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Abstract. Games on graphs withω-regular objectives provide a natural model10

for reactive systems. In this paper, we consider generalized reachability games:
given subsetsF1, . . . , Fk ⊆ V of vertices, the objective is to reach one vertex
of eachFi. We show that solving generalized reachability games isPSPACE-
complete in general. In the special case where reachabilitysets are singletons,
the problem becomes polynomial. The case where reachability sets have size2 is15

still open. We consider one-player restrictions and prove they areNP-complete
and polynomial, depending on whether the player tries to ensure or to spoil the
generalized reachability objectives. We also investigatememory requirements of
both players.

1 Introduction20

Graphs games.Graphs games are used to model reactive systems. The sys-
tem is modelled by a finite graph: vertices represent states and edges represent
transitions. Interactions with the environment are captured by games played on
graphs. If in a given state, the controller can choose the evolution of the system,
then the corresponding vertex is controlled by the first player, Eve. If the sys-25

tem evolves in an uncertain way, we consider the worst-case scenario. A second
player, Adam, controls those states. A pebble is initially placed on the vertex
representing the initial state of the system. Then Eve and Adam move this peb-
ble along the edges, constructing an infinite sequence of vertices. Eve tries to
ensure that the sequence built satisfies some predeterminedobjective. So, in or-30

der to synthesize a controller, we are interested in whetherEve can ensure this
objective and what resources she needs (see [GTW02] for moredetails).

Reachability and generalized reachability.One of the simplest objective is
reachability, which requires, given a subset of verticesF , that a vertex fromF
is reached. Another is the Büchi objective, which requiresthat a vertex from35



F is visited infinitely often. Generalized Büchi objectiveshave been defined
in [DJW97], and are conjunctions of Büchi objectives. Reachability games, as
well as both Büchi and generalized Büchi games can be solved in polynomial
time [DJW97]. However, conjunctions of reachability objectives have not yet
been studied. Accordingly, we define generalized reachability objectives as con-5

junctions of reachability objective. They require that givenk subsets of vertices
F1, . . . , Fk ⊆ V , one vertex of eachFi is visited.

Contributions. We first prove that the problem of solving generalized reach-
ability games isPSPACE-complete. Using the same ideas, we also show that
the one-player restriction, where all vertices belong to Eve, isNP-complete (the10

other one-player restriction, where all vertices belong toAdam can be solved in
polynomial time). However, thePSPACE-hardness holds only when the reach-
ability sets are of size at least3. If for all i, Fi is a singleton, then we show that
the problem of solving these games is polynomial. The case where reachability
sets are of size2 is still open.15

We study the memory requirements of both players, focusing on two param-
eters: the numberk of reachability sets and their size. In the general case, we first
prove that both players need at most2k − 1 memory states. We strengthen this
result to get an upper bound of

( k
⌊k/2⌋

)

for Adam, and show that these bounds
are tight. In the case where each reachability set has size2, we show that Eve20

requires memory2⌊k/2⌋. Giving a lower bound on memory needed for Adam in
this case remains an open problem. Finally, we give exact memory requirements
for the case where each reachability set has size1: Eve needsk memory states
and Adam only2.

Outline. Section 2 will give the definitions we need in the paper. In section25

3, we study the complexity of solving generalized reachability games. We also
consider one-player games and restriction over the size of the reachability sets.
In section 4, we investigate the memory requirements of bothplayers, for the
general case and for the restricted case where reachabilitysets have size1.

2 Definitions30

An arenaA = (V, (V◦, V2), E) consists of a finite graph(V,E) and a partition
(V◦, V2) of the vertex setV : a vertex belongs to Eve if it lies inV◦ and to Adam
if it lies in V2. When drawing arenas, we will use circles for vertices owned
by Eve and squares for those owned by Adam. We denote byn the number
of vertices andm the number of edges. Aplay π in an arenaA is an infinite35

sequenceπ0, π1, π2 . . . of vertices such that for alli ≥ 0 we have(πi, πi+1) ∈
E. We denote byΠ the set of all plays. We defineobjectivesfor a player by
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giving a set of winning playsΦ ⊆ Π. We study zero-sum games, where the
objectives of the two players are opposite. Hence, if Eve hasthe objectiveΦ,
then Adam has the objectiveΠ \Φ. A gameis a coupleG = (A, Φ) whereA is
an arena andΦ an objective.

A strategyfor a player is a function that prescribes, given a finite history of5

the play, the next move. Formally, astrategyfor Eve is a functionσ : V ∗ ·V◦ →
V such that for allw ∈ V ∗ andv ∈ V◦ we have(v, σ(w ·v)) ∈ E. Strategies for
Adam are defined similarly, and usually denoted byτ . Once a gameG = (A, Φ),
a starting vertexv0 and strategiesσ for Eve andτ for Adam are fixed, there is
a unique playπ(v0, σ, τ), which is said winning for Eve if it belongs toΦ.10

Given a gameG = (A, Φ) and a starting vertexv0, a strategyσ for Eve is
winning if for all τ strategy for Adam,π(v0, σ, τ) is winning. Eve wins the
gameG = (A, Φ) from v0 if she has a winning strategy fromv0. Given an arena
A and an objectiveΦ, we denote byWE(A, Φ) the winning positions of Eve,
that is the set of vertices from where Eve wins. The problem ofsolving a game15

is to decide whether Eve wins in a given gameG from a given vertexv0.

A memory structureM = (M,m0, µ) for an arenaA consists of a setM
of memory states, an initial memory statem0 ∈ M , and an update function
µ : M × V → M . The update function can be extended to a functionµ∗ :
V + → M by definingµ∗(V ) = {m0} andµ∗(w · v) = µ(µ∗(w), v). Given20

a memory structureM and a next-move functionν : V◦ × M → V , we can
define a strategyσ for Eve byσ(w · v) = ν(v, µ∗(w · v)). A strategy with
memory structureM has finite memory ifM is a finite set. It ismemoryless,
or positional if M is a singleton: it only depends on the current vertex. Hence a
memoryless strategy can be described as a functionσ : V◦ → V .25

An arenaA = (V, (V◦, V2), E) and a memory structureM for A induce the
expanded arenaA×M = (V ×M, (V◦×M,V2×M), E×µ) whereE×µ is
defined by:((v,m), (v′,m′)) ∈ E′ if (v, v′) ∈ E andµ(m, v) = m′. Givenφ an
objective onA, we consider the corresponding objectiveφM onA×M that do
not consider the memory. There is a natural bijection between plays inA and in30

A×M. This bijection respects objectives: ifφ is an objective onA, then a play
in G = (A, Φ) is winning if and only it is winning inG ×M = (A×M, ΦM).
From a memoryless strategy inA × M, we build a strategy inA usingM as
memory structure, which behaves as the original strategy. The key observation
is that if Eve has a winning memoryless strategy inG ×M from (v0,m0), then35

she has a winning strategy inA from v0 usingM as memory structure.

Reachability objectivesrequire that, given a subsetF of vertices, a vertex
of F is visited:Reach(F ) = {π0, π1, π2 . . . | ∃p ∈ N, πp ∈ F}. Games in the
form G = (A,Reach(F )) are called reachability games. To determine whether
Eve wins a reachability game, we compute the reachability set attractor. We
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define the sequence(Attri(F ))i≥0:

Attr0(F ) = F
Attri+1(F ) = Attri(F ) ∪ {u ∈ V◦ | ∃(u, v) ∈ E, v ∈ Attri(F )}

∪ {u ∈ V2 | ∀(u, v) ∈ E, v ∈ Attri(F )}

ThenAttr(F ) is the limit of the non-decreasing sequence(Attri(F ))i≥0. We
can prove thatWE(A,Reach(F )) is exactlyAttr(F ).

Generalized reachability objectivesrequire that givenk subsets of vertices
F1, F2, . . . , Fk, a vertex ofFi is visited for eachi:

GenReach(F1, F2, . . . , Fk) =
⋂

1≤i≤k

Reach(Fi)

Games in the formG = (A,GenReach(F1, F2, . . . , Fk)) are called generalized
reachability games. The special cases where inA, V2 (resp.V◦) is empty are
called one-player (resp. opponent-player) generalized reachability games.5

Example 1.We consider the arena drawn in Figure 1. We define a generalized
reachability game by giving reachability setsF1 = {2, 3} (thick vertices) and
F2 = {4} (dashed vertex).1 is the initial vertex. Eve tries to visit2 and4, or 3
and4.

1

23

4

Fig. 1. An example of a generalized reachability game

3 Solving generalized reachability games10

In this section we investigate the complexity of solving generalized reacha-
bility games. We first present a reduction fromQBF (evaluation of a quanti-
fied boolean formulae in conjunctive normal form) to generalized reachability
games. This reduction gives thePSPACE-hardness of solving these games. We
then show it is actuallyPSPACE-complete.15
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We then study one-player restrictions. A special case of theprevious reduc-
tion gives a reduction fromSAT to one-player generalized reachability games,
so solving these games isNP-hard. As above, we describe an algorithm inNP,
and get theNP-completeness of solving one-player generalized reachability
games. The other one-player restriction, opponent-playergeneralized reacha-5

bility games, can be solved in polynomial time.
We consider the subclass of generalized reachability gameswhen the size

of reachability sets are restricted. We note that ourPSPACE-hardness result
holds only when the reachability sets are of size at least3. Indeed, we show that
the problem is polynomial if reachability sets are singletons. The case where10

reachability sets have size2 is still open.

3.1 PSPACE-completeness of solving generalized reachability games

We first define a reduction fromQBF to generalized reachability games. We
consider a quantified boolean formula

Q1x1 Q2x2 . . . Qnxn φ ,

whereφ is a propositional formula in conjunctive normal form,i.e

φ =
∧

i∈{1,...,k}

ℓi,1 ∨ ℓi,2 ∨ . . . ∨ ℓi,ji

andℓi,j belongs to{x1,¬x1, . . . , xn,¬xn}. We design a generalized reachabil-
ity game. Intuitively, the two players will sequentially choose to assign values
to variables, following the quantification order and starting from the outermost15

variable. Eve chooses existential variables and Adam chooses universal vari-
ables. Formally, the game is as follows:

– for each variablexi, there is one vertex for each literal (xi and¬xi);
– for each variablexi, there is a choice vertexci which can lead to eitherxi or

¬xi. The choice vertex belongs to Eve ifxi is existentially quantified, and20

to Adam ifxi is universally quantified;
– for each variablexi with i < n, there are two edges fromxi and¬xi to the

next choice vertexci+1;
– there is a sinks, and two edges fromxn and¬xn to s;
– for each clauseℓi,1 ∨ ℓi,2 ∨ . . . ∨ ℓi,ji , there is a reachability set25

{ℓi,1, ℓi,2, . . . , ℓi,ji}.

The initial vertex isc1. There is a natural bijection between assignments of
the variables and plays in this game. The assignment satisfies the formulaφ if
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and only if all clauses are satisfied, which is equivalent to visit all reachability
sets. Hence Eve has a winning strategy in the designed game ifand only if the
formula is valid.

Example 2.We consider the following QBF formula

∀x ∃y ∀z (x ∨ ¬y) ∧ (¬y ∨ z) .

Figure 2 shows the game built by the reduction. We haveF1 = {x,¬y} (thick
vertices) andF2 = {¬y, z} (dashed vertices).

x

¬x

y

¬y

z

¬z

Fig. 2. An example of the reduction fromQBF to generalized reachability games.

5

Theorem 1 (PSPACE-completeness of generalized reachability games).Solv-
ing generalized reachability games isPSPACE-complete.

Proof. We argue that if Eve has a winning strategy, then she has a winning strat-
egy that visits each reachability set withinnk steps. Indeed, if she can enforce
to visit a reachability set, then she can enforce it withinn steps.10

We now describe an alternating Turing machine that solves generalized
reachability games and works in polynomial time. SinceAPTIME = PSPACE,
the result follows. The machine simulates the game onnk steps. Whenever
a vertex belongs to Eve, the corresponding state is disjunctive, otherwise it is
conjunctive. A branch of lengthnk is accepted if it is winning. This machine15

accepts if and only if Eve wins.
PSPACE-hardness follows from the previous reduction.

3.2 Solving one-player restrictions

Theorem 2 (One-player restrictions).Solving one-player generalized reacha-
bility games isNP-complete. Solving opponent-player generalized reachability20

games is polynomial.
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Proof. We first deal with one-player generalized reachability games. In our pre-
vious reduction, consider the case where all variables in the original formula
are quantified existentially. Then the problem isSAT (satisfiability of a boolean
formula in conjunctive normal form), which isNP-complete. Resulting games
are one-player games, as all vertices belong to Eve. Hence solving one-player5

generalized reachability games isNP-hard.
We now describe a non-deterministic algorithm to solve these games in

polynomial time. As noted before, if Eve wins, then she has a winning strat-
egy that visits each reachability set withinnk steps. The algorithm guesses a
path of lengthnk and checks whether it is winning. Thus solving one-player10

generalized reachability games isNP-complete.
We now consider opponent-player generalized reachabilitygames. The key

observation is that Adam wins if and only if he can avoid one reachability set,
i.e if the initial vertex does not belong to each reachability set attractor. This is
easily checked in polynomial time.15

3.3 Restriction over the size of reachability sets

Theorem 3 (Generalized reachability games where reachability sets are sin-
gletons). Solving generalized reachability games where reachability sets are
singletons is polynomial.

Proof. We denote byvi the only vertex inFi, for all i. Intuitively, under the20

assumption that reachability sets are singletons, we will see that if Eve wins,
then she has a winning strategy that prescribes ”reachvf(1), thenvf(2), and so
on”, wheref is a permutation over{1, . . . , k}.

We denote by(†) the following property: there exists a permutationf over
{1, . . . , k} such that for all1 ≤ i ≤ k − 1, we havevf(i) ∈ Attr(vf(i+1)). It25

implies that for alli ≤ j, we havevf(i) ∈ Attr(vf(j)) (the relationv � v′ if
v ∈ Attr(v′) is a pre-order). We consider two cases:

– If (†) is satisfied, then we show thatWE, set of winning positions for Eve,
is ∩iAttr(vi). Let v ∈ ∩iAttr(vi) andf a permutation that satisfies(†),
we design a winning strategy fromv that visitsvf(1), thenvf(2), and so30

on. Note that this strategy only needsk memory states. Conversely, ifv /∈
∩iAttr(vi), then Eve cannot win, as Adam can prevent her from reaching
one reachability set.

– If (†) is not satisfied, then there existsvi andvj such thatvi /∈ Attr(vj) and
vj /∈ Attr(vi). We describe a winning strategy for Adam: ”ifvi or vj has35

been reached, then avoid the other”. Following this strategy, Adam ensures
that during a play,vi andvj cannot be both reached. Note that this strategy
only needs2 memory states.
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4 Memory requirements

4.1 Memory bounds for the general case

Lemma 1 (Memory exponential upper bound for both players).If Eve (resp.
Adam) wins a generalized reachability game, then she (resp.he) wins using a
strategy with memory2k − 1 (resp.

(

k
⌊k/2⌋

)

).5

Proof. Roughly speaking, the only information needed during a playis the
subset of visited reachability sets. To prove this, we expand the arena by la-
belling vertices with this information. LetG = (G,GenReach(F1, . . . , Fk))
be a generalized reachability game. We consider the memory structureM =
(2{1,...,k}, ∅, µ), whereµ(S, v) = S ∪ {i | v ∈ Fi}. Let F = {(v, S) |10

S = {1, . . . , k}}. A play for the generalized reachability gameG from v0
is winning if and only if it is winning for the reachability game G × M =
(G × M,Reach(F )) from (v0,m0). Since in the reachability gameG × M,
the winning player has a memoryless winning strategy, he hasin G a winning
strategy withM as memory structure.15

Now,M has2k memory states. In order to get the correct bounds for each
players, we rely on the following observations:

– Eve does not need a specific memory state to remember that all the sets have
been reached, as in this case, she has already won. Thus, she can always win
with 2k − 1 memory states.20

– In the gameG ×M, Adam does not need to distinguish two vertices of the
form (v, S) and(v, S′) whereS is a subset ofS′: if he can win from(v, S′),
then he can win from(v, S) with the same strategy; if he cannot win from
(v, S′), he might as well always play as if he was in(v, S). This reduces
the number of different memory states for a single vertex to

( k
⌊k/2⌋

)

—the25

maximal number of incomparable subsets of{1, . . . , k}. It is thus possible
to derive from it a winning strategy for Adam with

(

k
⌊k/2⌋

)

memory states.
Note, however, that there is no longer a natural interpretation of memory
states as subsets of{1, . . . , k}, since the merging process can lead to differ-
ent results for each vertex.30

Theorem 4 (Memory lower bounds for both players).There exists an arena
where Eve needs2k − 1 memory states to win, and one where Adam needs
( k
⌊k/2⌋

)

memory states to win.

Proof. An arena where Eve needs2k − 1 memory states to win is presented
in [CHH10] for the more general case of Request-response games. It can be35

easily adapted to generalized reachability games to give the same lower bound.
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We now describe a generalized reachability game won by Adam,where he
needs

(

k
⌊k/2⌋

)

bits of memory to win. Letk = 2p+1. First Eve chooses and visits
p reachability sets, then Adam chooses and visitsp reachability sets. Finally Eve
chooses and visitsp reachability sets. In order to win, Adam must visit exactly
the same reachability sets Eve visited. Otherwise at leastp + 1 sets have been5

visited when Eve plays for the second time, and she can chooseand visit the
remaining sets that have not yet been visited.

4.2 Memory lower bound for restricted cases

v1 v2

v3 v4

vk−1 vk

m

u1 u2

u3 u4

uk−1 uk

Fig. 3. Memory lower bound for Eve when reachability have size2

Exponential memory lower bound for Eve when reachability sets have size
2. Figure 3 shows a generalized reachability game where reachability sets have10

size2 won by Eve, where she needs2⌊k/2⌋ bits of memory to win. LetFi =
{ui, vi} for all i. Adam will choose to visit eitherv1 or v2, thenv3 or v4, and
so on. When the vertexm is reached, Eve needs to remember the⌊k/2⌋ choices
made by Adam: if Adam visitedv1, then he did not visitv2, so Eve has to visit
u2. Remembering those choices requires2⌊k/2⌋ states of memory.15

9



Memory lower bounds.Memory lower bounds are summarized in the follow-
ing array, wherek is the number of reachability sets:

Size of reachability sets 1 2 any

Eve k 2⌊k/2⌋ 2k − 1

Adam 2 ?
( k
⌊k/2⌋

)

Memory upper bounds.

Size of reachability sets 1 2 any

Eve k 2k − 1 2k − 1

Adam 2 2k − 1
(

k
⌊k/2⌋

)
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