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The aim of our paper is to provide a new class of anti-lock brake algorithms (that use wheel
deceleration logic-based switchings) and a simple mathematical background that explains
their behavior. These algorithms extend those proposed in our previous work [6], and
consider cases where there might be discontinuities of road characteristics or where it is
intended to synchronize the ABS strategies on several wheels of the vehicle.

Topics: Traction and Brake Control, Tire Property, Modeling and Simulation Technology.

INTRODUCTION

In the literature, one can distinguish two com-
pletely different kinds of anti-lock brake system de-
signs: those based on logic switching from wheel de-
celeration information (see e.g. [8]) and those based
on wheel slip regulation (see e.g. [7]). In our previ-
ous work [6], we proposed a new algorithm based on
wheel deceleration thresholds and a method for an-
alyzing the limit cycles that appear with this kind
of strategies (which gives some elements for tuning
the different parameters that are involved in the al-
gorithm).

The aim of the present paper is to extend, in three
new directions, our previous results [6]. Firstly, we
improve the basic five-phase strategy by adding a
phase during which the brake torque is increased
slowly; and we analyse the consequences of this mod-
ification on the limit cycles of the algorithm. Sec-
ondly, we consider the problem of discontinuous tran-
sitions of road characteristics, and propose a new
eleven-phase strategy that is robust to such discon-
tinuous transitions. Thirdly, we consider the syn-
chronization problem (between the front wheels) and
the anti-synchronization problem (between the rear
wheels), in order to obtain a coordinated behavior
among the four independent ABS strategies applied
to each wheel of the vehicle.

In this paper, we only present an overview on some
ABS algorithms we have obtained recently. It is im-
possible, in the six pages of these proceedings, to
treat all the mathematical problems associated with
these algorithms (see [1] for a longer version).

1 WHEEL DYNAMICS

1.1 Tyre forces

The longitudinal tyre force Fx is often modelled by
a relation

Fx(λ, Fz) = µ(λ)Fz .

That is, by a function that depends linearly on ver-
tical force Fz and nonlinearly on wheel slip

λ =
Rω − vx

vx
,

where ω denotes the angular velocity of the wheel
and vx the speed of the vehicle. It should be noted
that this kind of models can only be used at high
speeds.

µ(λ)

λλ0

Figure 1: Tyre forces. The shape of the curve µ(·).



The function µ(·) will be described, for negative
wheel slips, using a second order rational fraction

µ(λ) =
a1λ− a2λ

2

1− a3λ+ a4λ2
.

The coefficients ai are all positive and depend on tyre
characteristics, road conditions, tyre pressure, tem-
perature, etc. They should thus be assumed to be
unknown.

1.2 Wheel velocity

The angular velocity ω of a given wheel of the ve-
hicle has the following dynamics:

Iω̇ = −RFx + T, (1)

where I denotes the inertia of the wheel, R its radius,
Fx the longitudinal tyre force, and T the torque ap-
plied to the wheel.
The torque T = Te − Tb is composed of the engine

torque Te and the brake torque Tb. We will assume
that during ABS braking the clutch pedal is kept en-
gaged, and thus neglect the engine torque.

1.3 Wheel acceleration

In our simplified wheel dynamics model, the ve-
hicle will be supposed to brake with the maximal
constant deceleration a∗x allowed by road conditions,
which is a∗x = −µ(λ0)g. In other words

v̇x = a∗x.

The vertical forces Fz on the front and rear axles are
assumed constant and equal to those one would have
at equilibrium for this constant deceleration a∗x. The
front and rear wheel dynamics are then completely
decoupled.
Even though the simplifications introduced in this

model might seem a little bit excessive, a compari-
son of the ABS simulations obtained with this model,
with those obtained with a more complex model,
shows that the simulated limit cycles are are very
similar with both models (see [1]).

Let λ∗ = −λ0 be the optimal negative slip rate,
such that that µ′(λ∗) = 0. If we define the wheel slip
and wheel acceleration offsets by

x1 = λ− λ∗

x2 = Rω̇ − a∗x,

we obtain the following control system:

ẋ1 =
1

vx
(x2 − (λ∗ + x1)a

∗

x) (2)

ẋ2 = −
a

vx
µ̄′(x1) (x2 − (λ∗ + x1)a

∗

x) + u, (3)

where

a =
R2

I
Fz and u =

R

I
Ṫ .
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Figure 2: The five-phase ABS regulation logic.

The function µ̄(·) is defined as

µ̄(x) = µ(λ∗ + x) − µ(λ∗).

Observe that, for a function µ(·) that is a second
order rational fraction, we have

µ̄(x) =
x2

ā1 − ā2x+ ā3x2
.

Other wheel deceleration models are available in the
literature (see e.g. [2] and [5]).

2 THE FIVE-PHASE ALGORITHM

In this paper, our goal will be to keep the unmea-
sured variable x1 in a small neighborhood of zero,
with a control u that only uses the measured vari-
able y = Rω̇ − a∗x; the function µ(·) being unknown.
Our approach can also be used when y = Rω̇.

2.1 Simplified first integrals

Consider a dynamical system

ẋ = f(x), where x ∈ R
n.

For this system, a first integral is a function of the
state I(x) that remains constant along the trajecto-
ries of the system. That is, such that

d

dt
I(x(t)) =

n
∑

i=1

∂I

∂xi

(x(t))fi(x(t)) = 0.

Thus, on any time interval [t0, t1], we have

I(x(t)) = I(x(t0)), (4)

for all t ∈ [t0, t1].
In the particular case of two-dimensional dynam-

ical systems, first integrals can be used to compute
the phase-plane evolution of the system. Indeed, the
evolution of any of the two variables of the system
can be deduced from the other variable using equa-
tion (4).
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Figure 3: Limit cycle obtained for ǫ1 = ǫ5 = 20 and
ǫ3 = ǫ4 = 25, in the case u5 = 0, with ǫ2 = 33 and
u3 = 12970 (obtained with the formulas of [6]).

Constant torque When the control variable is
such that u = 0, the torque applied to the wheel
remains constant. Therefore, the torque itself is a
first integral. By considering equation (1), it can be
easily seen that

Ia(x) = x2 + aµ̄(x1)

is a first integral of the dynamical system defined by
equations (2) and (3). In fact Ia = RT/I.

Large torque variations When u 6= 0, finding
exact first integrals is difficult. Nevertheless, for con-
trols having the following particular form u = u0/Rω
with u0 large enough, an approximative description
of the system’s evolution can still be obtained if we
consider the following function

Ib(x) = x1 −
1

2u0

x2
2.

This function Ib is an approximative first integral, in
the sense that for big enough values of u0 the state of
the system defined by equations (2) and (3) evolves
inside a tube of radius o(1/u0) around the curves de-
fined by a constant Ib.

Small torque variations When u is small, none
of the previous first integrals Ia and Ib can be used to
approximate the evolution of the system. Neverthe-
less, for controls having the following particular form
u = u0x2/Rω with u0 small enough, an approxima-
tive description of the system’s evolution can still be
obtained if we consider the following function

Ic(x) = x2 + aµ̄(x1)− u0x1,

which is almost constant along the system’s trajec-
tories. Observe that the first integral Ia can be ob-
tained from Ic, if we take u0 = 0.
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Figure 4: Limit cycle obtained for ǫ1 = ǫ5 = 20 and
ǫ3 = ǫ4 = 25, in the case u5 = 200, also with ǫ2 = 33
but with u3 = 105 (obtained with the formulas of [1]).

2.2 The algorithm

The basic ABS regulation logics that we will con-
sider is described on Figure 2. For this control law,
the vertex of the graph on which the algorithm is
evolving determines the control applied to the brakes.
The transitions from one vertex of the graph to a dif-
ferent vertex are imposed by the guard conditions
(the labels associated to each edge of the graph),
which depend only on the value of the wheel deceler-
ation offset x2 = Rω − ax.

When a hybrid control law (based on the state of an
automaton) is used to control a continuous dynami-
cal system, the mathematical object that is obtained
is called a hybrid automaton. We refer the reader
to [4] for a detailed treatment of the mathematical
questions related to this kind of objects ; and to our
previous article [6] for a detailed analysis of the hy-
brid automaton generated by our control law.

2.3 Tuning the algorithm’s parameters

Choosing the adequate values of the wheel decel-
eration thresholds ǫi is relatively easy. Firstly, some
constraints are imposed on these parameters if we
want to avoid the situations where the algorithm
might block (see [6]). Secondly, choosing symmetric
thresholds (that is, ǫ5 = ǫ1 and ǫ4 = ǫ3) usually gives
better results and simplifies considerably the tuning
of the control parameters ui. Indeed, in the symmet-
ric case, the stability of the cycles generated by the
algorithm do not depend on u1 nor on u4.

Therefore, the only parameters that have to be
tuned are ǫ2, u3, and u5. To choice the optimal
values of these parameters, two completely different
methods are available (even though both methods are
based on the analysis of limit cycles given by the
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Figure 5: Our eleven-phase ABS regulation logics. The first five phases coincide with those of Figure 2.

Poincaré map of the system, which can be approx-
imated using the first integrals Ia, Ib, and Ic).

A first method was proposed in [6]. It takes u5 = 0.
And the parameters ǫ2 and u3 are chosen in such a
way that they minimise the amplitude of the gener-
ated limit cycle.

A second method is proposed in [1]. For high
enough values of u3, the limit cycle does not depend
on u3. Then, for any value of ǫ2, there is a unique
value of u5 that minimizes the amplitude of the ABS
limit cycle (see [1]). Since in this case the limit cycle
has only four phases (like the algorithms of [3]), it
does not depend on ǫ2 (which thus can be tuned with
the first method).

The limit cycles obtained using these two different
methods are compared on Figures 3 and 4.

3 THE ELEVEN-PHASE ALGORITHM

Even though the five-phase strategy is robust with
respect to variations of tyre characteristics, it is not
robust with respect to discontinuous transitions of
road characteristics (like, for example, a transition
from a dry to a wet road). The aim of this section is
to solve this problem, by introducing a new eleven-
phase strategy, illustrated in Figure 5.

3.1 Changes of road characteristics

If at an instant t0 there is a discontinuous change
of tyre characteristics, the value of the friction co-
efficient µ(·) will jump from µ−

0 = µ(λ(t−0 )) to
µ+

0 = µ(λ(t+0 )). And thus the value of the wheel

acceleration offset x2 will change from x−

2 to x+

2 ≃

x−

2 − R2Fz

I

(

µ+

0 − µ−

0

)

. Though the wheel slip will
still be a continuous function of time, the wheel slip
offset might jump since the value of λ0 can change
for different road conditions.

3.2 From five to eleven phases

Robustness with respect to small variations of tyre
characteristics can be easily obtained by adding a
sixth phase to the algorithm (Phase 6). Indeed, de-
pending on the phase during which the discontinu-
ous transition happens, the five-phase strategy either
works correctly or gets stuck in the stable zone dur-
ing Phase 5 (a situation that cannot happen if the
sixth-phase is added).

For larger variations of tyre characteristics, the
main problem is to come back as soon as possible
to a situation where only the first five phases will
be active. In order to reach this goal, it is neces-
sary to use the maximal and minimal torque varia-
tions allowed by the actuator, denoted by Ṫb = umax

and Ṫb = −umin, instead of a torque of the form
Ṫb = ±u0/Rω.

The case µ+

0 < µ−

0 , which corresponds to a tran-
sition from a dry to a wet or icy road, is handled
by phases 7, 8, and 9. This situation is detected
by the threshold −ǫ7. During Phase 7 the brake
torque is decreased as quickly as possible, until the
threshold ǫ8 is reached, which triggers Phase 8 dur-
ing which brake torque is increased at the maximal
rate. Observe that unlike all other thresholds, the
value of ǫ8 depends on the road transition. It is given
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Figure 6: Synchronized ABS regulation logics for the front wheels. The index i represents the wheel to which
the algorithm is applied and j the opposite wheel.

by

ǫ8 =

√

umaxM(x2)2 + uminǫ21
umax + umin

,

where M(x2) is the minimal value reached by the
wheel acceleration offset x2 during phase 7. Note
that we must take ǫ7 > ǫ5, and that we obviously
have ǫ8 > ǫ1. For a transition between a dry road
and an icy road, the value of the applied brake torque
might reach zero. In this case Phase 9 is triggered
until the threshold ǫ8 or the stable zone of the tyre
are reached.
The case µ+

0 > µ−

0 , which corresponds to a transi-
tion from a wet or icy road to a dry road, is handled
by Phase 10, during which brake torque is increased
at the maximal rate ; and Phase 11, that just turns
the ABS regulation off, if the transition is really se-
vere.

4 SYNCHRONIZATION ALGORITHMS

4.1 Front-wheels Synchronization

When our original five-phase strategy is applied,
independently, to two different wheels of the vehi-
cle (for exemple, the front wheels), the difference be-
tween the applied brake torques has a random be-
havior. The two algorithms are not synchronized.
Since the braking torques at the front wheels are not

equal, their difference applies a force on the steering
rack that propagates through the column up to the
steering wheel. This has an undesirable effect : a
torque perturbation on the steering wheel, which is
unpleasant for most drivers.

In order to synchronize the ABS algorithms associ-
ated to the front wheels of the vehicle, we decompose
the original fourth phase of the algorithm is three
sub-phases (Figure 6). The first one (Phase 4a),
does the same thing as in the five-phase strategy ;
but is interrupted as soon as the wheel deceleration
offset of the current wheel becomes negative xi ≤ 0.
At this point, there are two cases. If the wheel de-
celeration offset of the opposite wheel is already neg-
ative xj ≤ 0, we do the same as in the five-phase
strategy (Phase 4c). But if the wheel deceleration
offset of the opposite wheel is still positive xj > 0,
then we “wait” in the same phase (by applying a
constant brake torque) until it becomes also negative
(Phase 4b).

4.2 Rear-wheels Anti-Synchronization

For the rear wheels of the vehicle, we apply the
opposite strategy. Our aim is to anti-synchronize the
rear wheels, in such a way that there is always one
of the two rear wheels in the stable zone of the tyre
(thus with a small wheel-slip), which can be useful for
estimating the longitudinal velocity of the vehicle.
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Ṫ i
b = u5x2

Rω
5 Ṫ i
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Ṫ i
b = u4

Rω
4a
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Figure 7: Anti-synchronized ABS regulation logics for the rear wheels. The index i represents the wheel to which
the algorithm is applied and j the opposite wheel.

In order to anti-synchronize the ABS algorithms
associated to the rear wheels of the vehicle, we de-
compose the original fourth phase of the algorithm is
two sub-phases (Figure 7). The first one (Phase 4a),
does the same thing as in the five-phase strategy ; but
is interrupted as soon as the wheel deceleration offset
of the current wheel becomes negative xi ≤ 0. At
this point, there are two cases. If the wheel deceler-
ation offset of the opposite wheel is already negative
xj ≤ 0 then we “wait” in the same phase (by apply-
ing a constant brake torque) until it becomes positive
(Phase 4b). Otherwise, the wheels are not synchro-
nized, and thus we can continue the forth phase.
In fact, the result of our algorithm is that when

a wheel is on the fourth phase (with a small wheel
slip) is waits until the other arrives at the first phase
(with a large wheel slip), in such a way that the two
individual wheel algorithms are in phase opposition.
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