The surprising complexity of
generalized reachability games

Nathanaél Fijalkow? and Florian Horh

L LIAFA
CNRS & Université Denis Diderot - Paris 7, France
{nath,florian.horn}@iafa.jussieu.fr
2 ENS Cachan
Ecole Normale Supérieure de Cachan, France

Abstract. Games on graphs provide a natural and powerful model fotiveac
systems. In this paper, we consider generalized reactyadiijectives, defined as
conjunctions of reachability objectives. We first provettheciding the winner in
such games i®SPACE-complete, although it is fixed-parameter tractable with
the number of reachability objectives as parameter. Maeave consider the
memory requirements for both players and give matching iugope: lower bounds
on the size of winning strategies. In order to allow more &fficalgorithms, we
consider subclasses of generalized reachability gameshaie that bounding
the size of the reachability sets gives two natural subetsgere deciding the
winner can be done efficiently.

1 Introduction

Graphs games.Our purpose is to study reactive systems by abstracting them
into graphs games: a state of the system is represented hyex e a finite
directed graph, and a transition corresponds to an edge.afgiven state, the
controller can choose the evolution of the system, thendhesponding vertex
is controlled by the first player, Eve. Otherwise, the syseywmives in an un-
certain way: we consider the worst-case scenario whereomdgatayer, Adam,
controls those states. To a run of the system correspondy @aplthe game: we
put a pebble in the initial vertex, then Eve and Adam movegpblisble along the
edges, constructing an infinite sequence. The specificafitime system gives
an objective Eve tries to ensure on this sequence. In ordgmitesize a con-
troller, we are interested in two questions: whether Evesviinthe game, and
what resources are needed to construct a winning strategy[@&TWO02] for
more details).

System specificationsTo specify properties of a system, we construct a set
of infinite sequences representing the correct behaviothekystem. From
an infinite sequence we extract finite information to decidesther the run

it represents meet the specification. For instance, comsid¢he set of ver-
tices visited infinitely often allows to specify the clasdic-regular proper-
ties, e.gBlchi, parity, Streett, Rabin and Mdller objectives. Ottmormations
can be carried out, as for instance the set of vertices disitiéh positive fre-
quency [TBGO09], or the order in which the vertices are visiter specifying
LTL objectives [KPV07,HTWO08,Zim11]. In this work, we obsenletset of
vertices visited at least once, which allows to specify heddity objectives,
also called weak objectives [NSW02,SW74,Mo0s91,KVWO00]

Generalized reachability objectives.The (simple) reachability objective re-
quires, given a subset of verticés that a vertex fron¥' is reached. Reacha-
bility objectives only specifies that one property (représd byF") is satisfied
along the run. We allow more properties to be specified bygugeneralized
reachability objectives, defined as conjunctiong: seachability objectives. In
this context, a reachability objective is often referrechalor: a generalized
reachability objective is then to see each of kheolors at least once.

2 Definitions

The games we consider are played onagena A = (V, (V,, V), E), which
consists of a finite grapfV, E') and a partition(V;,, V) of the vertex seV’: a
vertex is controlled by Eve if it belongs #d, and by Adam if it belongs td4.
Vertices fromV/, are depicted by a circle, and vertices frdm by a square. We
denote byn the number of vertices and the number of edges. Playing consists
in moving a pebble along the edges: the pebble is placed anitla vertex vy,
then the player who controls the vertex chooses an edge awld fige pebble
along this edge to the next vertex. From this infinite inteoacresults aplay
7, which is an infinite sequence of vertices v1, ... where for alli, we have
(vi,vi41) € E,i.emis an infinite path in the graph. We denote Hythe set
of all plays, and definebjectivesfor a player by giving a set of winning plays
¢ C II. The games are zero-sum, which means that if Eve has thetigbjéc
then Adam has the objectivE \ & (the objectives are opposite). Formally, a
gameis given by a couplg = (A,) where A is an arena an@ an objective.

A strategyfor a player is a function that prescribes, given a finitednisof
the play, the next move. Formallystrategyfor Eve is a functiors : V* -V, —
V such that for a finite historyp € V* and a current positiom € V;, the
prescribed move is legale along an edgefv, o(w - v)) € E. Strategies for
Adam are defined similarly, and usually denoted-b@nce agamg = (A, ¢),
a starting vertex, and strategies for Eve andr for Adam are fixed, there is
a unique play denoted by(vg, o, 7), which is said to be winning for Eve if it
belongs to?. The sentence “Eve wins fromy” means that she has a winning

2

strategy fromug, that is a strategy such that for all strategy for Adam, the
play 7(vg, o, 7) is winning. The first natural problem we consider is to “solve
the game”, that is given a gargeand a starting vertex,, to decide whether Eve
wins fromuvg. We denote byVx(G) the winning positions of Eve, that is the set
of vertices from where Eve wins (also referred as winnind seid analogously
Wa(G) for Adam. We can prove that in generalized reachability gawe have
Weg(A, @) UWa(A,P) = V: from any vertex, either of the two players has a
winning strategy. We say that the gamesdaetermined

The strategies as defined in their full generality above wfiaiie objects.
Indeed, in this general setting, to pick the next-move, Eesiders the whole
history of the play, whose size grows arbitrarily. A nicettisg, giving rise to
finitely-representable objects, is to define strategiegnglon memory struc-
tures. Formally, anemory structureM\t = (M, mg, 1) for an arenaA consists
of a setM of memory states, an initial memory statgy € M, and an update
functionp : M x E — M. A memory structure is similar in fashion to an au-
tomaton synchronized with the arena: it starts fraignand reads the sequence
of edges produced by the arena. Whenever an edge is takesyrtbet state is
updated using the update functipnA strategy relying on a memory structure
M, whenever it picks the next move, considers only the cuwertex and the
current memory state: itis thus given by a next-move fumatio V, x M — V.
Formally, given a memory structuret and a next-move function, we can de-
fine a strategy for Eve byo(w - v) = v(v, p*(w - v)). (The update function
can be extended to a functigrt : V™ — M by definingu*(v) = mo and
pH(w-u-v) = p(p*(w-u), (u,v)).) A strategy with memory structuré! has
finite memory ifM is a finite set. It isnemorylessor positionalif M is a single-
ton: in this case, the choice for the next move only dependbseaurrent vertex.
Note that a memoryless strategy can be described as a famctid, — V.

We can make the synchronized product explicit: an atéraand a memory
structureM for A induce the expanded aredex M = (V x M, (Vo x M, Vi x
M), E x u) whereE x p is defined by{((v,m), (v/,m’)) € E'if (v,v) € E
andu(m, (v,v")) = m/. There is a natural one-to-one mapping between plays
in A and inA x M, and also from memoryless strategiesdixx M to strategies
in A using M as memory structure. It follows that if a player has a menazyl
winning strategy for the arend x M, then he has a winning strategy using
as memory structure for the areda Thiskeyproperty will be used later on.

A reachability objectiveequires that a vertex from a given subset of vertices
F'is reachedReach(F) = {vg,v1,v2... | Ip € N,v, € F} C II. Games
in the formG = (A, Reach(F")) are called reachability games. To determine
whether Eve wins a reachability game, we compute the redithalet attractor.

3

We define the sequen¢attr;(F));>o:

Attrg(F) =F
Attri g (F) = Attr;(F) U {ue Vo | 3(u,v) € E,v € Attry(F)}
U {ueVo|V(u,v) e E,ve Attr;(F)}

ThenAttr(F) is the limit of the non-decreasing sequeriégtr;(F));>o. We
can prove thatVg (A, Reach(F)) is exactlyAttr(F).

Generalized reachability objectives.A generalized reachability objective-
quires that each of the giveénsubsets of vertices, ..., F}, is reached:

GenReach(F1, ..., Fy) = {r | Vi,3p; € N,v,, € F;}.

Associating to each reachability objective a color, we edarmulate the gener-
alized reachability objective: it requires to see each eftholors at least once,
in any order. Games in the forg = (A, GenReach(F,..., F})) are called
generalized reachability games. The special cases whetelih (respectively
V5) is empty are called one-player (respectively opponesyey) generalized
reachability games.

Example 1.We consider the arena drawn in Figure 1. A generalized rédlilia
game is defined by the objectiveenReach({1, 2}, {3}). The central vertex is
the initial one. Eve tries to visit one of the two thick veeticand the dashed
vertex.

Fig. 1. An example of a generalized reachability game

Contributions. Our contributions are as follows:

— We first prove that deciding the winner in generalized rehiting games
is PSPACE-complete. Using the same ideas, we also show that the one-
player restriction, where all vertices belong to EveNiB-complete, and
that the opponent-player restriction, where all verticelotg to Adam, can
be solved in polynomial time. On the positive side, it is fiytameter
tractable(FPT) with the numbet of colors as parameter.

— We study the size of the winning strategies for both play®esprove match-
ing upper and lower boundsg in any arena, if Eve has a winning strategy,
then she has a winning strategy that udes- 1 memory states, and there is
an arena where Eve wins but there are no winning strategibslegs than
2% — 1 memory states, and similarly for Adam with the bOL(nLg’;ZJ).

— We then consider the subclasses where we restrict the nuofilvertices
sharing the same color (in other words, the size of readhabéts). This re-
veals a trichotomy: if three vertices are allowed to shaegestime color, then
deciding the winner is, as in the general ca¥&>ACE-complete. However,
if each color appears only once, then the problem is polyabnfi each
color appears only twice, then the problem is polynomial doe-player
games, where Eve controls all vertices.

Outline. In section 3, we first study the complexity of solving genized reach-
ability games, for two-player and one-player games, and givee matching up-
per and lower bounds for the memory required. In section 4cevesider the
subclasses of games where the size of reachability settiected, in order to
find tractable subclasses.

3 The complexity of generalized reachability games

In this section we prove that the winner problem in geneedlizeachability
games iPSPACE-complete. OuPSPACE-hardness result follows from a re-
duction fromQBF (evaluation of a quantified boolean formula in conjunctive
normal form). However, we show that solving generalizecchedility games
with few colors is easy, as it is fixed-parameter tractablaguthe number of
colors as parameter.

We then study one-player restrictions. We prove that thepdager gen-
eralized reachability games ar&-complete. The other one-player restriction,
opponent-player generalized reachability games, can lvedsin polynomial
time.

The last subsection investigates memory requirementsofibr flayers. We
present matching upper and lower bounds: Eve ng&dsl memory states and
Adam (Lk];?J)’ wherek is the number of colors.

5

3.1 PSPACE-completeness of solving generalized reachability games

As a first step we define a reduction fréBF to the winner problem of gener-
alized reachability games. Consider a quantified booleanuta

Qix1 Q2xa ... Qnxy ¢,

whereg is a propositional formula in conjunctive normal foring

d=Nlia VliaV ...Vl

i<k

and/; ; is eitherz; or —x; for some: < n. We construct a generalized reach-
ability game where Eve wins if and only if the formula is trimetuitively, the
two players will sequentially choose to assign values tabées, following the
quantification order and starting from the outermost védeiaBve chooses ex-
istential variables and Adam chooses universal variaBlesnally, the game is
as follows:

— for each variable:;, there are two vertices;; andz;;

— for each variable:;, there is a choice vertax which leads tar; andz;. The
choice vertex belongs to Evei:if is existentially quantified, and to Adam if
x; IS universally quantified;

— for each variabler; with i < n, there are two edges fromy andz; to the
next choice vertex;;1;

— there is a sinlks, and two edges from,, andz,, to s;

— for each clausd/; 1,...,¢ ;}, there is a reachability objectivk; which
contains the corresponding vertices;

— the generalized reachability objective is given®ynReach(F1, ..., Fy).

The initial vertex isv;. There is a natural bijection between assignments of
the variables and plays in this game; and an assignmenfiessitice formula

¢ if and only if the play satisfies the generalized reachabiibjective. The
evaluation order of the variables being the same in the famind in the game,
we conclude that Eve has a winning strategy if and only if trenfula is true.

Example 2.We consider the following quantified boolean formula
Ve JyVz (zV-y)A(-yVz).

Figure 2 shows the game built by the reduction. The genedlizachability
objective isReach({z,7}) A Reach({7, z}). Thick vertices represent the first
reachability objective and dashed vertices the second one.

Fig. 2. An example of the reduction fro@BF to generalized reachability games.

Theorem 1 (Complexity of generalized reachability games)Solving gener-
alized reachability games BSPACE-complete.

Proof. The previous reduction implies ti®gSPACE-hardness.

Let us first make a simple observation: if Eve has a winningtetyy, then
she has a winning strategy that visits each reachabilityvitein n - k steps.
Indeed, if she can enforce to visit a subset of vertices, #iencan enforce it
within n steps.

Relying on this remark, we can simulate the game for um tok steps
using an alternating Turing machine: whenever a vertexrigeldo Eve, the
corresponding state is disjunctive, and it is conjunctivié vertex belongs to
Adam. A path of length - k is accepted if it is winningi.e if it contains one
vertex from each reachability sét. This machine accepts if and only if Eve
wins, and works in polynomial time. SincePTIME = PSPACE, the result
follows. |

3.2 Parameterized complexity

Solving generalized reachability games with few colorsaisye

Theorem 2 (Generalized reachability games withk colors). Solving gener-
alized reachability games is fixed-parameter tractad®) with the number
of colors as parameter.

Roughly speaking, the only information needed during a Eahe subset
of reachability sets already visited. We build a memorydtrte that keeps track
of this information. By constructing the product with thigmory structure, we
turn a generalized reachability game into a (classicalhahility game.

Proof. We considerg = (G, GenReach(F1, ..., F))) a generalized reacha-
bility game, andvy a starting vertex. The memory structutd is defined by
(28K} g, 1), wheremg is {i | vo € Fj}, andu(S, (v,v')) = SU{i | v €
E}. LetF ={(_5)|S=/{1,...,k}}: aplay for the generalized reachability

7

gameg from v is winning if and only if it is winning for the reachability gse
G X M = (G x M,Reach(F)) from (vy, mg). Since deciding the winner in
a reachability game can be done in linear time using an &itraomputation,
solving a generalized reachability game can be done in2fime O(n 4+ m). B

3.3 Solving one-player restrictions

Theorem 3 (One-player restrictions).Solving one-player generalized reacha-
bility games iNP-complete. Solving opponent-player generalized readityabi
games is polynomial.

Proof. We first deal with one-player generalized reachability ggmdere Eve
controls all vertices. In our previous reduction, consithercase where all vari-
ables in the original formula are quantified existentialllgen the problem corre-
sponds t& AT (satisfiability of a boolean formula in conjunctive normairh),
which is NP-complete. Resulting games are one-player gaiesg]l vertices
belong to Eve, hence solving one-player generalized rédithiagames isNP-
hard.

We describe a non-deterministic algorithm to solve thesaagain polyno-
mial time. As noted before, if Eve wins, then she has a winrsmgtegy that
wins withinn - k steps. The algorithm guesses a path of lemgtlk and checks
whether it is winning. It follows that solving one-playemgzalized reachability
games iSNP-complete.

We now consider opponent-player generalized reachalghiyes, given
by the objectiveGenReach(F1, ..., Fy). The winning set for Adam id" \
(; Attr(F;), which can be computed in quadratic time. |

3.4 Memory requirements

We first present upper bounds:

Lemma 1l (Memory upper bounds).For all generalized reachability games
G = (G,GenReach(Fy,..., Fy)),

— if Eve wins, then she wins using a strategy with mera6ry 1;
— if Adam wins, then he wins using a strategy with memi%%]).

As in the proof forFPT membership, we make use of the memory struc-
ture M = (201K} mg, 1), wheremy is {i | vo € F;}, andu(S, (v,0')) =
SuU{i|v € F;}. SettingF as{(_,S) | S =1{1,...,k}}, aplay for the gen-
eralized reachability gamg@ from v is winning if and only if it is winning for
the reachability gamg x M = (G x M, Reach(F')) from (vo, mo).

8

Proof. We considelG = (G, GenReach(F1,. .., F))) a generalized reachabil-
ity game, andyy a starting vertex. Since in the reachability gaghe M, each
player has memoryless winning strategies, each playeni@a winning strat-
egy usingM as memory structure.

The memory set of\l has size2*. In order to get the correct bounds for
each player, we rely on two observations.

— Eve does not need a specific memory state to remember thalai thave
been reached, as in this case, she has already won. Thusrsalkvays win
with 2 — 1 memory states.

— If Adam wins inG x M from (v, S) andS’ C S, then he wins fron{v, S’)
using the same strateggZonsiderv € V' a vertex inG, and the set of sub-
setsS such thaiv, S) belongs to Adam’s winning set. Its maximal (with re-
spect to inclusion) elements are incomparable, so theratmst(tk’;%),
we denote them by (v),...,S,(v). The idea is that fromy, there are
only p different options Adam has to consider, namély(v), ..., Sp(v).
Indeed, for anyS such that(v, S) is winning for Adam, there exists an
such thatS C S;(v), so Adam can forge$ and assume the current position
is (v, S;(v)).

We define a memory structure on the memory{set .., (k’;QJ)}. We aim
at constructing a strategy that will ensure that after adiplay« - v, the
memory state is am such thatS;(v) contains the set of visited colors. If
the initial vertex isvg, the initial memory state is afy such thatS;, (vo)
containsmg. We define the update functiop(i, (v,v")) is aj such that
S;(v") containsy(S;(v),v") = S;(v) U {i | V' € F;}.

Let us turn to the next-move function. Consider.S) in Adam’s winning
set, then there exists a transition to sofne S’) also in Adam’s winning
set. Applying this tqv, S;(v)) such thatS C S;(v), we get a vertex’, and
definev (v, i) tov’. Playing this strategy, the above invariant is satisfied, an
thus ensures to stay forever in Adam’s winning set, so it isnmivig. The
memory set contain§k§2j) memory states.

Lemma 2 (Memory lower bounds for both players).For all k,

— there exists§ = (G, GenReach(Fy,..., Fy)) a generalized reachability
game, where Eve needs — 1 memory states to win;

— there exists§ = (G, GenReach(Fy,..., Fy)) a generalized reachability
game, where Adam neegls’;,) memory states to win.

U1

®
IEN

|

(v2)
h ‘ae

@\ o
@) g@

Fig. 3. A generalized reachability game where Eve ne®ds- 1 memory states to win

Proof. We first describe a generalized reachability game where Esd* — 1
memory states to win. This example was proposed in [CHH11 similar
framework. The arena is shown in Figure 3, foe= 5. A vertex labelled by
belongs toF;, and a vertex labelled bihas all colors but. A play starts from
the hearth; first Adam chooses a petalthen Eve chooses either to reach color
1 before going back to the heart (the play goes on), or to reaety €olors but

i and to stop the play. Eve wins with the following strategy finst time Adam
chooses the petal she goes back to the heart; the second time, she stops the
play. This strategy use® memory states. She can save one memory state by
dropping the memory state corresponding to the case whersasteach petal,
as it is winning for her. However, we show that there is no \igrstrategy for
Eve with less thar2* — 1 memory states. Let a strategy using the memory
structureM with less thar2® — 1 memory states, andits next-move function.
For each memory state,, we considerS,,, = {i | v(v;, u(m, (h,v;))) = i},
the set of petals where Eve would stop the play if Adam chosmtfAs there
are less tharz® — 1 memory states, there is a strict subsétof {1,...,k}
which is not the stopping set of any memory state. Adam canagainsts by
choosing, at each step, a petal in the symmetric differehcé and S,,,, where

m is Eve’s current memory under. (Indeed, if Adam plays forever iX, then
Eve will never stop the play and only colors frakhwill be reached, otherwise,
whenever Eve stops the play, the last memory state from thg tas ann
such thatX cC S,,, and the petal chosen is athat belongs t®,, \ X, hence
that has never been reached.)

We now describe a generalized reachability game won by Addraere he
needs(k’jQJ) memory states to win. Lét = 2p + 1. A play consists in three
steps: first Eve choosegscolors, then Adam choosgscolors, and third Eve

10

choose® colors. In order to win, Adam must visit exactly the same oBve
visited (which requires{ ka2) memory states), otherwise at least 1 colors
have been visited when Eve plays for the second time, andahelmose and
visit the remaining colors that have not yet been visited. |

4 Restrictions on the size of reachability sets

The above section shows two different directions which nupgtesralized reach-
ability games hard: the first is the complexity of solving gealized reachability
games PSPACE-complete), and the second is the memory required to con-
struct winning strategies for both players (exponentidh@number of colors).

In this section, we restrict the size of the reachabilitys setorder to find
tractable subclasses of generalized reachability games.

Notice that our reduction fro@BF only impliesPSPACE-hardness when
reachability sets have size at least three. Indeed, noténttiae reduction, the
size of a reachability set in the generalized reachabibityg corresponds to the
size of the corresponding clause of the formula. Since thblpm of evaluating
a quantified boolean formula is polynomial if the formula ha&e variables per
clause, our reduction does not imply tREPACE-hardness of solving gener-
alized reachability games with reachability sets of size ontwo. This remark
motivates our study of the subclasses of generalized rbdith@ames where
each color appears once, and then where each color appéegs tw

4.1 Reachability sets of size one

The case where reachability sets are singletons is polyalomi

Theorem 4 (Generalized reachability games where reachalitiy sets have
sizel). Solving generalized reachability games where reachgtsigts are sin-
gletons is inPTIME.

Proof. We denote by; the only vertex inF;, for all 4. In this case, the gener-
alized reachability objective can be expressed\py, Reach(v;). We will see
that Eve wins if and only if the preorder defined by< +' if v € Attr(v') is
total. Intuitively, it means that a winning strategy preéises: “reachvy(,), then
v(2), and so on”, wher¢ is a permutation ovefl, ..., k}.

We consider two cases:

— If the preorder= is total over{v; | 1 < i < k}, then we show thatVg,
set of winning positions for Eve, i8;Attr(v;). Letv € N;Attr(v;) and f
a permutation ovef1,...,k} such that for alll < i < k — 1, we have

11

Vi) € Attr(vgi4r)), we construct a winning strategy fromthat reaches
vra), thenwvy), and so on. Note that this strategy only neédsiemory
states. Conversely, if ¢ N;Attr(v;), then Eve cannot win, as Adam can
prevent her from reaching some reachability set.

— If the preorder= is not total, then there exist; and v; such thatv; ¢
Attr(v;) andv; ¢ Attr(v;). In this case Adam wins from everywhere, fol-
lowing the strategy “ifv; or v; has been reached, then avoid the other”. Note
that this strategy only needsmemory states.

Checking that the preordet is total can be done in polynomial time.]

Note that as a corollary, we get memory upper bounds in thégs:cave
needs at most memory states and Adam at mastt is not difficult to see that
these bounds are tight.

4.2 Reachability sets of size two

Let us now turn to the case where reachability sets have wizeWe first ex-
tend the technique used for the previous case: it was staietEve wins if and
only if there is a total order on colored vertices”. A simisgproach works for
one-player arenas, through a reduction to the satisfialgfibblem of boolean
formulas where clauses have size two. (This latter probkekmown to be de-
cidable in polynomial time.)

Theorem 5 (Generalized reachability one-player games whercolor ap-
pears twice).Solving generalized reachability one-player games wheaein-
ability sets have size two is INTIME.

Proof. As in the previous subsection, we consider the preordereatkbfiyy <
v if v € Attr(v'). Note that in the case of one-player arenass Attr(v')
reduces to “there is a path fromto v'”.

Let F; = {z;,y;} be the reachability sets, ang be a starting vertex. We
assume without loss of generality that there is a path fsgito everyF; (that is,
either tox; or y;), otherwise Eve cannot win. (This property is easily cheldke
deterministic polynomial time.) A first statement is asdols: Eve wins from
vp if and only if there existy, . .., v, colored vertices such that

1. forall0<i<k-—1,v; <v;41 and
2. each color appears fvq, ..., v}

We turn this condition into a boolean formula where clauseglsize2. We
consider the - k variablesX; andY;, that correspond to verticag andy;. We

12

define the formula:

N{(=X Vv =Y) | if o £ yandy £z} A/\(Xi VY;),

(a) (b)

wherez, y ranges over colored vertices (that is, vertices fiBnfior somes).

We argue that Eve wins fromy, if and only if ¢ is satisfiable. Assume Eve
wins from vg: let vy, ..., v, as in the previous statement, and set the corre-
sponding variables to true and the others to false, we cla@nthe formulap
is satisfied. Indeed, condition 2. ensures that the clausderibracedb) are
satisfied, and for the clauses under-bra¢ey let z,y such thatz A y and
y A x, if z is one of they;’s, theny cannot be, se- X Vv =Y holds. Conversely,
assume thap is satisfiable. The clauses under-bra¢efensures that the order
= is total over vertices set to true. The clauses under-bréigeensures that at
least one vertex from each reachability set is set to truenliduing those two
statements, we reach the condition stated above.

The latter allows to decide in polynomial time whether EvasMiromuvg by
checking the formula for satisfiability. |

We do not know the exact complexity of generalized reachghilames
where reachability sets have sizeln the remaining of this subsection, we dis-
cuss this gquestion, focusing on memory requirements fdr platyers.

The memory required for Eve is still exponential, as showRigure 4 for
k = 4. Specifically, it shows a generalized reachability gamere/heachability
sets have siz& won by Eve, where she nee@§/2/+! — 1 bits of memory to
win. The arena is divided into two parts: the left hand sidefiswer with| & /2]
petals, and the right hand side a one-player arena. The danme & the heart
of the flower. First, Eve asks for each petal a color. Oncet#tsik is completed,
she can move to the right hand side to reach the remainingscdiwe needs
to remember thék /2| choices made by Adam (one for each petal), in order to
reverse them: if Adam chose the coligrthen the colo has not been reached,
so Eve has to choose coldr Remembering those choices and asking for each
petal require2(¥/2/+1 _ 1 memory states. (This is the size of the complete
binary tree of depthk/2].)

On the other hand, the exact memory required for Adam renugias. The
figure 5, following an idea of Christof Loeding, shows a gafieed reacha-
bility game where reachability sets have skze&von by Adam, where he needs
4 memory states to win. The game starts from the left hand sdex First
Eve chooses and visits three of the four colors (two colotthénfirst column,

1 and2 or 3 and4, and then one in the second column), and sends the pebble

13

Fig. 4. A generalized reachability game where Eve ne2dé?/*! — 1 memory states to win

to the right hand side vertex, controlled by Adam. There, & four options,
each allowing all colors but one. Remembering the four {iggs requires
four memory states, and leads to a win. However, with less ongistates, one
of the four option will never be played, and Eve wins.

Quite surprisingly, we could not generalize this examplelitain a better
lower bound thanl. We do not know whether this bound is tight (in any arena,
if Adam wins, then he has a winning strategy withmemory states), which
is plausible. Note that this would imply@NPN? algorithm: guess a winning
strategy for Adam withd memory states, and compose this strategy with the
game, then solve the resulting one-player game.

Fig. 5. A generalized reachability game where Adam nekedgmory states to win

Open problems.We were not able to give the exact complexity of generalized
reachability games where reachability sets have &iZéhe memory approach,

14

showing that Adam has winning strategy of constant sizensg@omising to-
wards this question.

References

[CHH11] Krishnendu Chatterjee, Thomas A. Henzinger, arati&h Horn. The Complexity of
Request-response GamesLINTA pages 227-237, 2011.

[GTWO02] Erich Gradel, Wolfgang Thomas, and Thomas Wilketad. Automata, Logics, and
Infinite Games: A Guide to Current Research [outcome of a Redjseminar, Febru-
ary 2001] volume 2500 oL NCS Springer-Verlag, 2002.

[HTWO8] Florian Horn, Wolfgang Thomas, and Nico Wallmeig®ptimal Strategy Synthesis
in Request-Response Games.Pioceedings of the 6th International Symposium on
Automated Technology for Verification and Analysis, AT8A®Iume 5311 o NCS
pages 361-373. Springer-Verlag, 2008.

[KPV0O7] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi.offr Liveness to Promptness.
In Proceedings of the 19th International Conference on CoerpAided Verification,
CAV’'07, volume 4590 of NCS pages 406—419. Springer-Verlag, 2007.

[KVWOO0] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper.n Automata-theoretic ap-
proach to branching-time model checkirdgurnal of the ACM47(2):312—-360, 2000.

[Mos91] Andrzej Wlodzimierz Mostowski. Hierarchies of veautomata and weak monadic
formulas. Theoretical Computer Scienc@3(2):323-335, 1991.

[NSWO02] Jakub Neumann, Andrzej Szepietowski, and Igor Wiealnicz. Complexity of weak
acceptance conditions in tree automabaformation Processing Letter84(4):181—
187, 2002.

[SW74] Ludwig Staiger and Klaus W. Wagner. Automatenthgseche und automatenfreie
charakterisierungen topologischer klassen regulargefoshengenElektronische In-
formationsverarbeitung und Kybernetik0(7):379-392, 1974.

[TBGO9] Mathieu Tracol, Christel Baier, and Marcus Gro3&ecurrence and transience for
probabilistic automata. linternational Conference on the Foundations of Software
Technology and Theoretical Computer Science, FSTTCBdifes 395-406, 2009.

[Zim11] Martin Zimmermann. Optimal bounds in parametricLL§ames. Ininternational
Symposium on Games, Automata, Logics and Formal VerifitaBandALF’11 pages
146-161, 2011.

15

