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We prove that the folk model structure on strict ∞-categories transfers to the category of strict ∞-groupoids (and more generally to the category of strict (∞, n)categories), and that the resulting model structure on strict ∞-groupoids coincides with the one defined by Brown and Golasiński via crossed complexes.

Introduction

In [START_REF] Brown | A model structure for the homotopy theory of crossed complexes[END_REF], Brown and Golasiński build a model structure on the category of crossed complexes. In an earlier work [START_REF] Brown | The equivalence of ∞-groupoids and crossed complexes[END_REF], Brown and Higgins established an equivalence of categories between crossed complexes and strict ∞-groupoids, whence a model structure on the latter category.

On the other hand, there is a "folk" model structure on strict ∞-categories recently discovered by Lafont, Worytkiewicz and the second author [START_REF] Lafont | A folk model structure on omega-cat[END_REF], which extends previously known model structures on categories [START_REF] Joyal | Strong stacks and classifying spaces[END_REF] and 2-categories [START_REF] Lack | A Quillen model structure for 2-categories[END_REF]. Note that this model structure is also known as the "natural" or the "categorical" model structure by various authors.

This immediately raised the questions whether the folk model structure on ∞-categories may be transferred to ∞-groupoids by inclusion, and in that case whether the Brown-Golasiński model structure may be recovered this way.

The purpose of the present work is to show that both questions have affirmative answers.

Our paper is organized as follows. In Section 1, we recall the basic definitions of strict ∞-categories and strict ∞-groupoids. Then, in Section 2, we describe the Brown-Golasiński model structure on crossed complexes and ∞-groupoids. In Section 3, we prove the transfer theorem leading to the definition of the folk model structure on strict ∞-groupoids. Our proof uses neither crossed complexes nor the existence of the Brown-Golasiński model structure. Moreover, it also applies to the category of strict (∞, n)categories for a fixed n (that is ∞-categories such that every m-arrow is invertible for m > n). Finally, in Section 4, we show that the two model structures previously defined on ∞-groupoids are in fact the same.

We thank Ronald Brown and Urs Schreiber, whose questions motivated us to go further in this work.

Strict ∞-groupoids

The purpose of this section is to introduce the definitions and notations about strict ∞-groupoids and their weak equivalences that we will use in the sequel of this paper. Our presentation is essentially the same as the one given in [START_REF] Ara | Sur les ∞-groupodes de Grothendieck et une variante ∞-catgorique[END_REF].

Globular sets

Let us denote by O the globular category, that is the category generated by the graph

0 σ 0 G G τ 0 G G 1 σ 1 G G τ 1 G G • • • σ i-1 G G τ i-1 G G i σ i G G τ i G G i + 1 σ i+1 G G τ i+1 G G . . .

under the coglobular relations

σ i+1 σ i = τ i+1 σ i and σ i+1 τ i = τ i+1 τ i , i ≥ 0. 
A globular set or ∞-graph is a presheaf on O. A globular set X amounts to a diagram of sets

• • • s n+1 G G t n+1 G G X n+1 sn G G tn G G X n s n-1 G G t n-1 G G • • • s 1 G G t 1 G G X 1 s 0 G G t 0
G G X 0 satisfying the globular relations s i s i+1 = s i t i+1 and t i s i+1 = t i t i+1 , i ≥ 0.

For i ≥ j ≥ 0, we will denote by s i j and t i j the maps from X i to X j defined by

s i j = s j • • • s i-2 s i-1 and t i j = t j • • • t i-2 t i-1 .
If X is a globular set, we will call X 0 the set of objects of X and X n for n ≥ 0 the set of n-arrows or n-cells. The notation u : x → y will mean that u is an n-arrow for n ≥ 1 whose source is an (n -1)-arrow x (that is s n-1 (u) = x) and whose target is an (n -1)-arrow y (that is t n-1 (u) = y). We will say that two n-arrows u and v are parallel if either n = 0, or n ≥ 1 and u, v have same source and same target. For i ≥ j ≥ 0, if u is an i-arrow, we will often write s j (u) for s i j (u) and similarly t j (u) for t i j (u). If u and v are n-arrows, X(u, v) will denote the globular set whose k-arrows are the (n + k + 1)-arrows a of G such that s n (a) = u and t n (a) = v. In particular, X(u, v) 0 is the set of (n + 1)-arrows a : u → v in X.

Strict ∞-categories

An ∞-precategory is a globular set C endowed with maps * i j :

(X i , s i j ) × X j (t i j , X i ) → X i , i > j ≥ 0, k i : X i-1 → X i , i ≥ 1, such that 1. for every (u, v) in (X i , s i j ) × X j (t i j , X i ) with i > j ≥ 0, we have s i-1 (u * i j v) = s i-1 (v), j = i -1 s i-1 (u) * i-1 j s i-1 (v), j < i -1 ;
2. for every (u, v) in (X i , s i j ) × X j (t i j , X i ) with i > j ≥ 0, we have

t i-1 (u * i j v) = t i-1 (u), j = i -1 t i-1 (u) * i-1 j t i-1 (v), j < i -1 ;
3. for every u in X i with i ≥ 0, we have

s i k i+1 (u) = u = t i k i+1 (u).
For i ≥ j ≥ 0, we will denote by k j i the map from X j → X i defined by

k j i = k i • • • k j+2 k j+1 .
If u and v are n-arrows for n ≥ 1 of an ∞-precategory, we will often write u * k v for u * n k v. If u is an n-arrow, we will often write 1 u for the iterated identity k n m (u) in a dimension m ≥ n clear by the context. Definition 1.1. A strict ∞-category is an ∞-precategory X such that the following axioms are satisfied:

1. Associativity for every (u, v, w) in (X i , s i j ) × X j (t i j , X i , s i j ) × X j (t i j , X i ) with i > j ≥ 0, we have (u * j v) * j w = u * j (v * j w); 2. Exchange law for every (u, u ′ , v, v ′ ) in (X i , s i j ) × X j (t i j , X i , s i k ) × X k (t i k , X i , s i j ) × X j (t i j , X i ), with i > j > k ≥ 0, we have (u * j u ′ ) * k (v * j v ′ ) = (u * k v) * j (u ′ * k v ′ );
3. Units for every u in X i with i ≥ 1 and every j such that i > j ≥ 0, we have

u * j 1 s j (u) = u = 1 t j (u) * j u;
4. Functoriality of units for every (u, v) in (X i , s i j )× X j (t i j , X i ) with i > j ≥ 0, we have the following equality between (i + 1)-arrows:

1 u * j v = 1 u * j 1 v .
A morphism of strict ∞-categories or ∞-functor is a morphism of globular sets compatible with the maps * i j and k i .

We will denote by ∞-Cat the category of ∞-categories. This category is a full reflexive subcategory of the presheaf category of globular sets. Moreover, it is stable under filtered colimits. Hence, by Theorem 1.46 of [START_REF] Adámek | Locally presentable and accessible categories[END_REF], ∞-Cat is locally presentable.

Note that if u and v are two n-arrows of a strict ∞-category C, the globular set C(u, v) inherits a structure of strict ∞-category.

Strict ∞-groupoids

Let C be a strict ∞-category and u an i-arrow for i ≥ 1. For j such that 0 ≤ j < i, a * i j -inverse v of u is an i-arrow such that s j (v) = t j (u) and t j (v) = s j (u), satisfying

u * j v = 1 t j (u) and v * j u = 1 s j (u) .
It is easy to see that if it exists, such an inverse is unique. For i > j ≥ 0, we will say that C admits * i j -inverses if every i-arrow of C admits a * i j -inverse.

Definition 1.2. A strict ∞-groupoid is a strict ∞-category which admits * i j -inverses for every i > j ≥ 0. We will denote by ∞-Grp the full subcategory of ∞-Cat whose objects are strict ∞-groupoids.

Let n ≥ 0. A strict (∞, n)-category is a strict ∞-category which admits * i j -inverses for every i > j ≥ n. We will denote by (∞, n)-Cat the full subcategory of ∞-Cat whose objects are strict (∞, n)-categories. Note that for n = 0 we recover the category of strict ∞-groupoids.

The same argument as for ∞-Cat shows that ∞-Grp is a locally presentable category.

If G is a strict ∞-groupoid and u is an i-arrow of G for i ≥ 1, we will denote by w i j (u) or simply by w j (u) the * i j -inverse of u and by u -1 the * i i-1 -inverse. Note that if u and v are two n-arrows of a strict ∞-groupoid G, the strict ∞-category G(u, v) is a strict ∞-groupoid. Proposition 1.3. Let C be a strict ∞-category. Then the following assertions are equivalent:

1. C is a strict ∞-groupoid; 2. C admits * i i-1 -inverses for every i ≥ 1;

3. C admits * i 0 -inverses for every i ≥ 1;

4. for all i ≥ 1, there exists j satisfying 0 ≤ j < i such that C admits * i j -inverses.

Proof. By induction, it suffices to show that for every i > j > k ≥ 0, if C admits * j kinverses, then C admits * i k -inverses if and only if it admits * i j -inverses. By using the fact that the 2-graph

C i s i j G G t i j G G C j s j k G G t j k G G C k
has a natural structure of 2-category, one can assume that k = 0, j = 1 and i = 2. The result is thus a consequence of the following lemma.

Lemma 1.4. Let C be a 2-category whose 1-arrows are invertible. Then a 2-arrow is invertible for horizontal composition (i.e., * 2 0 ) if and only if it is invertible for vertical composition (i.e., * 2 1 ).

Proof. Let a : u → v be a 2-arrow. Suppose a admits a horizontal inverse a * . Then v * 0 a * * 0 u is a vertical inverse. Conversely, suppose a admits a vertical inverse a -1 . Then v -1 * 0 a -1 * 0 u -1 is a horizontal inverse.

Weak equivalences of strict ∞-groupoids

Let G be a strict ∞-groupoid. An n-arrow u of G is homotopic to another n-arrow v if there exists an (n + 1)-arrow from u to v. This implies that the arrows u and v are parallel. If u is homotopic to v, we will write u ∼ v. The relation ∼ is an equivalence relation on G n : the properties with respect to source and target of the maps k n+1 , w n n-1

and * n n-1 imply respectively that ∼ is reflexive, symmetric and transitive. Let us denote by G n the quotient of G n by ∼. The composition

* n n-1 : G n × G n-1 G n → G n induces a map * n n-1 : G n × G n-1 G n → G n
, thanks to the properties with respect to source and target of the composition * n+1 n-1 . For n ≥ 1, we can thus define a groupoid ̟ n (G) whose objects are (n -1)-arrows of G and whose morphisms are elements of G n . It is clear that ̟ n defines a functor from the category of strict ∞-groupoids to the category of groupoids.

Definition 1.5. The set of connected components of G is π 0 (G) = π 0 (̟ 1 (G)) = G 0 .
For n ≥ 1 and x an object of G, the n-th homotopy group of G at x is

π n (G, x) = π 1 (̟ n (G), 1 x ) = Aut ̟n(G) (1 x ).
By functoriality of the ̟ n 's, π 0 induces a functor from the category of strict ∞-groupoids to the category of sets, and π n , for n ≥ 1, induces a functor from the category of pointed strict ∞-groupoids to the category of groups. By the Eckmann-Hilton argument, the groups π n (G, x) are abelian for n ≥ 2. More generally, if u and v are two (n -1)-arrows for n ≥ 1 we set

π n (G, u, v) = Hom ̟n(G) (u, v) and π n (G, u) = π n (G, u, u). Definition 1.6. A morphism f : G → H of strict ∞-groupoids is a weak equivalence of strict ∞-groupoids if the map π 0 (f ) : π 0 (G) → π 0 (H) is a bijection and if for all n ≥ 1 and all object x of G, the morphism π n (f, x) : π n (G, x) → π n (H, f (x)
) is a group isomorphism. We will denote by W gr the class of such weak equivalences. Proposition 1.7. Let f : G → H be a morphism of strict ∞-groupoids. The following conditions are equivalent:

1. f is a weak equivalence of strict ∞-groupoids; 2. π 0 (f ) : π 0 (G) → π 0 (H) is a bijection and for all n ≥ 1 and every (n -1)-arrow u of G, f induces a bijection π n (G, u) → π n (H, f (u)); 3. ̟ 1 (f ) : ̟ 1 (G) → ̟ 1 (H)
is an equivalence of categories and for all n ≥ 2 and every pair (u, v) of parallel (n -1)-arrows of G, f induces a bijection

π n (G, u, v) → π n (H, f (u), f (v)); 4. ̟ 1 (f ) : ̟ 1 (G) → ̟ 1 (H)
is full and essentially surjective, and for all n ≥ 2 and every pair (u, v) of parallel (n -1)-arrows of G, f induces a surjection

π n (G, u, v) → π n (H, f (u), f (v)).
Proof. 1 ⇒ 2) The case n = 1 is obvious. Let n ≥ 2 and let u be an (n -1)-arrow of G.

Set x = s 0 (u). The map π n (G, x) → π n (G, u)
which sends an n-arrow a : 1 x → 1 x to the n-arrow 1 u * 0 a : u → u, is an isomorphism. Moreover f commutes with this isomorphism, that is the square

π n (G, x) G G π n (G, u) π n (H, f (x)) G G π n (H, f (u)) is commutative. The map π n (G, u) → π n (H, f (u)) is thus a bijection for n ≥ 2.
2 ⇒ 3) Let n ≥ 1 and let u, v be two parallel (n -1)-arrows of G. Suppose there exists an n-arrow a : u → v in G. The map

π n (G, u) → π n (G, u, v)
which sends an n-arrow b : u → u to the n-arrow a * n-1 b : u → v, is a bijection. Moreover f commutes with this bijection, that is the square

π n (G, u) G G π n (G, u, v) π n (H, f (u)) G G π n (H, f (u), f (v))
is commutative.

Thus to conclude it suffices to show that if there exists an n-arrow b : 3 ⇒ 4) Obvious.

f (u) → f (v) in H, then there exists an n-arrow a : u → v in G. It is clear when n = 1 by injectivity of π 0 (f ). Let n ≥ 2 and let b : f (u) → f (v) be an n-arrow of H. Set x = s n-2 (u). The arrow 1 f (u) -1 * n-2 b is an n-arrow of H from 1 f (x) : f (x) → f (x) to f (u) -1 * n-2 f (v) : f (x) → f (x). Since the map π n-1 (G, x) → π n-1 (H, f (x)) is injective, there exists an n-arrow a ′ of G from 1 x to u -1 * n-2 v. Then a = 1 u * n-2 a ′ is an n-arrow of G from u to v. 3 ⇒ 1) Obvious. 4 ⇒ 3) Let n ≥ 1,
2 The Brown-Golasiński model structure

In [START_REF] Brown | A model structure for the homotopy theory of crossed complexes[END_REF], Brown and Golasiński introduce a model category structure on the category of crossed complexes. By the equivalence of categories between crossed complexes and strict ∞-groupoids constructed in [START_REF] Brown | The equivalence of ∞-groupoids and crossed complexes[END_REF], this model structure induces a model structure on strict ∞-groupoids. The purpose of this section is to describe this model structure.

Crossed complexes

Let us denote by Grp the category of groups and by CGrp ≥2 the category of homological complexes of (not necessarily commutative) groups in dimension greater or equal to 2, that is of sequences of morphisms of groups

• • • → C n dn -→ C n-1 → • • • → C 3 d 3 -→ C 2
such that for every n ≥ 4, we have d n-1 d n = 1, where 1 denotes the unit element of C n-2 . We have an inclusion functor i 2 : Grp → CGrp ≥2 which sends a group G to the complex concentrated in degree 2 on G.

Let C ≤1 be a groupoid. We will denote by C 0 its set of objects and by C 1 (x, y) the set of morphisms from an object x to an object y in C ≤1 . Let C 1 : C ≤1 → Grp be the functor defined in the following way: an object x of C ≤1 is sent to the group

C 1 (x) = C 1 (x, x); a morphism u : x → y of C ≤1 is sent to the morphism of conjugation by u, i.e., C 1 (x) → C 1 (y) v → uvu -1 . Definition 2.1. A precrossed complex consists of • a groupoid C ≤1 ; • a functor C ≥2 : C ≤1 → CGrp ≥2 ; • an augmentation of C ≥2 over C 1 , that is a natural transformation d 2 : C ≥2 → i 2 C 1 .
Explicitly, a precrossed complex is given by

• for every x in C 0 , a complex C ≥2 (x) = • • • → C n (x) dn -→ C n-1 (x) → • • • → C 3 (x) d 3 -→ C 2 (x); • for every x in C 0 , a morphism d 2 : C 2 (x) → C 1 (x);
• for every n ≥ 2 and every morphism u :

x → y of C ≤1 , a morphism C n (x) → C n (y)
of groups functorial in u, such that for every morphism u :

x → y of C ≤1 , the diagram G G C n (x) dn G G C n-1 (x) G G • • • G G C 2 (x) d 2 G G C 1 (x) G G C n (y) dn G G C n-1 (y) G G • • • G G C 2 (y) d 2 G G C 1 (y),
where

C 1 (x) → C 1 (y) is the conjugation by u, is commutative.
If C is a precrossed complex we will denote by C(x) the augmented complex

• • • → C n (x) dn -→ C n-1 (x) → • • • → C 3 (x) d 3 -→ C 2 (x) d 2 -→ C 1 (x).
If u : x → y is a morphism of C ≤1 and n ≥ 1, we will call the map C n (x) → C n (y) the action of u on C n (x). In particular, an element of C 1 (x) acts on C n (x) for all n ≥ 1.

Definition 2.2. A precrossed complex C is a crossed complex if for all x in C 0 the following conditions are satisfied:

• for every n ≥ 3, the group C n (x) is abelian;

• for every u in C 2 (x), the element d 2 (u) of C 1 (x) acts
by conjugation by u on C 2 (x);

trivially on C n (x) for n ≥ 3.

Definition 2.3. Let C and D be two crossed complexes. A morphism of crossed complexes f : C → D consists of

• a functor f ≤1 : C ≤1 → D ≤1 ; • a natural transformation f ≥2 : C ≥2 → D ≥2 f ≤1 ,
such that f ≥2 is compatible with the augmentation, i.e., the square

C ≥2 d 2 G G D ≥2 f ≤1 d 2 f ≤1 i 2 C 1 G G i 2 D 1 f ≤1 is commutative.
Explicitly, a morphism f : C → D is given by

• a functor f ≤1 : C ≤1 → D ≤1 ;
• for every n ≥ 2 and every x in C 0 , a group morphism

f n : C n (x) → D n (f 0 (x))
, where f 0 denotes the restriction of f ≤1 to objects, such that for every x in C 0 , the diagram

G G C n (x) fn dn G G C n-1 (x) f n-1 G G • • • G G C 1 (x) f 1 G G D n (f 0 (x)) dn G G D n-1 (f 0 (x)) G G • • • G G D 1 (f 0 (x)),
where f 1 denotes the restriction of f ≤1 to C 1 (x), is commutative. We will often simply write f for f n . We will denote the category of crossed complexes by CrC .

The equivalence with strict ∞-groupoids

Let G be a strict ∞-groupoid. One can associate to G a precrossed complex C in the following way:

• the groupoid C ≤1 is the 1-truncation of G obtained from G by throwing out the n-arrows for n ≥ 2;

• C n (x) is the set of n-arrows u of G whose source is an iterated unit of an object, that is such that there exists an object x of G such that s n-1 (u) = 1 x ;

• the group law on C n (x) is induced by the composition

* n 0 : G n × G 0 G n → G n ; • d n : C n (x) → C n-1 (x) is induced by the target map t n-1 : G n → G n-1 ; • if u : x → y is a morphism in C ≤1 and v a morphism in C n (x) for n ≥ 2, the action of u on v is u * 0 v * 0 w 0 (u).
This precrossed complex is a crossed complex (see paragraph 3 of [START_REF] Brown | The equivalence of ∞-groupoids and crossed complexes[END_REF]). Moreover this construction defines a functor A : ∞-Grp → CrC.

Theorem 2.4 (Brown-Higgins). The functor A : ∞-Grp → CrC is an equivalence of categories.

Proof. See Theorem 4.1 of [START_REF] Brown | The equivalence of ∞-groupoids and crossed complexes[END_REF].

The model structure on crossed complexes

Definition 2.5. Let C be a crossed complex. The set of connected components of C is

π 0 (C) = π 0 (C ≤1 ).
For x in C 0 , the fundamental group of C at x is

π 1 (C, x) = Coker(d 2 : C 2 (x) → C 1 (x)),
and for n ≥ 2, the n-th homotopy group of C at x is

π n (C, x) = H n (C(x)).
It is clear that π 0 defines a functor from the category of crossed complexes to the category of sets and that for n ≥ 1, π n defines a functor from the category of pointed crossed complexes to the category of groups. Definition 2.6. A morphism f : C → D of crossed complexes is a weak equivalence of crossed complexes (see [START_REF] Brown | A model structure for the homotopy theory of crossed complexes[END_REF]) if the map π 0 (f ) : π 0 (C) → π 0 (D) is a bijection and if for every x in C 0 and every n ≥ 1, the morphism π n (f, x) : π n (C, x) → π n (D, f (x)) is an isomorphism. Definition 2.7. Let f : C → D be a morphism of crossed complexes. The morphism f is a trivial fibration of crossed complexes (see Proposition 2.2 (ii) of [START_REF] Brown | A model structure for the homotopy theory of crossed complexes[END_REF]) if the following conditions are satisfied:

• for every y in D 0 , there exists x in C 0 such that f (x) = y;

• for every x, y in C 0 and every morphism v : f (x) → f (y) in D ≤1 , there exists a morphism u : x → y in C ≤1 such that f (u) = v;

• for every n ≥ 2, x in C 0 , t in C n-1 (x) and every v in D n (f (x)) such that d n (v) = f (t), there exists u in C n (x) such that d n (u) = t and f (u) = v.
Theorem 2.8 (Brown-Golasiński). The weak equivalences and trivial fibrations of crossed complexes define a model category structure on the category of crossed complexes.

Proof. See Theorem 2.12 of [START_REF] Brown | A model structure for the homotopy theory of crossed complexes[END_REF].

The model structure on strict ∞-groupoids

One obtains a model category structure on strict ∞-groupoids by transferring the model structure on crossed complexes defined in the previous section via the equivalence of categories A : ∞-Grp → CrC. We will call this model structure the Brown-Golasiński model structure. A morphism f of strict ∞-groupoids is a weak equivalence (respectively a trivial fibration) for the Brown-Golasiński model structure if and only if A(f ) is a weak equivalence (respectively a trivial fibration) of crossed complexes. We will denote these classes by W cc and TF cc respectively. We now describe these two classes more explicitly.

Proposition 2.9. We have W cc = W gr . In other words, a morphism f : G → H of strict ∞-groupoids is a weak equivalence of strict ∞-groupoids if and only if the morphism A(f ) : A(G) → A(H) is a weak equivalence of crossed complexes.

Proof. Since the two notions of weak equivalences are defined in terms of homotopy groups, it suffices to show that the two notions of homotopy groups coincide. Let G be a groupoid. By definition, π 0 (G) = π 0 (A(G)). Let x be an object of G. By definition, π 1 (A(G), x) is the cokernel of the morphism A(G) 2 (x) → A(G) 1 (x). The set A(G) 1 (x) is the set of 1-arrows u : x → x in G and two such arrows u, u ′ are identified in the cokernel if and only if there exists a 2-arrow from 1 x to u * 0 u ′ -1 in G. This condition is equivalent to the existence of a 2-arrow from u to u ′ . Hence π 1 (G, x) = π 1 (A(G), x).

Let n ≥ 2. The kernel of the map ,x). Thus the same argument as in dimension 1 shows that π n (G, x) = π n (A(G), x). Proposition 2.10. A morphism f : G → H of strict ∞-groupoids is in TF cc if and only if it satisfies the following conditions:

d n : A(G) n (x) → A(G) n-1 (x) is the set G n (x
• for every object y of H, there exists an object x of G such that f (x) = y;

• for every pair (x, y) of objects of G, the map G(x, y) 0 → G(f (x), f (y)) 0 induced by f is a surjection;

• for all n ≥ 2, every object x of G and every (n -1)-arrow u : 1 x → 1 x , the map

G(1 x , u) 0 → H(1 f (x) , f (u)) 0 is surjective.
Proof. By definition, f is in TF cc if and only if A(f ) is a trivial fibration of crossed complexes. This proposition is then just a matter of translation using the definition of the functor A.

The folk model structure on ∞-Grp

This section shows that the folk model structure on ∞-Cat defined in [START_REF] Lafont | A folk model structure on omega-cat[END_REF] transfers to ∞-Grp via the inclusion functor

U : ∞-Grp → ∞-Cat.
We first give a brief review of the main results of [START_REF] Lafont | A folk model structure on omega-cat[END_REF], and introduce the material needed to prove the transfer theorem.

The folk model structure on ∞-Cat

Given an ∞-category C, we define reversible cells in C and the relation of ω-equivalence between cells of C by mutual coinduction on n ≥ 0. Definition 3.1. Let n ∈ N:

• an n-cell x is ω-equivalent to an n-cell y if there is a reversible (n+1)-cell u : x → y;

• an (n + 1)-cell u : x → y is reversible if there is an (n + 1)-cell ū : y → x such that ū * n u is ω-equivalent to 1 x and u * n ū is ω-equivalent to 1 y .

Note that, for each r ≥ 0, if two cells are r-equivalent in the sense of [START_REF] Street | The algebra of oriented simplexes[END_REF], then they are ω-equivalent, with the converse being false. We also refer to [START_REF] Jacobs | A tutorial on (co)algebras and (co)induction[END_REF] for a gentle introduction to coinductive methods. Remark also that if G is an ∞-groupoid, any (n + 1)-cell u of G is reversible and the cell ū whose existence is stated in Definition 3.1 is of course just u -1 .

Let W denote the class of those morphisms f : C → D satisfying the following two conditions:

1. for each 0-cell y in D, there is a 0-cell x in C such that f x is ω-equivalent to y; 2. for each pair (x, x ′ ) of parallel n-cells in C, where n ≥ 0, and each (n + 1)-cell v : f x → f x ′ , there is an (n + 1)-cell u : x → x ′ such that f u is ω-equivalent to v. Now for each n ≥ 0, we define the n-globe O n as the free ∞-category generated by the representable globular set Y (n) = O(n, -). Thus Y (n) has exactly one n-cell, two k-cells for each k < n and no k-cell for k > n. Let also ∂Y (n) be the globular set having the same cells as Y (n) except in dimension n where (∂Y (n)) n = ∅. We denote by ∂O n the free ∞-category on ∂Y (n). We finally have, for each n ≥ 0, an inclusion morphism

i n : ∂O n → O n .
The set {i n | n ∈ N} is denoted by I.

A map is a trivial fibration if it has the right-lifting property with respect to I and a cofibration if it has the left-lifting property with respect to all trivial fibrations. Proposition 3.2. Any ∞-functor f factors as f = p • k where p is a trivial fibration and k is a cofibration.

Proof. By a standard application of the small object argument, using the fact that ∞-Cat is locally presentable.

On the other hand the maps σ n , τ n : n → n + 1 in the globular category O (see Section 1) induce corresponding maps from O n to O n+1 , of the form i n+1 • σn and i n+1 • τn respectively, where σn , τn : O n → ∂O n+1 . Moreover, we get a pushout diagram

∂O n in G G in O n σn O n τn G G ∂O n+1 .

Now the above pushout determines a canonical map

o n : ∂O n+1 → O n such that o n • σn = o n • τn = id O n . Proposition 3.
2 applies to o n , yielding an object P n together with a trivial fibration p n : P n → O n and a cofibration k n : ∂O n+1 → P n satisfying o n = p n • k n . We finally define j n : O n → P n as k n • σn and

J = {j n | n ∈ N}. Theorem 3.3.
There is a cofibrantly generated model structure on ∞-Cat where W is the class of weak equivalences, I a set of generating cofibrations and J a set of generating trivial cofibrations. This statement is in fact [START_REF] Lafont | A folk model structure on omega-cat[END_REF]Theorem 4.39] and the main result of that article.
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Figure 1: n-cylinders for n = 0, 1

Path object

Let C be an object in a model category and ∆ C : C → C × C be the diagonal map. A path object for C consists in an object P C together with a factorization of ∆ C of the form

C j G G ∆ C R R P C p G G C × C
where p is a fibration and j is a weak equivalence. Such a P C is not unique: in the case of ∞-Cat, one particular choice is given by the functor Γ we now describe. We first define, by induction on n, the notion of n-cylinder between n-cells x, y of an ∞-category C. A few notations will be useful: for each n-cell x we denote by x ♭ , respectively x ♯ its 0-source s 0 x, respectively 0-target t 0 x. Now let C be an ∞-category and x, y two 0-cells in it. There is an ∞-category C(x, y) whose n-cells are the (n + 1)-cells u of C such that u ♭ = x and u ♯ = y. Whenever u is such an (n + 1)-cell of C, we denote by [u] the corresponding n-cell of C(x, y). Finally, let x, y, z be 0-

cells of C. Each 1-cell u : x → y determines an ∞-functor -• u : C(y, z) → C(x, z) given by [v] • u = [v * 0 u]. Likewise u : y → z determines an ∞-functor u • -: C(x, y) → C(x, z) by u • [v] = [u * 0 v].
Definition 3.4.

1. A 0-cylinder U : x y in C is given by a reversible 1-cell U ♮ : x → y;

2. If n > 0, an n-cylinder U : x y in C is given by two reversible 1-cells U ♭ : x ♭ → y ♭ and U ♯ : x ♯ → y ♯ , together with some (n -1)-cylinder [U ] :

U ♯ • [x] [y] • U ♭ in the ∞-category [x ♭ , y ♯ ] = C(x ♭ , y ♯ ).
If U : x y is an n-cylinder in C, we write π 1 C U and π 2 C U for the n-cells x and y, or simply π 1 U and π 2 U . Figure 1 represents n-cylinders for n = 0 and n = 1. For each n ∈ N, any (n + 1)-cylinder W : z z ′ in an ∞-category C determines a pair of n-cylinders in C: Definition 3.5. The source n-cylinder U : x

x ′ and the target n-cylinder V : y y ′ of the (n + 1)-cylinder W : z z ′ between (n + 1)-cells z : x → y and z ′ : x ′ → y ′ are defined inductively by: If W has source U and target V we write W : U → V or W : U → V | z z ′ (see Figure 2). It turns out that the source and target maps so defined satisfy the globular relations, so that the correspondence n → {U | U is an n-cylinder in C} determines a globular set Γ(C). We now turn to trivial n-cylinders: Definition 3.6. The trivial n-cylinder τ x : x

• if n = 0, then U ♮ = W ♭ and V ♮ = W ♯ ; x ♯ x ′♯ x ♭ x ′♭ W ♭ W ♯ y j j x z z y ′ k k x ′ z z U ♮ " 0 V ♮ B P z 7 E R R R R R R R R R R R R R R z ′ 7 E W ♮ r Q e
• if n > 0, then U ♭ = V ♭ = W ♭ and U ♯ = V ♯ = W ♯ ,
x on the n-cell x is defined inductively by:

• if n = 0, then (τ x) ♮ = 1 x ; • if n > 0, then (τ x) ♭ = 1 x ♭ and (τ x) ♯ = 1 x ♯ , whereas [τ x] is the trivial cylinder τ [x] in [x ♭ , x ♯ ].
We write τ C x in case we need to mention the ambient ∞-category C.

Let us finally recall from [10, Appendix A] that Γ(C) becomes a strict ∞-category when defining units and compositions as follows: Definition 3.7. Let U : x y be an n-cylinder. We define the (n + 1)-cylinder 1 U :

U → U | 1 x
1 y by induction on n:

• if n = 0, then (1 U ) ♭ = (1 U ) ♯ = U ♮ , whereas [1 U ] = τ [1 U ♮ ]; • if n > 0, then (1 U ) ♭ = U ♭ and (1 U ) ♯ = U ♯ , whereas [1 U ] = 1 [U ] .
In order to define composition, we first introduce the operation of concatenation: Definition 3.8. Let U | x y and V | y z be two n-cylinders. The concatenation V * U | x z of U and V is defined by induction on n:

• if n = 0, then (V * U ) ♮ = V ♮ * 0 U ♮ ; If W ′ : V → U | x -1
y -1 is the 1-cylinder of G defined by

W ′♮ = y -1 * 0 W ♮ -1 * 0 x -1 , we get W ′ * 0 W = 1 U and W * 0 W ′ = 1 V ,
which proves the case n = 1.

• Let n > 1 and suppose that the property holds for n -1. Let G be an ∞-groupoid and W : U → V | x y an n-cylinder of G. We get 1-cells

W ♭ : x ♭ → y ♭ , W ♯ : x ♯ → y ♯ and an (n -1)-cylinder [W ]: [U ] → [V ] | W ♯ • [x] [y] • W ♭ in H = [x ♭ , y ♯ ]
. Now H is an ∞-groupoid, so that the induction hypothesis applies and there is an (n -1)-cylinder in H

[W ] ′ : [V ] → [U ] | W ♯ • x -1 y -1 • W ♭ such that [W ] ′ * n-2 [W ] = 1 [U ] and [W ] * n-2 [W ] ′ = 1 [V ] . Hence we may define an n-cylinder W ′ of G by W ′♭ = W ♭ , W ′♯ = W ♯ and [W ′ ] = [W ] ′ . By construction W ′ * n-1 W = 1 U and W * n-1 W ′ = 1 V .
Remark 3.12. Let n ≥ 0. The proof of the previous lemma actually shows that if G is a strict (∞, n)-category, then so is Γ(G).

Immersions

We now introduce a class of morphisms which plays an important part in the proof of the transfer theorem. 

1. g is a retraction of f , that is g • f = id C ; 2. π 1 D • h = f • g and π 2 D • h = id D ; 3. h • f = τ D • f . In other words, h is trivial on f (C).
The following proposition summarizes the properties of immersions we need here.

Proposition 3.14. The class Z of immersions satisfies the following properties:

(i) Z is closed by pushout;

(ii) all trivial cofibrations are immersions;

(iii) all immersions are weak equivalences.

We refer to [START_REF] Lafont | A folk model structure on omega-cat[END_REF]Section 4.6] for the proofs of these statements. (C2) R preserves filtered colimits;

C f G G id C U U D g G G C D h f •g id D D Γ(D) π 1 D o o π 2 D G G D C f G G τ D •f 4 
(C3) for each generating trivial cofibration j of C, if g is a pushout of L(j) in D, then R(g) is a weak equivalence of C.

Moreover, if these conditions hold, the model structure so defined is cofibrantly generated and has L(I) as a set of generating cofibrations and L(J) as a set of generating trivial cofibrations.

We now turn to the particular case where C = ∞-Cat, D = ∞-Grp and R is the inclusion functor U : ∞-Grp → ∞-Cat. Note that U has a left-adjoint F : ∞-Cat → ∞-Grp building the free ∞-groupoid on an ∞-category, as well as a right-adjoint M , building to the maximal ∞-groupoid in an ∞-category. Let us first establish a few properties about the adjunction F ⊣ U .

Let T be the monad U F on ∞-Cat. Remark that, for any ∞-groupoid G, the free ∞-groupoid on the underlying ∞-category U (G) is naturally isomorphic to G itself. In other words, the counit ε : F U → 1 is a natural isomorphism. It follows that, for any ∞-groupoid G, we get an isomorphism

η U (G) : U (G) → U F U (G), (1) 
where η denotes the unit of the adjunction. Now, for each ∞-category C, T (C) is of the form U (G) where G is an ∞-groupoid, and so is ΓT (C) by Lemma 3.11, so that

η ΓT (C) : ΓT (C) → T ΓT (C) (2) 
is an isomorphism, as a special case of (1). Thus, we may define a natural transformation

λ : T Γ → ΓT by λ C = η -1 ΓT (C) • T Γ(η C ). (3) 
Note also that the monad multiplication µ : T 2 → T is also a natural isomorphism, and we get

T (η C ) = η T (C) = µ -1 C . (4) 
We may now state the following result: (5)

π 1 D • h = f • g; (6) 
π 2 D • h = id D ; (7) 
h • f = τ D • f. (8) 
Let g ′ = T (g) and h ′ = λ D • T (h). We need to establish the following equations:

g ′ • f ′ = id T (C) ; (9) 
π 1 T (D) • h ′ = f ′ • g ′ ; ( 10 
)
π 2 T (D) • h ′ = id T (D) ; (11) 
h ′ • f ′ = τ T (D) • f ′ . (12) 
Equation ( 9) is just functoriality. Let us prove [START_REF] Lafont | A folk model structure on omega-cat[END_REF]. First remark that π 1 is a natural transformation, so that the following diagram commutes:

Γ(D) Γ(η D ) π 1 D G G D η D ΓT (D) π 1 T (D)
G G T (D). (14)

In fact the upper square is the image of (13) by T and the lower square commutes by naturality of η. Hence

π 1 T (D) • h ′ = π 1 T (D) • λ D • T (h) = T (π 1 D ) • T (h) = T (π 1 D • h) = T (f • g) = f ′ • g ′
which gives [START_REF] Lafont | A folk model structure on omega-cat[END_REF]. Likewise, we get the following commutative diagram: Proof. By the two previous propositions, these model structures have the same weak equivalences and the same trivial fibrations.

T (D) T (h) G G id T (D)

  let u, v be two parallel (n -1)-arrows of G and let a, b be two n-arrows from u to v. Suppose we have f (a) = f (b) in π n (H, f (u), f (v)). Then there exists an (n + 1)-arrow of H from f (a) to f (b). By surjectivity of the map π n+1 (G, a, b) → π n+1 (H, f (a), f (b)), there exists an (n + 1)-arrow in G from a to b. Thus a = b in π n (G, u, v).
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 2 Figure 2: source and target of a 2-cylinder

  whereas the two (n-1)-cylinders [U ] and [V ] are respectively defined as the source and the target of the n-cylinder[W ] in the ∞-category [z ♭ , z ′♯ ].
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 3 13. An ∞-functor f : C → D belongs to the class Z of immersions if and only if there exist ∞-functors g : D → C and h : D → Γ(D) satisfying the following properties:

  Figure 4: Immersions

Lemma 3 .

 3 16. The monad T preserves immersions. Proof. Let f : C → D be an immersion, and f ′ = T (f ). By Definition 3.13, there are g : D → C and h : D → Γ(D) such that g • f = id C ;

Theorem 4 . 3 .

 43 hand triangle commutes by applying T to[START_REF] Jacobs | A tutorial on (co)algebras and (co)induction[END_REF], and the right hand triangle commutes by replacing π 1 with π 2 in (14). Hence π 2 T (D) • h ′ = id T (D) and (11) is proved. Finally, by using the naturality of τ instead of π 1 , we get a commutative diagram analogue to (14):T (D) T (τ D ) G G T (η D ) id T (D) TF folk .There is nothing to prove for the conditions in dimension 0 and 1. Let n ≥ 2 and let u, v be two parallel (n -1)-arrows. We want to show that the mapG(u, v) 0 → H(f (u), f (v)) 0 is surjective. Let b be an n-arrow from f (u) to f (v) in H. Set x = s 0 (u). Then b ′ = 1 w 0 (f (u)) * 0 b is an n-arrow of H from 1 f (x) to w 0 (f (u)) * 0 f (v). Since the map G(1 x , w 0 (u) * 0 v) 0 → H(f (1 x ), f (w 0 (u) * 0 v)) 0 is surjective, there exists an n-arrow a ′ of G from 1 x to w 0 (u) * 0 v such that f (a ′ ) = b ′ .Then, the n-arrow a = 1 u * 0 a ′ is from u to v and we havef (a) = f (1 u * 0 a ′ ) = 1 f (u) * 0 b ′ = 1 f (u) * 0 1 w 0 (f (u)) * 0 b = b.The Brown-Golasiński model structure and the folk model structure on strict ∞-groupoids coincide.

Definition 3.9. Let m ≥ 1, 0 ≤ n < m and U | x

x ′ , V | y y ′ two m-cylinders such that t n (U ) = s n (V ). The composition V * n U | y * n x y ′ * n x ′ is defined by induction on n as follows:

Note that explicit formulas may be found in [START_REF] Métayer | Resolutions by polygraphs[END_REF]. For example, Figure 3 shows the composition

, and the 0-cylinder [W ] of C(z ♭ , z ′♯ ) is the reversible 1-cell of C(z ♭ , z ′♯ ) given by the following corresponding reversible 2-cell of C: An additional property, of particular importance here, is that the functor Γ preserves ∞-groupoids:

which gives [START_REF] Street | The algebra of oriented simplexes[END_REF] and ends the proof.

Lemma 3.17. Let f : C → D be an immersion, and suppose that the following square is a pushout in ∞-Grp:

Then U (g) is an immersion.

Proof. As U is left adjoint to M , it preserves pushouts, so that the following square is a pushout in ∞-Cat:

By Lemma 3.16, T (f ) is an immersion, and so is its pushout U (g), by Proposition 3.14(i).

Lemma 3.18. If j is a generating trivial cofibration of ∞-Cat, and g is a pushout of F (j) in ∞-Grp, then U (g) is a weak equivalence of ∞-Cat.

Proof. Let j be a generating trivial cofibration of ∞-Cat, and g be a pushout of F (j) in ∞-Grp. By Proposition 3.14(ii), j is an immersion, and so is U (g), by Lemma 3.17. By Proposition 3.14(iii), U (g) is a weak equivalence.

We may finally state the main result of this section:

Theorem 3.19. The forgetful functor U : ∞-Grp → ∞-Cat creates a model structure on ∞-Grp in which the weak equivalences are the morphisms f such that U (f ) belongs to W. Moreover, the model structure so defined has (F (i k )) k∈N as a family of generating cofibrations, and (F (j k )) k∈N as a family of generating trivial cofibrations.

Proof. As the model structure on ∞-Cat is cofibrantly generated and ∞-Grp is locally presentable, Proposition 3.15 applies, and it suffices to check conditions (C1), (C2) and (C3). Condition (C1) is proved in [START_REF] Lafont | A folk model structure on omega-cat[END_REF], and condition (C2) follows from the fact

Comparison

In this section, we show that the folk model structure on strict ∞-groupoids defined in the previous section coincides with the Brown-Golasiński model structure. To see this, it suffices to prove that they have the same weak equivalences and the same trivial fibrations.

Proposition 4.1. We have W gr = W folk = W cc .

Proof. We first show that W folk = W gr . In a strict ∞-groupoid, two n-arrows f and g are ω-equivalent if and only if there exists an (n + 1)-arrow a : f → g, that is if and only if f and g are homotopic. Therefore a morphism of strict ∞-groupoids is in W folk if and only if it satisfies condition 4 of Proposition 1.7. The statement is thus exactly the equivalence between conditions 1 and 4 of this very proposition. By Proposition 2.9, we have W cc = W gr , hence the result.

Proposition 4.2. We have TF folk = TF cc .

Proof. To prove the equivalence between the two notions of trivial fibrations, we will use the descriptions of these notions provided by Propositions 2.10 and 3.21. The conditions for being in TF folk are a priori stronger. Let f : G → H be a in TF cc . Let us prove it