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Abstract

We prove that the folk model structure on strict oo-categories transfers to co-groupoids,
and that the resulting model structure coincides with the one defined by Brown and Go-
lasinski via crossed complexes.

1 Introduction

In [@], Brown and Golasinski build a model structure on the category of crossed complexes.
In an earlier work [E], Brown and Higgins established an equivalence of categories between
crossed complexes and strict oo-groupoids, whence a model structure on the latter category.

On the other hand, there is a “folk” model structure on strict oo-categories recently
discovered by Lafont, Worytkiewicz and the second author [@], which extends previously
known model structures on categories [ and 2-categories [[I]].

This immediately raised the questions whether the folk model structure on oco-categories
may be transferred to oo-groupoids by inclusion, and in that case whether the Brown-
Golasiniski model structure may be recovered this way.

The purpose of the present work is to show that both questions have affirmative answers.

We first recall the basic definitions of strict co-categories and co-groupoids (Section E)
Then, we describe the Brown-Golasinski model structure on crossed complexes and co-group-
oids (Section [J). Section [ proves the transfer theorem leading to the definition of the
folk model structure on strict co-groupoids. Finally, Section E shows that the two model
structures previously defined on co-groupoids are in fact the same.

2 Strict oco-groupoids

The purpose of this section is to introduce the definitions and notations about strict co-group-
oids and their weak equivalences that we will use in the sequel of this paper. Our presentation
is essentially the same as the one given in [g.

2.1 Globular sets
Let us denote by O the globular category, that is the category generated by the graph

Tg 01 Ti—1 o; Tit1
. . s
0 1 e 7 7+ 1 N
To 1 Ti—1 T Tit1

and the coglobular relations

0;410; = T;410; and 0,17, = T;,1T;, 7> 0.
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A globular set or co-graph is a presheaf on O. A globular set X amounts to a diagram
of sets

Sn+1 Sn Sn—1 S1 50
_
). U X, e X, Xo
tn+1 tn th—1 ty to

satisfying the globular relations
8i8i41 = Sitix1  and ;841 = titiqa, 1> 0.
For ¢ > 5 > 0, we will denote by s; and té the maps from X; to X; defined by

i

7
j S5 8i—-28i—1 and tj = tj cee ti,Qtifl.

S

If X is a globular set, we will call Xy the set of objects of X and X,, for n > 0 the set of
n-arrows or n-cells. The notation u : * — y will mean that u is a n-arrow for n > 1 whose
source is an (n — 1)-arrow z (that is s, (u) = x) and whose target is an (n — 1)-arrow y (that
is t,(u) = y). We will say that two n-arrows v and v are parallel if either n = 0, or n > 1
and u,v have same source and same target. For ¢ > j > 0, if u is an i-arrow, we will often
denote by s;(u) (respectively ¢;(u)) the j-arrow s’ (u) (respectively ¢’ (u)).

If w and v are m-arrows, X (u,v) will denote the globular set whose k-arrows are the
(n + k + 1)-arrows a of G such that s,(a) = v and t,(a) = v. In particular, X (u,v)o is the
set of (n + 1)-arrows a : u — v in X.

2.2 Strict co-categories

An oco-precategory is a globular set C' endowed with maps
(X, sh) xx, (85, X0) = Xi, 0> >0,
kiZXiflg)Xi, 221,

such that

1. for every couple (u,v) in (X;, s%) xx, (t}, X;) with i > j > 0, we have

- {sil(v), j=i-1

Si— U*i- v .
! 1( si,l(u) *;71 Sifl(’l)), i<t—1 '

J

2. for every couple (u,v) in (X, s%) xx; (t%, X;) with i > j >0, we have

. ti—1(u), =1—1
tic(uxjo) =9 1{w) i-1 j : ;
ti_l(u) * ti_l(?}), j<i—1

3. for every w in X; with ¢ > 0, we have
Sikiv1(u) = u = tikir1(u).
For i > j > 0, we will denote by sz the map from X; — X; defined by
kD = ki kjiakjy.

If w and v are n-arrows for n > 1 of an co-precategory, we will often denote the composition
u*p v by u s, v. If uis an n-arrow, 1, will denote the iterated identity kJ},(u) of u in a
dimension m > n clear by the context.

Definition 2.1. A strict co-category is an oo-precategory X such that the following axioms

are satisfied:
1. Associativity
for every triple (u,v,w) in (Xl,sz) X X; (té,Xi, 33) X X; (t;,Xi) with 1 > 7 > 0, we have

(u;v) % w=ux*; (v w);



2. FEzxchange law
for every 4-uple (u,u’,v,v") in

(X“SZ) XXj (t;,Xi,S;C) XXk (t;,X SZ) XXj (t;,Xl),

J KR

with 1 > j > k > 0, we have
(wsju') kg (v V) = (wsgv) *5 (0 x 0");

3. Units
for every uw in X; with i > 1 and every j such that i > j > 0, we have

wxg g )y =u=1lg ) %5 u;

4. Functoriality of units
for every couple (u,v) in (X; s;) X X; (t;'-,Xi) with i > j > 0, we have the following
equality between (i + 1)-arrows:

1u*jv = 1u *] 17j.
A morphism of strict co-categories or co-functor is a morphism of globular sets compatible
with the maps *3 and k;.
We will denote by oco-Cat the category of oo-categories.
This category is a full reflexive subcategory of the presheaf category of globular sets.
Moreover, it is stable under filtered colimits. Hence, by Theorem 1.46 of [ﬂ], oo-Cat is
locally presentable.

Note that if u and v are two n-arrows of a strict co-category C, the globular set C(u,v)
inherits a structure of strict co-category.

2.3 Strict co-groupoids

LQt C be a strict oo-category and u an i-arrow for ¢ > 1. For j such that 0 < j < 4, a
*%-inverse v of u is an i-arrow such that s;(v) = t;(u) and ¢;(v) = s;(u) satisfying

uxjv =10 and vHju =14 ().
It is easy to see that if it exists, such an inverse is unique. For i > j >0, we will say that C'
admits *j-inverses if every i-arrow of C' admits a *j-inverse.

Definition 2.2. A strict co-groupoid is a strict oco-category which admits *é-inverses for
every i > j > 0. We will denote by co-Grp the full subcategory of co-Cat whose objects are
strict co-groupoids.

The same argument as for co-Cat shows that co-Grp is a locally presentable category.

If G is a strict oo-groupoid and u is an i-arrow of G for i > 1, we will denote by w?(u)
or simply by wj(u) the *j——inverse of u and by u~! the x¢_,-inverse. Note that if u and v are
two n-arrows of a strict co-groupoid G, the strict co-category G(u,v) is a strict co-groupoid.
Proposition 2.3. Let C be a strict oco-category. Then the following assertions are equivalent:

1. C is a strict co-groupoid;

2. C admits *i_|-inverses for every i > 1;

3. C admits *}-inverses for every i > 1;

4. for alli > 1, there exists j satisfying 0 < j < i such that C' admits *é-inverses.

Proof. By induction, it is enough to show that if ¢ > 7 > k > 0 and C admits *i—inverses,
then C' admits *j-inverses if and only if it admits *j-inverses. By using the fact that 2-graph

i J

S 8

J k
E—— L —

th tl

has a natural structure of 2-category, one can assume that £ = 0, 7 = 1 and ¢« = 2. The
result is thus a consequence of the following lemma. O



Lemma 2.4. Let C be a 2-category whose 1-arrows are invertible. Then a 2-arrow is invert-
ible for horizontal composition (i.e. x%) if and only if it is invertible for vertical composition

(i.e. *3).

Proof. Let a : w — v be a 2-arrow. Suppose a admits a horizontal inverse a*. Then
v % a* *o u is a vertical inverse. Conversely, suppose a admits a vertical inverse a~!. Then
v~ xga"! %o u~! is a horizontal inverse. O

2.4 Weak equivalences of strict co-groupoids

Let G be a strict oo-groupoid. An n-arrow u of G is homotopic to another n-arrow v if there
exists a (n + 1)-arrow from u to v. This implies that the arrows u and v are parallel. If u
is homotopic to v, we will write u ~ v. The relation ~ is an equivalence relation on G,:
the properties with respect to source and target of the maps kpy1, wy_; and *'_; imply
respectively that ~ is reflexive, symmetric and transitive.

Let us denote by G,, the quotient of G,, by ~. The composition
*2_1 : Gn XGn_1 Gn — Gn

induces a map
*n_l : Gn XGpo1 Gn — Gn’

n

thanks to the properties with respect to source and target of the composition *Zﬂ For
n > 1, we can thus define a groupoid w,(G) whose objects are (n — 1)-arrows of G and
whose morphisms are elements of G,,. It is clear that w,, defines a functor from the category

of strict co-groupoids to the category of groupoids.

Definition 2.5. The set of connected components of G is
70(G) = 7o (w1 (G)) = Go.
Forn > 1 and x an object of G, the n-th homotopy group of G at x is
T (Gyz) = m1(wn(G), 1) = Autg, (@) (12)-

By functoriality of the w,,’s, 7y induces a functor from the category of strict oco-groupoids
to the category of sets and m,, for n > 1, induces a functor from the category of pointed
strict oo-groupoids to the category of groups. By the Eckmann-Hilton argument, the groups
7 (G, x) are abelian for n > 2. More generally, if u,v are two (n — 1)-arrows for n > 1 we
set

(G, u,v) = Homg, (o) (u,v) and 7, (G, u) = 7, (G, u,u).
Definition 2.6. A morphism f : G — H of strict co-groupoids is a weak equivalence of
strict oo-groupoids if the map mo(f) : m0(G) — wo(H) is a bijection and if for alln > 1 and
all object x of G, the morphism m,(f,x) : 7o (G, x) — 7, (H, f()) is a group isomorphism.
We will denote by We: the class of such weak equivalences.

Proposition 2.7. Let f : G — H a morphism of strict oco-groupoids. The following condi-
tions are equivalent:

1. f is a weak equivalence of strict co-groupoids;

2. wo(f) : mo(G) — mo(H) is a bijection and for all n > 1 and every (n—1)-arrow u of G,
f induces a bijection

3. w1(f) : wi1(G) = wi(H) is an equivalence of categories and for all n > 2 and every
couple (u,v) of parallel (n — 1)-arrows of G, f induces a bijection

(G u,v) = mo (H, f(u), f(v));



4. wi(f) : w1(G) = wi(H) is full and essentially surjective, and for all n > 2 and every
couple (u,v) of parallel (n — 1)-arrows of G, f induces a surjection

(G u,v) = w0, (H, f(u), f(v)).

Proof. 1 = 2) The case n = 1 is obvious. Let n > 2 and u be an (n — 1)-arrow of G. Set
x = so(u). The map
7n (G, x) = 7 (G, u)

which sends an n-arrow a : 1, — 1, on the n-arrow 1, *g a : © — u, is an isomorphism.
Moreover f commutes to this isomorphism, that is the square

7Tn((;’,l'> Wn(G,U)

| |

7Tn(I{a f(l')) - 7Tn(I{a f(u))

is commutative. The map 7, (G, u) — m,(H, f(u)) is thus a bijection for n > 2.
2 = 3) Let n > 1 and u,v two parallel (n — 1)-arrows of G. Suppose there exists an
n-arrow a : 4 — v in G. The map

(G, u) = 1 (G, u,v)

which sends an n-arrow b : ©w — u to the n-arrow a *,—1 b : © — v, is a bijection. Moreover
f commutes to this bijection, that is the square

7 (G, ) TGy, v)

| l

T (H, f(u))) —— mn(H, f(u), f(v))

is commutative.

Thus to conclude it is enough to show that if there exists an n-arrow b : f(u) — f(v)
in H, then there exists an n-arrow a : v — v in G. It is clear when n = 1 by injectivity
of mo(F). Let n > 2 and b: f(u) — f(v) an n-arrow of H. Set = $,_2(u). The arrow
Lp(u)-1 *n—2bis an n-arrow of H from 1y, : f(z) = f(z) to Fw)  epa f0) ¢ fz) = f(2).
Since the map

Tn-1(G,x) = mn—1(H, f(z))

ls,_ov. Then a = 1, %,_24a’ is an

is injective, there exists an n-arrow a’ of G from 1, to u~
n-arrow of G from u to v.

3 = 1) Obvious.

4 = 3) Let n > 1, let u, v be two parallel (n—1)-arrows of G and a, b be two n-arrows from
u to v. Suppose we have f(a) = f(b) in m,(H, f(u), f(v)). Then there exists a (n + 1)-arrow

in H from f(a) to f(b). By surjectivity of the map

Tnt1(G,a,b) = T (H, f(a), f(b)),

there exists an (n + 1)-arrow in G from a to b. Thus a = b in 7, (G, u,v).
3 = 4) Obvious.

3 The Brown-Golasinski model structure

In [@], Brown and Golasinski introduce a model category structure on the category of
crossed complexes. By the equivalence of categories between crossed complexes and strict
oo-groupoids constructed in [ﬂ], this model structure induces a model structure on strict
oo-groupoids. The purpose of this section is to describe this model structure.



3.1 Crossed complexes

Let us denote by Grp the category of groups and by CGrps, the category of homological
complexes of (not necessarily commutative) groups in dimension greater or equal to 2, that
is of sequences of maps of groups

dn d:
e Oy B Oy = - = O3 =2 Oy

such that for every n > 4, we have d,d,_1 = 1, where 1 denotes the unit element of C,,_s.
We have an inclusion functor iz : Grp - CGrps, which sends a group G to the complex
concentrated in degree 2 of value G. -

Let C<; be a groupoid. We will denote by Cj its set of objects and by Cy(x,y) the set
of morphisms from an object = to an object y in C<;. Let C; : C<y — Grp be the functor
defined in the following way: an object x of C<; is sent to the group Cy(x) = Ci(z,z); a
morphism u : x = y of C<; is sent to the morphism of conjugation by w, i.e.

Ci(z) = Ci(y)

v = uvu" L

Definition 3.1. A precrossed complex is the data of

e a groupoid C<y;

e a functor C>q : C<y — CGrp22;

o an augmentation of C>o over C, that is a natural transformation dy : C>o — 12Ch.
Explicitly, a precrossed complex is given by

e for every = in Cj, a complex

Cog(z) =+ — Cp(@) 2 Ci(z) = -+ — C3(z) 2 Cy(x);

e for every x in Cp, a morphism dy : Ca(z) — C1(x);

o for every n > 2 and every morphism v : £ — y of C<1, a morphism C,,(z) — C,(y) of
groups functorial in wu,

such that for every morphism v :  — y of C<y, the diagram

e Cp(z) — Oy (2) Co(z) =25 O, ()
Lo |
— Cn(y) ——= Cha(y) e Ca(y) Ci(y),

where C(z) — C1(y) is the conjugation by u, is commutative.
If C is a precrossed complex we will denote by C(z) the augmented complex

o Cn(2) L Cr(z) = - — C3(2) 25 Ca(2) 25 Oy (2).

If u : * — y is a morphism of C<; and n > 1, we will call the map Cy,(x) — C.,(y) the action
of uw on Cy(z). In particular, an element of Ci(z) acts on Cy(x) for all n > 1.

Definition 3.2. A precrossed complex C is a crossed complex if for all x in Cy the following
conditions are satisfied:

o for every n > 3, the group Cy(x) is abelian;

o for every u in Cy(x), the element da(u) of Ci(x) acts
— by conjugation by u on Ca(x);
— trivially on Cp(z) for n > 3.

Definition 3.3. Let C and D be two crossed complexes. A morphism f: C — D is the data
of



a functor f<1: C<1 — D<1;

a natural transformation f>o : C>2 = D>af<q,

such that f>9 is compatible with the augmentation, i.e. the square

CZQ I D22f§1

dQl ld2f<1

19C1 —=12D1 f<1

15 commutative.

Explicitly, a morphism f : C' — D is given by

a functor f<1: C<i = D<y;

for every n > 2 and every x in Cy, a group morphism f, : Cp,(z) = Dy (fo(z)), where
fo denotes the restriction of f<; to objects,

such that for every z in Cp, the diagram

Cn(z) — 2 O () - C1(x)

g |

— Dy (fo(z)) —— Dpn-1(fo(z)) — - —— D1(fo(2)),

where f1 denotes the restriction of f<; to Cy(x), is commutative. We will often simply
denote f, by f.
We will denote the category of crossed complexes by CrC .

3.2

The equivalence with strict co-groupoids

Let G be an oco-groupoid. One can associate to G a precrossed complex C' in the following

way:

the groupoid C<; is the 1-truncation of G obtained from G by throwing out the n-
arrows for n > 2;

Cp(z) is the set of n-arrows u of G such that their source is an iterated unit of an
object, that is such that there exists an object = of G such that s,—1(u) = 1,;

the group law on C,(z) is induced by the composition *jj : G, Xg, Gn — Gy;
dp : Cp(x) = Ch—1(2x) is induced by the target map t,—1 : G, = Gp—1;

if u: 2 — yis a morphism in C<; and v a morphism in Cy,(x) for n > 2, the action of
u on v is
U ko U *g wo(u).

This precrossed complex is a crossed complex (see Paragraph 3 of [ﬂ]) Moreover this con-
struction defines a functor A : co-Grp — CrC.

Theorem 3.4 (Brown-Higgins). The functor A : co-Grp — CrC is an equivalence of
categories.

Proof. See Theorem 4.1 of [{]. O



3.3 The model structure on crossed complexes

Definition 3.5. Let C be a crossed complex. The set of connected components of C' is

7T0(C) = 7T0(C<1).

For x in Cy, the fundamental group of C' at x is
m1(C, z) = Coker(dy : Ca(x) — C1(x)),
and for n > 2, the n-th homotopy group of C at x is
m(C,x) = Hp(C(x)).

It is clear that my defines a functor from the category of crossed complexes to the category
of sets and that for n > 1, m,, defines a functor from the category of pointed crossed complexes
to the category of groups.

Definition 3.6. A morphism f : C — D of crossed complexes is a weak equivalence of
crossed complexes (see [}]) if the map mo(f) : wo(C) — 7o (D) is bijection and if for every x
in Cy and everyn > 1, the morphism m,(f, ) : mp(C, ) = 7w, (D, f(x))) is an isomorphism.

Definition 3.7. Let f : C — D be a morphism of crossed complexes. The morphism f
is a trivial fibration of crossed complexes (see Proposition 2.2 (i) of /ﬂ/ ) if the following
condition are satisfied:

o for every y in Dy, there exists x in Cy such that f(x) = y;

o for every x, y in Cy and every morphism v : f(x) — f(y) in D<1, there exists a
morphism u : x — y in C<y such that f(u) = v;

o foreveryn > 2, x in Cy, t in Cr_1(x) and every v in D,(f(z)) such that d,(v) = f(¢),
there exists u in Cp(x) such that d,,(u) =t and f(u) = v.

Theorem 3.8 (Brown-Golasinski). The weak equivalences and trivial fibrations of crossed
complezes define a model category structure on the category of crossed complezes.

Proof. See Theorem 2.12 of [[. O

3.4 The model structure on strict co-groupoids

One obtains a model category structure on strict co-groupoids by transferring the model
structure on crossed complexes defined in the previous section via the equivalence of cate-
gories A : co-Grp — CrC. We will call this model structure the Brown-Golasinski model
structure. A morphism f of strict co-groupoids is a weak equivalence (respectively a trivial
fibration) for the Brown-Golasinski model structure if and only if A(f) is weak equivalence
(respectively a trivial fibration) of crossed complexes. We will denote this classes by Wee
and TF.. respectively.
We now describe these two classes more explicitly.

Proposition 3.9. We have Wee = We:. In a other words, a morphism of strict co-groupoids
f: G — H is a weak equivalence of strict co-groupoids if and only if A(f) : A(G) — A(H)
s a weak equivalence of crossed complexes.

Proof. Since the two notions of weak equivalences are defined in terms of homotopy groups,
it is enough to show that the two notions of homotopy groups coincide.

Let G be a groupoid. By definition, mo(G) = mo(A(G)).

Let = be an object of G. By definition, m (A(G),x) = Coker(A(G)z2(x) — A(G)1(x)).
The set A(G)1(z) is the set of 1-arrow u :  — x in G and two such arrows u, u’ are identified
in the cokernel if and only if there exists a 2-arrow from 1, to u*gu’ ~in G. This condition
is equivalent to the existence of a 2-arrow from u to u’. Hence m (G, z) = m (A(G), z).

Let n > 2. The kernel of the map d,, : A(G),(z) = A(G)n—1(z) is the set G, (x, ). Thus
the same argument as in dimension 1 shows that 7, (G, z) = 7,(A(G), x). O



Proposition 3.10. A morphism f: G — H of strict co-groupoids is in TFcc if and only if
it satisfies the following conditions:

o for every object y of H, there exists an object x of G such that f(x) = y;
e for every objects x,y of G, the map

G(ZL', y)O — G(f(l'), f(y))()

induced by f is a surjection;

e for alln > 2, every object x of G and every (n — 1)-arrow u : 1, — 1,, the map

18 surjective.

Proof. By definition, f isin TF.. if and only if A(f) is a trivial fibration of crossed complexes.
This proposition is then just a matter of translation using the definition of the functor A. O

4 The folk model structure on oco-Grp

This section shows that the folk model structure on co-Cat defined in [[[1] transfers to
oo-Grp via the inclusion functor

U : 0o-Grp — oco-Cat.

We first give a brief review of the main results of [T}, and introduce the material needed to
prove the transfer theorem.

4.1 The folk model structure on oco-Cat

Given an oo-category C, we define reversible cells in C' and the relation of w-equivalence
between cells of C' by mutual coinduction on n > 0:

Definition 4.1. Let n € N:
e an n-cell x is w-equivalent to an n-cell y if there is a reversible (n + 1)-cell u: x — y;

e an (n+ 1)-cell u : x — y is reversible if there is an (n+ 1)-cell @ : y — = such that
U *p u 05 w-equivalent to 1, and u x, U is w-equivalent to 1,.

Note that, for each r > 0, if two cells are r-equivalent in the sense of [, then they
are w-equivalent, the converse being false. We also refer to [E] for a gentle introduction to
coinductive methods. Remark also that if G is an oo-groupoid, any (n + 1)-cell u of G is
reversible and the cell @ whose existence is stated in Definition is of course just u 1.

Let W denote the class of those morphisms f : C — D satisfying the following two
conditions:

1. for each O-cell y in D, there is a O-cell x in C' such that fx is w-equivalent to y;

2. for each pair (z,z’) of parallel n-cells in C, where n > 0, and each (n+1)-cell v : fz —
fa', there is an (n + 1)-cell u : ¢ — 2’ such that fu is w-equivalent to v.

Now for each n > 0, we define the n-globe O™ as the free co-category generated by the
representable globular set Y'(n) = O(n,—). Thus Y (n) has exactly one n-cell, two k-cells for
each k < n and no k-cell for & > n. Let also 0Y (n) be the globular set having the same cells
as Y'(n) except in dimension n where (Y (n)),, = 0. We denote by O™ the free co-category
on 9Y (n). We finally have, for each n > 0, an inclusion morphism

i, : 00™ — O™.

The set {i,, | n € N} is denoted by I.
A map is a trivial fibration if it has the right-lifting property with respect to I and a
cofibration if it has the left-lifting property with respect to all trivial fibrations.



Proposition 4.2. Any co-functor [ factors as f = pok where p is a trivial fibration and k
s a cofibration.

Proof. By a standard application of the small object argument, using the fact that co-Cat
is locally presentable (see [f]). O

On the other hand the maps ¢, 7, : n — n+1 in the globular category O (see Section )
induce corresponding maps from O™ to O"*1, of the form i,y 06, and i, 107, respectively,
where 6,7, : O™ — 00" *!. Moreover, we get a pushout diagram

iTI,

oo" o"

o" —— 90"+

Now the above pushout determines a canonical map
0, : 00"  O"

such that o, o &, = 0, o 7, = ido~. Proposition @ applies to o,, yielding an object P"
together with a trivial fibration p,, : P* — O™ and a cofibration k,, : 90" — P" satisfying
0, = pn © k,. We finally define j, : O™ — P™ as k,, o 6,, and

J={jn | neN}

Theorem 4.3. There is a cofibrantly generated model structure on co-Cat where W is the
class of weak equivalences, I a set of generating cofibrations and J a set of generating trivial
cofibrations.

This statement is in fact , Theorem 4.39] and the main result of that article.

4.2 Path object

Let C be an object in a model category and Ag : C — C x C be the diagonal map. A path
object for C' consists in an object P together with a factorization of A¢ of the form

c—sp,—PcxC
\_/
Ac

where p is a fibration and j is a weak equivalence. Such a P¢ is not unique: in the case of
oo-Cat, one particular choice is given by the functor I' we now describe. We first define,
by induction on n, the notion of n-cylinder between n-cells x, y of an oco-category C. A
few notations will be useful: for each n-cell  we denote by z”, respectively z¥ its 0-source
sox, respectively O-target tgx. Now let C' be an oo-category and z, y two O-cells in it, there
is an oo-category C(z,y) whose n-cells are the (n 4 1)-cells u of C such that u” = x and
uf = y. Whenever u is such an (n + 1)-cell of C, we denote by [u] the corresponding n-cell
of C(z,y). Finally, let z, y, z be 0-cells of C, each 1-cell u : x — y determines an oo-functor
—-u: Cly,z) = C(x,z) given by [v] - u = [v*gu]. Likewise u : y — 2 determines an
oo-functor u - — : C(x,y) — C(z,2) by u - [v] = [u *¢ v].

Definition 4.4. 1. a O-cylinder U : x ~ y in C is given by a reversible 1-cell U : & — y;

2. if n >0, an n-cylinder U : & ~ y in C is given by two reversible 1-cells U’ : x” — 1
and Ut @zt — ot together with some n—1-cylinder [U] : U - [x] ~ [y] - U® in the
oo-category [z°,yt] = C(2°, y*).

If U: 2 ~ yis an n-cylinder in C, we write 7, U and 7% U for the n-cells z and y, or
simply 7' U and 72 U. Figure [] represents n-cylinders for n = 0 and n = 1. For each n € N,
any n+1-cylinder W : z ~ 2’ in an oo-category C determines a pair of n-cylinders in C":
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X xﬁ<x—xb

N\

og Ut U\ U’
Y Z/ﬁ ~ v yb

Figure 1: n-cylinders for n = 0,1

Figure 2: source and target of a 2-cylinder

Definition 4.5. The source n-cylinder U : x ~ x’ and the target n-cylinder V' : y ~ 3/
of the n+1-cylinder W : z ~ 2’ between n+1-cells z : x — y and 2’ : ¥’ — y' are defined
inductively by:

e ifn=0, then U = W’ and Vi = W¥;

o ifn>0, then U’ =V’ =W’ and U* = VF = W', whereas the two n—1-cylinders [U]
and [V] are respectively defined as the source and the target of the n-cylinder [W] in
the oo-category [2°, 2.

If W has source U and target V we write W : U - Vor W :U = V | 2z ~v 2/ (see
Figure E) It turns out that the source and target maps so defined satisfy the globular
relations, so that the correspondence

n+— {U | U is an n—cylinder in C}

determines a globular set I'(C'). We now turn to trivial n-cylinders:

Definition 4.6. The trivial n-cylinder 7z : x ~ x on the n-cell x is defined inductively by:
o ifn =0, then (T2)! = 1,;
e ifn >0, then (T2)’ = 1, and (1T 2)* = 1,4, whereas [1 2] is the trivial cylinder T[z] in
[2°, 2%].

We write 7¢ « in case we need to mention the ambient co-category C.
Let us finally recall from [[L1], Appendix A] that T'(C') becomes a strict co-category when
defining units and compositions as follows :

Definition 4.7. Let U : x ~ y be an n-cylinder. We define the (n + 1)-cylinder 1y : U —
U |1y ~ 1, by induction on n:

e ifn=0, then (1y)’ = (1p)* = Ut, whereas [1y] = T[1ys);
e ifn>0, then (1y)’ = U" and (1p)* = U*, whereas [1y] = 1.
In order to define composition, we first introduce the operation of concatenation:

Definition 4.8. Let U | x ~ y and V | y ~ z be two n-cylinders. The concatenation
VU|x~zof UandV is defined by induction on n:

o ifn =0, then (V+U)" = Vix U

11



o ifn >0, then (V+U) =V° U, (VU = VEixqUF and [V U] = [V]- U’ VE-[U].

Definition 4.9. Let m > 1,0<n<m and U |z ~a', V | y ~ 3y two m-cylinders such
that t,(U) = s, (V). The composition V *, U | y *, x ~ y' *, &' is defined by induction on
n as follows:

o (ViU =U" and (V %o U)t = V¥, whereas [V o U] =o' - [U] % [V] - x;

o ifn >0, then (Vx, U)’ = U* =V® and (U %, V) = Ut =V, whereas [V , U] =

V] #n-1 [U].

Note that explicit formulas may be found in [@]

For example, Figure E shows the composition V x¢ U of two 1-cylinders U : x ~ 2’ and
V 1y ~ vy such that U? = V”. Precisely, the composite V %o U is the 1-cylinder W : z ~ 2’
where z = y xo x, 2/ =y %o 2/, W> = U”, W# = V%, and the O-cylinder [W] of C(2°,2'*) is
the reversible 1-cell of C(2, 2 ﬁ) given by the following corresponding reversible 2-cell of C":

VVh = (y/ *Q Uh) *1 (Vh *Q ,CC)

yﬁ<—y—xﬁ<—xb
N LN

\ =Ut U\ Ut

y/ﬁ<_y/y/b:x/ﬁ<m/_x/b

Figure 3: composition of 1-cylinders

The following result summarizes the main properties of I':

Theorem 4.10. The correspondence C' — T'(C) induces an endofunctor on oco-Cat, and

ml, 72T —id, 7 :id = ' are natural transformations.

An additional property, of particular importance here, is that I" preserves co-groupoids:

Lemma 4.11. If G is an co-groupoid, so is I'(G).

Proof. We show, by induction onn > 1, that if G is an co-groupoidand W : U — V |z ~ y is
an n-cylinder of G, there is an n-cylinder W’ : V. — U | =1 ~ y~1 such that W’x,, W = 1y
and Wk, W' =1y.
e Let G be an oco-groupoid and W:U —V |z~ ya l-cylinder of G. By definition, we
gettwolcells Ul cz® =y, Vi a2t — yf and a 2-cell Wi : Vikgx — y*o U? in G.
Consider Wi~ ' 1y %o U — V% x the %;-inverse of W and build

YL %o VVV1 wox LU xgz ™t — y % %45
W :V—U|z7 '~y !is the I-cylinder of G defined by
W' = YL ko VVF1 %oz L,
we get
W' s W =1y and W s W' =1y,

which proves the case n = 1.

e Let n > 1 and suppose that the property holds for n — 1. Let G be an co-groupoid and
W :U — V |z ~y an n-cylinder of G. We get 1-cells W’ : 2” — 3°, Wt of — 4
and an n — l-cylinder [W]: [U] — [V] | W* - [z] ~ [y] - W? in H = [2°,y%]. Now H is
an oo-groupoid, so that the induction hypothesis applies and there is an n — 1-cylinder
in H

W) V] = U] | W [ ~ [y ] WP
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such that [W]' #,_o [W] = 1) and [W] #,_5 [W]" = 1jy;). Hence we may define an
n-cylinder W’ of G by W” = W*, W’ = W# and [W'] = [W]'. By construction

W/ *p—1 W = 1U and W *n—1 W/ = 1‘/7

4.3 Immersions

We now introduce a class of morphisms which plays an important part in the proof of the
transfer theorem.

Definition 4.12. An co-functor f : C — D belongs to the class Z of immersions if and only
if there exist co-functors g : D — C and h: D — T'(D) satisfying the following properties:

1. g is a retraction of f, that is go f = id¢;
2. thoh=fogand n%oh=1idp;
3. hof=rpof. In other words, h is trivial on f(C).

f g f
e S AN
S
Tpof
D P(D) —D P(D)

Figure 4: Immersions

The following proposition summarizes the properties of immersions we need here.

Proposition 4.13. The class of immersions satisfies the following properties:
(i) Z is closed by pushout;
(ii) all trivial cofibrations are immersions;

(#ii) all immersions are weak equivalences;

We refer to [[L1], Section 4.6] for the proofs of these statements.

4.4 Transfer

Let C, D be two categories and L : C — D, R : D — C be a pair of functors with L left
adjoint to R, and suppose that C is equipped with a model structure. We may define three
classes of maps of D as follows:

e for each morphism f of D, f € Wp if and only if R(f) is a weak equivalence in C;
e for each morphism f of D, f € Fp if and only if R(f) is a weak equivalence in C;
e (Cp is the class of maps having the left-lifting property with respect to Wp N Fp.

We say that R creates a model structure on D if Wp, Fp and Cp are respectively the weak
equivalences, fibrations and cofibrations of a model structure on D. Sufficient conditions for
this transfer to hold are given by [E, Theorem 3.3] or [, Proposition 2.3]. The latter result
immediately specializes to the following statement:

Proposition 4.14. Let C a cofibrantly generated model structure, with I a set of generating
cofibrations and J a set of generating trivial cofibrations. If D is locally presentable, then
the following conditions are sufficient for R to create a model structure on D:

(C1) the weak equivalences of C are closed under filtered colimits;
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(C2) R preserves filtered colimits;
(C3) for each generating trivial cofibration j of C, if g is a pushout of L(j) in D, then R(g)
s a weak equivalence of C.

Moreover, if these conditions hold, the model structure so defined is cofibrantly generated and
has L(I) as a set of generating cofibrations and L(J) as a set of generating trivial cofibrations.

We now turn to the particular case where C = co-Cat, D = co-Grp and R is the inclusion
functor U : co-Grp — oo-Cat. Note that U has a left-adjoint F' : co-Cat — co-Grp building
the free co-groupoid on an co-category, as well as a right-adjoint M, building to the maximal
oo-groupoid in an co-category. Let us first establish a few properties about the adjunction
FAU.

Let T be the monad UF on co-Cat. Remark that, for any oo-groupoid G, the free oo-
groupoid on the underlying oo-category U(G) is naturally isomorphic to G itself. In other
words, the counit € : FU — 1 is a natural isomorphism. It follows that, for any oco-groupoid
G, we get an isomorphism

@ : UG) = UFU(G), (1)

where 1 denotes the unit of the adjunction. Now, for each oco-category C, T(C) is of the
form U(G) where G is an oo-groupoid, and so is I'T(C') by Lemma [L.11], so that

is an isomorphism, as a special case of (EI) Thus, we may define a natural transformation
AN:TT - TT

by

Ac = 771:71“(0) © TF(”C)- (3>
Note also that the monad multiplication p : T? — T is also a natural isomorphism, and we
get

T(nc) = nr(c) = ko' (4)
We may now state the following result:

Lemma 4.15. The monad T preserves immersions.

Proof. Let f : C — D be an immersion, and f* = T(f). By Definition , there are
g: D — Cand h:D — T'(D) such that

gof = ideg; (5)
ﬂ}) oh = fog; (6)
W% oh = idp; (7)

hof = 1polf. (8)

Let ¢’ =T(g) and b/ = Ap o T'(h). We need to establish the following equations:

g of = idpey; (9)
Trpy o b = fog; (10)
ﬂ%(D) oh/ = idp(py; (11)

hof' = 7tpmpyof. (12)

Equation @) is just functoriality. Let us prove (E) First remark that w' is a natural
transformation, so that the following diagram commutes:

r'(D)—2—~p . (13)



We may now build the following commutative diagram:

T(rp)

TT (D) —2 T(D) (14)

\LTP(WD) T(WD)l

T(m} )
o | TTT(D) —2T2(D)  }idro)

lnF’ll“(D) nT(lD)l
I'T(D) — T(D)

TT(D)

In fact the upper square is the image of () by T and the lower square commutes by
naturality of 7. Hence

ﬂ%(D) ohl = ﬂ%(D) oAp o T(h)
= T(xp)oT(h)

T(r} oh)

T(fog)

= [flog

which gives ([[(). Likewise, we get the following commutative diagram

n'

7(D) YL 71(D) 22> TT(D
|
. T(r3)
ldi s ;/Z%(m
(D)

where the left hand triangle commutes by applying T to (ﬂ), and the right hand triangle
commutes by replacing 7' with 72 in ([[4). Hence 77%( py oI = idy(p) and (1) is proved.

(15)

Finally, by using the naturality of 7 instead of 7!, we get a commutative diagram analogue

to ()
) rr(p) (16)
lT(nD) TF(UD)J/

idr(p) ( o T(D)&'FT(D) AD

—1
lnT(D) an(D)l

— > TT(D)

TT(D)

Hence

hof

Ap oT(h)oT(f)
Ap oT(hof
(7p
(7

DOT
= )\DOT

= Tr(p)° f!

)

which gives (@) and ends the proof. O
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Lemma 4.16. Let f : C' — D be an immersion, and suppose that the following square is a
pushout in co-Grp:

FC——=@

le l

FD—H
Then U(g) is an immersion.

Proof. As U is left adjoint to M, it preserves pushouts, so that the following square is a
pushout in co-Cat:

U(u)
T7C——=UG

T(f)l lU(g)

TDWUH

By Lemma [L.15, T(f) is an immersion, and so is its pushout U(g), by Proposition [L13({). O

Lemma 4.17. If j be a generating trivial cofibration of co-Cat, and g be a pushout of F(j)
in 0co-Grp, then U(g) is a weak equivalence of co-Cat.

Proof. Let j be a generating trivial cofibration of co-Cat, and g be a pushout of F(j) in
oco-Grp. By Proposition (ﬁ), j is an immersion, and so is U(g), by Lemma . By
Proposition [L13([il), U(g) is a weak equivalence. O

We may finally state the main result of this section:

Theorem 4.18. The forgetful functor U : co-Grp — oco-Cat creates a model structure on
00-Grp in which the weak equivalences are the morphisms f such that U(f) € W. Moreover,
the model structure so defined has (F(ir))ken as a family of generating cofibrations, and
(F(jr))ken as a family of generating trivial cofibrations.

Proof. As the model structure on co-Cat is cofibrantly generated and oco-Grp is locally
presentable, Proposition applies, and it suffices to check conditions (C1), (C2) and
(C3). Condition(C1) is proved in [[[T], and condition(C2) follows from the fact that U has a
right-adjoint M, hence preserves colimits, and in particular filtered ones. Condition(C3) is
Lemma . The statement about generating families follows from Proposition . O

We call the model structure just defined the folk model structure on co-groupoids. We
denote its weak equivalences by Wko and its trivial fibrations by TFg. Note that a
morphism f is in TFe if and only if U(f) is a trivial fibration of co-Cat.

Corollary 4.19. A morphism f: G — H of co-groupoids belongs to TFio if and only if
1. for each O-cell y in H, there is a 0-cell x in G such that fx =y;

2. for each pair {x,z') of parallel n-cells in G, where n > 0, and each (n+1)-cellv : fz —
fa', there is an (n+ 1)-cell u: @ — a’ such that fu = v.

5 Comparison
In this section, we show that the folk model structure on strict co-groupoids defined in the

previous section coincides with the Brown-Golasinski model structure. To see this, it is
sufficient to prove that they have the same weak equivalences and the same trivial fibrations.

Proposition 5.1. We have Wy = Wioik = Wee.
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Proof. We first show that Wik = Wer. In a strict co-groupoid, two n-arrows f and g are
w-equivalent if and only if there exists an (n + 1)-arrows a : f — g, that is if and only f
and g are homotopic. Therefore a morphism of strict co-groupoids is in Wk if and only
if it satisfies conditionﬁ of Proposition @ The statement is thus the equivalence between
condition m and E of this very proposition.

By Proposition @, we have W,; = Wy, hence the result. O

Proposition 5.2. We have TFiox = TFce-

Proof. To prove the equivalence between the two notions of trivial fibrations, we will use
the descriptions of these notions provided by Proposition and Corollary . The
conditions for being in TFg, are a priori stronger. Let f : G — H be a in TF.. Let us
prove it is actually in 7Fgk. There is nothing to prove for the conditions in dimension 0
and 1. Let n > 2 and u, v be two (n — 1)-arrows. We want to show that the map

G(u,v)o = H(f(u), f(v))o

is surjective. Let b be a (n + 1)-morphism f(u) — f(v) in H. Set = so(u). Then
b = Ly, (f(u)) *0 b is an (n + 1)-arrow of H from 1¢(,) to wy(f(u)) *o f(v). Since the map

G(1g, wy(u) *o v)o = H(f(1s), fwg(w) %o v))o

is surjective, there exists an n-arrow o’ of G from 1; to wy(u) %o v such that f(a’) = ¥'.
Then, the n-arrow a = 1, *{ @’ is from u to v and we have

fa) = f(ly*oa’)
= 1f(u) *Q b/
= Ly *0 Lugy(f(u)) *o0 b
— b

O

Theorem 5.3. The Brown-Golasiniski model structure and the folk model structure on strict
0o-groupoids coincide.

Proof. By the two previous propositions, these model structures have the same weak equiv-
alences and the same trivial fibrations. |
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