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DERIVED CATEGORIES AND RATIONALITY OF CONIC BUNDLES

MARCELLO BERNARDARA AND MICHELE BOLOGNESI

Abstract. We show that a standard conic bundle over a minimal rational surface is rational and
its Jacobian splits as the direct sum of Jacobians of curves if and only if its derived category admits
a semiorthogonal decomposition by exceptional objects and the derived categories of those curves.
Moreover, such a decomposition gives the splitting of the intermediate Jacobian also when the
surface is not minimal.

1. Introduction

One of the main fields of research in the theory of derived categories is understanding how the
geometry of a smooth projective variety X is encoded in the bounded derived category Db(X) of
coherent sheaves on it. One of the main ideas, first developed by Bondal and Orlov, is to understand
to which extent this category contains interesting information about birational geometry.

The biggest problem is to understand how this information can be traced out. The most promis-
ing and, so far, prolific approach is studying semiorthogonal decompositions

Db(X) = 〈A1, . . . ,Ak〉.

In many interesting situations, one has such a decomposition with all or almost all of the Ai

equivalent to the derived category of a point. If X is a projective space or a smooth quadric, all of
the Ai are like this. It is expected that if a non-trivial subcategory appears in such decomposition,
then it has to carry informations about the birational geometry of X. For example, if X is a
V14 Fano threefold, then Db(X) admits a semiorthogonal decomposition with only one non-trivial
component, say AX . A similar decomposition holds for any smooth cubic threefold. Kuznetsov
showed that if Y is the unique cubic threefold birational to X (see [24]), AX is equivalent to the
non-trivial component AY of Db(Y ), and then it is a birational invariant for X [30]. Moreover it
has been shown in [11], by reconstructing the Fano variety of lines on Y from AY , that AY deter-
mines the isomorphism class of Y . Similar correspondences between the non-trivial components
of semiorthogonal decompositions of pairs of Fano threefolds are described in [33]. The derived
category of a smooth cubic fourfold also admits such a decomposition, and it is conjectured that
the non-trivial component determines its rationality [32].

It is a classical and still open problem in complex algebraic geometry to study the rationality
of a standard conic bundle π : X → S over a smooth projective surface. A necessary condition for
rationality is that the intermediate Jacobian J(X) is isomorphic, as principally polarized Abelian
variety, to the direct sum of Jacobians of smooth projective curves. This allowed to prove the non
rationality of smooth cubic threefolds [18]. The discriminant locus of the conic bundle is a curve
C ⊂ S, with at most double points [5, Prop. 1.2]. The smooth points of C correspond to two
intersecting lines, and the nodes to double lines. There is then a natural étale double cover (an

admissible cover if C is singular [5]) C̃ → C of the curve C associated to X. The intermediate

Jacobian J(X) is then isomorphic to the Prym variety P (C̃/C) as principally polarized Abelian
variety [5]. This allows to show the non-rationality of conic bundles over P2 with discriminant
curve of degree ≥ 6 [5]. Remark that if S is not rational or C disconnected, then X cannot be
rational. We will then not consider these cases. Moreover, since X is standard, pa(C) is positive
(see e.g. [26, Sect. 1]).
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If S is a minimal rational surface, then Shokurov [46] has shown that X is rational if and only if
J(X) splits as the direct sum of Jacobians of smooth projective curves and that this happens only

in five cases: if S = P2, either C is a cubic, or a quartic, or C is a quintic and C̃ → C is given by
an even theta-characteristic; if S = Fn, either C is hyperelliptic or C is trigonal and in both cases
the map to P1 is induced by the ruling of S. If S is not minimal, it is conjectured that there are
essentially no more cases [26].

Our aim is to give a categorical approach to this problem, using semiorthogonal decompositions.
Indeed, in [31] Kuznetsov considers the sheaf B0 of even parts of Clifford algebras associated to
the quadratic form defining the conic fibration, and Db(S,B0) the bounded derived category of
coherent B0-algebras over S. He describes a fully faithful functor Φ : Db(S,B0) → Db(X) and
gives a semiorthogonal decomposition for the derived category of X as follows:

Db(X) = 〈ΦDb(S,B0), π
∗Db(S)〉.

If S is a rational surface, its derived category admits a full exceptional sequence, which leads to
the following semiorthogonal decomposition

(1.1) Db(X) = 〈ΦDb(S,B0), E1, . . . , Es〉,

where {Ei}
s
i=1 are exceptional objects. The non-trivial information about the geometry of the conic

bundle is contained in the category Db(S,B0). Note that in the case where X is the blow-up of a
smooth cubic threefold Y along a line, Db(S,B0) contains AY , which identifies the isomorphism
class of Y [11]. Remark that a different approach to the same problem, via generalized homological
mirror symmetry, leads to the conjectures stated in [28, 29]. Anyway we do not establish any link
with the results described here.

Theorem 1.1. Let π : X → S be a standard conic bundle over a rational surface. Suppose that
{Γi}

k
i=1 are smooth projective curves and k ≥ 0, with fully faithful functors Ψi : D

b(Γi) → Db(S,B0)
for i = 1, . . . k, such that Db(S,B0) admits a semiorthogonal decomposition:

(1.2) Db(S,B0) = 〈Ψ1D
b(Γ1), . . . ,ΨkD

b(Γk), E1, . . . , El〉,

where Ei are exceptional objects and l ≥ 0. Then J(X) =
⊕k

i=1 J(Γi) as principally polarized
Abelian variety.

If S is non-rational, and then so is X, Theorem 1.1 fails; its proof relies indeed strictly on the
rationality of S. In 6.3 we provide an example of a standard conic bundle over a non-rational
surface with Db(S,B0) decomposing in derived categories of smooth projective curves.

The interest of Theorem 1.1 is twofold: first it is the first non-trivial example where informa-
tions on the birational properties and on algebraically trivial cycles are obtained directly from
a semiorthogonal decomposition. Secondly it gives a categorical criterion of rationality for conic
bundles over minimal surfaces. Indeed, Shokurov [46, 10.1] proves that for such surfaces a conic
bundle is rational if and only if the Jacobian splits. We can also prove the other implication by a
case by case analysis.

Theorem 1.2. If S is a rational minimal surface, then X is rational and J(X) =
⊕k

i=1 J(Γi)

if and only if there are fully faithful functors Ψi : Db(Γi) → Db(S,B0) and a semiorthogonal
decomposition

Db(S,B0) = 〈Ψ1D
b(Γ1), . . . ,ΨkD

b(Γk), E1, . . . , El〉,

where Ei are exceptional objects and l ≥ 0.

The key of the proof of Theorem 1.1 is the study of the maps induced by a fully faithful functor
Ψ : Db(Γ) → Db(X) on the rational Chow motives, as explained in [40], where Γ is a smooth
projective curve of positive genus. In particular, the biggest step consists in proving that such a
functor induces an injective morphism ψ : J(Γ) → J(X) preserving the principal polarization. The
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existence of the required semiorthogonal decomposition implies then the bijectivity of the sum of
the ψi’s.

The paper is organized as follows: in Sections 2 and 3 we recall respectively basic facts about
motives and derived categories and the construction from [40], and the description of motive,
derived category and intermediate Jacobian of a conic bundle. In Section 4 we prove Theorem 1.1,
and in Sections 5 and 6 we finish the proof of Theorem 1.2, analyzing respectively the case S = P2

and S = Fn.

Notations. Except for Section 2, we work over the complex field C. Any triangulated category
is assumed to be essentially small. Given a smooth projective variety X, we denote by Db(X)
the bounded derived category of coherent sheaves on it, by K0(X) its Grothendieck group, by
CHd(X) the Chow group of codimension d cycles and by Ad(X) the subgroup of algebraically
trivial cycles in CHd(X). The subscript Q is used there whenever we consider Q-coefficients, while

h(X) already denotes the rational Chow motive. We will denote Prym(C̃/C) the Prym motive and

P (C̃/C) the Prym variety for an admissible double cover C̃ → C. Whenever a functor between
derived categories is given, it will be denoted as underived, for example for f : X → Y , f∗ and f∗
denote respectively the derived pull-back and push-forward.
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2. Preliminaries

In this Section, we recall some basic facts about motives, derived categories, semiorthogonal
decompositions and Fourier–Mukai functors. The experienced reader can easily skip subsections
2.1 and 2.2. In 2.3, we explain how a Fourier–Mukai functor induces a motivic map, following [40],
and we retrace the results from [10] under this point of view to give a baby example clarifying
some of the arguments we will use later.

2.1. Motives. We give a brief introduction to rational Chow motives, following [45]. The most
important results we will need are the correspondence between the submotive h1(C) ⊂ h(C) of a
smooth projective curve and its Jacobian, and the Chow–Künneth decomposition of the motive of
a smooth surface.

Let X be a smooth projective scheme over a field k. For any integer d, let Zd(X) be the
free Abelian group generated by irreducible subvarieties of X of codimension d. We denote by
CHd(X) = Zd(S)/∼rat the codimension d Chow group and by CHd

Q(X) := CHd(X)⊗Q. In this
section, we are only concerned with rational coefficients. Let Y be a smooth projective scheme. If
X is purely d-dimensional, we put, for any integer r,

Corrr(X,Y ) := CHd+r
Q (X × Y ).

If X =
∐
Xi, where Xi is connected, we put

Corrr(X,Y ) :=
⊕

Corrr(Xi, Y ) ⊂ CH∗
Q(X × Y ).
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If Z is a smooth projective scheme, the composition of correspondences is defined by a map

(2.1) Corrr(X,Y )⊗ Corrs(Y,Z) // Corrr+s(X,Z)

f ⊗ g � // g.f := p13∗(p
∗
12f.p

∗
23g),

where pij are the projections from X × Y × Z onto products of two factors.
The category Mk of Chow motives over k with rational coefficients is defined as follows: an

object of Mk is a triple (X, p,m), where X is a variety, m an integer and p ∈ Corr0(X,X) an
idempotent, called a projector. Morphisms from (X, p,m) to (Y, q, n) are given by elements of
Corrn−m(X,Y ) precomposed with p and composed with q:

HomMk
((X, p,m), (Y, q, n)) = qCorrn−m(X,Y )p ⊂ Corrn−m(X,Y ).

There exists a tensor product on Mk, that is defined on objects as follows:

(X, p,m) ⊗ (Y, q, n) = (X × Y, p⊗ q,m+ n);

whereas on morphisms it is defined by

p1f1q1 ⊗ p2f2q2 = (p1 ⊗ p2)(f1 ⊗ f2)(q1 ⊗ q2) ∈ Corrn1+n2−m1−m2(X1 ×X2, Y1 × Y2)

if pifiqi : (Xi, pi,mi) → (Yi, qi, ni). Moreover there is a natural functor h from the category of
smooth projective schemes to the category of motives, defined by h(X) = (X, Id, 0), and, for
any morphism φ : X → Y , h(φ) being the correspondence given by the graph of φ. A triple
(X, p, 0) is then considered as a formal direct summand of h(X) corresponding to p. We write
Q := (Speck, Id, 0) for the unit motive and Q(−1) := (Speck, Id,−1) for the Tate (or Lefschetz)
motive, and Q(−i) := Q(−1)⊗i for i > 0. We denote h(X)(−i) := h(X) ⊗ Q(−i). Given a triple
(X, p, 0), the triple (X, p, i) will then give a formal direct summand of h(X)(i). Finally, we have
Hom(Q(−d), h(X)) = CHd

Q(X) for all smooth projective schemes X and all integers d.
If X is irreducible of dimension d and has a rational point, the embedding α : pt → X of the

point defines a motivic map Q → h(X). We denote by h0(X) its image: if p0 := pt×X ⊂ X ×X,
the triple (X, p0, 0) gives h

0(X). Denote by h≥1(X) the quotient of h(X) via h0(X). Similarly, we
have that Q(−d) is a quotient of h(X), and we denote it by h2d(X): if p2d := X × pt ⊂ X ×X,
the triple (X, p2d, 0) gives h2d(X). For example, if X = P1, we have that h≥1(P1) = h2(P1) and
then h(P1) ≃ Q⊕Q(−1). In the case of smooth projective curves of positive genus another factor
which corresponds to the Jacobian variety of the curve is appearing.

Let C be a smooth projective connected curve with a rational point. Then one can define a
motive h1(C) such that we have a direct sum:

h(C) = h0(C)⊕ h1(C)⊕ h2(C).

The main fact is that the theory of the motives h1(C) corresponds to that of Jacobian varieties
(up to isogeny). Indeed we have

Hom(h1(C), h1(C ′)) = Hom(J(C), J(C ′))⊗Q.

In particular, the full subcategory of Mk whose objects are direct summands of the motive h1(C) is
equivalent to the category of Abelian subvarieties of J(C) up to isogeny. Finally, for all d there is no
non-trivial map h1(C) → h1(C) factoring through Q(−d). Indeed, we have Hom(h1(C),Q(−d)) =

CH1−d
Q (C)num=0, the numerically trivial part of the Chow group of rational codimension 1 − d

cycles. Such group is zero unless d = 0. On the other hand, Hom(Q(−d), h1(C)) = CHd
Q(C)num=0,

the numerically trivial part of the Chow group of rational codimension d cycles. Such group is
zero unless d = 1.

Let S be a surface. Murre constructed [36] the motives hi(S), defined by projectors pi in
CH i

Q(S × S) for i = 1, 2, 3, and described a decomposition

h(S) = h0(S)⊕ h1(S)⊕ h2(S)⊕ h3(S)⊕ h4(S).
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We already remarked that h0(S) = Q and h4(S) = Q(−2). Roughly speaking, the submotive
h1(S) carries the Picard variety, the submotive h3(S) the Albanese variety and the submotive
h2(S) carries the Néron–Severi group, the Albanese kernel and the transcendental cycles. If S is a
smooth rational surface and k = k̄, then h1(S) and h3(S) are trivial, while h2(S) ≃ Q(−1)ρ, where
ρ is the rank of the Néron–Severi group. In particular, the motive of S splits in a finite direct sum
of (differently twisted) Tate motives.

In general, it is expected that if X is a smooth projective d-dimensional variety, there exist
projectors pi in CH i

Q(X × X) defining motives hi(X) such that h(X) = ⊕2d
i=0h

i(X). Such a
decomposition is called a Chow–Künneth decomposition. We have seen that the motive of any
smooth projective curve or surface admits a Chow–Künneth decomposition. This is true also for
the motive of a smooth uniruled complex threefold [2].

2.2. Semiorthogonal decomposition, exceptional objects and mutations. We introduce
here semiorthogonal decompositions, exceptional objects and mutations in a k-linear triangulated
category T, following [13, 14, 15], and give some examples which will be useful later on. Our
only applications will be given in the case where T is the bounded derived category of a smooth
projective variety, but we stick to the more general context. Recall that whenever a functor between
derived categories is given, it will be denoted as underived, for example for f : X → Y , f∗ and f∗
denote respectively the derived pull-back and push-forward.

A full triangulated category A of T is called admissible if the embedding functor admits a left
and a right adjoint.

Definition 2.1 ([14, 15]). A semiorthogonal decomposition of T is a sequence of full admissible
triangulated subcategories A1, . . . ,An of T such that HomT(Ai, Aj) = 0 for all i > j and for
all objects Ai in Ai and Aj in Aj, and for every object T of T, there is a chain of morphisms
0 = Tn → Tn−1 → . . . → T1 → T0 = T such that the cone of Tk → Tk−1 is an object of Ak for all
k = 1, . . . , n. Such a decomposition will be written

T = 〈A1, . . . ,An〉.

Definition 2.2 ([13]). An object E ofT is called exceptional if HomT(E,E) = k, and HomT(E,E[i]) =
0 for all i 6= 0. A collection (E1, . . . , El) of exceptional objects is called exceptional if HomT(Ej , Ek[i]) =
0 for all j > k and for all integer i. If no confusion arises, given an exceptional sequence (E1, . . . , El)
in T, we will denote by E := 〈E1, . . . , El〉 the triangulated subcategory of T generated by the se-
quence.

If E in T is an exceptional object, the triangulated category generated by E (that is, the smallest
full triangulated subcategory of T containing E) is equivalent to the derived category of a point,
seen as a smooth projective variety. The equivalence Db(pt) → 〈E〉 ⊂ T is indeed given by sending
Opt to E. Given an exceptional collection (E1, . . . , El) in the derived category Db(X) of a smooth
projective variety, there is a semiorthogonal decomposition [15]

Db(X) = 〈A,E〉,

where A is the full triangulated subcategory whose objects are all the A satisfying Hom(Ei, A) = 0
for all i = 1, . . . , l,. We say that the exceptional sequence is full if the category A is trivial.

There are many examples of smooth projective varieties admitting a full exceptional sequence.
For example the sequence (O(i), . . . ,O(i+ n)) is full exceptional in Db(Pn) for all i integer [7]. If
X is an odd-dimensional smooth quadric hypersurface in Pn and Σ the spinor bundle, the sequence
(Σ(i),O(i+1), . . . ,O(i+ n)) is full exceptional in Db(X) and a similar sequence (with two spinor
bundles) exists for even-dimensional smooth quadric hypersurfaces [27].

Proposition 2.3 ([38]). Let X be a smooth projective variety and F a locally free sheaf of rank r+1
over it. Let p : P(F ) → X be the associated projective bundle. The functor p∗ : Db(X) → Db(P(F ))
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is fully faithful and for all integer i we have the semiorthogonal decomposition:

Db(P(F )) = 〈p∗Db(X)⊗OP/X(i), . . . , p
∗Db(X)⊗OP/X(i+ r)〉,

where OP/X(1) is the Grothendieck line bundle of the projectivization.

Proposition 2.4 ([38]). Let X be a smooth projective variety, Y →֒ X a smooth projective subvari-

ety of codimension d > 1 and ε : X̃ → X the blow-up of X along Y . Let D
ι
→֒ X̃ be the exceptional

divisor and p : D → Y the restriction of ε. Then ε∗ : Db(X) → Db(X̃) is fully faithful and, for

all j, there are fully faithful functors Ψj : ε∗Db(Y ) → D(X̃) giving the following semiorthogonal
decomposition:

Db(X̃) = 〈Ψ−d+1Db(Y ), . . . ,Ψ−1Db(Y ), ε∗Db(X)〉.

Notice that the fully faithful functors Ψj are explicitly given by Ψj(−) = ι∗(p
∗(−)⊗OD/Y (j)).

We will refer to Proposition 2.4 as the Orlov formula for blow ups.
We finally remark that if X has dimension at most 2 and is rational and k = C, the derived

category Db(X) admits a full exceptional sequence. We have already seen this for P1 and P2. If
X is a Hirzebruch surface, then it has a 4-objects full exceptional sequence by Prop. 2.3 and the
decomposition of P1. We conclude by the birational classification of smooth complex projective
surfaces and the Orlov formula for blow-ups. In particular a complex rational surface with Picard
number ρ has a full exceptional sequence of ρ+ 2 objects.

Given a semiorthogonal decomposition 〈A1, . . .An〉 of T, we can define an operation called
mutation (called originally, in Russian, perestroika) which allows to give new semiorthogonal de-
compositions with equivalent components. What we need here is the following fact, gathering
different results from [13].

Proposition 2.5. Suppose that T admits a semiorthogonal decomposition 〈A1, . . . ,An〉. Then for
each 1 ≤ k ≤ n− 1, there exists an endofunctor is a semiorthogonal decomposition

T = 〈A1, . . . ,Ak−1, LAk
(Ak+1),Ak,Ak+2, . . . ,An〉,

where LAk
: Ak+1 → LAk

(Ak+1) is an equivalence, called the left mutation through Ak. Similarly,
for each 2 ≤ k ≤ n, there is a semiorthogonal decomposition

T = 〈A1, . . . ,Ak−2,Ak, RAk
(Ak−1),Ak+1, . . . ,An〉,

where RAk
: Ak−1 → RAk

(Ak−1) is an equivalence, called the right mutation through Ak.

Remark in particular that the mutation of an exceptional object is an exceptional object. If T
is the bounded derived category of a smooth projective variety and n = 2, there is a very useful
explicit formula for left and right mutations.

Lemma 2.6 ([14]). Let X be a smooth projective variety and Db(X) = 〈A,B〉 a semiorthogonal
decomposition. Then LA(B) = B⊗ ωX and RB(A) = A⊗ ω−1

X .

2.3. Fourier–Mukai functors, motives and Chow groups. Fourier–Mukai functors are the
main tool in studying derived categories of coherent sheaves. We recall here the main properties of
a Fourier–Mukai functor and how it interacts with other theories, such as the Grothendieck group,
Chow rings and motives. A more detailed treatment (except for motives, see [40]) can be found in
[23, Chap. 5].

Let X and Y be smooth projective varieties of dimension n and m respectively and E an
object of Db(X × Y ). The Fourier–Mukai functor ΦE : Db(Y ) → Db(X) with kernel E is given by
ΦE(A) = p∗(q

∗A⊗E), where p and q denote the projections form X×Y onto X and Y respectively.
We will sometimes drop the subscript E . If Z is a smooth projective variety, ΦE : Db(Y ) → Db(X)
and ΦF : Db(X) → Db(Z), then the composition ΦF ◦ΦE is the Fourier–Mukai functor with kernel

(2.2) G := p13∗(p
∗
12E ⊗ p∗23F),
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where pij are the projections from Y ×X ×Z onto products of two factors. It is worth noting the
similarity between (2.2) and the composition of correspondences (2.1).

A Fourier–Mukai functor ΦE always admits a left and right adjoint which are the Fourier–Mukai
functors with kernel EL and ER resp., defined by

EL := E∨ ⊗ p∗ωX [n] and ER := E∨ ⊗ q∗ωY [m].

A celebrated result from Orlov [39] shows that any fully faithful exact functor F : Db(Y ) → Db(X)
with right and left adjoint is a Fourier–Mukai functor whose kernel is uniquely determined up to
isomorphism.

Given the Fourier–Mukai functor ΦE : Db(Y ) → Db(X), consider the element [E ] in K0(X ×Y ),
given by the alternate sum of the cohomologies of E . Then we have a commutative diagram

(2.3) Db(Y )
ΦE //

[ ]

��

Db(X)

[ ]

��

K0(Y )
ΦK

E // K0(X),

where ΦKE is the K-theoretical Fourier–Mukai transform defined by ΦKE (A) = p!(q
∗A⊗ [E ]). If ΦE

is fully faithful, we have ΦER ◦ΦE = IdDb(Y ). This implies ΦKER ◦ΦKE = IdK0(Y ) and then K0(Y ) is

a direct summand of K0(X).

Lemma 2.7. Let X, {Yi}i=1,...k be smooth projective varieties, Φi : D
b(Yi) → Db(X) fully faithful

functors and Db(X) = 〈Φ1D
b(Y1), . . . ,ΦkD

b(Yk)〉 a semiorthogonal decomposition. Then K0(X) =⊕k
i=1K0(Yi), and there is an isomorphism of Q-vector spaces CH∗

Q(X) ∼=
⊕k

i=1 CH
∗
Q(Yi).

Proof. The full and faithful functors Φi : Db(Yi) → Db(X) have to be of Fourier–Mukai type
and then K0(Yi) are direct summands of K0(X). The generation follows from the definition of
a semiorthogonal decomposition. The isomorphism between Chow rings as vector spaces is a
straightforward consequence of Grothendieck–Riemann–Roch Theorem. �

Consider the element e := ch([E ]).Td(X) in CH∗
Q(X × Y ). This gives a correspondence e :

CH∗
Q(Y ) → CH∗

Q(X) and we have a commutative diagram

(2.4) Db(Y )
ΦE //

��

Db(X)

��

CH∗
Q(Y )

e // CH∗
Q(X),

where the vertical arrows are obtained by taking the Chern character and multiplying with the
Todd class. The commutativity of the diagram follows from the Grothendieck–Riemann–Roch
formula. Remark that here we used that the relative Todd class of the projection X × Y → X is
q∗Td(Y ).

As for the Grothendieck groups, the Chow ring and the rational cohomology (see [23, Chapt.
5]), one can find a functorial correspondence between derived Fourier–Mukai functors and motivic
maps. This was first carried out by Orlov [40]. Indeed, the cycle e is of mixed type in CH∗

Q(X×Y ).

Its components ei in CH
i
Q(X×Y ) give motivic maps ei : h(Y ) → h(X)(i−m). Denote by F := ER

the kernel of the right adjoint of ΦE , and f = ch([F ]).Td(Y ) the associated cycle in CH∗
Q(X ×Y ).

Then we get motivic maps fi : h(X) → h(Y )(i−n), that is fi : h(X)(n− i) → h(Y ). In particular,
fi.em+n−i : h(Y ) → h(Y ). If we consider the cycles e and f , the Grothendieck–Riemann–Roch
formula implies that f.e = ⊕m+n

i=0 fi.em+n−i induces the identity Id : h(Y ) → h(Y ).
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Example 2.8. As an example, we describe the result in [10] from the motivic point of view. This
turns out to be very useful in understanding the relationship between the derived category, the
motive and the Jacobian of a smooth projective curve, and contains some ideas that we will use
in the proof of Theorem 1.1

Let C1 and C2 be smooth projective curves and ΦE : Db(C1) → Db(C2) a Fourier–Mukai
functor. In [10] it is shown that the map φ : J(C1) → J(C2) induced by ΦE preserves the principal
polarization if and only if ΦE is fully faithful, which is equivalent to ask that ΦE is an equivalence.

We could describe such result in the following way: consider the motivic maps ei : h(C1) →
h(C2)(i−1) where e is the cycle associated to E . We define f as before via the right adjoint. If ΦE

is fully faithful, then we have f.e = ⊕2
i=0fi.e2−i = Id. Recall that a map h1(C) → h1(C) factoring

through Q(−d) is trivial for any integer d. Moreover, h0(Cj) = Q, and h2(Cj) = Q(−1) for j = 1, 2.
If we restrict f.e to h1(C1), we get that (fi.e2−i)|h1(C1) = 0 unless i = 1, because for i 6= 1 this
map factors through some Q(−d). In particular [10, 2.2] we obtain that (e1.f1)|h1(C1) = Idh1(C1)

and then h1(C1) is a direct summand of h1(C2). Applying the same argument to the adjoint of
ΦE , one obtains an isomorphism h1(C1) ≃ h1(C2). This gives an isogeny J(C1)⊗Q ≃ J(C2)⊗Q.

Moreover, the maps e1 and f1 are given both by c1([E ]), and they define a morphism φ :
J(C1) → J(C2) of Abelian varieties, with finite kernel. The key point to prove the preservation

of the principal polarization is the fact that that the dual map φ̂ of φ is induced by the adjoint
of ΦE (see [10]). Being ΦE a Fourier–Mukai functor carries indeed a deep amount of geometrical
information.

3. Derived categories, motives and Chow groups of conic bundles

From now on, we only consider varieties defined over C. Let S be a smooth projective surface, and
π : X → S a smooth standard conic bundle. By this, we mean a flat projective surjective morphism
whose scheme theoretic fibers are isomorphic to plane conics, such that for any irreducible curve
D ⊂ S the surface π−1(D) is irreducible (this second condition is also called relative minimality).
The discriminant locus of the conic bundle is a curve C ⊂ S, which can be possibly empty, with
at most double points [5, Prop. 1.2]. The fiber of π over a smooth point of C is the union of two
lines intersecting in a single point, while the fiber over a node is a double line. Recall that any
conic bundle is birationally equivalent to a standard one via elementary transformations [43].

In this section, we recall known results about the geometry of π : X → S. In section 3.1 we deal
with the decomposition of h(X) described by Nagel and Saito [37] and with the semiorthogonal
decomposition of Db(X) described by Kuznetsov [31]. In section 3.2 we recall the description of
the intermediate Jacobian and the algebraically trivial part A2(X) of the Chow group given by
[5, 9]. The order of the two sections reverses history, but the decompositions of h(X) and Db(X)
hold in a more general framework.

Before that, recall that to any standard conic bundle, we can associate an admissible double
covering C̃ → C of the curve C, that is C̃ has nodes exactly over the nodes of C and the has degree
2 and ramifies exactly over the nodes of C (this is called a pseudo-revêtement in [5, Déf. 0.3.1].

The set of vertical lines of X (that is, the ones contained in a fiber) is then a P1-bundle over C̃
[5]. In the results recalled here, if C is not smooth, then it has to be replaced by its normalization
and the corresponding double covering. Anyway, with no risk of misunderstanding, we will tacitly
assume this replacement when needed, and keep the notation C̃ → C.

3.1. The decompositions of h(X) and Db(X). Consider the rational Chow motive h(X). Nagel
and Saito [37] provide a relative Chow-Künneth decomposition for h(X). First of all, for a given

double covering C̃ → C of an irreducible curve with at most double points, they define the Prym
motive Prym(C̃/C) := (C̃, (1−τ)/2, 0) as a submotive of h(C̃), where τ is the involution associated

to the covering. In particular Prym1(C̃/C) is a submotive of h1(C̃), Prym(C̃/C) = Prym1(C̃/C)

if the double covering is not trivial and Prym(C̃/C) = h(C) otherwise. We refrain here to give
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the details of the construction, for which the reader can consult [37]. Moreover they show how
h(S) and h(S)(−1) are direct summands of h(X). Any conic bundle (non necessarily standard) is
uniruled and h(X) = ⊕6

i=0h
i(X) is the Chow–Künneth decomposition [2]. We have the following

description:

hi(X) = hi(S)⊕ hi−2(S)(−1) ⊕

r⊕

j=1

Prymi−2(C̃j/Cj)(−1),

where Cj , for j = 1, . . . r, are the irreducible components of the discriminant curve C [37].
If π : X → S is standard, then there is no component of C over which the double cover is trivial.

It follows that hi(X) = hi(S)⊕ hi−2(S)(−1) for i 6= 3 and

h3(X) = h3(S)⊕ h1(S)(−1) ⊕
r⊕

j=1

Prym1(C̃j/Cj)(−1).

We will focus on the case where S is a rational surface and C is connected (in any other case,
the conic bundle is not rational). We finally end up, recalling section 2.1, with:

(3.1)
hi(X) = hi(S)⊕ hi−2(S)(−1) if i 6= 3,

h3(X) = Prym1(C̃/C)(−1),

and in particular, for i 6= 3, hi(X) is either trivial or a finite sum of Tate motives.

h0(X) h1(X) h2(X) h3(X) h4(X) h5(X) h6(X)

Q 0 Qρ+1(−1) Prym1(C̃/C)(−1) Qρ+1(−2) 0 Q(−3)

Table 1. The motive of a standard conic bundle X with discriminant double cover C̃ → C
over a rational surface S of Picard number ρ

Consider the derived category Db(X). The fibers of π are plane conics and that there is a locally
free rank 3 vector bundle E on S, such that X ⊂ P(E) is the zero locus of a section s : OS(−1) →
Sym2(E∗) and the map π is the restriction of the fibration P(E) → S [5, 31]. Kuznetsov defines,
in the more general framework of any quadric fibration over any smooth projective manifold,
the sheaves of even (resp. odd) parts B0 (resp. B1) of the Clifford algebra B associated to the
section s. One can consider the Abelian category Coh(S,B0) of coherent sheaves with a structure
of B0-algebra and its bounded derived category Db(S,B0). In the case of a conic bundle, both
B0 = OS ⊕ (Λ2(E)⊗OS(−1)), and B1 = E ⊕ det(E)(−1) are locally free sheaves of rank 4.

Proposition 3.1 ([31]). Let π : X → S be a conic bundle and B0 the sheaf of even parts of the
Clifford algebra associated to it. Then π∗ : Db(S) → Db(X) is fully faithful and there is a fully
faithful functor Φ : Db(S,B0) → Db(X) such that

Db(X) = 〈ΦDb(S,B0), π
∗Db(S)〉.

We will refer to Proposition 3.1 as the Kuznetsov formula for conic bundles. Remark that
Kuznetsov actually gives a similar semiorthogonal decomposition for any quadric fibration over
any smooth projective manifold. If in particular S is a smooth complex rational surface with
Picard number ρ, its derived category admits a full exceptional sequence. It follows that

Db(X) = 〈ΦDb(S,B0),E〉,

where E =< E1, . . . , Eρ+2 >, the the pull back of the full exceptional sequence of Db(S).
We conclude this section by showing that, if S is rational, the Clifford algebra of a standard conic

bundle, and hence the dervied category Db(S,B0), are completely determined by the discriminant
double cover. This will be very useful in Sections 5 and 6, where we will complete the proof of
Theorem 1.2 by giving an example of each possible discriminant double cover.
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Lemma 3.2. Let S be a smooth rational simply connected surface and π : X → S, and π′ : X ′ → S
be standard conic bundles with associated sheaves of even parts of Clifford algebras B0 and B′

0

respectively. If X and X ′ have the same discriminant double cover C̃ → C, then B0 is isomorphic
to B′

0. In particular, Db(S,B0) and Db(S,B′
0) are equivalent.

Proof. Let we denote byK(S) the function field of S, and by Br(−) the Brauer group. A quaternion
algebra Aη is an element of order 2 of Br(K(S)). There is an exact sequence [3]:

0 −→ Br(S) −→ Br(K(S))
α

−→
⊕

D⊂S

H1
et(D,Q/Z)

β
−→

⊕

x∈S

µ−1,

where in the third (resp. fourth) term the sum runs over curves D contained in (resp. points x
of) S. Recall that all elements of order two in Br(K(S)) are quaternion algebras [34].

In particular, the algebra B0 defines over K(S) a quaternion algebra, determined up to an
element of Br(S). If S is rational and simply connected, then Br(S) = 0, and the map α is injective.
In this case, we have a 1-1 correspondence between quaternion algebras Aη and standard conic
bundles, as explained in [44, 26]. �

Remark 3.3. A similar argument was first developed by Panin ([41] page 450-51) in the case of
conic bundles on P2 with a quintic discriminant curve.

3.2. Algebraically trivial cycles on X and Prym varieties. Given a curve C with at most
double points and an admissible double covering ν : C̃ → C one can define the Prym variety
P (C̃/C) as the connected component containing 0 of the kernel of the norm map Nm : J(C̃) →

J(C), sending a degree 0 divisor D on C̃ to the degree 0 divisor ν∗D on C. Remark that here

we are abusing of notations in the case where C (and hence C̃) are singular: in this case we have
to replace them with their normalizations and the induced double cover, which we denote still by
C̃ → C by abuse of notations. The Prym variety is a principally polarized Abelian subvariety of
J(C̃) of index 2 ([35, 4]).

Let π : X → S be a standard conic bundle with associated double covering C̃ → C. If S = P2,
Beauville showed that the intermediate Jacobian J(X) is isomorphic as a principally polarized

Abelian variety to P (C̃/C) [5]. Moreover, he shows that the algebraically trivial part A2(X) of

CH2(X) is isomorphic to the Prym variety P (C̃/C). The key geometric point is that the family of

vertical lines (that is, lines contained in a fiber of π) in X is a P1-bundle over the curve C̃. There

is then a surjective morphism g : J(C̃) → A2(X) extending the map associating to a point c of

C̃ the line lc over it. The isomorphism ξ : P (C̃/C) → A2(X) is obtained by taking the quotient

via ker(g). The inverse isomorphism G = ξ−1 is a regular map making of P (C̃/C) the algebraic
representative of A2(X) (for more details, see [5, Ch. III]). Similar techniques prove the same
results for any S rational [8, 9].

Definition 3.4 ([5], Déf 3.4.2). Let Y be a smooth projective variety of odd dimension 2n + 1
and A (an Abelian variety) the algebraic representative of An+1(Y ) via the canonical map G :
An+1(Y ) → A. A polarization of A with class θA in Corr(A,A), is the incidence polarization with
respect to Y if for all algebraic maps f : T → An+1(Y ) defined by a cycle z in CHn+1(Y × T ), we
have

(G ◦ f)∗θA = (−1)n+1I(z),

where I(z) = z.z in Corr(T, T ) is the composition of the correspondences z ∈ Corr(T, Y ) and
z ∈ Corr(Y, T ).

Proposition 3.5. Let π : X → S be a standard conic bundle over a smooth rational surface. The
principal polarization ΘP of P (C̃/C) is the incidence polarization with respect to X.

Proof. We prove the statement in the case where C is smooth. In the case of nodal curves, one
has to go through the normalization, and this is just rewriting the proof of [5, Thm. 3.6, (iii)].
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If S = P2, this is [5, Prop. 3.5]. If S is not P2, consider the isomorphism ξ. The proof of [5,
Prop. 3.3] can be rephrased in this setting, in particular, recalling the diagram in [8, Pag. 83], one

can check that the map 2ξ is described by a cycle y in CH2(X ×P (C̃/C)). Let f : T → A2(X) be
an algebraic map defined by a cycle z in CH2(X × T ). Denoting by u := G ◦ f and u′ := (IdX , u),
the map 2f is defined by the cycle (u′)∗y. The proof is now the same as the one of [5, Prop.
3.5]. �

4. Reconstructing the intermediate Jacobian

The first main result of this paper is the reconstruction of J(X) as the direct sum of Jacobians
of smooth projective curves, starting from a semiorthogonal decomposition of Db(S,B0). This
Section is entirely dedicated to the proof of Theorem 1.1.

Theorem 1.1. Let π : X → S be a standard conic bundle over a rational surface. Suppose
that {Γi}

k
i=1 are smooth projective curves and k ≥ 0, with fully faithful functors Ψi : D

b(Γi) →
Db(S,B0) for i = 1, . . . k, such that Db(S,B0) admits an exceptional sequence (E1, . . . , El) and a
semiorthogonal decomposition:

(4.1) Db(S,B0) = 〈Ψ1D
b(Γ1), . . . ,ΨkD

b(Γk),E〉.

Then J(X) =
⊕k

i=1 J(Γi) as principally polarized Abelian variety.

If S is minimal, we obtain the “if” part of Theorem 1.2 combining the reconstruction of the
Jacobian of Theorem 1.1 with Shokurov’s rationality criterion [46, Thm. 10.1].

Corollary 4.1. If π : X → S is a standard conic bundle over a minimal rational surface and

Db(S,B0) = 〈Ψ1D
b(Γ1), . . . ,ΨkD

b(Γk),E〉,

where Γi are smooth projective curves, Ψi : D
b(Γi) → Db(S,B0) are full and faithful functors, and

E is generated by exceptional objects, then X is rational and J(X) =
⊕k

i=1 J(Γi).

If we have the decomposition (4.1), using Prop. 3.1 and that S is rational of Picard number ρ,
we get

(4.2) Db(X) = 〈Ψ1D
b(Γ1), . . . ,ΨkD

b(Γk), E1, . . . , Er〉,

where Ei are exceptional objects, r = l+ρ+2 > 0, and we denote by Ψi, by abuse of notation, the
composition of the full and faithful functor Ψi with the full and faithful functor Db(S,B0) → Db(X).
Remark that we can suppose that Γi has positive genus for all i = 1, . . . , k. Indeed, the derived
category of the projective line admits a semiorthogonal decomposition by two exceptional objects.
Then if there exists an i such that Γi ≃ P1, it is enough to perform some mutation to get a
semiorthogonal decomposition like (4.2) with g(Γi) > 0 for all i (recall we do not exclude the case
k = 0). By Lemma 2.7 we have an isomorphism of Q-vector spaces:

(4.3) CH∗
Q(X) =

k⊕

i=1

CH∗
Q(Γi)⊕Qr,

where we used the fact that the category generated by a single exceptional object is equivalent to
the derived category of a point, and CH∗

Q(pt) = Q. We are interested in understanding how the

decomposition (4.3) projects onto the codimension 2 cycle group CH2
Q(X) and in particular onto

the algebraically trivial part.
The proof is in two parts: first if Ψ : Db(Γ) → Db(X) is fully faithful and Γ has positive genus,

we get that J(Γ) is isomorphic to a principally polarized Abelian subvariety of J(X) (Prop. 4.4).
This is essentially based on constructions from [40] and results from [5]. In the second part, starting
from the semiorthogonal decomposition we deduce the required isomorphism.
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Lemma 4.2. Let Γ be a smooth projective curve of positive genus. Suppose there is a fully faithful
functor Ψ : Db(Γ) → Db(X). Then J(Γ) is isogenous to an Abelian subvariety of J(X) ≃ P (C̃/C).

Proof. Let E be the kernel of the fully faithful functor Ψ : Db(Γ) → Db(X), and F the kernel of
its right adjoint. If we consider the cycles e and f described in Section 2.3, the Grothendieck–
Riemann–Roch formula implies that f.e induces the identity Id : h(Γ) → h(Γ). If ei and fi are the
i-th codimensional components of e resp. of f in CH∗

Q(X × Γ), then f.e = ⊕fi.e4−i. Remark that

ei gives a map h(Γ) → h(X)(i− 1). Recall that the motive h(X) is decomposed, as in Table 1, by
Tate motives and the Prym motive. If we restrict to h1(Γ), recalling that a map h1(Γ) → h1(Γ)
factoring through a Tate motive is trivial, we get (fi.e4−i)|h1(Γ) = 0 for all i 6= 2. This implies that

Idh1(Γ) = (f2.e2)|h1(Γ), and then that h1(Γ) is a direct summand of h(X)(1) and in particular it is

a direct summand of Prym1(C̃/C), which proves the claim. �

Remark that we can describe explicitly the map ψQ : JQ(Γ) → JQ(X) induced by Ψ, following
the ideas in [10]. Indeed the map ψQ is given by e2, the codimension 2 component of the cycle
associated to the kernel E . Then ψQ can be calculated just applying the Grothendieck–Riemann–
Roch Theorem.

Let p : Γ×X → X and q : Γ×X → Γ be the two projections. For M in J(Γ) (which we identify
with Pic0(Γ)) we calculate the second Chern character (ch(Ψ(M))2 to get an element of J(X)
(which we identify with A2(X)). Applying Grothendieck–Riemann–Roch and using multiplicativity
of Chern characters, we have the following:

(ch(p∗(q
∗M ⊗ E)))2 = p∗(ch(q

∗M).ch(e).(1 − (1/2)q∗KΓ))3,

since the relative dimension of p is 1 and the relative Todd class is 1− (1/2)q∗KΓ. Recalling that
ch(q∗M) = 1 + q∗M and q∗M.q∗KΓ = 0, we get

(ch(p∗(q
∗M ⊗ E)))2 = p∗(q

∗M.ch2(E)− (1/2)q∗KΓ.ch2(E) + ch3(E)).

It is clear that this formula just defines an affine map ΨCH : CH1
Q(Γ) → CH2

Q(X) of Q-vector

spaces. In order to get the isogeny ψQ, we have to linearize and restrict to J(Γ)⊗Q, to get finally:

ψQ : J(Γ)⊗Q −→ J(X) ⊗Q
M 7→ p∗(q

∗M.ch2(E))

Now that we have the cycle describing the map ψQ, we obtain a unique morphism ψ : J(Γ) → J(X),
whose kernel can only be torsion. That is, we have an isogeny ψ between J(Γ) and an Abelian
subvariety of J(X).

Remark 4.3. Arguing as in [10, Sect. 2.3], we can show that the correspondence between Ψ and
ψ is functorial. Moreover, the functor with kernel E [n] induces the map (−1)nψ. The functor with
kernel E∨ induces the map ψ. Given line bundles L and L′ on Γ and X respectively, the functor
with kernel E ⊗p∗L⊗q∗L′ induces the map ψ. The adjoint functor of Ψ is a Fourier–Mukai functor
whose kernel is E∨ ⊗ q∗ωX [3]. Its composition with Ψ gives the identity of Db(Γ). The motivic

map f2 : Prym1(C̃/C)(−1) → h1(Γ) is then given by the cycle −ch2(e). Then, by functoriality
and (2.2), the cycle I(ch2(e)), as defined in Def. 3.4, is −Id in Corr(J(Γ), J(Γ)).

Recall that, by [5, Sec. 3], [8, 9] and Proposition 3.5, P (C̃/C) is the algebraic representative of

A2(X) and the principal polarization ΘP of P (C̃/C) is the incidence polarization with respect to

X. In particular, we have an isomorphism ξ : P (C̃/C) → A2(X) whose inverse G makes the Prym
variety the algebraic representative of A2(X). Moreover, if f : T → A2(X) is an algebraic map
defined by a cycle z in CH2

Q(X × T ), then, according to Definition 3.4, we have

(G ◦ f)∗θP = I(z).
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The map ψ is defined by the cycle ch2(e) in CH
2
Q(X×Γ). Following Remark 4.3, the cycle I(ch2(e))

in CH1
Q(Γ× Γ) gives the correspondence −Id, that is

(G ◦ ψ)∗θP = −Id.

Now going through the proof of [5, Prop. 3.3], it is clear that

ψ∗θJ(X) = Id,

where θJ(X) is the class of principal polarization of J(X). Hence we get an injective morphism
ψ : J(Γ) → J(X) preserving the principal polarization. We can state the following result.

Proposition 4.4. Let π : X → S be a standard conic bundle over a rational surface. Suppose
that there is a smooth projective curve Γ of positive genus and a fully faithful functor Ψ : Db(Γ) →
Db(S,B0). Then there is an injective morphism ψ : J(Γ) → J(X) of Abelian varieties, preserving
the principal polarization.

Consider the projection pr : CH∗
Q(X) → CH2

Q(X). The decomposition (4.3) as a Q-vector space
is rewritten as:

CH∗
Q(X) =

k⊕

i=0

PicQ(Γi)⊕Qr+k,

where we used that CH∗
Q(Γi) = PicQ(Γi) ⊕ Q. This decomposition is induced by the Fourier–

Mukai functors Φi : D
b(Γi) → Db(X), then the previous arguments show that pr restricted to

⊕k
i=1Pic

0
Q(Γi) is injective and has image in A2

Q(X). This map corresponds on each direct summand

to the injective map ψi,Q obtained as in Lemma 4.2. Then the restriction of pr to ⊕k
i=1Pic

0
Q(Γi)

corresponds to the sum of all those maps, and we denote it by ψQ. Consider now the diagram

0 //
⊕k

i=0 Pic
0
Q(Γi)

//

_�

pr=ψQ

��

⊕k
i=0 PicQ(Γ)⊕Qk+r

pr

��

p̄r

))SS
SSS

SSS
SSS

SSS
SS

0 // A2
Q(X) // CH2

Q(X) // CH2
Q(X)/A2

Q(X) // 0,

where p̄r denotes the composition of pr with the projection onto the the quotient.
Denote by J := ψ(⊕Pic0(Γi)) the image of ψ and JQ := J ⊗Q. By the above diagram, we have

that the cokernel A2
Q(X)/JQ is a finite dimensional Q-vector space, since it has to be contained in

(⊕(PicQ(Γi)/Pic
0
Q(Γi))⊕Qk+r. Since ψ is a morphism of Abelian varieties, its cokernel is also an

Abelian variety, and then it has to be trivial. This gives the surjectivity of ψ and proves Theorem
1.1.

Remark 4.5. Let ρ be the rank of the Picard group of S. The numbers k and l of curves of positive
genus and exceptional object respectively in the semiorthogonal decomposition of Theorem 1.1
satisfy a linear equation: using the decomposition (4.3), we obtain l = 2 + ρ− 2k.

5. Rational conic bundles over the plane

Let π : X → P2 be a rational standard conic bundle. In particular, this implies that C has
positive arithmetic genus (see e.g. [26, Sect. 1]). There are only three non-trivial possibilities for
the discriminant curve ([5, 46, 25]). In fact, X is rational if and only if is a quintic and the double

covering C̃ → C is given by an even theta characteristic, or C is a quartic or a cubic curve. As
proved in Lemma 3.2, once we fix the discriminant curve and the associated double cover, we fix
the Clifford algebra B0. We then construct for any such plane curve and associated double cover
a model of rational standard conic bundle X for which we provide the required semiorthogonal
decomposition. We analyze the three cases separately.
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5.1. Degree five discriminant. Suppose C is a degree 5 curve and C̃ → C is given by an even
theta-characteristic. Recall the description of a birational map χ : X → P3 from [41] (see also
[26]). There is a smooth curve Γ of genus 5 and degree 7 in P3 such that χ : X → P3 is the blow-up
of P3 along Γ. In fact the conic bundle X → P2 is obtained [26] by resolving the linear system of
cubics in P3 vanishing on Γ. Remark that J(X) is isomorphic to J(Γ) as a principally polarized
Abelian variety.

Let π : X → P2 be the conic bundle structure. We denote by O(h) the pull back of OP2(1)
via π. Let us denote by O(H) the pull-back of OP3(1) via χ, and by D the exceptional divisor.
The construction of the map π gives O(h) = O(3H −D), then we have O(D) = O(3H − h). The
canonical bundle ωX is given by O(−4H +D) = O(−H − h).

Proposition 5.1. Let π : X → P2 be a standard conic bundle whose discriminant curve C is a
degree 5 curve and C̃ → C is given by an even theta-characteristic. Then there exists an exceptional
object E in Db(P2,B0) such that (up to equivalences):

Db(P2,B0) = 〈Db(Γ), E〉,

where Γ is a smooth projective curve such that J(X) ≃ J(Γ) as a principally polarized Abelian
variety.

Proof. Consider the blow-up χ : X → P3. Orlov formula (see Prop. 2.4) provides a fully faithful
functor Ψ : Db(Γ) → Db(X) and a semiorthogonal decomposition:

Db(X) = 〈ΨDb(Γ), χ∗Db(P3)〉.

The derived category Db(P3) has a full exceptional sequence 〈OP3(−2),OP3(−1),OP3 ,OP3(1)〉. We
get then the semiorthogonal decomposition:

(5.1) Db(X) = 〈ΨDb(Γ),O(−2H),O(−H),O,O(H)〉.

Kuznetsov formula (see Prop. 3.1) provides the decomposition:

Db(X) = 〈ΦDb(P2,B0), π
∗Db(P2)〉.

The derived category Db(P2) has a full exceptional sequence 〈OP2(−1),OP2 ,OP2(1)〉. We get then
the semiorthogonal decomposition

(5.2) Db(X) = 〈ΦDb(P2,B0),O(−h),O,O(h)〉.

We perform now some mutation to compare the decompositions 5.1 and 5.2.
Consider the decomposition 5.2 and mutate ΦDb(P2,B0) to the right through O(−h). The

functor Φ′ = Φ ◦RO(−h) is full and faithful and we have the semiorthogonal decomposition:

Db(X) = 〈O(−h),Φ′Db(P2,B0),O,O(h)〉.

Perform the left mutation of O(h) through its left orthogonal, which gives

Db(X) = 〈O(−H),O(−h),Φ′Db(P2,B0),O〉,

using Lemma 2.6 and ωX = O(−H − h).

Lemma 5.2. The pair 〈O(−H),O(−h)〉 is completely orthogonal.

Proof. Consider the semiorthogonal decomposition 5.1 and perform the left mutation of O(H)
through its left orthogonal. By Lemma 2.6 we get

Db(X) = 〈O(−h),ΨDb(Γ),O(−2H),O(−H),O〉,

which gives us Hom•(O(−H),O(−h)) = 0 by semiorthogonality. �
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We can now exchange O(−H) and O(−h), obtaining a semiorthogonal decomposition

Db(X) = 〈O(−h),O(−H),Φ′Db(P2,B0),O〉.

The right mutation of O(−h) through its right orthogonal gives (with Lemma 2.6) the semiorthog-
onal decomposition:

Db(X) = 〈O(−H),Φ′Db(P2,B0),O,O(H)〉.

Perform the left mutation of Φ′Db(P2,B0) through O(−H). The functor Φ′′ = Φ′ ◦ LO(−H) is full
and faithful and we have the semiorthogonal decomposition:

Db(X) = 〈Φ′′Db(P2,B0),O(−H),O,O(H)〉.

This shows, by comparison with (5.1), that Φ′′Db(P2,B0) = 〈ΨDb(Γ),O(−2H)〉. �

5.2. Degree four discriminant. Suppose C ⊂ P2 is a degree four curve with at most double
points. We are going to describe X as a hyperplane section of a conic bundle over (a blow-up of)
P3, basing upon a construction from [12]. Let Γ be a smooth genus 2 curve, and Picn(Γ) the Picard
variety of Γ that parametrizes degree n line bundles, up to linear equivalence. Since g(Γ) = 2,
Pic1(Γ) contains the canonical Riemann theta divisor Θ := {L ∈ Pic1(Γ)|h0(Γ, L) 6= 0}. It is well
known that the Kummer surface Kum(Γ) := Pic0(Γ)/ ± Id is naturally embedded in the linear
system |2Θ| = P3 via the map

Kum(Γ) → |2Θ|;

(α ∼ −α) 7→ Θα +Θ−α;

where Θα is the theta divisor translated by α. Hence the surface Kum(Γ) sits in P3 as a quartic
surface with 16 double points corresponding to the 2-torsion. Note that the point corresponding
to the line bundle OΓ is a node, and we will call it the origin or simply OΓ.

Now we remark that Γ is tri-canonically embedded in P4 = |ω3
Γ|

∗, moreover we have a rational
map

ϕ : P4
99K P3 := |IΓ(2)|

∗

given by quadrics in the ideal of Γ. In [12] it is shown that there exists an isomorphism |IΓ(2)|
∗ ∼=

|2Θ|. Let now K̃um(Γ) be the blow-up of Kum(Γ) in the origin OΓ and P̃3 the corresponding blow

up of P3, so that we have K̃um(Γ) ⊂ P̃3. Consider now the curve Γ in P4 and any point p ∈ Γ. We
denote by qp the only effective divisor in the linear system |ωΓ(−p)| (notice that qp = τ(p), where
τ denotes the hyperelliptic involution). The ruled surface

S := {x ∈ P4|∃p ∈ Γ, x ∈ pqp}

is a cone over a twisted cubic Y in P3 [12, Prop1.2.2]. Let P̃4 the blow-up of P4 along the cubic
cone, then the main result of [12] can be phrased as follows.

Theorem 5.3. The rational map ϕ resolves to a morphism ϕ̃ : P̃4 → P̃3 that is a conic bundle

degenerating on K̃um(Γ). Hence we have the following commutative diagram.

P̃4
ϕ̃

//

��

P̃3

��

P4 ϕ
//___ P3

Remark 5.4. The conic bundle described in Thm. 5.3 is standard. This is straightforward from
the description in [12].
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For any plane quartic curve C with at most double points, we are going to obtain a structure
of a standard conic bundle on P2 degenerating on C by taking the restriction of ϕ̃ to suitable
hyperplanes H ⊂ P3 for suitable choices of the genus two curve Γ (and hence degenerating on
the quartic curve H ∩ Kum(Γ)). In fact every quartic curve with at most double points can be
obtained via hyperplane intersection with an appropriate Jacobian Kummer surface, see [1, Rem.
2.2] and [47].

Proposition 5.5. Let X → P2 be a standard conic bundle whose discriminant locus is a degree 4
curve. Then there exists a smooth genus 2 curve Γ and an embedding Γ ⊂ Z into a smoth quadric
threefold, such that X is isomorphic to the blow-up of Z along Γ.

Proof. First, given Γ, we use Thm. 5.3 to construct explicitly a conic bundle with the required
properties.

Consider the composition φ : P̃4 → P̃3 → P3 of the conic bundle of Thm. 5.3 with the blow-down
map. Consider a hyperplane N ⊂ P3 not containing the origin OΓ and denote by X := φ−1(N)
and by π the restriction of φ to X. Then the induced map π : X → N ≃ P2 defines a standard
conic bundle that degenerates on the intersection N ∩Kum(Γ). Then it is easy to see that X is
isomorphic to the blow-up along Γ of a smooth quadric hypersurface Z ⊂ P4 in the ideal of Γ ⊂ P4.
We remark that the quadric Z is smooth because singular quadrics in the ideal of Γ are cones over
the quadrics in P3 vanishing on the twisted cubic Y , and they correspond to hyperplanes in P3

that contain OΓ.
It is also known ([1], [47]) that the admissible double cover of N ∩ Kum(Γ) induced by the

degree 2 cover J(Γ) → Kum(Γ) has Prym variety isomorphic to J(Γ) and ([47]) that, by choosing
appropriate genus 2 curves, one obtains all admissible double covers of all plane quartics this
way. Remark that this coincides in fact with the double cover of the plane quartic induced by
the restriction of the conic bundle degenerating on the Kummer variety. This means that the
intermediate Jacobian J(X) is isomorphic to J(Γ) as a principally polarized Abelian variety.

To complete the proof, we show that for any admissible double cover of a plane quartic, the
corresponding standard conic bundle can be obtained by the previous construcion. Remark indeed
that we can always assume that the quadric hypersurface Z we are considering is smooth: by using
the invariance ofKum(Γ) under the action of (Z/2Z)4 we can just not consider hyperplanes passing
through the origin (whose inverse images are singular quadrics). Indeed, up to the choice of the
appropriate curve Γ, one can obtain any plane quartic with at most double points by considering
the intersection of hyperplanes in P3, that do not contain the origin, with the Kummer quartic. �

Resuming, let χ : X → Z be the blow-up of Z along Γ. Let us denote by O(H) both the
restriction of OP4(1) to Z and its pull-back to X via χ, and by D the exceptional divisor. Remark
that ωZ = O(−3H). Let Σ be the spinor bundle on the quadric Z. Let π : X → P2 be the conic
bundle structure. We denote by O(h) the pull back of OP2(1) via π. The construction of the map
π gives O(h) = O(2H −D), then we have O(D) = O(2H − h). The canonical bundle ωX is given
by O(−3H +D) = O(−H − h).

Proposition 5.6. Let π : X → P2 be a standard conic bundle whose discriminant locus C is a
degree 4 curve. Then there exists an exceptional object E in Db(P2,B0) such that (up to equiva-
lences):

Db(P2,B0) = 〈Db(Γ), E〉,

where Γ is a smooth projective curve such that J(X) ≃ J(Γ) as a principally polarized Abelian
variety.

Proof. Consider the blow-up χ : X → Z. Orlov formula (see Prop. 2.4) provides a fully faithful
functor Ψ : Db(Γ) → Db(X) and a semiorthogonal decomposition:

Db(X) = 〈ΨDb(Γ), χ∗Db(Z)〉.
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By [27], the derived category Db(Z) has a full exceptional sequence 〈Σ(−2H),O(−H),O,O(H)〉.
We get then the semiorthogonal decomposition:

(5.3) Db(X) = 〈ΨDb(Γ),Σ(−2H),O(−H),O,O(H)〉.

Kuznetsov formula (see Prop. 3.1) provides the decomposition:

Db(X) = 〈ΦDb(P2,B0), π
∗Db(P2)〉.

The derived category Db(P2) has a full exceptional sequence 〈OP2(−1),OP2 ,OP2(1)〉. We get then
the semiorthogonal decomposition:

(5.4) Db(X) = 〈ΦDb(P2,B0),O(−h),O,O(h)〉.

We perform now some mutation to compare the decompositions (5.3) and (5.4). Surprisingly to
us, we will follow the same path as in the proof of Proposition 5.1.

Consider the decomposition (5.4) and mutate ΦDb(P2,B0) to the right through O(−h). The
functor Φ′ = Φ ◦RO(−h) is full and faithful and we have the semiorthogonal decomposition:

Db(X) = 〈O(−h),Φ′Db(P2,B0),O,O(h)〉.

Perform the left mutation of O(h) through its left orthogonal, which gives

Db(X) = 〈O(−H),O(−h),Φ′Db(P2,B0),O〉,

using Lemma 2.6 and ωX = O(−H − h). We can prove the following Lemma in the same way we
proved Lemma 5.2.

Lemma 5.7. The pair 〈O(−H),O(−h)〉 is completely orthogonal.

We can now exchange O(−H) and O(−h), obtaining a semiorthogonal decomposition

Db(X) = 〈O(−h),O(−H),Φ′Db(P2,B0),O〉.

The right mutation of O(−h) through its right orthogonal gives (with Lemma 2.6) the semiorthog-
onal decomposition:

Db(X) = 〈O(−H),Φ′Db(P2,B0),O,O(H)〉.

Perform the left mutation of Φ′Db(P2,B0) through O(−H). The functor Φ′′ = Φ′ ◦ LO(−H) is full
and faithful and we have the semiorthogonal decomposition:

Db(X) = 〈Φ′′Db(P2,B0),O(−H),O,O(H)〉.

This shows, by comparison with (5.3) that Φ′′Db(P2,B0) = 〈ΨDb(Γ),Σ(−2H)〉. �

5.3. Degree three discriminant. Let π : X → P2 be a standard conic bundle whose discriminant
C is a cubic curve. Consider X ⊂ P2 × P2 a hypersurface of bidegree (1, 2). The map π given
by the restriction of the first projection p1 : P2 × P2 → P2 is a conic bundle degenerating on a
cubic curve. More precisely, any cubic curve C with nodes as singularities can be written as a
determinant of a 3× 3 symmetric matrix of linear forms, with rank dropping on the nodes. In this
way one obtains the bidegree (1, 2) hypersurface which is the standard conic bundle degenerating
on C. The restriction of the second projection gives a P1-bundle structure p : X → P2. Remark
that the intermediate Jacobian J(X) is trivial.

Let O(h) := π∗OP2(1) and O(H) := p∗OP2(1), then O(H) = Oπ(1) and O(h) = Op(1). We have
the canonical bundle ωX = O(−2h−H).

Proposition 5.8. Let π : X → P2 be a standard conic bundle whose discriminant locus C is a
degree 3 curve. Then there exist three exceptional objects E1, E2 and E3 in Db(P2,B0) such that
(up to equivalences):

Db(P2,B0) = 〈E1, E2, E3〉.
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Proof. Consider the P1-bundle structure p : X → P2. Then by Proposition 2.3 we have

Db(X) = 〈p∗Db(P2), p∗Db(P2)⊗Op(1)〉,

which gives, recalling that O(h) = Op(1),

(5.5) Db(X) = 〈O(−2H),O(−H),O,O(h −H),O(h),O(h +H)〉,

where we used the decompositions 〈OP2(−2),OP2(−1),OP2〉 and 〈OP2(−1),OP2 ,OP2(1)〉 in the first
and in the second occurrence of p∗Db(P2) respectively.

Kuznetsov formula (see Prop. 3.1) provides the decomposition

Db(X) = 〈ΦDb(P2,B0), π
∗Db(P2)〉,

which, choosing the decomposition Db(P2) = 〈OP2(−1),OP2 ,OP2(1)〉, gives

(5.6) Db(X) = 〈ΦDb(P2,B0),O(−h),O,O(h)〉.

We perform now some mutation to compare the decomposition (5.5) and (5.6).
Consider the decomposition 5.5 and mutate O(h−H) to the left through O. This gives

Db(X) = 〈O(−2H),O(−H), E,O,O(h),O(h +H)〉,

where E := LOO(h−H) is an exceptional object. Perform the left mutation of O(H +h) through
its left orthogonal, which gives

Db(X) = 〈O(−h),O(−2H),O(−H), E,O,O(h)〉,

using Lemma 2.6 and ωX = O(−2h−H). Finally, mutate the exceptional sequence (O(−2H),O(−H), E)
to the left through O(−h). This gives

Db(X) = 〈E1, E2, E3,O(−h),O,O(h)〉,

where (E1, E2, E3) := LO(−h)((O(−2H),O(−H), E)) is an exceptional sequence. This shows, by

comparison with (5.6), that ΦDb(P2,B0) = 〈E1, E2, E3〉. �

Remark 5.9. Note that, as pointed out to us by A.Kuznetsov, the same result can be obtained
using [31, Thm. 5.5]: since the total space X is smooth, the complete intersection of the net of
conics is empty. Recall from [31] that we can define the sheaves B2i = B0 ⊗ O(i) and B2i+1 =
B1 ⊗O(i), and {Bi}

−1
i=−3 give a full exceptional collection for Db(P2,B0). This follows indeed from

[31, Thm 5.5].

6. Rational conic bundles over Hirzebruch surfaces

Let us consider now the case S = Fn. In this case, following ([26, 46]), we have only two non-
trivial possibilities for a standard conic bundle π : X → S to be rational: there must exist a base
point free pencil L0 of rational curves such that either L0 ·C = 3 or L0 ·C = 2. In the first case C
is trigonal, and in the second one C is hyperelliptic. In both instances, the only such pencil is the
natural ruling of S. Hence, if we let q : S → P1 be the ruling map, the trigonal or hyperelliptic
structure is induced by the fibers of q. As proved in Lemma 3.2, once we fix the discriminant
curve and the associated double cover, we fix the Clifford algebra B0. We then construct for any
such curve and associated double cover a model of rational standard conic bundle X for which we
provide the required semiorthogonal decomposition.

We will consider relative realizations of the following classical construction: let x1, . . . , x4 be
four points in general position in a projective plane P2, and consider the pencil of all the plane
conics passing through x1, . . . , x4. Blowing up P2 along the four points, we get a conic bundle
Y → P1 with degree three discriminant. It is not difficult to see that a relative version of the
preceding construction involves a P2-bundle over P1 containing a tetragonal curve Γ → P1, and the
absolute construction performed fiberwise will give, after blow-up of Γ, a conic bundle Y → S, for
S a Hirzebruch surface. In fact, we will show that, if Γ is connected, then Y is standard and has
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trigonal discriminant, which gives the first case. If Γ is the disjoint union of two hyperelliptic curves,
the conic bundle Y → S is not standard and has discriminant the disjoint union of a hyperelliptic
curve and a line. We will then perform a birational transformation to obtained a standard conic
bundle π : X → S with hyperelliptic discriminant. More precisely: fixed the discriminant curve
and the double cover C̃ → C, we describe a structure of conic bundle π : X → S following Casnati
[17] as the blow-up of a P2-bundle over P1 along a certain tetragonal curve given by Recillas’
construction ([42] for the trigonal case) or one of its degenerations (for the hyperelliptic case).
These constructions can be performed for all the trigonal or hyperelliptic discriminant curves with
at most nodes as singularities. We describe the case of trigonal and hyperelliptic discriminant
separately, following anyway the same path.

The trigonal construction had already been used in the framework of conic bundles, in a slightly
different context, in [21].

6.1. Trigonal discriminant. In the case where C is a trigonal curve on S, we can give an
explicit description of the conic bundle π : X → S degenerating along C, exploiting Recillas’
trigonal construction [42]. We will develop the trigonal construction in the more general framework
presented by Casnati in [17], that emphasizes the conic bundle structure. For a detailed account
in the curve case, with emphasis on the beautiful consequences on the structure of the Prym map,
see also [20].

Before going through details let us recall from [16] that any Gorenstein degree 3 cover t′ : C → P1

can be obtained inside a suitable P1-bundle S := P(F) over P1 as the zeros of a relative cubic form
in two variables. On the other hand each Gorenstein degree 4 cover t : Γ → P1 is obtained [16]
as the base locus of a relative pencil of conics over P1 contained in a P2-bundle Z := P(G) over
P1. Moreover, the restriction, both to C and Γ, of the natural projection of each projective bundle
gives the respective finite cover map to P1. For instance, the P2-fiber Zx contains the four points of
Γ over x ∈ P1. The first result of this section proves that any standard conic bundle with trigonal
discriminant over a Hirzebruch surface is realized naturally via this construction.

Proposition 6.1. Let π : X → S be a standard conic bundle with trigonal discriminant curve C,
where the trigonal structure C → P1 is induced by the P1-bundle structure S → P1. Then there
exists a P2-bundle Z → P1 containing a tetragonal curve Γ → P1 whose tetragonal structure is
induced by Z → P1 and such that X is isomorphic to the blow-up of Z along Γ.

Proof. First of all, given any admissible cover of a trigonal curve we describe a conic bundle
structure over a Hirzebruch surface as the blow-up of the P2-bundle containing the tetragonal
curve.

Consider the trigonal curve C → P1 sitting in the P1-fibration P(F) → P1 and the tetragonal
curve Γ inside the P2-fibration Z → P1, associated to C by the Casnati-Recillas construction. Fix
a point x of P1 and the corresponding fiber Zx. In this plane, consider the pencil of conics through
the 4 points Zx∩Γ. For each point of P1, we obtain a pencil of conics with three degenerate conics.
We then have a pencil of such conic pencils (parameterized by the ruled surface S = P(F)), which
can be described as the 2-dimensional family of vertical conics in Z intersecting Γ in all the four
points of Γ ∩ Zx. The standard conic bundle over S is then given by resolving the linear system
|OZ/P1(2) − Γ|. That is, the blow-up of Z along Γ is a standard conic bundle π : X → S with the
required degeneration.

Thanks to Thm. 6.5 of [17] (see also Thm 2.9 of [20]), to any trigonal Gorenstein curve C
with an admissible double cover, we can associate a smooth tetragonal curve Γ such that C is the
discriminant locus of the conic bundle that defines Γ. More precisely, Let X be the relative pencil
of conics in the projective bundle Z → P1 defined by Γ. We have a P1-bundle S over P1, a conic
bundle structure π : X → S with discriminant curve C in its natural embedding as a relative cubic
form.
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The proof is completed by showing that any conic bundle with trigonal discriminant can be
realized in this way, but Theorem 6.5 [17] ensures that all trigonal curves with at most double
points that sit in some ruled surface S are discriminant divisors of a conic bundle (for details see
[17], Sect. 5 and 6). �

Notice that this tight connection between trigonal and tetragonal curves is reflected also when
considering the corresponding Prym and Jacobian varieties. The Prym variety of the admissible
cover of C induced by the conic bundle is in fact isomorphic to the Jacobian of Γ [42] and to the
intermediate Jacobian of the conic bundle X.

Summarizing, we end up with the following commutative diagram:

X
π

~~||
||
||
|| χ

!!B
BB

BB
BB

B D? _oo

χ

��
@@

@@
@@

@@

S

q
  @

@@
@@

@@
@ Z

p
~~}}
}}
}}
}}

Γ? _oo

P1,

where p : Z → P1 is a P2-bundle, Γ ⊂ Z the tetragonal curve, χ : X → Z the blow-up of Γ
with exceptional divisor D. The surface q : S → P1 is ruled and π : X → S is the conic bundle
structure degenerating along the trigonal curve C.

We denote by O(H) := OZ/P1(1) the relative ample line bundle on Z and by O(h) := OS/P1(1)
the relative ample line bundle on S. By abuse of notation, we still denote by O(H) and O(h)
the pull-back of O(H) and O(h) via χ and π respectively. The construction of the map π gives
O(h) = O(2H −D), from which we deduce that O(D) = O(2H − h). The canonical bundle ωX is
given by ωX = χ∗ωZ +O(D). Since we have ωZ = ωZ/P1 + p∗ωP1 = O(−3H) + p∗ det(E∗) + p∗ωP1 ,
we finally get ωX = O(−H − h) + χ∗p∗ωP1(det(E∗)).

Proposition 6.2. Let π : X → S be a conic bundle whose discriminant locus C is a trigonal curve
whose trigonal structure is given by the intersection of C with the ruling S → P1. Then there exist
two exceptional objects E1, E2 in Db(S,B0) such that (up to equivalences):

Db(S,B0) = 〈Db(Γ), E1, E2〉,

where Γ is a smooth projective curve such that J(X) ≃ J(Γ) as a principally polarized Abelian
variety.

Proof. Consider the blow-up χ : X → Z. Orlov formula (see Prop. 2.4) provides a fully faithful
functor Ψ : Db(Γ) → Db(X) and a semiorthogonal decomposition:

Db(X) = 〈ΨDb(Γ), χ∗Db(Z)〉.

By Prop. 2.3 we can choose the semiorthogonal decomposition 〈p∗Db(P1)⊗O(−H), p∗Db(P1), p∗Db(P1)⊗
O(H)〉 of Db(Z). We then get:

(6.1) Db(X) = 〈ΨDb(Γ), χ∗p∗Db(P1)⊗O(−H), χ∗p∗Db(P1), χ∗p∗Db(P1)⊗O(H)〉.

Kuznetsov formula (see Prop. 3.1) provides the decomposition:

Db(X) = 〈ΦDb(S,B0), π
∗Db(S)〉.

By Prop. 2.3 we can choose the semiorthogonal decomposition 〈q∗Db(P1) ⊗ O(−h), q∗Db(P1)〉 of
Db(S). We then get:

(6.2) Db(X) = 〈ΦDb(S,B0), π
∗q∗Db(P1)⊗O(−h), π∗q∗Db(P1)〉.
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We perform now some mutation to compare the decompositions (6.1) and (6.2). First of all, since
π∗q∗ = χ∗p∗, we have π∗q∗Db(P1) = χ∗p∗Db(P1) and we will denote this category simply by
Db(P1).

Consider the decomposition (6.2) and mutate ΦDb(S,B0) to the right with respect to Db(P1)⊗
O(−h). The functor Φ′ := Φ ◦ RDb(P1)⊗O(−h) is full and faithful and we have the semiorthogonal
decomposition

Db(X) = 〈Db(P1)⊗O(−h), Φ′Db(S,B0), D
b(P1)〉.

Perform the right mutation of Db(P1)⊗O(−h) through its right orthogonal. We have

R<Db(P1)⊗O(−h)>⊥(Db(P1)⊗O(−h)) = Db(P1)⊗O(−h)⊗ ω∗
X

∼= Db(P1)⊗O(H).

Indeed ωX = O(−H − h) + χ∗p∗ωP1(det(E∗)) and the tensorization with χ∗p∗ωP1(det(E∗)) gives
an autoequivalence of Db(P1). We then have the decomposition

Db(X) = 〈Φ′Db(S,B0), D
b(P1), Db(P1)⊗O(H)〉.

Comparing this last decomposition with (6.1) we get

Φ′Db(S,B0) = 〈Ψ(Γ),Db(P1)⊗O(−H)〉,

and the proof now follows recalling that Db(P1) has a two-objects full exceptional sequence. �

6.2. Hyperelliptic discriminant. Also in the case where C is a hyperelliptic curve on S, we
can give an explicit description of the conic bundle π : X → S degenerating along C, exploiting
Mumford’s construction [35]: indeed giving a double cover C̃ → C is equivalent to splitting the
set R of ramification points of C into two sets R0 and R1 with an even number of elements.
Taking the hyperelliptic curves Γ0 and Γ1 ramified respectively on R0 and R1, we have C̃ =
Γ0 ×P1 Γ1 and P (C̃/C) ≃ J(Γ0) ⊕ J(Γ1). The key remark here is that X can be obtained via
a birational transformation starting from a degenerate case of the Casnati-Recillas construction.
Indeed, consider Γ := Γ0 ∐ Γ1. We have J(Γ) = J(Γ0)⊕ J(Γ1) and a natural tetragonal structure
on Γ → P1. As in the previous section, the results from [16] provide us a P2-bundle Z → P1 and a
Hirzebruch surface S containing a trigonal curve C ′.

Lemma 6.3. The curve C ′ is the disjoint union of a line L and a hyperelliptic curve C → P1

with ramification R = R0 ∪ R1. The double cover C̃ ′ → C ′ is trivial along L. The blow-up of Z
along Γ gives a non-standard conic bundle structure π′ : Y → S whose discriminant double cover
is C̃ ′ → C ′.

Proof. To construct of the conic bundle π′ : Y → S we proceed in the same way as in Proposition
6.1. As Donagi pointed out [20, Ex. 2.10], in the Casnati-Recillas construction the tetragonal
curve Γ = Γ0 ∐ Γ1 corresponds to the trigonal curve C ′.

On the other hand the double cover C̃ ′ of C ′ splits as C̃ ∐ P1 ∐ P1, where C̃ is a double cover
of C. The P1 ∐ P1 part is the trivial disconnected double cover of L. This implies that the conic
bundle π′ : Y → S obtained as the blow up of Z along Γ is not standard. Indeed, being the double
cover of L trivial implies that the preimage G of L inside Y is the union of two Hirzebruch surfaces
intersecting along a line. �

Notice that, since the double cover of C ′ is trivial along L, we have an isomorphism of principally
polarized abelian varieties P (C̃ ′/C ′) ∼= P (C̃/C). The standard conic bundle π : X → S degener-
ating along the hyperelliptic curve C should then be described as a birational transformation of
π′ : Y → S, smoothing the preimage G of L. Such birational transformation is a slight general-
ization of the elementary transformation described in [43, Sect. 2.1] and, roughly, it consists in
contracting one of the two components of G onto the intersection of the two. After that, L is no
longer contained in the discriminant locus, hence the discriminant locus is the hyperelliptic curve.
This transformation corresponds to a birational transformation of the projective bundle Z.
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In order to do that, we need to make a choice between the two disjoint components of Γ = Γ0∐Γ1.
At the end of the section, we will see that this choice does not affect the required description of the

derived category, up to autoequivalences (see Remark 6.7). Let Z̃ → Z be the blow-up of Z along

Γ0 and D̃ the exceptional divisor. Let T ⊂ Z̃ be the strict transform of the ruled surface obtained
by taking the closure of the locus of lines spanned by each couple of points of Γ0 associated by the

hyperelliptic involution. Let us denote Q the 3-fold obtained from Z̃ by blowing down T to a line
along the ruling. Remark that, since Γ1 is disjoint from Γ0, then Γ1 is embedded in Q.

Lemma 6.4. (i) There is a quadric bundle structure τ : Q → P1 of relative dimension 2, with
simple degeneration along the ramification set R0 of Γ0. There is a natural embedding Γ1 ⊂ Q.

(ii) There exists a full and faithful functor Ψ̄0 : Db(Γ0) → Db(Q) and a semiorthogonal decom-
position

Db(Q) = 〈Ψ̄0D
b(Γ0), τ

∗Db(P1), τ∗Db(P1)⊗OQ/P1(1) > .

Proof. (i) Consider a point x in P1 and the fiber Zx, which is a projective plane. Let ai, bi be
the points where Γi intersects Zx. Then if we blow-up a0 and b0 and we contract the line through
them, we get a birational map Zx 99K Qx, where Qx is a quadric surface, which is smooth if and
only if a0 6= b0 [22, pag. 85] and has simple degeneration otherwise, in fact F2 is isomorphic to the
blow up of a quadric cone in its node.

(ii) By [31], if we denote by C0 the sheaf of even parts of the Clifford algebra associated to τ ,
there is a fully faithful functor Ψ̄0 : D

b(P1, C0) → Db(Q) and a semiorthogonal decomposition

Db(Q) = 〈Ψ̄0D
b(P1, C0), τ

∗Db(P1), τ∗Db(P1)⊗OQ/P1(1) > .

Now apply [31, Cor. 3.14] to get the equivalence Db(P1, C0) ∼= Db(Γ0). �

Proposition 6.5. Let π : X → S be a standard conic bundle over a Hirzebruch surface with
hyperelliptic discriminant. Let R ⊂ P1 be the ramification locus of C, Γ0 and Γ1 two hyperelliptic
curves, with ramification loci R0 and R1 respectively, such that R = R0∪R1 and J(X) ≃ P (C̃/C) =
J(Γ0) ⊕ J(Γ1). Then there is a quadric surface bundle Q → P1 degenerating along R0, such that
Γ1 ⊂ Q and X is isomorphic to the blow-up of Q along Γ1.

Proof. Given Γ = Γ0∐Γ1, consider the trigonal curve C
′ = C∐P1 and the conic bundle π′ : Y → S

from Lemma 6.3, the blow-up of Z along Γ. As proved in Lemma 6.4 the P2-bundle Z has been
transformed into the quadric bundle Q containing the curve Γ1. For any point x of P1, the pencil of
conics in Zx passing through a0, b0, a1, b1 has been transformed into a pencil of hyperplane sections
of Qx passing through a1 and b1. Hence each line of the ruling of S corresponds to a pencil of
quadratic hyperplane sections. Moreover the conics over the rational curve L ⊂ S had simple
degeneration in Y and are smooth in X. On the rest of the ruled surface S the degeneration type
of the conics is preserved.

This implies that π : X → S is a standard conic bundle degenerating along the hyperelliptic C.
It is given by resolving the relative linear system |OQ/P1(1)− Γ1|.

Moreover, to any conic bundle with hyperelliptic discriminant and double cover C̃ → C, one
can associate the tetragonal curve Γ and perform this construction. �

Summarizing, we end up with the following diagram:

X
π

~~}}
}}
}}
}} χ

  B
BB

BB
BB

B D? _oo

χ

  
AA

AA
AA

AA

S

q
��
??

??
??

??
Q

τ
~~~~
~~
~~
~

Γ1
? _oo

P1,
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Where τ : Q→ P1 is a quadric bundle degenerating exactly in the ramification locus of Γ0 → P1

and contains the hyperelliptic curve Γ1. The map χ is the blow-up of Q along Γ1 with exceptional
divisorD. The surface q : S → P1 is ruled and π : X → S is the conic bundle structure degenerating
along the hyperelliptic curve C. Remark that J(X) is isomorphic to J(Γ0)⊕ J(Γ1) as principally

polarized Abelian variety. Since J(X) ∼= P (C̃/C), if C is smooth it can be shown that R1∪R0 = R
and the configuration of Pryms and Jacobians is the one described by Mumford in [35].

We denote by O(H) := OQ/P1(1) the relative ample line bundle on Q. We have ωQ/P1 =
O(−2H). Denote by O(h) := OS/P1(1) the relative ample line bundle on S. By abuse of notation,
we still denote by O(H) and O(h) the pull-backs of O(H) and O(h) via χ and π respectively. The
construction of the map π gives O(h) = O(H−D), from which we deduce that O(D) = O(H−h).

The canonical bundle ωX is given by ωX = χ∗ωQ +D. Since we have ωQ = ωQ/P1 + τ∗ωP1 , we
finally get ωX = O(−H − h) + χ∗τ∗ωP1 .

Proposition 6.6. Let π : X → S be a conic bundle whose discriminant locus C is a hyperelliptic
curve whose hyperelliptic structure is given by the intersection of C with the ruling S → P1. Then
(up to equivalences):

Db(S,B0) = 〈Db(Γ1),D
b(Γ0)〉,

where Γ0 and Γ1 are smooth projective curves such that J(X) ≃ J(Γ0) ⊕ J(Γ1) as a principally
polarized Abelian variety.

Proof. Consider the blow-up χ : X → Q. Orlov formula (see Prop. 2.4) provides a fully faithful
functor Ψ1 : D

b(Γ1) → Db(X) and a semiorthogonal decomposition:

Db(X) = 〈Ψ1D
b(Γ1), χ

∗Db(Q)〉.

Lemma 6.4 gives us

(6.3) Db(X) = 〈Ψ1D
b(Γ1), Ψ0D

b(Γ0), χ
∗τ∗Db(P1), χ∗τ∗Db(P1)⊗O(H)〉,

where Ψ0 = Ψ̄0 ◦ χ
∗ is fully faithful.

Kuznetsov formula (see Prop. 3.1) provides the decomposition:

Db(X) = 〈ΦDb(S,B0), π
∗Db(S)〉.

By Prop. 2.3 we can choose the semiorthogonal decomposition 〈q∗Db(P1), q∗Db(P1) ⊗O(−h)〉 of
Db(S). We then get

(6.4) Db(X) = 〈ΦDb(S,B0), π
∗q∗Db(P1)⊗O(−h), π∗q∗Db(P1)〉.

We perform now some mutation to compare the decompositions (6.3) and (6.4). First of all, since
π∗q∗ = χ∗τ∗, we have π∗q∗Db(P1) = χ∗τ∗Db(P1) and we will denote this category simply by
Db(P1).

Consider the decomposition (6.4) and mutate ΦDb(S,B0) to the right through Db(P1)⊗O(−h).
The functor Φ′ := Φ ◦RDb(P1)⊗O(−h) is full and faithful and we have the semiorthogonal decompo-
sition

Db(X) = 〈Db(P1)⊗O(−h), Φ′Db(S,B0), D
b(P1)〉.

Perform the right mutation of Db(P1)⊗O(−h) through its right orthogonal. We have

R<Db(P1)⊗O(−h)>⊥(Db(P1)⊗O(−h)) = Db(P1)⊗O(−h)⊗ ω∗
X

∼= Db(P1)⊗ (H).

Indeed ωX = O(−H − h) + χ∗τ∗ωP1 and the tensorization with χ∗τ∗ωP1 gives an autoequivalence
of Db(P1). We then have the decomposition

Db(X) = 〈Φ′Db(S,B0), D
b(P1), Db(P1)⊗O(H)〉.

Comparing this last decomposition with (6.4) we get

Φ′Db(S,B0) = 〈Ψ1D
b(Γ1),Ψ0D

b(Γ0)〉.
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�

Remark 6.7. Remark that the choice of blowing up first Γ0 and then Γ1 has no influence (up to
equivalence) on the statement of Proposition 6.6.

6.3. A non-rational example. Theorem 1.1 states that if π : X → S is standard and S rational,
then a semiorthogonal decomposition of Db(S,B0) (and then of Db(X)) via derived categories
of curves and exceptional objects allows to reconstruct the intermediate Jacobian J(X) as the
direct sum of the Jacobians of the curves. It is clear by the technique used, that S being rational
is crucial. Using the construction by Casnati [17], we provide here examples of standard conic
bundles π : X → S over a non-rational surface such that both Db(X) and Db(S,B0) admit a
decomposition via derived categories of smooth projective curves. In these cases, X is clearly
non-rational, and J(X) is only isogenous to P (C̃/C)⊕A2(S)⊕A1(S) [9].

Let G be a smooth projective curve of positive genus. Remark that Db(G) contains no ex-
ceptional object, because of Serre duality. Consider a smooth degree four cover Γ → G, and its
embedding in a P2-bundle Z → G. By [17], there is a unique degree 3 cover C → G embedded in
a ruled surface S → G, and we suppose that C has at most double points. As in 6.1, we end up
with a commutative diagram:

X
π

~~}}
}}
}}
}} χ

  A
AA

AA
AA

A D? _oo

χ

��
@@

@@
@@

@@

S

q
��
@@

@@
@@

@@
Z

p
~~}}
}}
}}
}}

Γ? _oo

G,

where X is the blow-up of Z along Γ, D the exceptional divisor and π : X → S a standard conic
bundle degenerating along C, induced by the relative linear system |OZ/G(2) − Γ|. Orlov formula
for blow-ups (see Prop. 2.4) and Prop. 2.3 give a semiorthogonal decomposition

Db(X) = 〈ΨDb(Γ),Db(G) ⊗ (−H),Db(G),Db(G) ⊗ (H)〉,

where we keep the notation of 6.1 and we write Db(G) := χ∗p∗Db(G) = π∗q∗Db(G). Then Db(X)
is decomposed by derived categories of smooth projective curves. Going through the proof of
Proposition 6.2, it is clear that replacing P1 with G does not affect any calculation, except the
fact that Db(G) contains no exceptional object. Keeping the same notation, we end up with the
semiorthogonal decomposition

Φ′Db(S,B0) = 〈ΨDb(Γ),Db(G)⊗ (−H)〉.
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E-mail address: michele.bolognesi@univ-rennes1.fr


	1. Introduction
	Notations

	2. Preliminaries
	2.1. Motives
	2.2. Semiorthogonal decomposition, exceptional objects and mutations
	2.3. Fourier–Mukai functors, motives and Chow groups

	3. Derived categories, motives and Chow groups of conic bundles
	3.1. The decompositions of h(X) and Db(X)
	3.2. Algebraically trivial cycles on X and Prym varieties

	4. Reconstructing the intermediate Jacobian
	5. Rational conic bundles over the plane
	5.1. Degree five discriminant
	5.2. Degree four discriminant
	5.3. Degree three discriminant

	6. Rational conic bundles over Hirzebruch surfaces
	6.1. Trigonal discriminant
	6.2. Hyperelliptic discriminant
	6.3. A non-rational example

	References

