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Abstract. Games on graphs with-regular objectives provide a natural model
for reactive systems. In this paper, we consider genethligachability games:
given subsetds, ..., F, C V of vertices, the objective is to reach one vertex
of eachF;. We show that solving generalized reachability game3S®ACE-
complete in general. In the special case where reachabéity are singletons,
the problem becomes polynomial. The case where reaclyatslis have siz2 is
still open. We consider one-player restrictions and préwey areNP-complete
and polynomial, depending on whether the player tries tarensr to spoil the
generalized reachability objectives. We also investigagenory requirements of
both players.

1 Introduction

Graphs games.Graphs games are used to model reactive systems. The sys-
tem is modelled by a finite graph: vertices represent statdsdges represent
transitions. Interactions with the environment are catury games played on
graphs. If in a given state, the controller can choose thiitgo of the system,
then the corresponding vertex is controlled by the first @laive. If the sys-
tem evolves in an uncertain way, we consider the worst-aassasio. A second
player, Adam, controls those states. A pebble is initialgcpd on the vertex
representing the initial state of the system. Then Eve arahfchove this peb-
ble along the edges, constructing an infinite sequence titesr Eve tries to
ensure that the sequence built satisfies some predeteraiijective. So, in or-
der to synthesize a controller, we are interested in whdfkrercan ensure this
objective and what resources she needs WO02] for detads).

Reachability and generalized reachability.One of the simplest objective is
reachability, which requires, given a subset of vertiEeghat a vertex fromt”
is reached. Another is the Buchi objective, which requitest a vertex from
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F is visited infinitely often. Generalized Buchi objectiveave been defined
in [DPJW97], and are conjunctions of Biichi objectives. Resility games, as
well as both Buichi and generalized Buchi games can be datvgolynomial
time [DIJW9Y]. However, conjunctions of reachability olijees have not yet
been studied. Accordingly, we define generalized readhablbjectives as con-
junctions of reachability objective. They require thategik subsets of vertices
Fy,...,F, CV,one vertex of eaclt; is visited.

Contributions. We first prove that the problem of solving generalized reach-
ability games isPSPACE-complete. Using the same ideas, we also show that
the one-player restriction, where all vertices belong te,EsNP-complete (the
other one-player restriction, where all vertices belongdam can be solved in
polynomial time). However, thBSPACE-hardness holds only when the reach-
ability sets are of size at lea3t|f for all 7, F; is a singleton, then we show that
the problem of solving these games is polynomial. The caseuteachability
sets are of size is still open.

We study the memory requirements of both players, focusmigvo param-
eters: the numbeér of reachability sets and their size. In the general case rate fi
prove that both players need at ma$t— 1 memory states. We strengthen this
result to get an upper bound ()E‘k"“QJ) for Adam, and show that these bounds
are tight. In the case where eac(1 reachability set ha2size show that Eve
requires memorg!%/2. Giving a lower bound on memory needed for Adam in
this case remains an open problem. Finally, we give exactanerequirements
for the case where each reachability set has kifeve needs: memory states
and Adam only2.

Outline. Section 2 will give the definitions we need in the paper. Intisac
3, we study the complexity of solving generalized reacligigames. We also
consider one-player games and restriction over the sizeeofdachability sets.
In section 4, we investigate the memory requirements of btdkers, for the
general case and for the restricted case where reachagtigyhave sizé.

2 Definitions

An arena A = (V,(Vs, Va), E) consists of a finite grapty/, £') and a partition
(V,, Vo) of the vertex seV’: a vertex belongs to Eve if it lies i, and to Adam

if it lies in V. When drawing arenas, we will use circles for vertices owned
by Eve and squares for those owned by Adam. We denote the number

of vertices andn the number of edges. play = in an arenad is an infinite
sequencery, 71, T . . . Of vertices such that for all > 0 we have(r;, ;1) €

E. We denote bylT the set of all plays. We defingbjectivesfor a player by

2
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giving a set of winning play® C II. We study zero-sum games, where the
objectives of the two players are opposite. Hence, if Evethabjectived®,
then Adam has the objectivig \ ¢. A gameis a coupleg = (A, ?) whereA is

an arena and an objective.

A strategyfor a player is a function that prescribes, given a finitedmsbf
the play, the next move. Formallys&rategyfor Eve is a functiors : V* -V, —
V such that for allv € V* andv € V, we have(v, o(w-v)) € E. Strategies for
Adam are defined similarly, and usually denoted-b@nce agamg = (A, @),
a starting vertex, and strategies for Eve andr for Adam are fixed, there is
a unique playr(vg, o, 7), which is said winning for Eve if it belongs té.
Given a gamgj = (A, ®) and a starting vertex,, a strategyo for Eve is
winning if for all 7 strategy for Adamy(vg, o, 7) is winning. Eve wins the
gameg = (A, @) from v if she has a winning strategy frong. Given an arena
A and an objectived, we denote byVg (A, @) the winning positions of Eve,
that is the set of vertices from where Eve wins. The problemsobfing a game
is to decide whether Eve wins in a given gagh&om a given vertexy.

A memory structureM = (M, mg, 1) for an arenad consists of a sed/
of memory states, an initial memory state) € M, and an update function
w: M xV — M. The update function can be extended to a funcion:
V+ — M by definingu*(V) = {mo} andp*(w - v) = p(p*(w),v). Given
a memory structuré\ and a next-move function : V, x M — V, we can
define a strategy for Eve byo(w - v) = v(v, u*(w - v)). A strategy with
memory structureM has finite memory ifM is a finite set. It ismemoryless
or positionalif M is a singleton: it only depends on the current vertex. Hence a
memoryless strategy can be described as a funetiol, — V.

Anarenad = (V, (V,, Vo), E') and a memory structuré1 for A induce the
expanded arend x M = (V x M, (Vo x M, Vo x M), E x u) whereE x uis
defined by{((v,m), (v',m’)) € E'if (v,v") € Eandu(m,v) = m’. Giveng an
objective onA, we consider the corresponding objectivg on A x M that do
not consider the memory. There is a natural bijection betvpiays inA and in
A x M. This bijection respects objectivesyifis an objective o, then a play
inG = (A, ®) is winning if and only it is winning ing x M = (A x M, ® ).
From a memoryless strategy j x M, we build a strategy it4 using M as
memory structure, which behaves as the original stratelyg.KEy observation
is that if Eve has a winning memoryless strateggir M from (v, mg), then
she has a winning strategy j from vy using. M as memory structure.

Reachability objectivesequire that, given a subsét of vertices, a vertex
of F'is visited:Reach(F) = {mg, m,m2... | Ip € N, 1, € F'}. Games in the
form G = (A, Reach(F)) are called reachability games. To determine whether
Eve wins a reachability game, we compute the reachabilityageactor. We
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define the sequende\ttr;(F));>o:

Attrg(F) =F
Attri g (F) = Attr;(F) U {ue Vo | 3(u,v) € E,v € Attry(F)}
U {ueVo|V(u,v) e E,ve Attr;(F)}

Then Attr(F) is the limit of the non-decreasing sequerniégtr;(F));>o. We
can prove thatVg (A, Reach(F)) is exactlyAttr(F).

Generalized reachability objectivesquire that giverk subsets of vertices
P, Fy, ..., Fy, avertex ofF; is visited for each:

GenReach(Fy, Fy, ..., Fy) = ﬂ Reach(F;)
1<i<k

Games in the forng = (A, GenReach(Fy, Fy, ..., F})) are called generalized
reachability games. The special cases wherd,ivg (resp.V;) is empty are
s called one-player (resp. opponent-player) generalizadhability games.

Example 1.We consider the arena drawn in Fig{fe 1. We define a genedalize
reachability game by giving reachability sdfs = {2, 3} (thick vertices) and

F, = {4} (dashed vertex)l is the initial vertex. Eve tries to visit and4, or 3
and4. C

A

Fig. 1. An example of a generalized reachability game

10 3 Solving generalized reachability games

In this section we investigate the complexity of solving gtized reacha-

bility games. We first present a reduction frapBF (evaluation of a quanti-

fied boolean formulae in conjunctive normal form) to geneeal reachability

games. This reduction gives tR& PACE-hardness of solving these games. We
15 then show it is actualllPSPACE-complete.

4
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We then study one-player restrictions. A special case optbeious reduc-
tion gives a reduction frorSAT to one-player generalized reachability games,
so solving these gamesh&P-hard. As above, we describe an algorithnNR,
and get theNP-completeness of solving one-player generalized realityabi
games. The other one-player restriction, opponent-plggeeralized reacha-
bility games, can be solved in polynomial time.

We consider the subclass of generalized reachability gavhes the size
of reachability sets are restricted. We note that BHPACE-hardness result
holds only when the reachability sets are of size at [@asideed, we show that
the problem is polynomial if reachability sets are singhstoThe case where
reachability sets have sizas still open.

3.1 PSPACE-completeness of solving generalized reachability games

We first define a reduction frofBF to generalized reachability games. We
consider a quantified boolean formula

Q11 Q2x2 ... Qury @,

whereg is a propositional formula in conjunctive normal forig

¢ = /\ 52‘,1 V &"2 V ...V el}ji
ie{l,....k}

and/; ; belongs to{xq, ~z1, ..., z,, "2, }. We design a generalized reachabil-
ity game. Intuitively, the two players will sequentially @bse to assign values
to variables, following the quantification order and staytfrom the outermost
variable. Eve chooses existential variables and Adam @soasiversal vari-
ables. Formally, the game is as follows:

— for each variable:;, there is one vertex for each literal;(@nd—z;);

— for each variable:;, there is a choice vertex which can lead to either; or
—x;. The choice vertex belongs to Eveiif is existentially quantified, and
to Adam if z; is universally quantified,;

— for each variable:; with ¢ < n, there are two edges fromy and—z; to the
next choice vertex;  1;

— there is a sinls, and two edges from,, and—z,, to s;

— for each claus€;; Vv f;2 V ... V {;j, there is a reachability set
{Ei,lagi,Qa e ,&'7]’1}.

The initial vertex isc;. There is a natural bijection between assignments of
the variables and plays in this game. The assignment sattbfeformulag if

5
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and only if all clauses are satisfied, which is equivalentisit @all reachability
sets. Hence Eve has a winning strategy in the designed gaand ibnly if the
formula is valid.

Example 2.We consider the following QBF formula

Ve JyVz (zV-y)A(-yVz).

Figure[2 shows the game built by the reduction. We heyve= {z, -y} (thick
vertices) andty = {—y, z} (dashed vertices).

N~ -

Fig. 2. An example of the reduction fro@BF to generalized reachability games.

Theorem 1 (PSPACE-completeness of generalized reachability game§olv-
ing generalized reachability gamesRS PACE-complete.

Proof. We argue that if Eve has a winning strategy, then she has angistrat-
egy that visits each reachability set withi steps. Indeed, if she can enforce
to visit a reachability set, then she can enforce it withisteps.

We now describe an alternating Turing machine that solvemgdized
reachability games and works in polynomial time. SiAdI'TME = PSPACE,
the result follows. The machine simulates the gamenénsteps. Whenever
a vertex belongs to Eve, the corresponding state is disyenaitherwise it is
conjunctive. A branch of lengthk is accepted if it is winning. This machine
accepts if and only if Eve wins.

PSPACE-hardness follows from the previous reduction.

3.2 Solving one-player restrictions

Theorem 2 (One-player restrictions).Solving one-player generalized reacha-
bility games iNP-complete. Solving opponent-player generalized readityabi
games is polynomial.
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Proof. We first deal with one-player generalized reachability garheour pre-
vious reduction, consider the case where all variables énotiiginal formula
are quantified existentially. Then the problen$ ST (satisfiability of a boolean
formula in conjunctive normal form), which ISP-complete. Resulting games
are one-player games, as all vertices belong to Eve. Hemgieg@ne-player
generalized reachability gamesN$-hard.

We now describe a non-deterministic algorithm to solve éhgames in
polynomial time. As noted before, if Eve wins, then she hasiraing strat-
egy that visits each reachability set withirk: steps. The algorithm guesses a
path of lengthnk and checks whether it is winning. Thus solving one-player
generalized reachability gamesN$-complete.

We now consider opponent-player generalized reachalgidityes. The key
observation is that Adam wins if and only if he can avoid orechability set,
i.e if the initial vertex does not belong to each reachabilityatractor. This is
easily checked in polynomial time.

3.3 Restriction over the size of reachability sets

Theorem 3 (Generalized reachability games where reachality sets are sin-
gletons). Solving generalized reachability games where reachgbsitts are
singletons is polynomial.

Proof. We denote by; the only vertex inF;, for all 4. Intuitively, under the
assumption that reachability sets are singletons, we il that if Eve wins,
then she has a winning strategy that prescribes "reagh, thenv;,), and so
on”, wheref is a permutation ovefl, ..., k}.

We denote by(t) the following property: there exists a permutatiprover
{1,...,k} such that for alll < i < k — 1, we havevy;) € Attr(vgpy). It
implies that for alli < j, we havev; € Attr(vg;)) (the relationv < o if
v € Attr(v’) is a pre-order). We consider two cases:

— If (1) is satisfied, then we show th#¥z, set of winning positions for Eve,
is N;Attr(v;). Letv € N;Attr(v;) and f a permutation that satisfiés),
we design a winning strategy fromthat visitsv (), thenwvy ), and so
on. Note that this strategy only needsnemory states. Conversely,if¢
N;Attr(v;), then Eve cannot win, as Adam can prevent her from reaching
one reachability set.

— If () is not satisfied, then there existsandv; such thaw; ¢ Attr(v;) and
vj ¢ Attr(v;). We describe a winning strategy for Adam: %if or v; has
been reached, then avoid the other”. Following this stsatAgam ensures
that during a playy; andv; cannot be both reached. Note that this strategy
only need® memory states.
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4 Memory requirements

4.1 Memory bounds for the general case

Lemma 1l (Memory exponential upper bound for both players).If Eve (resp.
Adam) wins a generalized reachability game, then she (lespwins using a
strategy with memorg* — 1 (resp.(Lk’j2 )

Proof. Roughly speaking, the only information needed during a péathe
subset of visited reachability sets. To prove this, we edpiduwe arena by la-
belling vertices with this information. Lef = (G, GenReach(F1,..., Fy))
be a generalized reachability game. We consider the mentiurgtisre M =
(28K 9 1), whereu(S,v) = SU{i | v € F}. Let F = {(v,5) |
S = {1,...,k}}. A play for the generalized reachability gargefrom v,
is winning if and only if it is winning for the reachability gae G x M =
(G x M, Reach(F)) from (vg, mg). Since in the reachability game x M,
the winning player has a memoryless winning strategy, harhgsa winning
strategy withM as memory structure.

Now, M has2* memory states. In order to get the correct bounds for each

players, we rely on the following observations:

— Eve does not need a specific memory state to remember thia¢ akéts have
been reached, as in this case, she has already won. Thugysalevays win
with 2 — 1 memory states.

— In the gam&j x M, Adam does not need to distinguish two vertices of the
form (v, S) and(v, S") whereS is a subset of’: if he can win from(v, S"),
then he can win fronfv, S) with the same strategyf he cannot win from
(v,5"), he might as well always play as if he was(in .S). This reduces
the number of different memory states for a single vertegtg%) —the
maximal number of incomparable subsets®f.. ., k}. Itis thus possible
to derive from it a winning strategy for Adam W"ﬂkl;zj) memory states.
Note, however, that there is no longer a natural intergoetadsf memory
states as subsets ff, . . ., k}, since the merging process can lead to differ-
ent results for each vertex.

Theorem 4 (Memory lower bounds for both players).There exists an arena

where Eve needg® — 1 memory states to win, and one where Adam needs

((j2)) Memory states to win.
Proof. An arena where Eve need@$ — 1 memory states to win is presented

in [CHH1Q] for the more general case of Request-responseegalncan be
easily adapted to generalized reachability games to gezedime lower bound.

8



We now describe a generalized reachability game won by Addraere he
needSJ(Lk’j2 ) bits of memory to win. Let: = 2p+1. First Eve chooses and visits
D reachabi{ity sets, then Adam chooses and visitsachability sets. Finally Eve
chooses and visitg reachability sets. In order to win, Adam must visit exactly
s the same reachability sets Eve visited. Otherwise at jeast sets have been
visited when Eve plays for the second time, and she can crusevisit the
remaining sets that have not yet been visited.

4.2 Memory lower bound for restricted cases

i

V2

a3

U3

N

Vk—1

Fig. 3. Memory lower bound for Eve when reachability have size

Exponential memory lower bound for Eve when reachability sés have size
10 2. Figure[3 shows a generalized reachability game where rbaithaets have

size 2 won by Eve, where she needs"/?! bits of memory to win. LetF; =

{u;,v;} for all <. Adam will choose to visit eithep; or vy, thenwvs or vy, and

so on. When the vertex is reached, Eve needs to remember|th& | choices

made by Adam: if Adam visited;, then he did not visit, so Eve has to visit
15 uy. Remembering those choices requi2éd?) states of memory.

9
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Memory lower bounds. Memory lower bounds are summarized in the follow-
ing array, wherek is the number of reachability sets:

Size of reachability sets 1 2 | any |
Eve H k ‘ 2lk/2] ‘ 2F —1 ‘
k
Adam 2 ? (Lk P J)
Memory upper bounds.
Size of reachability sets 1 | 2 | any |
Eve H k ‘ 2F — 1 ‘ 2F 1 ‘
k k
Adam 2 2k _ (Lk 72 J)
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