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Abstract. This work deals with the problem of source separation in
overdetermined linear-quadratic (LQ) models. Although the mixing model
in this situation can be inverted by linear structures, we show that some
simple independent component analysis (ICA) strategies that are often
employed in the linear case cannot be used with the studied model. Mo-
tivated by this fact, we consider the more complex yet more robust ICA
framework based on the minimization of the mutual information. Spe-
cial attention is given to the development of a solution that be as robust
as possible to suboptimal convergences. This is achieved by defining a
method composed of a global optimization step followed by a local search
procedure. Simulations confirm the effectiveness of the proposal.

1 Introduction

An interesting extension of the classical Blind Source Separation (BSS) frame-
work concerns the case in which the mixing model is nonlinear [1]. One of the
motivations for studying nonlinear BSS comes from the observation that, in
some applications, the mixing process is clearly nonlinear. This is common, for
instance, in chemical sensor arrays [2, 3.

Nonlinear BSS, in its most general formulation, cannot be dealt with using
independent component analysis (ICA) methods [1,4]. Indeed, if no constraints
are imposed, one can set up a nonlinear system that provides independent com-
ponents that are still mixed versions of the sources [4]. This result suggests that,
instead of searching for a general framework, nonlinear BSS should be treated on
a case-by-case basis by focusing on relevant classes of nonlinear models. Having
this in mind, we tackle in this work the problem of BSS in the so-called linear-
quadratic (LQ) model [5]. This class of models is appealing both in a practical
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context —for instance, it is used in the design of gas sensor arrays [3] —and in a
theoretical standpoint —it paves the way for dealing with polynomial mixtures.

A major issue in the development of BSS methods for LQ mixtures concerns
the definition of the separating system structure. In a determined case (equal
number of sources and mixtures), this problem is indeed tricky due to the dif-
ficulty in expressing the inverse of the mixing mapping in an analytical form.
Possible solutions to this problem can be found in the nonlinear recurrent net-
works proposed in [5,6] or in the Bayesian approach of [7]. Moreover, in some
particular cases —for instance when there are two sources and two mixtures
—one can indeed find the inverse nonlinear mapping [5].

A second route for dealing with LQ mixtures relies on the following obser-
vation: when there are more mixtures than sources (overdetermined case), the
inversion of the L) mixing model becomes simpler as it can be performed us-
ing linear separating systems. Evidently, such a simplification opens the way
for well-established ICA methods developed for the linear case. Furthermore,
although we restrict our analysis to the LQ case, such a simplification is also
interesting in the more general case of polynomial mixtures.

Even if the idea of separating LQ mixtures through linear ICA methods is
not novel, the works that have exploited it focused on particular cases, such as
sources in a finite alphabet [8] or circular sources [9]. In the present paper, how-
ever, we consider a more general framework, in which the only assumption made
is that the sources are mutually statistically independent. The main difficulty
here lies in the fact that, although overdetermined LQ models may admit a lin-
ear inverse, classical ICA strategies may not be able to separate L(Q mixtures.
Motivated by these difficulties, we develop an ICA method specially tailored for
the considered problem.

2 Overdetermined linear-quadratic mixing model

Let us consider a problem with two sources® s; and s, which are assumed to be

mutually statistically independent. In a LQ model, the i-th mixture is given by
T; = a;181 + aia82 + a;38182, Vi € 1,... 0y, (1)

where a;; represents a mixing coefficient and n,,, is the number of mixtures. The

model (1) can be alternatively described through the following vector notation

Z1 air a1z a3 s1

= ] = (2)

Ly, an,1 Gnp,2 Gn,3 5152

This representation suggests an insightful interpretation of the LQ model: it can

be seen as a special case of a linear mixing model, in which the sources are given
by s1, s3 and s3 = s189 and, therefore, are no longer independent.

5 This scenario is representative in the design of gas sensor arrays as one usually has
binary mixtures of gases.
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When the number of LQ mixtures is n,, = 2 (determined), there is no ad-
vantage in expressing the original LQ problem in a linear formulation. In fact,
besides the presence of dependent sources, the resulting dual linear problem is
underdetermined (less mixtures than sources). Performing BSS in such a scenario
is quite difficult and requires the incorporation of further information.

Conversely, if, for instance®, n,,, = 3 (overdetermined LQ model), the result-
ing mixing matrix in (2) becomes square and, thus, can be inverted as follows

Y1 w11 W12 W13 x1
Yo | = | wor wao waz | | 32|, (3)
Y3 w31 W32 W33 x3

where y = [y1 y2 y3]T represents the retrieved sources. That is, one can overcome
the problem of how to define an LQ separating system by simply adding sensors
into the array. Even better, the solution in this case is given by a matrix.

Of course, there remains the problem of how to find a separating matrix
in the case of LQ mixtures. In a recent work, Castella [8] showed that, if the
sources belong to a finite alphabet, cumulant-based ICA techniques, such as
the JADE algorithm [10], can be used to adjust W in (3), despite the presence
of mutually dependent sources in the linear formulation of Equation (2). The
proposed approach in [8] is thus able to retrieve s1, s and s1s9.

In the more general case of continuous sources, the presence of dependent
sources in (2) does not allow one to apply ICA methods to adjust W in (3).
Given that, instead of searching for the three sources si, so and s3 = s152, we
try to directly estimate s; and sy via a rectangular separating matrix, as follows

] < oo [21] ’

Y2 Wa1 W22 W23
xs3

Structurally speaking, this separating system is also able to retrieve s; and s,
possibly permuted and/or scaled. Indeed, this is achieved for all A

w11 Wi W13 a00 1
=P A 5
|:’LU21 w22 ’LU23:| |:O ﬁ 0:| ’ ( )

where P is a permutation matrix, and « and S are non-zero values representing
a possible scaling of the retrieved signals. In the sequel, we discuss the use of
ICA methods to adapt the rectangular matrix W in (4).

3 Toward a linear ICA algorithm for overdetermined LQ
mixtures

ICA-based learning rules search for a matrix W that provides independent sig-
nals y; and yo. At first glance, ICA techniques that are used in linear overdeter-

5 In the rest of the paper, we restrict our analysis to the case of n,, = 3 mixtures.
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mined models could be considered to separate LQ mixtures through (4). How-
ever, as it will be discussed in the sequel, the underlying nonlinear nature of the
mixing process makes the application of some common ICA strategies difficult.

3.1 Limitations of ICA methods based on whitening as a
pre-processing step

Often, ICA in overdetermined linear models is carried out in two steps. Firstly,
the mixtures undergo a dimension reduction stage in order to obtain signals
with dimension equal to the one of the sources —this is usually done via whiten-
ing” [10]. Then, ICA methods designed for determined models are applied.

For this two-step solution to work in the case of LQ mixtures, the process of
dimension reduction should remove any trace of nonlinear mixing between the
sources. Unfortunately, this cannot be achieved via whitening. To illustrate that,
let us consider, as a working example, an LQ model (n,, = 3 mixtures and 2 uni-
formly distributed sources), where the mixing matrix (see the linear formulation
of Equation (2)) is given by A =[10.70.3; 0.6 1 0.5; 0.5 0.5 0.6]. We checked
through simulations that the matrix Q = [8.67 —1.21 —9.28 ; —1.21 8.47 —8.39]
provides a white two-dimensional signal. Yet, the combined system QA in this
case is given by

3.30 0.21 —3.57
QA=1 033343 117" (©6)

that is, the nonlinear term s;ss remains in the whitened data.

3.2 Limitations of natural gradient learning

From the last section, a more reasonable approach is to consider overdetermined
ICA methods that do not require a whitening step. A possibility in this case can
be found in the natural gradient algorithm. Although originally developed to op-
erate in linear determined models, this method also works in the overdetermined
case [11]. The learning rule in this case is given by

W W +u(I—- E{f(y)y' HhW, (7)

where 1 is the step size, I represents the identity matrix and f(-) is a non-
linear function that should be previously defined based on the source distribu-
tions® [10]. Given that (7) converges when E{f(y)y’} = I, this learning rule

7 Whitening a vector x means finding a matrix Q that provides a vector z = Qz whose
covariance matrix is diagonal. Dimension reduction through whitening is based on
the observation that the whitening matrix Q depends on the covariance matrix of x,
i.e. R;. Given that, one can have a lower dimensional vector z by only considering
the eigenvectors associated with the largest eigenvalues of R,.

8 Ideally, these functions should be as close as possible to the source score functions.
However, even a rough approximation is enough to guarantee source separation in
determined linear models.
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is somehow trying to retrieve components that are nonlinearly decorrelated, a
necessary but not sufficient condition for statistical independence (except if each
component of f(y) is a score functions of the related component of y).

We tested (7) in the same working example as in the last section. The es-
timated matrix W in this case indeed provided nonlinearly decorrelated com-
ponents satisfying E{f(y)y?} = I —we considered cubic functions f(y;) = y3,
which are typically used for sub-Gaussian sources [10]. However, the mixtures
were not separated. This is shown in Figure 1, which depicts the joint distribu-
tion of the original sources and of the retrieved signals. It is interesting to note
here that, although nonlinearly decorrelated, the retrieved signals are not statis-
tically independent. That is, unlike in the linear case, the nonlinear decorrelation
is not a safe route for independence in overdetermined L(Q models.

Y2

-05(-

S Y1

(a) Sources. (b) Recovered signals.

Fig. 1. Application of natural gradient algorithm: scatter plots.

3.3 Methods based on the minimization of the mutual information

We now consider a framework based on the minimization of the mutual infor-
mation between the elements of y, which is given by

I(y) = H(y1) + H(y2) — H(y), (8)

where H(-) denotes the differential entropy [10]. Unlike in the nonlinear correla-
tion, the mutual information offers a necessary but also sufficient condition for
independence since it becomes null if and only if y; and y, are independent.

In [12], a framework to derive methods that minimize the mutual informa-
tion” was introduced. Its application to linear models results in the following

9 Usually, the derivation of methods based on the mutual information makes use of
a common trick to avoid the estimation of the joint term H(y). They express it in
terms of H(x) by using the entropy transformation law [10]. However, we cannot use
this strategy because W is not invertible in our case.
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learning rule

W« W + uE{By (y)x"}, (9)

where the i-th element of Sy (y), the (opposite of the) so-called score function
difference vector of y, is given by 3y, (v;) = (—01logp(y)/dy;)—(—dlog p(y:)/dy;).
We applied the method proposed in [13] to estimate this vector.

After performing some tests, the algorithm (9) was able to recover the orig-
inal sources in some runs. However, we also noticed that in many trials the
method only provided poor estimation. One could give two reasons for such a
bad performance: either the algorithm is getting trapped in spurious minima
and, thus, it is an optimization issue, or the considered model is not separable in
the sense of ICA, i.e. retrieving independent components does not assure source
separation. Note that, while the first issue could be solved by developing algo-
rithms robust to local convergence, the second one would pose a serious problem
as any attempt to perform BSS through ICA would become questionable.

To gain more insight into that question, we performed a series of tests with
(9). At the end of each run, we estimated the average signal-to-interference
(SIR) ratio'? and the mutual information between the retrieved signals y; and
y2 —we considered the estimator proposed in [14]. The results obtained after
20 realizations —with uniformly distributed sources, mixing coefficients drawn
from a normal distribution and random initialization of the separating matrix W
—are plotted in Figure 2(a), in which each mark represents one realization. Note
that when a low SIR was observed, the retrieved signals were still dependent as
their mutual information was not null. This is an indicator that bad convergence
here comes from the optimization itself and not from a separability problem.

4 A robust ICA method for overdetermined LQ) mixtures

The results shown in Figure 2(a) revealed that the gradient-based learning rule
of (9) may converge to local minima. A first possibility to deal with this prob-
lem is to consider global optimization methods such as evolutionary algorithms
(EA). These methods are based on the notion of population, i.e. a set of pos-
sible candidate solutions (individuals) for the problem. At each iteration, new
individuals are created from this population and, typically, the set of individu-
als that provides a better solution to the optimization problem is kept to the
next iterations (selection). This population-based search gives EAs the ability of
finding the global solution even when applied to multimodal cost functions.
The robustness to sub-optimal convergence in EAs comes at heavy compu-
tational burden. This is particularly problematic in the definition of an EA to
perform ICA according to the minimum mutual information principle. Indeed,
estimating the mutual information via accurate methods, such as the one pre-
sented in [14], is time demanding, and, since an EA performs many evaluations of
the cost function during its execution, one may end up with a too slow method.

10 The SIR associated with a source and its estimate is given by: SIR; =
10log (E{‘§12}/E'{(§Z — Qi)Q}), where $; and g; denote, respectively, the actual source
and its corresponding estimate after mean, variance and sign normalization.



BSS of Overdetermined LQ Mixtures 7

As an alternative to a direct application of an EA in our problem, we propose
a hybrid scheme composed of two steps. Firstly, we indeed make use of an EA
technique, the opt-aiNet algorithm (see [15] for details), to minimize the mutual
information. However, instead of relying on a precise estimation of the cost
function, we consider the rougher and thus simpler mutual information estimator
proposed in [16]. Hence, this first step provides us with a coarse estimate of the
sources. This coarse solution is then refined by the learning rule (9).

In order to assess the performance of proposed hybrid scheme, we conducted
a set of simulations in the same scenario as considered in Section 3.3. In Fig-
ure 2(b), we show the results obtained after 20 runs. Whereas the simple applica-
tion of (9) converged to a sub-optimal minimum in 9 out of 20 runs realizations,
the proposed hybrid scheme was able to provide good estimates of the sources
in 19 our of 20 realizations.

018F 4 018

0161 4 016

~ Non-separating solutions ~~ Non-separating solutions
2 ouf / 2, 01
> * >
c oxl T o
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g i 5 o £
g £
L oost L oo
£ £
T oos T o0
3 =
s 5
2 oot 2 om
0.02] 1 0.02 1
T KRR X T Rk KO X
o 5 1 0 25 % 3% w0 45 50 0o 5 1 0 2 % 3% w0 45 50
SIR (dB) SIR (dB)
(a) Learning rule (9). (b) Proposed hybrid scheme.

Fig. 2. Analysis of the retrieved signals. Each mark corresponds to one realization.

5 Conclusions

In this work, we addressed the problem of BSS in overdetermined LQ mixtures. In
this case, the mixing process can be inverted through linear structures. However,
as illustrated by some examples, the application of common ICA strategies is
not enough to perform source separation in the studied case. In view of this
limitation, we introduced a hybrid scheme composed of a global optimization
tool and of a gradient-based method for minimizing the mutual information
between the retrieved signals. As checked via simulations, the proposed method
is able to almost always avoid convergence to sub-optimal minima

In this first study, separability of overdetermined L(Q models was only verified
through simulations. As this approach is useful only for gaining some insight
into this issue, a first perspective for future works is to study separability on a
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theoretical basis. A second point that deserves further investigation is related
to the transformation of the original overdetermined problem into a determined
one. We saw that whitening cannot be used here. Nonetheless, we believe that
such an approach is still valid when, for instance, additional prior information
on the sources are taken into account. Finally, we intent to extend the results
obtained here to scenarios in which the number of sources is larger than two and
also to the more general case of polynomial mixtures.
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