). It is almost obvious from (11) that γ(σ) needs to be increasing
with respect to σ. So, in our algorithm we choose a simple increasing function
for γ(σ) i.e. γ(σ) = ασ2. Note that the parameter σ is assumed to be known to
the detector.

Based on this method, we propose a variant for the main algorithm discussed
in Sect. 2.1. The results of this variant of the main algorithm is examined for
two values of α and it is experimentally seen that by choosing an appropriate α,
we can have an acceptable amount of accuracy. The exact steps of the algorithm
is summarized in Algorithm 1.

2.3 Approximate LASSO-MAP With Threshold

Inspired by LASSO Detector introduced in [7] and similar to the algorithm
introduced in Sect. 2.2, we replace ‖b‖0 by ‖b‖1 in (9) and find the solution in
the real field. In fact we have:

b̂r = argmin
b∈RN

‖y −Uĥb‖22 + λ‖b‖1 . (13)

The problem in (13) can be considered as LASSO problem introduced in [8].
LASSO is a shrinkage and selection method for linear regression. It minimizes
the usual sum of squared errors, with a bound on the sum of the absolute values
of the coefficients. It has connections to soft-thresholding of wavelet coefficients,
forward stage wise regression, and boosting methods [8]. We use block coordi-
nate [9] algorithm for LASSO to find the solution of (13). Afterwards, we use
the quantization method of (12) to obtain b̂. This algorithm is summarized in
Algorithm 1, and the result of this algorithm is examined experimentally in
Sect. 3.

2.4 Approximate Backward-Detection MAP

In this section, we try to find an approximate search method for finding the
solution of (9). Similar to [7], assume that we have a QR decomposition of Uĥ

i.e. Uĥ = QRĥ in which Q is a unitary matrix and Rĥ is an upper triangular
matrix. Now, we have:

b̂ = argmin
b∈{0,1}N

‖y −Uĥb‖22 + λ‖b‖0 = argmin
b∈{0,1}N

‖QT y −QT QRĥb‖22 + λ‖b‖0

= argmin
b∈{0,1}N

M∑

i=1

(
y′i −

N∑

j=i

Rĥ(i, j)bj

)2 + λ

N∑
1

bi

= argmin
b∈{0,1}N

N∑

i=1

[(
y′i −

N∑

j=i

Rĥ(i, j)bj

)2 + λbi

]
+

M∑

i=N+1

y′i
2

= argmin
b∈{0,1}N

N∑

i=1

[(
y′i −

N∑

j=i

Rĥ(i, j)bj

)2 + λbi

]
. (14)



6 An Alternating Minimization Method for Sparse Channel Estimation

It is seen from (14) that once the estimates {b̂j}N
j=i+1 are available, the optimal

solution for b̂i can be obtained by the following equation, regardless of the values
for {b̂j}i−1

j=1:

b̂i : (y′i −Rĥ(i, i)−
N∑

j=i+1

Rĥ(i, j)b̂j)2 + λ
0
≷
1

(y′i −
N∑

j=i+1

Rĥ(i, j)b̂j)2 . (15)

by doing some manipulations, (15) can be simplified as :

b̂i : y′i
1
≷
0

Rĥ
2(i, i) + 2Rĥ(i, i)

∑N
j=i+1 Rĥ(i, j)b̂j + λ

2Rĥ(i, i)
. (16)

Accordingly, by backward detection of bi for i = N,N−1, . . . , 1 using (16), we can
find a near exact solution for (9). Based on this method, we develop a variation
for our main algorithm which is summarized in Algorithm 1. Additionally, this
version of our main algorithm is examined experimentally in the Sect. 3.

Algorithm 1 Main algorithm
init: k ← max-iterations

b̂0 = [1, 1, . . . , 1]T

for i ≤ k do
ĥi = (Ub̂

T
i−1

Ub̂i−1
)†Ub̂

T
i−1

y . Structural least square estimator

if MAP-algorithm=l2-MAP with Thresholding then
b̂r = (Uĥ

T Uĥ + λI)†Uĥ
T y

else if MAP-algorithm=LASSO-MAP with Thresholding then
b̂r = argmin

b∈RN

‖y −Uĥb‖22 + λ‖b‖1
. Solution is found using block-coordinate algorithm for LASSO

end if

if MAP-algorithm=Backward-Detection MAP then
Uĥ = QRĥ

y′ = QT y
for i = N, N − 1, . . . 1 do

Given {b̂j}N
i+1

b̂i : y′i
1

≷
0

R
ĥ
2(i,i)+2R

ĥ
(i,i)

∑N
j=i+1 R

ĥ
(i,j)b̂j+λ

2R
ĥ
(i,i)

end for
else

∀i ∈ {1, 2, . . . N} : b̂i =

{
1 if b̂r(i) ≥ γ(σ),

0 if b̂r(i) < γ(σ).
γ(σ) = ασ2

end if
end for
ĥ final = (Ub̂

T
k
Ub̂k

)†Ub̂
T
k
y

3 Experimental Results

In this part, we examine the efficiency of the proposed Iterative Approximate
MAP-SLS algorithm and its variants, summarized in Algorithm 1 and we will
compare it to ITD-SE [2]. For the sake of showing the effect of α, we develop two
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experiments. In both of the experiments, we choose M = 50, N = 20 and K = 5.
We generate a separate K-sparse random signal as the sparse channel for each ex-
periment. Indeed, elements of u are generated independently random according
to N(0, 1) as the training data4 and u is generated from U, as in [2]. For finding
MSE, each experiment is repeated 100 times and the averaging over all these
runs is taken. We choose α = 1.6 for experiment 1 and α = 1 for experiment 2.
We run the simulations on an 2.8GHZ Intel Core2Duo CPU. The MSE vs SNR
curves for both of the experiments are shown in Fig. 3. CRB-S and CRB-US for
MSE are equal to σ2Tr{(Uh

T Uh)−1} and σ2Tr{(UT U)−1} respectively as in
[1]. Computational complexity of different algorithms are compared by the use
of CPU time, shown in Tab. 3. We use CPU time as a metric for roughly compar-
ison of computational complexity. Note that for the validity of our comparison,
we use 10 iterations for all of the algorithms in the main loop. As it is seen from
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Fig. 1. Normalized MSE vs SNR curves for proposed algorithms and ITD-SE

4 It is better to use actual symbols as the training sequence, but, as we have seen in
simulations not presented in this article, there is no big difference in the results
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Table 1. Comparison of CPU time for various algorithms

CPU time in seconds

Iterative l2-MAP with Thresholding 0.0055

Iterative LASSO-MAP with Thresholding 0.1109

Approximate Backward-Detection MAP 0.0204

ITD-SE 0.0890

Fig. 1, by choosing α = 1.6 the accuracy of Iterative l2-MAP with Thresholding
is better than that of ITD-SE and Approximate Backward-Detection MAP, al-
though Approximate Backward-Detection MAP has the advantage that it does
not need any thresholding and any pre-settings for γ(σ). But by choosing α = 1,
all of these three algorithms will have the same accuracy. In both of the experi-
ments, Iterative LASSO-MAP with Thresholding almost reaches to the CRB-S
at high SNR, while it suffers from poor behaviour at low SNR. In fact, this al-
gorithm is near-optimal at high SNR, but its complexity is much more than the
others by Tab. 1.

4 Conclusion
In this paper, we have proposed a new method for solving the problem of channel
estimation. Our method is based on an alternating minimization approach. In
fact, at each iteration, MAP detection of the location of the taps and structured
least square estimation are applied simultaneously. For the MAP detection part,
we proposed three methods and so we proposed three variants for our algorithm.
We compared our proposed variants with ITD-SE introduced in [2] which in
known as an efficient method for our problem. All the proposed methods have
better or at worst case equal accuracy (in the sense of MSE) compared to ITD-
SE, while having less complexity except for LASSO-MAP with Thresholding.
However, we experimentally see that LASSO-MAP with Thresholding almost
reaches the CRB-S at high SNR and so it is near-optimal. For further work
around this subject, one can perform further experiments on actual signals,
coming form communication or seismic and examine the performance of our
proposed methods.
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