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Abstract

We develop a structural risk-neutral model for energy market modifying along several directions the
approach introduced in [Aid et al., 2009]. In particular a scarcity function is introduced to allow
important deviations of the spot price from the marginal fuel price, producing price spikes. We focus
on pricing and hedging electricity derivatives. The hedging instruments are forward contracts on fuels
and electricity. The presence of production capacities and electricity demand makes such a market
incomplete. We follow a local risk minimization approach to price and hedge energy derivatives.
Despite the richness of information included in the spot model, we obtain closed-form formulae for
futures prices and semi-explicit formulae for spread options and European options on electricity for-
ward contracts. An analysis of the electricity price risk premium is provided showing the contribution
of demand and capacity to the futures prices. We show that when far from delivery, electricity futures
behave like a basket of futures on fuels.

Keywords and phrases: Electricity spot and forward prices, fuels, capacity, electricity demand,
scarcity function, local risk minimization, minimal martingale measure, power derivatives, spread
options, extended incomplete Goodwin-Staton integral.

JEL Classification: D41; G13. AMS Classification (2000): 91B24; 91B26.

1 Introduction

This paper is a contribution to the development of electricity price model that can provide explicit or semi-
explicit formulae for European derivatives on electricity markets. Since the beginning of the liberalization
process of electricity market in the 90s in Europe and in the USA, there has been an important research
effort devoted to electricity price modeling for pricing derivatives. Due to the non-storable nature of
electricity, it was — and still is — a challenge to reach to a completely satisfying methodology that
would suit the needs of trading desks: a realistic and robust model, computational tractability of prices
and Greeks, consistency with market data. Two main standard approaches have usually been used to
tackle this problem. The first one consists in directly modeling the forward curve dynamics and to deduce
the spot price as a futures with immediate delivery. Belonging to this approach are, e.g, Clewlow and
Strickland [2000] and Benth and Koekebakker [2007]. This approach is pragmatic in the sense that it
models the prices of the available hedging instruments. However, it makes it difficult to capture the
right dependencies between fuels and electricity prices (without cointegration). The second approach
starts from a spot price model to deduce futures price as the expectation of the spot under a risk-neutral
probability. The main benefit of this approach is that it provides a consistent framework for all possible
derivatives. This approach has been successfully applied to commodities in [Schwartz, 1997] seminal
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work. Its main drawback is that it generally leads to complex computations for the prices of electricity
derivatives. Inside this approach, most of the authors use an exogenous dynamics for the electricity spot
price [Deng, 2000, Benth et al., 2003, Burger et al., 2004, Kolodnyi, 2004, Cartea and Figueroa, 2005,
Benth et al., 2007, Benth and Vos, 2009, Goutte et al., 2009] and only a few try to deduce futures and
option prices inside an equilibrium model or a model including a price formation mechanism [Pirrong
and Jermakyan, 2000, Cartea and Villaplana, 2008, Pirrong and Jermakyan, 2008, Lyle and Elliott, 2009,
Aid et al., 2009].

The main contribution of this work is to provide analytical formulae for electricity futures and semi-
explicit expressions for European options in an electricity spot price model that includes demand and
capacities as well as fuels dynamics. Being able to model the dependencies between fuels and electricity is
of great importance for spread options evaluation. To our knowledge, this is the first attempt performed
in that direction.

Concerning the use of an equilibrium model or a price mechanism for pricing electricity derivatives, the
closest work to ours can be found in [Pirrong and Jermakyan, 2000, 2008, Cartea and Villaplana, 2008,
Lyle and Elliott, 2009]. It has been recognized that the mechanism leading to the electricity spot price
was too complex to allow for a complete modeling that would fit the constraints of derivatives pricing.
The simplest one is maybe Barlow [2002]’s model where the price is determined by the matching of
a simple parametric offer curve and a random demand. Many authors have then derived a reduced
equilibrium models for electricity prices in this spirit [Kanamura and Ohashi, 2007, Coulon and Howison,
2009]. In Pirrong and Jermakyan [2000)’s work, electricity dependency on fuels prices is taken into
account by modeling directly the dynamic of the marginal fuel. The authors manage to provide the
partial differential equation and its boundary conditions for the price of an European derivative. The
approach followed by Cartea and Villaplana [2008] and Lyle and Elliott [2009] is quite similar. Therein,
the price is modeled as an exponential of a linear combination of demand and capacity. In general, it is
difficult to introduce in the same framework the dependency of electricity spot price from fuels and at
the same time its dependency on demand and capacity. Dependency among fuels is generally captured
by a simple correlation among Ornstein-Uhlenbeck processes as in Frikha and Lemaire [2009]’s paper or
by cointegration method as in Benmenzer et al. [2007)’s work.

Here, we start from the marginal price model developed in [Aid et al., 2009] and enrich it substantially to
take into account how the margin capacity uncertainty contributes to futures prices. In order to include
the biggest price spikes in our model, we introduce a multiplying factor allowing the electricity spot price
to deviate for the marginal fuel price when demand gets closer to the capacity limit. Since electricity is a
non-storable commodity, this factor accounts directly for the scarcity of production capacity. Although
such an additional feature complexify the model, we can still provide closed form formulae for futures
prices. Under this model, any electricity futures contract behaves almost as a portfolio of futures contracts
on fuels as long as the product is far from delivery. In contrast, near delivery, electricity futures prices
are determined by the scarcity rent, i.e. demand and capacity uncertainties.

This paper is structured as follows. We first present the spot price model in Section 2, where we also
perform the estimation of the scaling factor allowing spot price to deviate from the marginal fuel price
and comment on the production capacity scarcity effect. Then, in Section 3, we apply the spot model for
pricing and hedging derivatives. We first choose realistic as well as tractable models for the dynamics of
demand, capacities and fuels prices (Section 3.1). Then, since we work in an incomplete market setting,
we explain in Section 3.2 our choice for Follmer and Schweizer [1991]’s Local Risk Minimization hedge
criterion. Using such a criterion, a closed-form expression for futures prices is provided (Section 3.3)
and semi-explicit formulae are given for general European options on futures and explicit formulae for
spread options (Section 3.4). Finally, an important part of this work is devoted to numerical simulations
and backtesting presented in Section 4. Despite the apparent complexity of the model, the numerical
computations essentially involve integration of functionals against Gaussian kernels. This part requires
simple but long and tedious calculations. Thus, for the sake of readability, they have been relegated in
Section B of the Appendix.



2 Electricity spot market model

2.1 Spot model

We denote by P; the electricity spot price at time ¢. At any time ¢, the electricity producer can choose,
among n possible fuels, the most convenient to produce electricity at that particular moment, called the
marginal fuel. We will define the electricity spot price as a proportion of the spot price of the marginal
fuel, corrected by a scarcity factor, ie. a factor depending on the current difference between available
capacity and demand.

Denote as (Stl, ey S[”) the fuels prices at time ¢, and (hq, ..., h,) the corresponding heat rates, assumed
to be constant. That means that h;S} corresponds to the t-price of the quantity of ¢-th fuel necessary
to produce IMWh of electricity. Unlike the model proposed in [Aid et al., 2009], we make the further
assumption that the production costs are ordered among fuels, ie. that hyS} < --- < h,SP. This
ranking is supposed fixed and known. This assumption is realistic, at least when considering not too
long maturities. Now, how does the electricity producer choose the most convenient fuel to use? For
each i = 1,...,n, let C} > 0 denote the capacity of the i-th technology for electricity production at time

t. Denote as C; the total capacity at time # of the first i fuels, i.e. Cj := doj<i C}. For the maximal
capacity 6? we will use, alternatively, the notation C{***. We define the following production intervals:

—t—1 —i —n—1

I = (00,0, Ii:= [ct ,ct) 2<i<n—1, I':= [Ct ,+oo), (2.1)

with the conventions that when n = 1 there is only one interval I} := R, and when n = 2 there are only
two intervals, the extreme ones, i.e. I} := (—o0o,C}) and I? := [C}, +00).Thus, if the market demand at
time ¢ for electricity Dy belongs to the interval I}, the last (marginal) unit of electricity is produced using
the i-th fuel, when the corresponding plant is available. Otherwise, it is produced with the next fuel,
more expensive, in the ranking. Having said that, we model the electricity spot price P; by the following
relation:

P=g(CP = D) Y hiSilip cpy, 120 (2:2)
i=1

where we recall that "% = C} = ", Ci is the maximal capacity of the whole system at time ¢, and
g is a bounded real-valued function given by:
. Y
g (z) = min (M7 ;) lips0y + M1g<oy (2.3)
where v, M and v are positive and constant parameters.

The term C}*** — D, is the margin capacity of the system. It is a direct indicator of the tension in the
system due to scarcity, since electricity is non-storable, and the term g (C{*** — D;) stands for the effect
of this tension to prices. This is why we will call g the scarcity function of electricity prices. The margin
capacity is a better state variable to capture electricity prices spikes than demand itself as in Barlow
[2002] and Kanamura and Ohashi [2007] models. This remark has already been pointed out by several
authors as, e.g., Cartea and Villaplana [2008], Coulon and Howison [2009] and Lyle and Elliott [2009].
Coulon and Howison [2009] provide the most complex model, starting by modeling the bidding curves.
Unfortunately their model does not allow for analytical expressions of futures prices as soon as there
are more than two fuels. On the contrary, in Cartea and Villaplana [2008] and Lyle and Elliott [2009]’s
works, drastic simplifications of the electricity market rules allow them to provide analytical expressions
for futures prices, and for Lyle and Elliott [2009]’s model, for European options as well. In their models,
the electricity spot price is expressed as an exponential of the margin capacity, which simplifies a lot the
computation of derivatives prices and of the risk premium. But, choosing the exponential function makes
very unlike to obtain the sharp price spikes that can be observed on electricity spot data. On the contrary,
as it will be shown below, our choice (2.3) of a power law of margin capacity can accurately reproduce
such a behaviour, even for smooth and rather simple dynamics of demand and capacity processes.

2.2 Estimation and backtesting

Before making further use of our model (2.2), we aim in this section at assessing its accuracy on historical
data. In particular, a methodology to estimate the scarcity function (2.3) will be proposed.



2.2.1 Data set

We choose to test the model on the French deregulated power market. We retrieve the required data
from the following sources:

e PowerNext for the hourly power spot price P;.

e RTE, the French transmission system operator, for the hourly power demand D; and capacity C
for each fuel.

o TFS (Tradition Financial Services) for the daily coal price (API#2).
o IPE (International Petroleum Exchange) for the daily oil price (Brent).

o ECB (the European Central Bank) for the daily USD/EUR exchange rate, to convert the coal and
oil prices, which are denominated in US dollars, into euros.

o ECX (European Climate Exchange) for the daily CO4 price.

o EDF, French power utility, for heat rates h; and COs emission rates.

We focus our analysis on one particular hour of the day, namely the 19", which usually bears the highest
demand level of a day. As a consequence, during these peak hours, the electricity price is almost always
fixed by one of the two most expensive technologies that are coal and oil. Consequently, such a choice
simplifies the model since it makes possible to work with only n = 2 technologies.

Thus, S} corresponds to the daily coal price, converted to EUR/MWh using the USD/EUR exchange
rate and the coal heat rate h1. We include the price of COy emissions in S}, using the daily CO, price
and the emission rate of French coal plants. Similarly, S? corresponds to the daily overall oil price.

For the simplification to n = 2 technologies to hold, it suffices to define D; as the residual demand
corresponding to coal and oil. This quantity can be extracted from RTE demand, production and
capacity data. More details are given in Appendix A.

Our dataset covers the period going from November 13", 2006 to April 30*", 2010. The beginning of
the period was fixed by the availability of the production capacity data. On this period, during the
19*" hours, the average electricity spot price was 74.5€/MWh (see Figure 2.2a), the average coal price
(including heat rate and CO2) was 47.4€ /MWh, and the average oil price (including heat rate and COs)
was 102.0€/MWh.

2.2.2 Parameters estimation

So far, we have retrieved all the necessary data to test equation (2.2). The last remaining step is to
estimate the parameters M, v and v that characterize the scarcity function (2.3) recalled below:

. i
g () = min (M, 9) 1m0y + M1,<y

First, we fix M so as to roughly match the high cap on electricity spot price, defined by the market as
3000€/MWh!. Our estimate is M = 30.

Now, we turn our attention to the parameters v and v. Remark first that -y, unlike M and v, depends on
the unit in which D; and Cf, 1 <14 < n, are denominated. This is a consequence of the following results:

Proposition 2.1. (Change of Unit) Let N > 0 be a constant. The following holds:
C, D
Pt (CtaDt7StaM7/Y7V) = Pt <t7t75t7M7 l V)

where we have explicited the parameters involved in the definition of P;.

lsee http://www.epexspot.com/en/product-info/auction/france
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s M, %,l/). The result follows then from
equation (2.2) and the fact that {% € Iﬁ} ={D;eIli}as,1<i<n. O

Proof. First, one can easily check that g (z; M,v,v) = g(

This useful change of unit formula indicates that we are free to choose the desired unit for D; and Ct.
In our case, we choose to convert these data, which are provided in MWh, into GWh (N = 1000), and
to estimate the corresponding “GWh-+". This renormalisation will prove to be numerically convenient in
Section 4.2.

Py
h;Si1

Going back to the estimation of v and ~, Figure 2.1a depicts the quantity y; := D as a
i=1

{Dtelj}
function of x; := C"%* — D, for the period we consider, i.e. November 13**, 2006 to April 30*", 2010. The
quantity y; corresponds to electricity price corrected from the effect of the marginal fuel price, while x;
corresponds to the remaining available production capacity (margin capacity). Recalling equation (2.2),
the relation between x; and y; is to be captured by g. Observe that the highest prices (high ;) occur
mostly when there is not much available capacity left (low z;), which simply translates the law of supply
and demand. It suggests a decreasing causality relationship between x; and y;.

First, note that as the high cap price is not reached in our time period, the parameter M will not
intervene in the following. Now, remark that such classical tools as least squares or maximum likelihood
are not adapted to the estimation of g. Indeed, both x; and y; are random, and the slope of the relation
between z; and y; becomes extremely steep as x; approaches zero. These tools, that measure the error
in one dimension only (y;) are bound to miss much of the slope part. To overcome this difficulty, our
idea is intuitively the following: if a strictly decreasing deterministic relation between x; and y; was to
be inforced, then a similar relation would link their quantiles, from which the estimation would be easier.
This is the content of the following proposition:

Proposition 2.2. Let X andY be two real random variables on the probability space (R, B (R),P), where
B(R) denotes the corresponding Borel o-field. Assume that both X and Y have continuous and strictly
increasing cumulative distribution functions. Thus, their quantile functions qx and qy exist, are unique,
and defined for all p € [0,1] by:

P(X<gx(®)=p , P(Y <qgr(p)=p
Suppose that there exists a strictly decreasing function h such that the relation Y = h(X) holds P-as.
Then for all p € [0, 1]:
ay (1 =p) =h(gx (p)

Proof. For every p € [0, 1]:

1-p=1-P(X <gx(p)=1-P(h(X)>h(gx (p)) =P <h(gx (p))
Il-p=PY <qy(1-p))

Thus P(Y < gy (1 —p)) =P (Y < h(gx (p))), and the unicity of the quantile function yields ¢y (1 — p) =
h(ax (p))- N

Consequently, if one assumes a strictly decreasing deterministic relation h between x; and y;, then h can
be estimated from the quantiles of x; and y,;. This will prove to be very simple and much more robust
and accurate than working directly with the realizations of z; and y;.

Denote as m the sample size, and (x1,y1),- .-, (Tm,ym) the realizations of (z¢,y;). Define the sorted
vectors T := (T1,...,Tp) and y 1= Yy>---»y, ) insuch a way that 7, < ... <Zp, (increasing order) and
Yy, =22y (decreasing order). The last step is to choose some p € [0, 1] and to estimate the quantiles
qy (p) and gx (1 —p). A simple and natural choice is to select p; := .-, 1 < i < m, and to choose as
quantile estimator for gx (p;) and gy (1 — p;) the inverse of the empirical cumulative distribution function,

which yield in this case the estimates Z[,,,] = T; and Y] = Y ([z] indicates the upper integer part
of any real number z). Figure 2.1b represents the quantity log (g) as a function of log (7).

A strikingly accurate linear relation appears. In particular it retranscribes very well the highest peak
prices, which advocates a power-law description of electricity price spikes. The very lowest prices seem
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Figure 2.1: g estimation

not to fit the linear relation. However a specific analysis of these few points reveals that they correspond
to the few holidays (hence low demand) of the period considered for which the marginal fuel was gaz
during the 19*" hour of the day. As we neglected on purpose this possibilily to work with only two
fuels (coal and oil), the consequence is that the residual capacity is undervalued at these specific dates,
breaking the smooth relation. Otherwise, the linear relation appears very plausible.

Denote as —v and log () the coefficients of the regression, ie. log (y) = —vlog (Z) + log (y). Taking
the exponential yields y = 2. Thus our estimation of the relation between the quantiles g,, (1 —p) and

4z, (p) is given by h (x) = L. Numerically, we found the estimates v = 1.013 and v = 6.203. Note that
the estimation of A only required a simple linear regression.

and

Now, using Proposition 2.2, we can trace back to the relation between y; = - Ly

Zi:l hiSZl{DteIi}
zy = C"*® — D;. Indeed, the consequence of Proposition 2.2 combined to the empirical power law
relation between T and y is the following: if one assumes a strictly decreasing deterministic relation
between z; and v, then it ought be a power law relation, defined by h (r) = . This, combined with
the modeling of the market cap price, leads to the relation (2.3) and to our model (2.2). Therefore, our
estimation of the parameters v and ~ provides also empirical evidence for the relevance of our spot model.

2.2.3 Backtest

Finally, with our data and our estimated parameters, we can backtest our model, i.e. we can compute the
quantity g (C"a% — D) S| hiSz%l{Dfeli} for each date ¢ of our dataset, and compare it to the realized
A

electricity spot prices for the same dates. Figure 2.2a illustrates this comparison.

It can be seen that the base prices are rather well described by the model (thanks to the marginal price

S hiStll{D,ep}) and that the model is able to produce price peaks of relatively good size (thanks to
=Lt

the multiplication to the scarcity function g and its power law shape (2.3)) and timing (thanks to the
choice of the margin capacity C;"** — D; as a state variable). It is these adequate prisms C{"** — D; and
S hiSi1 {D.eri} that enable g to be stationary over time, making the model robust.
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Figure 2.2b compares the model (2.2) to the simpler model Y. ; hiSZl{DteIi} (i.e. when g = 1), with

the price scale limited to 600€/MWh for readability. As one can see, both models behave similarly as
long as C{"** — Dy is large, but the simpler model is unable to produce large price spikes in periods of
tension (i.e. when C}"** — Dy is low). This lack is corrected by the present model (2.2).

3 Pricing and hedging

In this section, we use the model (2.2) to derive pricing and hedging formulae for power derivatives,
including forward contracts. We first model the different processes involved in the equation (2.2), namely
the capacity processes Cf, the electricity demand D; and the fuels prices S}, 1 < i < n. If the fuels S°
are clearly tradable, demand and capacities D and C? are not, which means that we are going to work
on an incomplete market setting. Consequently, a perfect hedging will not be possible, and, equivalently,
the market will have infinitely many Equivalent Martingale Measures (henceforth EMM). Many criteria
for the choice of a ‘good’” EMM are available in the literature. In this paper, we use the local risk mini-
mization criterion introduced by Follmer and Schweizer [1991], which is based on a financially meaningful
decomposition of contingent claims into hedgeable and non-hedgeable parts and gives rise to explicit price
formulae, as we will see next. Investigation of other criteria such as, e.g., utility indifference pricing or
mean-variance hedging, and their comparison are left for future research (one can refer to [Bouchard and
Nguyen Huu, 2010] and [Goutte et al., 2009] for applications of these other criteria to electricity markets).

3.1 Model for capacity, demand and fuels prices

Let (Q,P, F) be a given probability space, where P is the historical (or statistical) probability measure.
E will denote expectation operator taken with respect to P. All the subsequent processes, namely C, D
and S, will be defined on this probability space. The market filtration F; will be the natural filtration
generated by all Brownian motions driving the dynamics of all such processes. We assume from the
beginning that the spot interest rate r is a positive constant. For the sake of simplicity, we set storage
cost and convenience yield of every fuel equal to zero.



Market of fuels. We recall from Section 2 that for 1 <i < n, S denotes the price of fuel i at time ¢,
that h; denotes the corresponding heat rate, such that h;S? is expressed in units of currency per MWh,
and that we assume a fixed order h; St1 < ... < h, ST between fuels. In order to enforce this assumption,
we model the dynamics of the fuels spreads Yy := h;S! — h;_1S;~* (with the convention S = 0) rather
than the dynamics of the fuels directly. We choose Y = (Y!,...,Y™) to be a vector of independent
geometric Brownian motions under the statistical measure P, i.e. for 1 <i¢ < n:

dY} = pYidt + oY dW], Y§ >0,

where W = (W1,...W") is a n-dimensional Brownian motion for the measure P and y;, o; (1 < i < n) are
fixed real numbers with o; > 0. FW = (F}V) denotes the natural (and P-saturated) filtration generated
by W. Note that h;S* = j<i Y7 and, as a consequence of the positivity of geometric Brownian motions,

the condition h;S* < --- < h,S™ is satisfied.
The P-dynamics of S?, 1 < i < n, is then given by:

) 1 ) ) )
dsi = KZ(ujwdtJrajwdwg). (3.1)

" si
Since each S} is a.s. positive, we can rewrite its P-dynamics in the following way:

ds;
S

= uf’idt + Uf’ithS’i

where the drift utS " the volatility Uts " and the Brownian motion W5+ are given by:

. N )
; Y/ ; Y/ ; 1 Y/ ;

Si N 2, Si _ t| o2 AW = 5" L5 dW
Ht Z higéuﬂ’ Ty Z (hi5§> 9js t S,i Z hiS;JJ t

i<i i<i Tt j<i

Notice that FW = FW*, Indeed, by the definition of WS in terms of W, it is clear that FWE c FW.
On the other hand, each Wcan be expressed using W9*~1 and W9 as follows:

S,i i i S,i—1 i—1 P—
(o ZhiStldVVS7Z — 0y ¢ hiflsz dI/VS’Z 1

thi - Yio;
t 04

which implies that % ¢ FW* and the equality of the two filtrations. We finally have 7 = FV S = FV.

Electricity demand and production capacities. The demand for electricity is modelled by a
process D, adapted with respect to the natural filtration F” generated by a Brownian motion WP
under P. Similarly, the production capacities from each fuels are modelled by processes C?, 1 < i <
n, adapted with respect to the natural filtration ¢ generated by an n-dimensional Brownian motion
W = WL ... W) under P. We assume the following dynamics:

dD; = a(t,Dy)dt +b(t, D;) dWP (3.2)
dCi = o (t,C}) dt + B; (t,C}) AW, (3.3)
where a,b, o;, 3; : Ry x R — R are measurable functions such that the SDE’s (3.2) and (3.3) admit

unique strong solutions on, respectively, FP and on the natural filtration generated by W', We make
the following standing assumption.

Assumption 3.1. We assume that the Brownian motions W, W and WP are mutually independent
under the true probability P. Moreover, the market filtration, denoted (F), is the natural filtration —
satisfying usual conditions — generated by all these Brownian motions, i.e. Fy = F2 vV FC Vv FP.

1See, e.g., [Karatzas and Shreve, 1991] or [Revuz and Yor, 1991] for standard assumptions ensuring such properties



3.2 Choice of the pricing measure
3.2.1 Some preliminaries on local risk minimization

We recall some basic facts on local risk minimization (henceforth LRM) approach for pricing and hedging
in incomplete markets. This approach has been introduced by Follmer and Schweizer [1991]. We will
essentially follow the two survey papers by Pham [2000] and Schweizer [2001]. All the processes we
will introduce in this section refer to a given filtration (F%) satisfying usual conditions and representing
market’s information flow.

Let X be a discounted continuous price process, i.e. X is an adapted continuous R?-valued semimartingale
with decomposition X = X+ M + A, where X, is a constant in R?, M is a local martingale and A a
finite variation process such that My = Ag = 0. We assume that there exists a square integrable EMM
Q for X, i.e. X is a local martingale under Q with dQ/dP € L?(P). It is well known that under such an
assumption, the finite variation part A is absolutely continuous with respect to M’s quadratic variation,
i.e. it satisfies

t
At:/ d{M)sXs, t€][0,T]
0

for some predictable R™-valued process A. A portfolio strategy is a pair ¢ = (V) where V is a real-
valued adapted process such that Vo € L?(P) and ¢ is a predictable, R-valued, X-integrable process
such that fOT 9;dX; € L*(P) and [JdX is a Q-martingale for all Q € M§, the set of all P-equivalent
probability measures with square integrable derivative and making X a local martingale. The set of all
such strategies 6 will be denoted by ©.

We now associate to each portfolio strategy ¢ = (V,4) a process, which will be very useful in the sequel
in describing the main features of the LMR approach: the cost process Cost(¢). The cost process of a
portfolio strategy ¢ = (V,¢) is defined by:

¢
Costy(p) = V; 7/ 9dX,, te€[0,T]
0

A portfolio strategy ¢ is called self-financing if its cost process Cost(p) is constant P a.s.. It is called
mean self-financing if Cost(p) is a martingale under P. Let H be a square-integrable, Fr-measurable
contingent claim. We say that a portfolio strategy ¢ = (V, ) is H-admissible if Vi = H, P a.s.. Therefore,
an H-admissible portfolio strategy ¢ is called locally risk minimizing (henceforth LRM-strategy) if the
corresponding cost process Cost(y) belongs to H?(P) (the Banach space of all P-martingales bounded in
L?(P), equipped with the norm ||M|* = E[sup, |M;[]?) and is orthogonal to X under P. There exists a
LRM-strategy if and only if H admits a decomposition:

T
H = Hy+ / IdX, + L, Pas., (3.4)
0

where Hj is a constant, 97 € © and L € H?(P) is orthogonal to S. Such a decomposition is called the
Féllmer-Schweizer decomposition of H under P, and the portfolio strategy ¢ = (V,9) with

t
W:H0+/z9des+LfI, Pas., tel0,T].
0

is a LRM-strategy for X. There is a very useful characterization of the LRM-strategy by means of
the Galtchouk-Kunita-Watanabe decomposition (henceforth GKW-decomposition) of H under a suitable
equivalent martingale measure, namely the minimal EMM introduced by Follmer and Schweizer [1991].
We recall now some basic facts about this measure and its deep relation with the LRM approach. We
denote by Z the minimal martingale density:

Z, =€ (—/AdM)t, te[0,7). (3.5)

Since Delbaen et al. [1997] we know that the existence of a Follmer-Schweizer decomposition (and so of a
unique LRM-strategy) for every H € L?(P, F;), for any t € [0, T], is equivalent to assuming an additional



integrability condition on Z, which is usually called Ry(PP) (see Delbaen et al. [1997] for details). Such a
condition will be verified in our model. Moreover, under such a condition, we can define on F;, for all
t €[0,7], an EMM Q for X, given by:

dQ -

Sl 7

dP !

Fi

which is called minimal EMM for X. We will denote E the expectation operator under the minimal
EMM Q. We now quote without proof (for whom we refer to Follmer and Schweizer [1991], Theorem
3.14, p. 403) the following fundamental result relating the minimal EMM and the LRM-strategy:

Theorem 3.2. Let H be a contingent claim in L*(P, Fr). The LRM-strategy @, hence also the corre-
sponding Follmer-Schweizer decomposition (3.4), is uniquely determined. It can be computed in terms of
the minimal EMM @ if ‘//\'tH, t € [0,T], denotes a right-continuous version of the @—martmgale I@[H\ft],
t € [0,T], with GKW-decomposition:

t
‘/;H B VOH +/ ’19de3 +L§{, te [OvT]v
0

then the portfolio strategy P = (‘A/H,1/9\H) is the LRM-strategy for H and its cost process is given by
Cost(p) = E[H] + LH.

This theorem gives us a practical way for computing the LRM-strategy of a given contingent claim H.
Indeed, in order to find its LRM-strategy and the associated cost process, we need to compute only its
GKW decomposition and identify the integral part and the orthogonal part. The integral part represents
the hedgeable part of the claim H, while the orthogonal part QH _represents the unhedgeable part or
residual risk. The expectation of H under the minimal EMM Q, E[H], is clearly one of the infinitely
many no-arbitrage prices of H and it can be also viewed as the initial wealth allowing to hedge the
hedgeable part of H. Moreover, in Hobson [2005], it is shown that in a large class of diffusion market
models with non-tradable assets, the expectation of a contingent claim H under the minimal EMM, i.e.
E[H], is an upper bound for bid utility indifference prices of H. In the next sections, we will use this
approach to price and (partially) hedge some power derivatives.

3.2.2 LRM in our energy market model

We have already noticed that our market model is incomplete. Thus it admits infinitely many equivalent
(local) martingale measures (henceforth EMM). Here is a complete description of such measures.

Consider first the submarket composed by fuels only. Since each Y admits a unique EMM Q* and their
corresponding Radon—Nikodym derivatives are independent, it is easy to see that the measure Q defined
as the product of all the Q*’s is an EMM for S. More precisely,

dQt . i
H Q He_’\"WT_TT, on Fr (3.6)
i=1

where \; = % is the market price of risk of the i-th spread Y}, i.e. the spread between fuels i — 1 and
1. Thus, the assumption of non arbitrage is satisfied in the market of fuels (indeed, one can easily prove
that each Y7 is a Q- martmgale if and only if each Siis a Q martingale, where ~ denotes discounting).
Let W = (W ey W") be the Q—Browman motion defined via Girsanov’s theorem as:

Wi =Wj+ M\t (3.7)
Finally, one can show that the @—dynamics of the i-th fuel, 1 < ¢ < n, is given by:

dsi = ZY] (rdt + o;dW}) = rSidt + — ZY o;dW} (3.8)

]<z j<Z
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and that of its forward price F}(T') with any maturity 7 > 0 is:

, 1 .
dF}(T) = e" T~V » Z Y o;dW}
J<i
In order to generate the whole family of EMMSs, we need to consider also possible changes of measure for
the demand D (equivalently its driving Brownian motion W¥) and all the capacities C? (equivalently
their driving multivariate Brownian motion W). Thanks to the mutual independence between fuels,
capacities and electricity demand, it is not difficult to obtain the following result. Let T' > 0 be a given
finite horizon, e.g. the maturity of a forward contract on electricity. The next proposition gives a full
characterization of (square-integrable) EMM of our model.

Proposition 3.3. The set of all EMMs M. of our model over the time horizon [0,T] is given by all

Fr-measurable random variables Zr such that there exists adapted processes n = (n©,n") verifying:

_ (1799 ¢ orC "D gD
ZT— (i_l dP)gT (/0 175 dW5>gT (A 775 dWS) (39)

and such that Ep[Z7] = 1, where Er(-) denotes the stochastic exponential at time T and Q' is the unique
EMM for the i-th spread Y, fori=1,...,n, as in (5.6).

Proof. Use the mutual independence of (W, W¢ WP) and the representation theorem for Brownian
martingales. O

In view of (3.5) and (3.9), it is easy to see that in our model for energy markets the Féllmer and Schweizer
minimal EMM corresponds to the case when n¢ = n” = 0 in (3.9).2 Thus, consistently with our notation,
the minimal EMM is exactly the measure QQ previously introduced.

3.3 Electricity futures

As a first important application of the LRM approach, we derive the price dynamics of a forward contract
on electricity with instantaneous delivery at a given time T under our model (2.2). Such a dynamics will
be of a great importance for obtaining hedging strategies for energy derivatives. To do so, we apply LRM
approach for pricing and hedging a future contract on electricity via trading on fuels. Then, from these
results, we will be able to study the risk premium of electricity. Forward contracts on electricity will
be used as hedging instruments in the next subsections on hedging and pricing of more complex energy
derivatives.

3.3.1 Price and dynamics

We now derive the price and dynamics of electricity forward contracts. Using the notation of the previous
section, the contingent claim to hedge has terminal payoff H = Pr and the hedge is performed by trading
in the fuel process S, i.e. X = S, or equivalently in the fuel futures.®> Recall from Section 3.1 that we
assume a constant spot interest rate r (futures and forwards are thus identical, and we use both terms
interchangeably), as well as independence between fuels, demand and capacities. In this setting, and
recalling our spot model (2.2), it is not difficult to see that the formula relating the electricity forward
price F¢(T) and the forward prices of fuels F{(T) , both with instantaneous delivery period, is given by:

FET) = Y MFi(T)E [g(CF = Dr)Lipery 7 (3.10)
i=1

for t € [0,T], where F2°¢ := FP v FC is the natural filtration generated by both W2 and W, Recall
that, by the definition of minimal EMM, one has Q = P on FP:C.

?Indeed, in our model, the Radon-Nikodym derivative Zi = E[d@/d[ﬂ]—}] clearly satisfies the so-called integrability
condition R2(P), so that Theorem C in Delbaen et al. [1997] can be applied.

3Indeed, one may easily switch from F}(T) to S? via the well-known formula F¢(T) = ¢"(T—*) S¢. Recall that we assumed
constant interest rate r and zero convenience yield and storage cost, for any fuel i.
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Remark 3.4. The previous formula is key in our approach. A similar formula is obtained in the previous
paper [Aid et al., 2009] for a slightly different model, the arguments used to prove it being the same.
The idea behind it is that, unlike usual approaches in energy market models, in our model the use of a
risk-neutral measure is motivated by embedding the energy market into the larger market including the
possibility of trading in fuels. Then, since in the latter market one may in principle trade on fuels, the
risk-neutral approach that proved to be successful in stock markets can be applied. The final step is that,
since a forward contract on energy can be viewed as an option whose payoff is exactly the spot price
at maturity and the latter is a function of fuels (via the relation (2.2)), such a forward contract can be
priced taking expectation under a risk-neutral measure for fuels. For more details, we refer to Aid et al.
[2009]. The price to pay is, in some sense, that the production function linking fuels and energy contains
other non-tradable factors as well, e.g. demand and capacities.

Remark 3.5. The same kind of factorization as in formula (3.4) can be obtained under any EMM Q such
that fuels S are independent from demand and capacities (D,C). For instance, when Q is an EMM
with deterministic (time-dependent) market prices of fuel, demand and capacity risks, i.e. deterministic
nP,n® as in Proposition 3.3, the same computations lead to the same formula. Now, if one take an
arbitrary EMM Q (under which fuels, demand and capacities are not necessarily independent), one may
obtain an analogue formula for electricity futures price via an additional probability change. Indeed, set
d@’/d@ =e "T85 /SE on Fr for all i = 1,...,n. Thus we get:

F(T) = B[Pr|F) = ZhF% {(CW Dr)1{p, ey FC

where E¢ denotes expectation under QZ Of course, here the difficulty would be to compute the weights
multiplying the futures on fuels. The laws of D and C' under each (@’ can of course be obtained through
Girsanov’s theorem, but their parameters might depend of S, C' and D in a complicated way, and
obtaining closed-form formulae may be very difficult.

The next step consists in evaluating the conditional expectation appearing in formula (3.4). Since the
process (C, D) is Markov, we have:

E [g(C7" — DT)l{DTeI;}LED’C] =G (t,Cy, Dy)

for some real-valued measurable function G (¢, ¢,d) defined on [0, T] x R™ x R. We will call this function
the Conditional Ezxpectation of Scarcity function (henceforth CES function). Under specific dynamics for
Cy and Dy, the CES function, as well as its partial derivatives, can be computed explicitly. This will be
the purpose of Section 4.2. Our key relation (3.4) between electricity forwards and fuel forwards now
simply reads:

FH(T) =Y hiGY(t,Cy, D) Fi(T) (3.11)

i=1

meaning that an electricity forward can be seen as a basket of fuels forwards, with stochastic weights given
by the CES function, driven by electricity demand and production capacities. Note that this relation

does not depend on the specific model chosen for fuels in Section 3.1, except for the assumption that
fuels are independent of capacities and demand.

We now derive the dynamics of electricity forwards. Assume that G7 € C»>2([0,7] x R™ x R)*. Then
Ito’s lemma provides the dynamics of G7 (t, Ct, D;) as follows:

" 9GT (
b1 8ck

GT
L (t,Cy, Dy)b(t, D) dWP. (3.12)

T
. D) =
dG; (t,Cy, Dy) %

D) B (t, CFYAW S *

A simple application of integration-by-parts formula gives the following @—dynamics for electricity T-

4Whether such an assumption is verified or not will depend on the regularity of the coefficients of the SDE’s governing
the dynamics of D and C. Notice that the dynamics that we will use in Section 4 are such that the CES functions GZT (t,e, 2)
are smooth enough to apply It6’s formula (see also the explicit formulae for the derivatives of CES functions in 4.2.7).
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forward prices :

n

dF(T) = Y hi [GT(t,Cy, Dy)dF{(T) + F{(T)dG] (t,Cy, Dy)]
=1
= Ty (Z GF (t,C’t,Dt)> o Y dW] + Zh FN(T (t Cy, Dy)b(t, Dy)dW P
1=1 k=1
+> hFNT Z Dy)B(t, CFYAW S F (3.13)
1=1 k=1

where recall from Section 3.2.2 that W,f is a @—BM. Notice that the quadratic covariation between F;(T')
and G;(t,Cy, D;) vanishes, due once more to the independence between S* and (C, D). From equation
(3.7), one can deduce the P-dynamics of F¢(T):

dFE(T) = eI Z <Z G,{(t,ct,Dt)> o Y} (AW} + Ndt)

T
Zh FN(T aG ~(t, Cy, Dy)b(t, Dy)dW P

PSRRI Y 2
i=1

k=1

D) By (t, CFYAW S * (3.14)

3.3.2 Risk premium

Using the previous results, we are able to study the electricity risk premium 7¢(¢,T), defined as:
w¢(t,T) = FS(T) — E[Pr|F], t<T. (3.15)

Just like the relation (3.11) between futures prices, the Qlectricity risk premium can be expressed as a
weighted linear combination of fuel risk premiums. Let 7*(¢,T) denote the risk premium of the i-th fuel,
ie. T(t,T) := F}(T) — Ep[Si|F;] for t < T. Recall that forward prices are computed under the minimal
EMM Q.

Proposition 3.6. Under our model assumptions, one has:

= WG] (t,Cy, D) (t,T), tel0,T]. (3.16)

i=1

Proof. Tt follows from formulae (2.2) and (3.11), and the fact that the law of the processes (C, D) under
Q is the same as under P. ]

An easy consequence of the previous equality is that if all the fuels are in normal backwardation (or in
contango), then it also holds for electricity.

3.3.3 Electricity futures as hedging instruments

In the next sections, we will use these electricity forward contracts as tradable hedging instruments to
improve the hedging of more complex derivatives on electricity spot and forwards. In other terms, we
will consider an enlarged market (S, F'°(T*)) where agents can trade on fuels as well as on a forward
contract with a given maturity 7. While the minimal EMM for the market of fuels S is @, it is not
garanteed a priori that the minimal EMM for the richer market (S, F¢(T™)) is still Q. It will depend on
the P-dynamics of the forward contract F¢(7™*). We conclude this part of the paper by showing that if
the P-dynamics of F'¢(T™*) is given exactly by (3.14), then the minimal EMM for (S, F¢(T*)) is given by
Q.
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Proposition 3.7. Let T* be any positive finite maturity. Assume that the P-dynamics of S and F¢(T*)
are given by, respectively, (3.1) and (3.14). Then, the minimal EMM for (S, F€(T*)) is given by Q.

Proof. By the definition of the minimal EMM (see Definition (3.2) in Follmer and Schweizer [1991]), we
have to verify that any square-integrable P-martingale M that is orthogonal to both S and F¢(T*), must

be a @—martingale. By the representation theorem of Brownian martingales and since F}¥ = FV ® for
any t, such a P-martingale M satisfies

t t t
M, = My + / a,dWS + [ B dWE + / v, dWP
0 0 0

for some predictable processes «,3,7. Being M orthogonal to S, i.e. (M, W?) = 0, we have a = 0.
Moreover, M is also orthogonal to F¢(T*), which implies that

t t
<M,F€(T*)>t:/ 65050ds+/ vs0Pds =0
0 0

for all ¢, so that ﬂtac + 0P =0 for all t. As a consequence, since W& and WP are Brownian motions
under (@7 M is a Q martingale. By uniqueness of the minimal EMM, we can conclude. O

3.4 Pricing formulae

In this section we compute the price of energy derivatives via LRM approach. It consists in computing
the expectation of the terminal pay-off under the minimal EMM Q. Such an expectation represents the
initial wealth allowing for approximately replicate a given option in a local risk minimization sense, as
explained in Section 3.2.1.

In what follows, we will focus on options on spreads (between electricity and fuels) as well as on options
on electricity forward contract. We will see in particular that any European options on electricity forward
contract can be viewed as a basket option on fuels with random (but independent) coefficients. Thus,
numerical methods developed to price basket options on securities can be applied to evaluate energy
options as well. Finally, we will show how to obtain explicit formulae in the case of two fuels, i.e. n = 2.

We will use the notation BS;(o, K) for the Black-Scholes formula of the t-price a European call option
with volatility o and strike K. The other parameters (as maturity, interest rate) being fixed, they will
not appear in the notation. Finally, fx(-) (resp. fX()) will denote the density at time 7" of a process X
under the statistical measure P (resp. under the minimal EMM @)

3.4.1 Spread options

Let us consider a spread option with maturity 7" between electricity and a fuel j chosen among the n
fuels used to produce electricity. Then, the corresponding pay-off is given by:

H := o(Pr — h;S3), (3.17)

where ¢ is a real-valued function such that H € LZ(@), e.g. ¢(z) = (x— K)* for K > 0. For the sake
of simplicity, we compute the price of this option at time t = 0. The price at any time ¢ can be easily
deduced from that case by using the Markov property of the price processes. Using equation (2.2), one
obtain:

7o = e "TE[p(Pr — h;Sh)] = TTZE[ ( Cmee _ DyYhySi — hjs§) 1{DTG,%}]

Now, consider the case of two fuels (n = 2) and let j = 1. The other case j = 2 can be treated
similarily. Recall from equation (2.1) that in the two fuels case, the intervals I%. are I} = (—oo, C7) and
[% = [C4, +oo) Using the independence between fuels S, demand D and capacities C, and the fact that

Q P on .7-' , we have:

o = /R? fer—pr () foz () {d1(c, 2) 1m0y + d2(c, 2)1 <0y } dedz, (3.18)
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where fc;—DT(~) and fC:Qr() are the P-densities of, respectively, C+ — Dy and CZ, while ¢1(c,2) and
¢2(c, z) are given by:

¢1(c,2) =e Elp((g(ct2) —1)Y7)]
pa(c,z) =e 7T E [gp (g(c + z)th% - hls%)]
=e T Elp((glc+2) - 1) Y +g(c+2)YE)].

We used the fact that h1S* = Y! and hyS? = Y1 +Y? (see Section 3.1). Recall that, by assumption, Y
and Y? are independent geometric BMs. We need to compute both terms ¢;(c, z). Since ¢, z are fixed,
we can simplify the notation by dropping (¢, z) in ¢;(c, z) (i = 1,2) and g(c + z). We will simply write
¢; and g instead.
To push further our computations, let us consider a spread call option, i.e. p(z) = (z — K)T for a given
strike K > 0. In this case, the quantities ¢; can be computed more explicitly. Indeed, if ¢ < 1 one has
¢1 = 0, while on the event {g > 1} the quantity ¢; is just (¢ — 1) times the Black-Scholes formula for
a European call option with strike K/(g — 1) and underlying Y'!, a geometric Brownian motions with
volatility o1, i.e.

K
¢1 = (9 —1)BSo (01, g_1> Lig>1y-

On the other hand, we show that ¢ is a mixture of Black-Scholes formulae with respect to strikes. Recall
that fy: (yi) denotes the log-normal density of Y. under Q for i = 1,2. We have:

b2 = TR [((9- )Y+ 9vE - K)']
On the event {g < 1}, we have:

(Y%_Kﬂl—g)YTl)*

e K+(1-
¢2:ge TE g (‘g)y> dy.

= g/ fYTl(y)BSo (027
0 9

On the opposite event {g > 1}, we have:

¢2 — ge—rTE (qu _ K (g 1)YT)
g

< T K—(g—1y\"

= g/ fri(y)e E (ng _E-G-ly )y> ]dy
0 g
ST, K—(g—1 S e K—(g—1

= g/ fya(y)BSo (Uz, (f])y> dy+g | frilye E |:Y7% - (f])y] dy
0 _K

g—1

T, K—-—(g—1 ~ K
= o [" s, (02, (f;)y> dy + (g¥2 — e TK) @ (y; > 1)
0 _

+(g-1)eTE [Y:}l{y%>g%}} .

Observe that:

N K K ~ K
—rT 1 —rT 1

E[Yl }_BS , + —Q Y > —
‘ i 0<01 g—1> ‘ g—1 [ g 9—1}

so that on {g > 1} we have:

_K_

9T K—-(g-1 ~ K K
P2 = 9/ fya(y)BSo (0'27 (g)y) dy + gY5Q (Y% 2 ) + (9 —1) BSo (Ul, ) .
0 r g g—1 g—1
Since, from Sections 3.1 and 3.2.2, Y'! is a geometric BM under @, with volatility oy and drift r, we have
o? K
K) -N (r=%)7 - ()
1 0'1\/T ’

where A is the cumulative distribution function of a standard normal random variable. We summarize
these results in the following proposition:

@(Y%>
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Proposition 3.8. Let n = 2, i.e. electricity is produced out of two fuels. The price my at time t =0 of
a call spread option with pay-off H = (Pr — h1Sk — K)T, K > 0, is given by the following formula:

o = /RQ fer—pr () fez () {d1(c, 2) 1m0y + d2(c, 2) 1 <oy } dedz, (3.19)

where the quantities ¢; = ¢;(c, z), i = 1,2, are given by:

K
b1 (9 —1)BSo (0’17 g_1> 1ig>1y
> K+(1-g)y
9/0 fyp(y)BSo (027 E— (1{931} + 1{g>1}1{y<%}> dy

o2 K
=) T - () K) "
0'1\/T 1 {g>1}

b2

4 gY02 N (

+ (g - 1) BSO (Ola
g
where we have set g := g(c+ z).

3.4.2 Options on electricity forwards

Let us consider a contingent claim H with maturity 7" whose payoff is given by a function ¢ : R — R of
a forward contract on electricity with instantaneous delivery period at T* > T, i.e.

H = p(Fr(T7))
We assume that ¢ is such that H € LQ(@). The next proposition gives a pricing formula for such a
contingent claim.

Proposition 3.9. Under the assumptions above, the price at time t < T of the contingent claim H is
given by:

Ele""-YH|F] =E {w(t,Ft(T*),CT,DT)U—'tD’C} (3.20)
where:
W(t, F(T*),Cp, Dy) = e "T-VE l(p (Z hiGT (T, CT,DT)F}(T*)> ]]—‘tW] . (3.21)
i=1

Proof. Tt follows from equation (3.11), independence between W and (WP, W) and the properties of
conditional expectations. O

Remark 3.10. The previous pricing formula (3.20) provides an easy way computing prices using basket
options pricing algorithms. Indeed, the formula suggest the following procedure:

1. Evaluate first the expectation (3.21) with respect to F}V, i.e. the function 1, taking the weights
GT"(T,Cr, Dr) as fixed, using a basket options evaluation procedure.

2. Finally, take the average with respect to the weights G7 (T, Cr, Dr).
These two steps can be performed separately thanks to independence between W and (WP, W¢).

As for spread options, we now look for explicit formulae for European call on electricity forward in the
two fuels case, i.e. n = 2, at time ¢t = 0. We compute the function 1) from equation (3.21) in this case.
To simplify notation, we set w; := e~"T" ~T)GT" (T, Cr, D). Recalling that, regarding futures on fuels,
Fi(T*) = erT"=T)S2 for i = 1,2, we have:
¢(0) = €7TTH/‘T: {(wlhlS} + thQS% — K)+] = eiTT]E {((wl + UJQ)Y% — (K — wqug))+:|
—rTH +
= e TT]E |:((U)1 + IUQ)Y% — (K — ’LUQYJ%)) 1{Y,1%§K/w2}i|

+€7TTIE |:(('U}1 + wQ)YTl — (K — U)QY%))+ 1{Y72>K/w2}i| = A1 + AQ.
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Let us compute separately A; and As. For A, we obtain:

K/w2 R N K — w +
A = Ele? (vi-=—"2Y) |4
1 (wr +w2)/0 frz(y) [e ( T ol + ws Y
K/’wz R K o w2y
(w1 +w2)A fvz2(y)BSo (01, o +w2> y
For As, we have:
A, = K {((wl +wo) Y7 — (K —wpY7)) 1{Y§>K/u;2}}
~ ~ K
= (w1 +wy)E {e_TTYTll{YT%K/wa}} + wol [e_rT (qu - w2> 1{Y7%>K/w2}:|

~ K
= (w1 + U)z)YolQ(Yj% > K/wg) + w9y BSy (0‘2, )

w2
We summarize our findings in the following proposition.

Proposition 3.11. Consider the two fuels case, i.e. n = 2. The price ©t at time t = 0 of a European
call option with maturity T on a T™-forward contract on electricity with T* > T is given by the following
formula:

Wgz/fDT(Z)/ fC;(Cl)fc%(CQ)’(/JQ(Cl,CQ,Z)dzdcldCQ’
R R2

where the function vo(c1, ca, 2) is given by:

2
Kiwa K —way (r_%z)T_ln<w£)
,Co,2) = BS, ,——— ) dy + Yy N :
Yolcr, c2, 2) (w1 + w2) /0 fyz(y)BSo (01 w1+w2) y+ ¥ oo/ T

K
+w2BSy (02, w)
2
where w; := e " T "DGT (T, ¢y, ¢, 2), 0 = 1,2.

To make full use of this result, the weights w;, and thus the CES function GiT* (T, c1,c2,2), must be
computed explicitly. This will be done in Section 4.2 under more specific assumptions on dynamics of
capacities C' and demand D.

3.5 Hedging derivatives

Now we turn to hedging. In this subsection, we will identify the hedgeable and the unhedgeable part of
any contingent claim written on electricity as well as fuels.

As hedging instruments, we consider forward contracts on electricity and forward contracts on fuels (or,
equivalently, spot fuels). We consider a Q-square integrable European-type contingent claim H written
on a forward contract on electricity and fuels as well as on capacities and energy demand, i.e.

H = o(Fp(T7), Pr(T7),Cr, Dr)
such that H € LQ(@). Notice that spread options (Section 3.4.1) and options of electricity forwards
(Section 3.4.2) are of this type, as well as any option on electricity spot price.

Since Q is the minimal EMM for the market of fuels S (see Section 3.2.2) as well as for the larger market
(S, Fe(T™)) of fuels and electricity T*-forward contract (see Proposition 3.7), we have to find, according
to Theorem 3.2, an explicit expression for the GKW decomposition of such an H under @ More precisely,
being F¢(T*) and F*(T*), 1 < i < n our hedging instruments, we look for self-financing strategies £¢ and
&= (& ...,£") such that:

N T T
H:IE[H]+/O §t~dFt(T*)+/0 ECAFE(T™) + LI (3.22)
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where L is the terminal value of a Q-martingale L7 orthogonal to F ¢(T*) and F(T™), representing the
unhedgeable risk related to the contingent claim H. We are going to explicitly compute such strategies as
well as the unhedgeable risk L¥ . We adapt methods developed in, e.g., Heath et al. [2001], for stochastic
volatility diffusion models.

First, let 6 = (0°,0¢,07) denote the integrands in the Q-dynamics for the forward price F €(T*) given
by equation (3.13), i.e
dFf = 02 .dW; + 0F .dWE +60Pdwp. (3.23)

By the Markov property of the vector-valued process (F(T*),C, D) and by the fact that F¢(T*) is a
function of (¢, Fy(T™*), Cy, Dy) (see formula (3.11)), we have

Vil .= E[H|F] = ¢(t, F,(T*),Cy, Dy)

for some measurable function ¢ : [0,7] x R x R” x R" x R — R. Moreover, under some regularity
assumptions on the coefficients of the underlying processes, which are satisfied by the model considered
in, e.g., Section 4, such a function is of class C1'222([0,T] x R" x R" x R)5. From now on we drop, for
the sake of simplicity, the dependence from (¢, F;, Cy, D;) from the function ¢ and its derivatives. In the
next proposition we will use the notation ||, 6P| for the norm of the vector (6, 6P).

Proposition 3.12. Let H = o(F%(T*), Pr(T*),Cr, Dr) € L? (@) be a T-contingent claim with T < T*.
The local risk minimizing strategy (£°,€) is given by:

& = e {EHC;% (4.0 + 0P 520t D»} (3.24)
g - $+W{Zacla%(t C”)+9Dg¢ (t, Dt)} (3.25)
while the residual risk L™ satisfies:
dLy’ = Z (a%z(t i) - = lemgiﬁ];?:;)P s F Lo eD|>°}> i
v :
<‘Z¢b(t D) - Wl{lefﬂf’bo}) awp. (3.26)

Proof. The maturity T of the forward contracts being ﬁxed, we drop it from the notation, so that we
now write F¢, F} and G; instead of, respectively, F£(T*), F}(T*) and GT~. We also assume w.l.o.g. that
E[H] = 0. Since VI = E[H|F;] = é(t, F}, Cy, D;) with ¢ regular enough to apply Ito’s lemma, we have

that 5 5
7 ¢ i Cz / ¢ D
/Zay,dF /Z 5,C) AW i 5,005, D)dw?.

Now, recall from equation (3.23) that:

dFf = 63 dW, + S dWE + 6P awP

where explicit expressions for the integrands § = (#%,0%, 6P) are provided by equation (3.13). We
consider only the non-redundant part of F¢, i.e. the part that cannot be hedged using fuels, which is
given by:

dFSP =0 aw e + oPawpP.

This process can be rewritten in terms of a suitable BM WP (use Lévy’s criterion to prove that W& P
is a BM) defined as:

oD LoC - dwWE + oPawl
W, = D
0 10¢, 621l

5See, e.g., Theorem 5.3 in Friedman [1975] for such regularity assumptions
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From equation (3.13), one can check that |6, 0P| > 0 for all t. Therefore:
dFtcyD = HatcaatDHthC’Da te [OaT*]
Analogously, it holds that:

99
— Oc;

9,

i C’z
(& CHaw S + 2

b(t, D)AWL = Gdws "

where:

0 oL (0 ’
¢t =3 (goatnch) + (oo po)

+C.D . . o
and W' is a standard BM (use Lévy’s criterion once more) defined as:

/ Zl dci 5’ S Cz)dWCZ afb(svDs)dWsD
Cs '

We require that {; > 0 for all ¢, which basically means that the contingent claim H does depends on
C and D. Observe that WP and WC’D are correlated BM’s under both probabilities P and Q, with

quadratic covariation p; given by:

S Gc“%ﬂz(t Cy) + 0P %2b(t, D,)

165,011 ’

Pt =
ie. dWOP, WC’D>t = pdt. We can define a new standard BM W+ (under both P and @), independent

of WEP  such that:
t t
WP :/ psdWE-P +/ V1= p2dWiH
0 0

——C,D ,
ie. Wit= Ot %. Therefore, we can write:
0¢ i ci | 0¢ D C,D Py
2B, CHAWE + SEb(t, D)AWL = G ( pud WP + 1 = ppawit)

. . dFE—03 dW,
Finally, since thC’D = —L—t5—t we have:

165,07 11
9¢ iy rCoi, 09 Pt . —~
> o (1 CHAWE 1 Z20(t, D)aw? = TR (dF 9det) /1= p2dWit
and, using the fact that Hfld/V[?f = h;G;(t,Cy, Dy)dF} for all i, we also have:

t
H _ C?ps e Cgpg i J_

which implies that:

Cepr ;09 Cepe H / 1
e_ _ StPt - M p.Gi(t,Cy, Dy), L = sV 1—psdWg,
§=qecer S gy e ep e O D) ' “/1-4

are the good candidates for the local risk-minimizing strategy and the residual risk process. Thus, to
conclude it suffices to verify that the proposed strategy and residual risk process provide the GKW
decomposition under the minimal EMM Q and apply Theorem 3.2 to get the result. This verification
being straightforward, the details are therefore omitted. O

To complete our characterization of LRM-strategy for H = ¢ (FZ(T*), Fr(T*),Cr, Dr), we have to
compute the pricing function ¢ and its derivatives, that appear in the formulae for £¢, ¢ and L above.
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In Section 3.4, we have done so for the pricing function of some specific options. More generally, one can
use standard PDE’s techniques as follows. Notice that this part is rather formal. Let us consider:

V= B[H|F)] = ¢(t, F,(T*), Cy, Dy)

where F;(T*) denotes the vector (F}(T*),..., F/(T*)). Under some regularity assumptions and using
Ito’s formula, one can prove that the function ¢(t,y, ¢, d) is the solution to the following PDE:

2
0 = Z it i) 8 Z 0 QS > (i —yj—1)’0}

vi j<i
+5 28% t,ci)? +

10%
with boundary condition:

o(T,y,c,z) = p(y,c,2), forall (y,c,z) € R x R xR.

Notice that the hedging formulae from Proposition 3.12 (through ¢ and 6P, see equation (3.11)), as
well as the previous pricing PDE, contain the derivatives of the CES function G;. These derivatives will
be computed explicitly in Section 4.2.

4 Numerical results

4.1 Explicit model for capacities and demand

So far, we have worked with the general diffusion models from equations (3.2) and (3.3) for the demand
and capacities processes. Now, in order to push further the computations, we are going to choose and
estimate more specific models. We decide to model the demand and capacities processes as follows:

=fp )+ Zp(t)
=fi(t)+Z;(t) (4.1)

where fp and f; are deterministic functions, and Zp and Z; are independent Ornstein-Uhlenbeck (hence-
forth OU) processes under P:

dZp (t) = —apZp (t) dt + bdW P
dZ; (t) = —a; Z; (t) dt + B dW} (4.2)

where ap,b,a;,3;, 1 < i < n are real constants. In other words, we choose the following functions as
coefficients in (3.2) and (3.3):

Il
S8

a(t,d) = ap (fD(t)—kfég)—d) b(t,d)

, (4.3)
a;i(te) = (fi (t)+f;<j>—c> B (t,d)

Bi

We will see that this simple choice combine both satisfactory empirical accuracy and tractability. The
ideas behind the definition (4.1) are the following:

e We decompose the demand into a deterministic part, that takes into account in a simple way the
yearly and weekly seasonalities, and a stochastic part modeling the randomness of the demand.

¢ We use the same decomposition for the capacities, except that only a yearly seasonality is considered
(as no statistically significant weekly seasonality appears), and in addition the deterministic part
takes into account also the evolution of the installed capacity on the reference fleet. Indeed, should
some plants be planned to be added or removed in the near future, the resulting shift in capacity
has to be considered.
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Demand
{in GiWh)

10

In equation (4.1), the deterministic functions fp and f; are defined as follows:

)+ dacos (22

)+ e
where d;, 1 < j < 5and cL, 1 <k <3,1 <17 <nare constants, and, assuming that t is expressed in years,
l; = 1 (yearly seasonality) and I ~ 25 (weekly seasonality), and ff*°, 1 < i < n are the deterministic
installed capacities evolutions.

t—ds
l
t—

1

t—ds
ly

fp (t) = dq1 + da cos (27r

i
C3

fi (1) = ¢t + ¢, cos (277 (4.4)

Model Estimation. Working on the dataset described in Section 2.2.1, we first estimate, using non-
linear least squares, the deterministic functions from equation (4.4) (without the f£¥° functions, which are

provided by RTE!). Figure 4.1 illustrates these estimates for the demand process and the coal capacity
process.

Demand seasonalities Coal capacity seasonality

Capacity ]
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—— Estimated seasonalities fin —— Estimated seasonality
|
|
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Figure 4.1: Seasonalities estimates

All parameters are statistically significant. After doing that, one can subtract the estimated seasonalities
from the data and work with the resulting series, that correspond to realizations of the processes Zp (t)
and Z; (t) as in equation (4.1). We estimate the mean-reversion parameters ap and «;, 1 < i < n, by
exploiting the link between continuous OU processes and discrete AR(1) processes. Indeed, applying the
Euler scheme to SDEs (4.2), denoting At as the time stepsize, yields:

Zp (t+ At) = Zp (t) (1 — apAt) + bVALNp (t)
Z; (t+ At) = Z; (¢) (1 — i At) + B;VAEN; (t)

for each time step ¢, where Np (¢) and N; (¢) are independent standard Gaussian white noises. Conse-
quently, simple linear regressions will yield estimates for ap, b, a; and (;, 1 < i < n. From the different

IThe French transmission system operator.

21



hypothesis of the model, a statistical analysis of the residuals reveals that the least accurate is the Gaus-
sian hypothesis, as a slight but statistically significant excess kurtosis appears. This phenomenon is
illustrated by Figure 4.2, where the residual densities of Zp and Z;, estimated by the kernel method,
are compared to Gaussian distributions with the same mean and the same variance. Nevertheless, given
the moderate excess kurtosis estimates (around 2.0) and the tractability provided by the presence of
Brownian motions, we choose to stick to the model built so far. Possible extensions of the model may
later accomodate these empirical deviations.

Demand: Residual density vs. Gaussianity Coal capacity: Residual density vs. Gaussianity

05 o I ——— Residual density 14 4 " ——— Residual density
’ f\ —— (Gaussian distribution
i

| —— Gaussian distribution

Zo (in Gwh) Z1 (in GWh)

(a) Demand (b) Coal capacity

Figure 4.2: Residuals estimated densities

4.2 Computing the Conditional Expectation of Scarcity Function

Using the dynamics of demand and capacities set in Section 4.1, we can now study in detail the conditional
expectation of scarcity function G (t,Cy, Dy) and its partial derivatives, which are key quantities for
pricing and hedging electricity derivatives (see Section 3). We will see how they can be mathematically
and numerically computed.

4.2.1 Definition of the auxiliary function G (m, o)

We recall from Section 3.3.1 the definition of the CES function:

GT (t,C,,D,) =E [g (CF*" = Dr)1p, eyl F7C], 1<i<n (4.5)

Recall that the change of measure from [P to the minimal EMM Q does not impact the processes D and
(% 1 < i < n, meaning that the two measures Q and P coincide on f < for any t. Therefore, these
processes and their dynamics are still defined by equations (4.1) and (4.2), which are easily solved to
deduce the laws of Dp|F2¢ and CL|FPC -

Proposition 4.1. Conditionally on ]—'tD’C, the random wvariable Dy is Gaussian, i.e. DT|]-'tD’C ~
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N(mET,U,{?T) where:
mir = fo (1) +e P00 (Dy = fp (1) (4.6)

2
(020)" = g [1 = 200 ™

" 2ap
Similarly, CL|FPC ~ N (mi p, 0% ) where:

my g = fi (T) + e 070 (G~ fi (1) (4.7)
i N2 B —2ai(T—t)
(Jt’T) - 2041' |:1 ¢ :|
Proof. See Appendix B.1. O

In view of equation (4.5), Proposition 4.1 indicates that the quantity of interest for computing the CES
function is given by:
G(m, o) :=Elg(X)] (4.8)

where X ~ A (m, o) is a Gaussian random variable under the measure considered.

4.2.2 Expressing the CES function via G (m, o)

Indeed, one can express G7 (t,Cy, D;) using the auxiliary function G (m, o). This is the purpose of this
section. First, we consider the particular case with only one fuel (n = 1). The index 4 can be dropped,
and the result is the following:

Proposition 4.2. When n =1, we have :
GT (1,01, Dy) = G (m,5), m=myr—mip, & = (o) + (o0r)

) s

Proof. See Appendix B.2. O

In this particular case n = 1, the link between the two functions is very simple. We now turn to the
general case with n fuels. The link is now given by the following proposition:

Proposition 4.3. For2 <i<n—1, we have
GT (t,C,,Dy) = H (myﬂ,mi”),&gl,&i’[’) —H (my,mfl*[’ﬁ?,&?w) (4.9)
oo
H (mqy,ma,01,09) := / G(x+my,01) Py (x;me,09) dx (4.10)
0

where @y (x;m, o) is the probability density function of a normal random variable with mean m and
variance o2 > 0 and where:

mo= ilmby (@) = Ti(okr)’ ™
A I (") = Sl e
Fori=1 ori=mn, G (t,Cy, Dy) is given by:
GT (t,C,, D) = H (mg,m}”,ag,&}p) (4.12)
GI(t,C,,Dy) =G (m?’Dﬁ{“D) - H (mg,m’f‘lf[’,&ﬁj{“l’”)
Proof. See Appendix B.3. O

Therefore, equations (4.9) and (4.12) indicate that computing the CES function reduces to compute
the functions G (m,o) and H (my, ma,01,02). This is why we devote the next sections to the evalua-
tion of these quantities. We first consider G (m, o), as computing H (mq,ma, 01, 02) will involve results
concerning G (m, o).
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4.2.3 Computation of G (m, o)

The following proposition corresponds to the first step in the calculation of G (m, o).

Proposition 4.4. Let G (m,0) = E[g(X)] where X ~ N (m,0) and g(z) = min {M, L} 1,50y +
M1,<oy with M >0,y >0,v >0 and o > 0. Then G (m, o) is given by the following expression:

G (m,0) = MN (f”am) + (Uﬁv)yﬁéca\/;”, J”\;Q;u> (4.13)

1
where & = (M) v, N is the cumulative distribution function of a standard normal random variable, and

G is defined by:

~ > 1 2
G(z,y;v) :z/ We_z dz (4.14)

wherex +y >0 (x+y>0ifv>1)
Proof. See Appendix B.4. O

The next step is to compute the function G defined in equation (4.14).

4.2.4 On the Extended Incomplete Goodwin-Staton integral

We recall the definition of G (equation (4.14)):
~ o 1 2
G(x,y;v :/ ——e * dz
( ) » W+2)

where (z,y,v) € R3 with z +y > 0if v > 1, and x + y > 0 otherwise. These constraints ensure that G
is well-defined. In the particular case v = 1, G corresponds to the incomplete Goodwin-Staton integral
(cf. Deatio and Temme [2010]). This is why we call G the extended incomplete Goodwin-Staton integral
(henceforth EIGS integral). Note that this extension of the Goodwin-Staton integral is different from
the usual Generalized Goodwin-Staton integral (as defined in Mamedov [2007] for instance). Proposition
B.1 in Appendix B.5 provides a probabilistic interpretation of the EIGS integral using the density of the
sum of two independent Pareto and Gaussian random variables.

Properties. We establish two useful properties verified by the EIGS integral.

Proposition 4.5. Whenever v # 1, the following recurrence relation holds:

Gayv) = 1 (26 eyv =2 — 2 (v — 1) = (+9)' ) (4.15)

Proof. See Appendix B.6. O

This recursive formula can be used, for instance, to compute g(x,y; —n), n € N. Indeed, the initial
values to start the recursion, G (z,y;0) and G (z,y; —1) are given by:

G (2,y;0) = /7 [L =N (2v2)] G (z,y:—1) = yG (z,4:0) + e

We will get advantage of this useful application later, in Section 4.2.6. Now, we establish the key property
of the EIGS integral, which provides the ground for our evaluation algorithm.

Proposition 4.6. The following identity holds:

~ 1 1—-v 1
G ai) = 5T (155 )2 ) (1.16)

where T is the extended incomplete gamma function (¢f. Chaudhry and Zubair [2002] p.266; henceforth
EIG function):

T(a,z;b;8) := / t* Lexp (—t — btiﬁ) dt (4.17)

where x > 0 and (a, b, 3) € R are such that T (o, z;b; 3) exists.
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Proof. See Appendix B.7. O

4.2.5 Numerical computation of the EIGS integral

As indicated by equation (4.13), G (m, o) is composed of two parts. The first part involves the cumulative
distribution function N, for which efficient evaluation algorithms already exist. The second part involves
the EIGS integral (4.14), which is the quantity that remains to be computed. Therefore, we provide in
this section an algorithm to compute the EIGS integral.

Series expansion of the EIG function. Our idea to compute the EIGS integral is based on equation
(4.16): if one can compute the EIG function (4.17), then one can compute the EIGS integral (4.14). In
fact, there exist efficient algorithms to compute the (upper) incomplete Gamma function (henceforth IG
function) defined by:

I'(a,z) = /Oo t* Lexp (—t)dt (4.18)

where x > 0 (x > 0 if @« < 0). However, this is not the case for the less standard EIG function.
We therefore propose below a simple algorithm to compute efficiently this function. It is based on the
following property (see Chaudhry and Zubair [2002] p.273):

Proposition 4.7. The EIG function has the following series expansion :

I(o,z;0;8) = ZF a—nf,x) ( ) (4.19)

Proof. Replace exp (—bt’ﬁ ) in (4.17) by its MacLaurin series expansion, and recall the definition of the
IG function (equation (4.18)). O

Consequently, a simple way to numerically evaluate I' (a, x;b; 8) is to compute the first terms of the
sum (4.19) up to numerical convergence, using an already existing algorithm to compute I' (o — n3, z).
However, note that we only need to compute I' (o, ;3 b; 3) for § = —% (see equation (4.16) ; other values
for § may require preliminary steps before exploiting equation (4.19), see Appendix B.8). In other words,
in the sum (4.19), the terms I (o + %, z) are to be computed. To do so, the following recurrence relation
of the IG function can be used:

I'a+1,z) =al (a,z) + 2% * (4.20)

Thus, to compute the terms of the sum (4.19), the use of an IG evaluation algorithm will be necessary
only for the two first IG terms T (a, ) and T (a + %,x), as the next IG terms can be computed using
(4.20). Such an implementation is provided in Appendix C.1.

Approximation for large positive y. Combining equations (4.16) and (4.19), we obtain the following

identity:
~ 1 > 1
G () =5 >or
n=0

n!

) o

As a consequence, the smaller |y| is, the more efficient the computation of the EIGS integral is. Therefore,
finding accurate approximations when |y| > 0 sounds useful. In fact, when y > 0, such an approximation
will not only be useful but also necessary, because in our case where z +y > 0 is constant (see equation
(4.13)) while y can take large positive values (see equation (4.9)), the decomposition (4.6) can involve

1

the product of the very small term 5

e~v" with the very large term I' ( ,(z+ y) 3 —2y; —%) For large

Yy, it is possible that %e_yz reaches numerically zero, leading to the wrong estimate G (z,y;v) = 0. This
phenomenon is illustrated by Figure 4.3a. For large positive y, we propose the following approximation:

G (x,y;v) ~ yl—yexp (4”;) \F{ (fx+ fy>] (4.22)

Its derivation is detailed in Appendix B.9. Figure 4.3a illustrates this approximating function on an
example, and compares it with the series expansion (4.21). The accuracy of (4.22) for large y can be
appreciated. Approximation (4.22) appears suitable to overcome the numerical problem described above.
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Figure 4.3: Numerical approximations

Approximation for large negative y. When y takes large negative values, the previous numerical
difficulty does not appear, as both terms %6_92 and I (1*7", (x + y)2 5 —2y; —%) become small. In fact,

G (z,y;v) can readily reach zero numerically, and detecting when this occurs can save much computation
time. A simple way to check it is to compute the upper bound provided below:

Proposition 4.8. For any y <0 (and as usual x +y > 0):

0<G(w,y;v) <e ¥ " (—2)" 7 D (1 - v, (<29) (w + )

Proof. See Appendix B.10. O

4.2.6 Numerical computation of the CES function

So far, we have been giving a method for computing G (m,o). We have shown in Section 4.2.2, more
precisely with equations (4.9) and (4.12), that the evaluation of the CES function G7 (¢, C;, D;) involves
G (m, o) through the quantity H (m1,ms, 01, 02) defined in equation (4.10), recalled below:

H(ml,mz,al,az)Z/ G (z +my,01) Py (x;ma,02) dx
0

where (my,ma,01,02) € R* with oy > 0, 0o > 0. The following propositions are devoted to the
computation of such a quantity.

Proposition 4.9. The following holds:

= _ 1 __ o2
H(m17m2a01702) = MN @a wa [ 0 0 ] ) e Utlfg (423)
02 01 T o1 1“!‘?
+%ﬁ(m1,mz,01,02w)

7 (01v/2)
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where N (x,y; [ W1 e ] ,E) is the cumulative distribution function of the bivariate Gaussian random
vector with mean [ U1 e ] and covariance matriz X2, and H is defined by:

(4.24)

~ /°° ~<£—m1—m2—02\/§u my1 + ma + 0220 ) 2
v e ™ du

H (m1,ma, 01,02, V) i= g
b b b b _07;\2/5 0-1\/5 b 0-1,\/5 )

Proof. See Appendix B.11. O

The cumulative distribution function A (;v, Y; [ [ ) } ,E) is efficiently computable. The task is now
to compute H (my, ma,01,09;v). This is done below.

Series expansion.

Proposition 4.10. H (m1, ma, 01,092; ) has the following series expansion:

; s E (v n B (md ot me ()
H v) = = 52 T e . =
(m1,mg, 01,02, V) 55¢ ? Z ( 5 + 5" 20%) g( gy Sty L n

n!
n=0
(4.25)
where m = mj +ms and & = \/o} + o3.
Proof. See Appendix B.12. O

The terms I" (1_7” + 3, 2%25) can be computed using the recurrence relation (4.20) (see the discussion fol-
mlag—mzaf moq

o1 0'25'\/5 ) 0'25'\/5’
relation (4.15) (see the discussion following proposition 4.5). This provides an efficient way to compute
H (mq,ma,01,02;v), and hence the CES function G7 (¢, Cy, Dy) (via equations (4.9), (4.12) and (4.23)).
Such an implementation is provided in Appendix C.3.

lowing Proposition B.2), and the terms g ( —n) can be computed using the recurrence

Approximation for large positive m. Equation (4.25) involves the coefficient exp (7%) Similarly

to Section 4.2.5, this can prevent H from being correctly computed when m takes large positive values.
In that case, the following approximation can be used:

~ 7 (01v2)” 252 T — _ 1 2
H(ml,mg,al,ag;y)z (;’L\V/») exp(y g >N<TTL2’7TL $,|: Voo l/O'f ]’[ 1,

2m? 2 1+3
g1 0'1

(4.26)
The derivation of this expression is detailed in Appendix B.13. Figure 4.3b illustrates the approximation
(4.26) on an example, where it is compared to the series expansion (4.25). Again, the approximation is
quickly very accurate, and enables to consider large positive m.

Approximation for large negative m. Similarly to Section 4.2.5, we provide an upper bound useful
for large negative m.

Proposition 4.11. Suppose v > 0. Then the following holds:

~ 2\ " % 7 1 72
OSH(ml,mg,al,Ug;u)SW(Ulf) N(m;—x-l-m;[ 0 0 ],[ o ! ])

x () g1 01

Proof. See Appendix B.14. O
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4.2.7 Derivatives of the CES function

Thanks to the various results established in the previous sections, we are now able to compute the partial
derivatives of the CES function. They appear in the dynamics of the electricity forward prices (3.13) as
well as in the hedging strategies of electricity derivatives (see Proposition 3.12).

Proposition 4.12. The following derivatives hold:

oG vy T—m
— (m,0) =— = g( 1/+1)
om V7 (ov2) T Lov2 ! f
OH vy ~
(m1,ma,01,02) = ———————H (m1,mz,01,02;v + 1)
dmy m(ov2)"

OH ,
B (M1,m2,01,02) = G (M1, 01) @y (032, 02) — —
e 7 (01v/2)

oH
=G (my,01) N (0;m2, 02) + o (m1, mg,01,02)
mi

f[(ml,mg,ol,ag;u—i- 1)

These formulae allow to compute the derivatives of GT (t,x,y):

For2<i<n—-1and1l<k<n:

oGT (t,Cy, Dy) = _e—an(T—1) <3H (m?ﬂami’D n 4D) B 37H (m” mi—LD sn O_il,D))

8y am ’ H—lv 01 8m2 (R 1 1y Y4091
oGT OH (
oxy, omq

n —’L,D —=-n —’i,D ZD —i,D
m;q,My 0,411,071 )Jrg( m;yq1,0 H—l)q)N (0 my, 0, )1{k§z‘}

OH —n - i— —n =i _ i —i—
5m1 (miaml 17D7C’i 01 17D> g (mj,o}') PN (O my 1D701 17D> 1{k<i}>

(t CtaDt) 7ak(T7t) <

Fori=1ori=n:

8865 (t.Cy, Dy) = —e~oP @0 552 <7§lami’Da5§f}’D)
o ey =0 (S (g .o, 1) 46 ) o (001,01 1y )
88625 (t,Cy, Dy) = —e—op(T=) (ggl (mnD7&1z,D) _ gn]i (mZ’m?LD?UZ7U?LD))
%jT (t,Cy, Dy) = e=os(T=) (gi (m?,Dﬁ?,D> _ g)ni (mﬁ,m;’fl’Dﬁﬁﬁ?*l’D)
—G(ml,on) Py (0 my b D,&?_I’D) 1{k<n})
Proof. See Appendix B.15. O

This ends our derivation of results and algorithms to compute G7 (¢, Cy, D;) and its derivatives.

4.3 Pricing and Hedging

Finally, using the algorithms from Section 4.2 and our dataset, we briefly test and discuss the pricing
and hedging of some of the derivatives analysed in Section 3.

4.3.1 Electricity futures

The simplest test to perform is the partial hedge of electricity futures using fuels futures. Recalling
equations (3.11) and (3.13), one can see that the algorithms from Section 4.2 allow us to compute Ff (T')
and dF¥ (T), which are needed to simulate the partial hedge portfolio. We consider a 3-month electricity
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futures with a delivery period of one single hour. We use a constant rebalancing stepsize of one day, and
neglect transaction costs. Figure 4.4a depicts the distribution of the final hedging error, estimated from
a sample of 1000 realizations. For comparison, the distribution of the hedging error before maturity is
represented as well, for different remaining maturities.

Distribution of hedging error: Time evolution Standard deviation of hedging error (in €)

- Remaining maturity
— 14 days 15
7 days
4 days
—— Odays

T T T T T T T T T T T T T
-20 0 20 40 60 80 1] 10 20 30 40 50 80
Hedging error (in €) Mumber of days to maturity
(a) Distribution (b) Standard deviation

Figure 4.4: Hedging error

One can observe that up to two weeks before the expiration of the 3-month futures, the hedge generates
hardly any error. However, during the last days of the product’s life, the distribution of the error widens
considerably. The standard deviation of the error, for instance, culminates at maturity, as shown by
Figure 4.4b. Similarly, the asymetry of the error culminates at maturity, where a positive skewness of
8.7 is measured (The maximum hedging error at maturity reaches 212€ on this sample. For the sake of
readability, the hedging error on Figure 4.4a was limited to 80€). To sum up, depending on the time to
maturity, two different behaviours can be observed:

o Far from maturity, the partial hedge is almost perfect. Indeed, recall equations (4.6) and (4.7).
Because of the coefficients e~ (T—1) and e~ (T—1) (and the hypothesis of constant volatilities, see
equation (4.3)), the weights GT (¢,Cy, D;) can be considered constant when T'— ¢ > 0. In this
limit, the electricity futures are only driven by the fuels risks, ie. the electricity futures behaves like
a basket of fuels futures. Consequently, the partial hedge turns out to be an almost perfect static
hedge. With our estimates of ap and «; (around 70), this behaviour can be considered to hold up
to two weeks before maturity.

« Close to maturity, the partial hedge is almost useless. Indeed, the coefficients e~*P(T=% and

e~ (T=t) hecome no longer negligible, and consequently the unhedged risks stemming from demand
and capacities start to drive the electricity futures. In fact, the partial derivatives of GI (¢, Cy, Dy)
can become huge, overwhelming the hedged fuels risks. It is such so that even if demand and
capacities happened to be tradeable assets, the necessary use of discrete hedging would lead to
hedging errors similar to Figure 4.4. This behaviour is analogous to classical barrier options close
to expiry while close to the barrier, in which case static hedging is to be preferred to dynamic
hedging.
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4.3.2 Spread options

Finally, we look at the price of spread options obtained in our model. Using the results in Section 3.4.1,
we compute the prices of options with payoff (Pr — h1 S} — K )+, K > 0, i.e. European calls on dark
spread with instantaneous delivery period. We compute equation (3.19) using numerical integration,
replacing the integration on R? (the spread Y} being the exponential of a Gaussian random variable) by

an integration on the hypercube [0,1]® using the bijective transformations y = m. Figure 4.5a
illustrates the price surface for different strikes K and different instantaneous maturities 7T'.
Marginal oil probability (%)
100
80
60
40
20
o4
T T T T T T
00 02 04 06 08 1.0
laturity (in years)
(a) Price surface (b) Probability of marginal oil

Figure 4.5: Call on dark spread

The most visible effect is that of seasonality. The shape of the seasonality is driven by the quantity
P (DT > C’%), which represents the probability of using the most expensive fuel S% to produce electricity
at time 7. This quantity is depicted on Figure 4.5b for comparison. Recall the weekly seasonality on
demand and the deterministic evolution of installed capacities (equation (4.4)). Here the middle of the
time period covers the next winter, where the likelihood of using the expensive oil is at its highest.

5 Conclusion

This paper is a contribution to the pricing of contingent claims on electricity markets. As opposed to the
preceeding version presented in Aid et al. [2009], the introduction of a scarcity function allows to capture
the electricity spot price spikes at a cheap cost (two parameters easily estimated). The electricity spot
price model developed here is particulary well suited for spread options on the spot since it is based on
the economic relation that holds between fuels prices and electricity spot prices. Nevertheless, precise
evaluation of electricity spread options are of main importance since they are the basis for the pricing of
generation assets. The structural risk-neutral model with scarcity function should enable us to assess in
a near future the problem of the timing of investment in generation assets.
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A Dataset

A.1 Retrieving the residual demand

RTE provides the following data, with their descriptions:
Demand:=Power Consumption+Network Losses —Pumping
Network Losses:=Power Production+Physical Import—Power Consumption—Physical Export
Interconnection:=Physical Export—Physical Import
(Incomplete) Production:=Hydro+Nuclear+Coal+4Oil
In short, the following equations hold:
D=C+L— Pump
L=P-C-1I
P =H+ N + Codl + Oil
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The two first equations yield:
D+ Pump=P—1

The available production data P covers, quoting RTE, “more than 90% of the generating units that are
connected to the French transmission network”. It covers therefore slightly less than the overall production
P. Regarding the fact that RTE does not provide the production of the smallest units (<20MW), nor
the production of non-hydroelectric renewables, we make the following reasonable assumption:

P=R+H+N+Coal +0il = R+ P

where R denotes the production from non-hydroelectric renewable energies. Consequently, the residual
demand can be retrieved as follows:

Residual Demand := (Total Demand) — (R + H + N)
=(D+1+ Pump)—(R+H+ N)
=P-R-H-N=P-H-N

Therefore computing the residual demand only requires ]5, H and N, which are available from the same
RTE record file.

A.2 Retrieving fuels capacity

RTE provides records of the actual production and the effective availability for each fuel. What corre-
sponds to our capacity variables C}, 1 < i < n, is the effective availability. However, these data must be
slightly adjusted first, as the comparison between actual production and effective availability reveals that
even when electricity demand is at its highest, the actual production never reaches the effective availabil-
ity. This phenomenon can be explained by the steady presence of primary and secondary reserves. For
the accuracy of the model, in particular for the accurate detection of the marginal fuels, we correct this
effect by the following adjustment:

C} :=0.94 x (coal effective availability) |, C? := 0.80 x (oil effective availability)

The two coefficients were inferred from the data.

B Proofs

B.1 Proposition 4.1

Proof. SDEs (4.2) have classical explicit solutions, which combined with equations (4.1) yield at time T,
starting from time ¢:

T
Dy = fp(T)+e 2T~ (D, — fp (1)) —I—/ e~ (T=)pquP

t

T
Ch= (1) + 00 (G 1) + [ =0 g (B.1)

t

In particular, Dy and C% are Gaussian random variables. Computing their expected values and their
variances (using Ito’s isometry) concludes the proof. O

B.2 Proposition 4.2
Proof. When n = 1, then I; = |—o00, +00[, and consequently equation (4.5) becomes
GT (t, Ot, Dt) =K |:g (CT — DT) |ftD’C:| .

We use Proposition 4.1 and the independence between the processes C' and D to deduce that, condi-
tionally to .7-"tD’C, Cr — Dy ~ N (m, ) where m = my 1 — mt{’T and 52 = (O’tﬂ")z + (UET)Q. Therefore

GT (t,C,. D) = E g (Cr — Dy) |.7-'tD’C} =G (m,5). O
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B.3 Proposition 4.3

Proof. For every 1 <1 < j < n, define C’f’j = ?ch CF. Thus, for 2 <i<n—1:

GT(t,C,,D;) = E :g (GIT’" - DT) 1{DTEI;}\ftD’C} —E {g (6;’" - DT) Lz

o]
t
]:t vC:|_E|:g<C;n_DT> {D <C1z 1}|‘7:t :|
)1y 7 52)

R {g ((0;1 . DT) +

- E g(élT’”—DT)l

_ Elg ((ez' - pr)+ 7™

) {ClT"”—DTzO}]:tD’C]

iwD —i,D —i,D 1 k D
Using the same arguments as in Section B.2, C’T —Dp ~ N ( N ) where my” =7 mi—myp

and (5’?13) = ZZ 1 (UfT) + (of T) Similarly, CZTJF mo N (m}y,,a7 ) where mpy, = >0, myp
and ( z+1) = it1 (O't T) Consequently:

B[y (0 - pr) + Ty

D,C
) l{aiﬁi*DTZU}u:t :|

2 [6[o (€5 - 2r) + O 1y - 27170

—E _Q ((UlT _ DT) + mggl@”ﬂ) 1{5;1,_%20} wa,c}

:/ G (x4 ml, 1+1)<I>N(m mle ZD)dm
0

where @y (x;m,0) is the density of a Gaussian random variable with mean m and variance o2 > 0.
Performing the same calculation for the second expected value of equation (B.2), we get, for 2 <i <n-—1,
the desired result. In the cases when i = 1 or ¢ = n, few simplificating adjustments from the previous
calculation give the desired results. O

B.4 Proposition 4.4

Proof. The random variable X ~ N (m,o) can be written as X = m + oN where N ~ N (0,1) is
a standard normal variable. Thus G (m,0) = E[g(X)] = E[g(m + ocN)]. Now, we remark that the
function g can be written in the following way:

v

g(x) = ;1{w>i} + M1,<z

1
v

where T = (%) . Therefore:

—-m ¥ 1 a2
= M. 2 (.
N( pu )+ \/%/ N (% m),,e T
_MN T — m) ~ (i -m m )
( o + (g\f) \fg V2 a2
where G is defined by equation (4.14). O
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B.5 Interpretation of the EIGS integral

The EIGS integral has some probabilistic interpretations. The following proposition provides one of them,
involving Pareto distributions.

Proposition B.1. If v > 1 and z +y > 0, then:

S JT
G(z,y;v) = Dty Pnip (\/52/) (B.3)

where P ~ Par (v —1,/2(z +y)) is a Pareto random variable, N ~ N (0,1) is a standard Gaussian
random variable independent of P, and ®n4p is the density of the sum N + P.

Proof. We recall that, for « > 0 and x,, > 0, the probability density function of the Pareto random

variable Par(«, ©,,) is given by ®p (z; o, ) = sf—fil{z>xm}. When v > 1 and x + y > 0, this Pareto
density can be introduced as follows:

~ > 1 2 > 1 _ _J)? du
G(x,y;v :/ —e dz:/ e ( y) —
S AN o () V2

1 _ (VEy—u)?

= (ul)(\;iy)vl/ﬂf” (u;v—l,\/i(a:+y)) Dy (x/iy—u;o,l)du

CE 1><\f e (V2)

Sk

where @ (x;m,0) is the probability density function of a Gaussian random variable with mean m and
variance o2, and ®yp is the probability density function of the sum of a standard Gaussian random
variable N ~ N (0,1) and a Pareto random variable P ~ Par (v —1,v2(z+y)), N and P being

independent. We have used the change of variable u = (y + 2) v/2 for the second equality. O

B.6 Proposition 4.5

Proof. Suppose v # 1. Then:
Goi) = [ (27 () s
(v 1+_z>:"ez2r ) /:O ((y 1+_z>:”> (o) a:

x

_ (.73 + y)l—’/ —x? 2 > 1-v —22
=-—g_, ¢ +1_V : (y+2) "ze?dz
1—v o'}
2
__ty) e n / W (u—y) e~ @9 dy
1—-v 1=v Joty
1—v e’} 0o
__lety) T a2 {/ 2o (=) gy y/ uluewy)?du}
1—-v 1=v [Joty oty
1—v e} 00
2 _ _
_ ety - ;_j/)y e +t1 {/ (y+2)° ”e*Zde—y/ (y+2)' ”ezzdz}
1-v
x+ _. =5 =5
= —%e = 4 T {g(l‘»y;V—@ —yg(%y;V—l)}
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B.7 Proposition 4.6

Proof. Using the definition of I (equation (4.17)), we obtain:

1-— 1 > 1
T (21/, (z +y)2 ; —2y; ) = / — €xp <7t + 2y\/i) dt
(

2 z+y)? 172

oo 1 2 & 1 1
s /( XD (_ [Vi-y] ) dt = 2¢7’ /| e T dt =2¢V G (jo +yl — y,y;v)

$+y)2 t™2 z+y|—y (y + Z)

where we performed the change of variable z = /t —y. If  +y > 0, then |z +y| — y = = and we get
(4.16). If x +y < 0, then |z 4+ y| — y = —x — 2y, and the change of variable {X = -2 -2y, Y =y} &
{z=-X—-2Y,y=Y} gives:

~ . 1 1- 1
G(X,Yiv)=G(—z—2y,y;v) = §€_y2l“ ( 5 @+ y)?s -2y —2>
1 1- 1\ 1 1- 1
= e YT (X —Y) 2y —= ) =2 ¥T X +Y)E -2y -2
2 2 2) " 2 2 2

and we have recovered (4.16). Interestingly, the relations holds whatever the sign of x + y is. However,
we recall that, to ensure the definition of G (z, y; v) for any v, we imposed 243 > 0 (see equation (4.14)).
The proposition provides an extension to x 4+ y < 0, as long as the set of parameters ensure that the EIG
function is well defined. O

B.8 Computing the EIG integral when § < —1

It can be shown that the condition 8 > —1 is required for the convergence of the series expansion (4.19).
Therefore, before exploiting this expansion , the following ordered preliminary steps are to be performed:

Proposition B.2. The following relations hold:
1. Ifb=0, then T (a, z;0; 8) =T (v, )
2. If 3=0, then T (o, x;b;0) = e~ 'T (a, )

Wr(a,(b"_l)x) Zfb+1>0

3. If B=—1 then T (a, 230, -1) = § === ifb+1=0,a<0andz >0
400 else
4. If <=1 and b >0, then T (o, x; b; 8) = %F (f%,bx’ﬁ,b%;%>

Proof. The four relations are proved below:
L I (o, z;0;8) = [t le tdt =T (o, )
2. T (a,2;0;0) = [Tt le ™ 7bdt = e7'T (o, 2)
a—1
o —u _du  __ 1 :
Joine (b%) e 541 = el ( (b+1)z) , ifb+1>0

3. (e, w3 b —1) = [ ole(HDE = [ ol = 25 Jifb+1=0,a<0,2>0

0 , else

4. If B < —1 and b > 0, the change of variable u = bt~% provides the result I' (a,z;b;3) =
%F (—%,bx_ﬁ;b%; %) More generally, the constraint § < —1 can be replaced by 8 < 0, but
when 3 € [—1,0], then % < —1 and thus the relation is of no help to compute I' («, z; b; ).

O

After these four preliminary checks, T (a, x;b; 3) is either already computed, or is to be computed with
0> —1 (asif 8 < —1 then % > —1), in which case the series expansion (4.19) can be exploited.
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B.9 Large y asymptotics

Let y take large positive values:

= > 1 1 o 1 1 &

G(z,y;v) = / 7yefz2dz = — 71,6722(12 = — exp (z/ln <1 + Z> — 22> dz
. (y+2) v e (1+£) v e y

y

1 [ z 9 1 v? e v\ 2

~ — exp| —v——2"|dz=—exp|— exp|—(z2+ — dz
v Ja Y Y 4y ) Jo 2y
1 2 00 1 2

= —exp (VQ)/ eFdy = — exp (g)ﬁ[l]\/'(\/ﬁ<x+y)>}
yY 4y T yv 4y 2y

2y
We have approximated In (1 + 5) by its tangent in zero 5 because of the Gaussian kernel that peaks at
z = 0, which is where precision is needed. Ultimately, we have approximated ﬁ by e V. It seems
Y
preferable to the tangent in zero of ﬁ directly (namely 1— 1/5) as e v behaves more like the initial
Y

function

( 1+1Z g However, the difference, of course, vanishes for large y.

Yy

B.10 Proposition 4.8

Proof. Let y < 0 be given. We recall that, by definition of the function g(m,y; v) (see equation (4.14)),
z +y > 0. Thus, using equations (4.16) and (4.17):

~ 1 1-— 1 1 e Ity
G(z,y;v) = —e VT 7V7 (z+y)?;—2y—= ) = Ze v / e exp (—t + 2y\ﬁ) dt
2 2 2) "2 (o0)?
1 2 > v
< —e Y exp (— (x + y)z) / e exp (Qy\/{f) dt
2 (a+y)?
2= 2 v—1 o v - —?—(z 2 v—1
= e ¥ )" (L) / uVe du = eV @ (L2) T D (1 — v, (<2y) (z + y))
(—2y)(z+y)
where we have performed the change of variable u = —2y+/t for the next-to-last equality. O
B.11 Proposition 4.9
Proof. Equation (4.13) yields:
H(mymao1,00) =[G (ot mu,o0) B (sima, o) de
0

o 1 (z —my)?
Gx+mi,00) ——exp| —————— | dx
/0 ( 1,91) o9V 2T p( 20%
e 1
= / g (m1 + mo + ogx/iu, 01) — exp (—u2) du
%) N(f—ml—mz—agﬁu) Leiuzdu
mo

oo V2 \/7?

~y © /FE—my —ma— 0avV2u mq +ma + 09v2u a2

+— g , v e ™ du
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The integral above can be computed as follows:

N<a?m1

m2

/ )
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7n2402u> 1 67%;du
o1 V2

g2

2

)

1+ 2
a2
g1

m2 ~
have shown that [ 72 N (M> \/%e

o1

where 7! =

proof.

B.12 Proposition 4.10
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Noting that || = 1, we

ma I "“ mz2.(,0, Z) which concludes the

O

Proof. Using equations (4.24) and (4.21), and using the notation m = m; + mg and 7 = \/0? 4 03:

. (oo}
H (my,ma,01,09;v) =/ g

v

1 - 7n+<72\/§u.
6 Glf
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The integral can be computed as follows:
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formula into equation (B.4) yields the desired result.
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B.13 Large m asymptotics

Let m take large positive values:

~ oo N Su 7 5
H (my,ma,01,09;V) = . g(ili m \;‘;\/>u7m+0'\2/>;/>u;y> 67u2du
o 01 g1
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o2V2 Ve o132 Z

0 1
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In particular, |¥| = 1. Thus, we have shown that, for large positive m:

v _ _ - o2
- 7 (o1V2 1252 me m— I 5 1 o
H (m1,ma,01,09;V) ~ ( — ) exp (2m2 N 72, ; [ w22 :fm } e g +1L§

02 01

B.14 Proposition 4.11

Proof. Suppose v > 0. Then:
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B.15 Proposition 4.12

1 —2?
(z+y)”

Proof. First, differentiating equation (4.14) yields % (x,y;v) = —
Using these expressions to differentiate equation (4.13):

oG M T—m ~y 1 0G (Z—m m
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S (S ) =g (L )

because s = M. Thus, differentiating equation (4.10) and using equation (4.24):

oOH < 9G vy
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Now, for 1 <7 <n and 1 < k < n, we differentiate equations (4.11):

ol omn? - - ampP - - amiP - -
ge- =0, 87&; — e—a(T t)]-{igk} , nglt = —ean(T—t) ggﬁ — e—ax(T t)l{kgi}
Using all these results, the differentiation of equations (4.9) and (4.12) is straightforward. O

C Algorithms

This appendix provides the guidelines to compute efficiently the trickiest quantities from section 4.2. The
other quantities are straightforward to compute from these building blocks.

C.1 Extended Incomplete Gamma Function
Following the algorithm described in Section 4.2.5, we give details of a numerically stable computation
of I' (v, z;b; —3). We exploit the sum (4.19) and the recurrence relation (4.20). Denote by ,, the n-th

term of the sum : N
) (=b)

n!

T ::F(a+g7m

Then, for n > 2, using (4.20) :

b2
n(n—1)
where a, = a + ”T*Q and ¢, = e~ 20t (7:!)", computed using a, = a,_1 + % and ¢, = —%\/Ecn_g.
Using these relations, the implementation of an algorithm to compute the EIG function is straightforward.

LTy = ApTn—2 + Cp

T

40

e~ * and % (x,y;v) = —ué(w,y; v+1).



C.2 Extended Incomplete Goodwin-Staton Integral

Combining the different methods described in Section 4.2.5, the implementation of an algorithm to
compute G (z,y;v) is also straightforward. The only remaining detail is to choose when to switch from
one method to the other. We propose to use the large positive y approximation when y > 10, to test the
large negative y upper bound whenever y < 0 (before using the series expansion if the upper bound is
consider not small enough, say > 1073%), and the series expansion in the remaining cases.

C.3 H(ml,mg,al,Ug;l/)
The first step is to build an efficient implementation of the sum (4.25). Let us skip the multiplicative
constant for the moment. Denote by x,, the n-th term of the sum :

n

o T (a4 ) G v

where z, b, X and Y are constants. In order to exploit the recurrence relations (4.15) and (4.20), for
efficiency, while being numerically stable, we decompose x,, as:

(V)" 5 (v’

Tn = Pndn pn:F(a+%ax)m ) qn =G (X,Y;—n) H:’=1ﬂ
For n > 2, the recurrence relations result in:
_1_;’_& /S —
Pn = bﬁpn72 +cn dn = % \7}51an2 + Y%anl + dn
. ea—1,—x (\/H)ﬂ R lefx2 ((X+Y)\/g)n : — @
where ¢, := x% ‘e Hzl\fl and d,, := b Eny Hzl\[’ are computed using ¢, = T Cn—1 and

d, = (X+Y)\/Bd

\/ﬁ
Using these relations, the implementation of an algorithm to compute the sum (4.25) is straightforward.
Combining it with the different algorithms from Section 4.2.6, H (m1,ma,01,02;V) is easily computed.
Again it remains to choose when to switch from one method to the other. We propose to use the large
positive y approximation when y > 10max (o1, 03), to test, if v > 0, the large negative y upper bound
whenever y < 0 (before using the series expansion if the upper bound is consider not small enough, say
> 1073°), and the series expansion in the remaining cases.

n—1-
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