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DERIVED CATEGORIES AND RATIONALITY OF CONIC BUNDLES

MARCELLO BERNARDARA AND MICHELE BOLOGNESI

Abstract. We show that a standard conic bundle over a minimal rational surface is rational and
its Jacobian splits as the direct sum of Jacobians of curves if and only if its derived category admits
a semiorthogonal decomposition by exceptional objects and the derived categories of those curves.
Moreover, such a decomposition gives the splitting of the intermediate Jacobian also when the
surface is not minimal.

1. Introduction

One of the main fields of research in the theory of derived categories is understanding how the
geometry of a smooth projective variety X is encoded in the bounded derived category Db(X) of
coherent sheaves on it. One of the main ideas, first developed by Bondal and Orlov, is to understand
to which extent this category contains interesting information about birational geometry.

The biggest problem is to understand how this information can be traced out. The most promis-
ing and, so far, prolific approach is studying semiortohognal decompositions

Db(X) = 〈A1, . . . ,Ak〉.

In many interesting situations, one has such a decomposition with all or almost all of the Ai

equivalent to the derived category of a point. If X is a projective space or a smooth quadric, all of
the Ai are like this. It is expected that if a non-trivial subcategory appears in such decomposition,
then it has to carry informations about the birational geometry of X. For example, if X is a
V14 Fano threefold, then Db(X) admits a semiorthogonal decomposition with only one non-trivial
component, say AX . A similar decomposition holds for any smooth cubic threefold. Kuznetsov
showed that if Y is the unique cubic threefold birational to X (see [24]), AX is equivalent to the
non-trivial component AY of Db(Y ), and then it is a birational invariant for X [30]. Moreover it
has been shown in [11], by reconstructing the Fano variety of lines on Y from AY , that AY deter-
mines the isomorphism class of Y . Similar correspondences between the non-trivial components
of semiorthogonal decompositions of pairs of Fano threefolds are described in [33]. The derived
category of a smooth cubic fourfold also admits such a decomposition, and it is conjectured that
the non-trivial component determines its rationality [32].

It is a classical and still open problem in complex algebraic geometry to study the rationality
of a standard conic bundle π : X → S over a smooth projective surface. A necessary condition for
rationality is that the intermediate Jacobian J(X) is isomorphic, as principally polarized abelian
variety, to the direct sum of Jacobians of smooth projective curves. This allowed to prove the non
rationality of smooth cubic threefolds [18]. The discriminant locus of the conic bundle is a curve
C ⊂ S, with at most double points. The smooth points of C correspond to two intersecting lines,
and the nodes to double lines. There is then a natural étale double cover (an admissible cover if

C is singular [5]) C̃ → C of the curve C associated to X. The intermediate Jacobian J(X) is then

isomorphic to the Prym variety P (C̃/C) as principally polarized abelian variety [5]. This allows
to show the non-rationality of conic bundles over P2 with discriminant curve of degree ≥ 6 [5].
Remark that if S is not rational or C disconnected, then X cannot be rational. We will then not
consider these cases. Morevor, since X is standard, pa(C) is positive (see e.g. [26, Sect. 1]).

If S is a minimal rational surface, then Shokurov [47] has shown that X is rational if and only
if J(X) splits as the direct sum of Jacobians of smooth projective curves and that this happens
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only in five cases: if S = P2, either C is a smooth cubic, or a quartic, or C is a quintic and C̃ → C
is given by an even theta-characteristic; if S = Fn, either C is hyperelliptic or C is trigonal and in
both cases the map to P1 is induced by the ruling of S. If S is not minimal, it is conjectured that
there are essentially no more cases [26].

Our aim is to give a categorical approach to this problem, using semiorthogonal decompositions.
Indeed, in [31] Kuznetsov considers the sheaf B0 of even parts of Clifford algebras associated to
the quadratic form defining the conic fibration, and Db(S,B0) the bounded derived category of
coherent B0-algebras over S. He describes a fully faithful functor Φ : Db(S,B0) → Db(X) and
gives a semiorthogonal decomposition for the derived category of X as follows:

Db(X) = 〈ΦDb(S,B0), π
∗Db(S)〉.

If S is a rational surface, its derived category admits a full exceptional sequence, which leads to
the following semiorthogonal decomposition

(1.1) Db(X) = 〈ΦDb(S,B0), E1, . . . , Es〉,

where {Ei}
s
i=1 are exceptional objects. The non-trivial information about the geometry of the conic

bundle is contained in the category Db(S,B0). Note that in the case where X is the blow-up of a
smooth cubic threefold Y along a line, Db(S,B0) contains AY , which identifies the isomorphism
class of Y [11]. Remark that a different approach to the same problem, via generalized homological
mirror symmetry, leads to the conjectures stated in [28, 29]. Anyway we do not establish any link
with the results described here.

Theorem 1.1. Let π : X → S be a standard conic bundle over a rational surface. Suppose that
{Γi}

k
i=1 are smooth projective curves and k ≥ 0, with fully faithful functors Ψi : D

b(Γi) → Db(S,B0)
for i = 1, . . . k, such that Db(S,B0) admits a semiorthogonal decomposition:

(1.2) Db(S,B0) = 〈Ψ1D
b(Γ1), . . . ,ΨkD

b(Γk), E1, . . . , El〉,

where Ei are exceptional objects and l ≥ 0. Then J(X) =
⊕k

i=1 J(Γi) as principally polarized
abelian variety.

If S is non-rational, and then so is X, Theorem 1.1 fails; its proof relies indeed strictly on the
rationality of S. In 6.3 we provide an example of a standard conic bundle over a non-rational
surface with Db(S,B0) decomposing in derived categories of smooth projective curves.

The interest of Theorem 1.1 is twofold: first it is the first non-trivial example where informa-
tions on the birational properties and on algebraically trivial cycles are obtained directly from a
semiorthogonal decomposition. Secondly it gives a categorical criterion of rationality for conic bun-
dles over minimal surfaces, thanks to Shokurov result [47]. We can also prove the other implication
by a case by case analysis.

Theorem 1.2. If S is minimal, then X is rational and J(X) =
⊕k

i=1 J(Γi) if and only if there

are fully faithful functors Ψi : D
b(Γi) → Db(S,B0) and a semiorthogonal decomposition

Db(S,B0) = 〈Ψ1D
b(Γ1), . . . ,ΨkD

b(Γk), E1, . . . , El〉,

where Ei are exceptional objects and l ≥ 0.

The key of the proof of Theorem 1.1 is the study of the maps induced by a fully faithful functor
Ψ : Db(Γ) → Db(X) on the rational Chow motives, as explained in [41], where Γ is a smooth
projective curve of positive genus. In particular, the biggest step consists in proving that such a
functor induces an injective morphism ψ : J(Γ) → J(X) preserving the principal polarization. The
existence of the required semiorthogonal decomposition implies then the bijectivity of the sum of
the ψi’s.

The paper is organized as follows: in Sections 2 and 3 we recall respectively basic facts about
motives and derived categories and the construction from [41], and the description of motive,
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derived category and intermediate Jacobian of a conic bundle. In Section 4 we prove Theorem 1.1,
and in Sections 5 and 6 we finish the proof of Theorem 1.2, analyzing respectively the case S = P2

and S = Fn.

Notations. Except for Section 2, we work over the complex field C. Any triangulated category
is assumed to be essentially small. Given a smooth projective variety X, we denote Db(X) the
bounded derived category of coherent sheaves on it, K0(X) its Grothendieck group, CHd(X) the
Chow group of codimension d cycles and Ad(X) the subgroup of algebraically trivial cycles in
CHd(X). The subscript Q is used there whenever we consider Q-coefficients, while h(X) already

denotes the rational Chow motive. We will denote Prym(C̃/C) the Prym motive and P (C̃/C)

the Prym variety for an admissible double cover C̃ → C. Whenever a functor between derived
categories is given, it will be denoted as underived, for example for f : X → Y , f∗ and f∗ denote
respectively the derived pull-back and push-forward.
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2. Preliminaries

In this Section, we recall some basic facts about motives, derived categories, semiorthogonal
decompositions and Fourier–Mukai functors. The experienced reader can easily skip subsections
2.1 and 2.2. In 2.3, we explain how a Fourier–Mukai functor induces a motivic map, following [41],
and we retrace the results from [10] under this point of view to give a baby example clarifying
some of the arguments we will use later.

2.1. Motives. We give a brief introduction to rational Chow motives, following [46]. The most
important results we will need are the correspondence between the submotive h1(C) ⊂ h(C) of a
smooth projective curve and its Jacobian, and the Chow–Künneth decomposition of the motive of
a smooth surface.

Let X be a smooth projective scheme over a field κ. For any integer d, let Zd(X) be the
free abelian group generated by irreducible subvarieties of X of codimension d. We denote by
CHd(X) = Zd(S)/∼rat the codimension d Chow group and by CHd

Q(X) := CHd(X)⊗Q. In this
section, we are only concerned with rational coefficients. Let Y be a smooth projective scheme. If
X is purely d-dimensional, we put, for any integer r,

Corrr(X,Y ) := CHd+r
Q (X × Y ).

If X =
∐
Xi, where Xi is connected, we put

Corrr(X,Y ) :=
⊕

Corrr(Xi, Y ) ⊂ CH∗
Q(X × Y ).

If Z is a smooth projective scheme, the composition of correspondences is defined by a map

(2.1) Corrr(X,Y )⊗ Corrs(Y,Z) // Corrr+s(X,Z)

f ⊗ g � // p13∗(p
∗
12f.p

∗
23g),

where pij are the projections from X × Y × Z onto products of two factors.
The category Mκ of Chow motives over κ with rational coefficients is defined as follows: an

object of Mκ is a triple (X, p,m), where X is a variety, m an integer and p ∈ Corr0(X,X) an
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idempotent, called a projector. Morphisms from (X, p,m) to (Y, q, n) are given by elements of
Corrn−m(X,Y ) precomposed with p and composed with q.

There is a natural functor h from the category of smooth projective schemes to the category
of motives, defined by h(X) = (X, Id, 0), and, for any morphism φ : X → Y , h(φ) being the
correspondence given by the graph of φ. We write Q := (Specκ, Id, 0) for the unit motive and
Q(−1) := (Specκ, Id,−1) for the Tate (or Lefschetz) motive, and Q(−i) := Q(−1)⊗i for i > 0.
We denote h(X)(−i) := h(X) ⊗ Q(−i). Finally, we have Hom(Q(−d), h(X)) = CHd

Q(X) for all
smooth projective schemes X and all integers d.

If X is irreducible of dimension d and has a rational point, the embedding α : pt → X of
the point defines a motivic map Q → h(X). We denote by h0(X) its image and by h≥1(X) the
quotient of h(X) via h0(X). Similarly, we have that Q(−d) is a quotient of h(X), and we denote it
by h2d(X). For example, if X = P1, we have that h≥1(P1) = h2(P1) and then h(P1) ≃ Q⊕Q(−1).
In the case of smooth projective curves of positive genus another factor which corresponds to the
Jacobian variety of the curve is appearing.

Let C be a smooth projective connected curve with a rational point. Then one can define a
motive h1(C) such that we have a direct sum:

h(C) = h0(C)⊕ h1(C)⊕ h2(C).

The main fact is that the theory of the motives h1(C) corresponds to that of Jacobian varieties
(up to isogeny). Indeed we have

Hom(h1(C), h1(C ′)) = Hom(J(C), J(C ′))⊗Q.

In particular, the full subcategory of Mκ whose objects are direct summands of the motive h1(C) is
equivalent to the category of abelian subvarieties of J(C) up to isogeny. Finally, for all d there is no
non-trivial map h1(C) → h1(C) factoring through Q(−d). Indeed, we have Hom(h1(C),Q(−d)) =

CH1−d
Q (C)num=0, which is zero unless d = 0, while Hom(Q(−d), h1(C)) = CHd

Q(C)num=0, which
is zero unless d = 1.

Let S be a surface. Murre constructed [37] the motives hi(S), defined by projectors pi in
CH i

Q(S × S) for i = 1, 2, 3, and described a decomposition

h(S) = h0(S)⊕ h1(S)⊕ h2(S)⊕ h3(S)⊕ h4(S).

We already remarked that h0(S) = Q and h4(S) = Q(−2). Roughly speaking, the submotive
h1(S) carries the Picard variety, the submotive h3(S) the Albanese variety and the submotive
h2(S) carries the Néron–Severi group, the Albanese kernel and the transcendental cycles. If S is
a smooth rational surface, then h1(S) and h3(S) are trivial, while h2(S) ≃ Q(−1)ρ, where ρ is
the rank of the Néron–Severi group. In particular, the motive of S splits in a finite direct sum of
(differently twisted) Tate motives.

In general, it is expected that if X is a smooth projective d-dimensional variety, there exist
projectors pi in CH i

Q(X × X) defining motives hi(X) such that h(X) = ⊕2d
i=0h

i(X). Such a
decomposition is called a Chow–Künneth decomposition. We have seen that the motive of any
smooth projective curve or surface admits a Chow–Künneth decomposition. This is true also for
the motive of a smooth uniruled complex threefold [2].

2.2. Semiorthogonal decomposition, exceptional objects and mutations. We introduce
here semiorthogonal decompositions, exceptional objects and mutations in a κ-linear triangulated
category T, following [13, 14, 15], and give some examples which will be useful later on. Our
only applications will be given in the case where T is the bounded derived category of a smooth
projective variety, but we stick to the more general context. A full triangulated category A of T
is called admissible if the embedding functor admits a left and a right adjoint.

Definition 2.1 ([14, 15]). A semiorthogonal decomposition of T is a sequence of full admissible
triangulated subcategories A1, . . . ,An of T such that HomT(Ai, Aj) = 0 for all i > j and for
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all objects Ai in Ai and Aj in Aj, and for every object T of T, there is a chain of morphisms
0 = Tn → Tn−1 → . . . → T1 → T0 = T such that the cone of Tk → Tk−1 is an object of Ak for all
k = 1, . . . , n. Such a decomposition will be written

T = 〈A1, . . . ,An〉.

Definition 2.2 ([13]). An object E ofT is called exceptional if HomT(E,E) = κ, and HomT(E,E[i]) =
0 for all i 6= 0. A collection (E1, . . . , El) of exceptional objects is called exceptional if HomT(Ej , Ek[i]) =
0 for all j > k and for all integer i.

If E in T is an exceptional object, the triangulated category generated by E (that is, the smallest
full triangulated subcategory of T containing E) is equivalent to the derived category of a point,
seen as a smooth projective variety. The equivalence Db(pt) → 〈E〉 ⊂ T is indeed given by sending
Opt to E. Given an exceptional collection (E1, . . . , El) in the derived category Db(X) of a smooth
projective variety, there is a semiorthogonal decomposition [15]

Db(X) = 〈A, E1, . . . , El〉,

where A is the full triangulated subcategory whose objects are all the A satisfying Hom(Ei, A) = 0
for all i = 1, . . . , l, and we denote by Ei the category generated by Ei. We say that the exceptional
sequence is full if the category A is trivial.

There are many examples of smooth projective varieties admitting a full exceptional sequence.
For example the sequence (O(i), . . . ,O(i+n)) is full exceptional in Db(Pn) for all i integer [7]. If X
is an even-dimensional smooth quadric hypersurface in Pn and Σ the spinor bundle, the sequence
(Σ(i),O(i+1), . . . ,O(i+ n)) is full exceptional in Db(X) and a similar sequence (with two spinor
bundles) exists for odd-dimensional smooth quadric hypersurfaces [27].

Proposition 2.3 ([39]). Let X be a smooth projective variety and F a locally free sheaf of rank r+1
over it. Let p : P(F ) → X be the associated projective bundle. The functor p∗ : Db(X) → Db(P(F ))
is fully faithful and for all integer i we have the semiorthogonal decomposition:

Db(P(F )) = 〈p∗Db(X)⊗OP/X(i), . . . , p
∗Db(X)⊗OP/X(i+ r)〉,

where OP/X(1) is the relative ample line bundle.

Proposition 2.4 ([39]). Let X be a smooth projective variety, Y →֒ X a smooth projective sub-

variety of codimension d > 1 and ε : X̃ → X the blow-up of X along Y . Let D
ι
→֒ X̃ be the

exceptional divisor and p : D → Y the restriction of ε. Then the functors ε∗ : Db(X) → Db(X̃)

and Ψj := ι∗ ◦⊗OD/Y (j)◦p
∗ : Db(Y ) → D(X̃) are fully faithful for all j and we have the following

semiorthogonal decomposition:

Db(X̃) = 〈Ψ0Db(Y ), . . . ,Ψd−1Db(Y ), ε∗Db(X)〉.

We will refer to Proposition 2.4 as the Orlov formula for blow ups. Notice that both Proposition
2.3 and 2.4 have motivic counterparts [34].

We finally remark that if X has dimension at most 2 and is rational, the derived category Db(X)
admits a full exceptional sequence. We have already seen this for P1 and P2. If X is a Hirzebruch
surface, then it has a 4-objects full exceptional sequence by Prop. 2.3 and the decomposition of P1.
We conclude by the birational classification of smooth projective surfaces and the Orlov formula
for blow-ups. In particular a rational surface with Picard number ρ has a full exceptional sequence
of ρ+ 2 objects.

Given a semiorthogonal decomposition 〈A1, . . .An〉 of T, we can define an operation called
mutation (called originally, in Russian, perestroika) which allows to give new semiorthogonal de-
compositions with equivalent components. What we need here is the following fact, gathering
different results from [13].
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Proposition 2.5. Suppose that T admits a semiorthogonal decomposition 〈A1, . . . ,An〉. Then for
each 1 ≤ k ≤ n− 1, there is a semiorthogonal decomposition

T = 〈A1, . . . ,Ak−1, LAk
(Ak+1),Ak,Ak+2, . . . ,An〉,

where LAk
: Ak+1 → LAk

(Ak+1) is an equivalence, called the left mutation through Ak. Similarly,
for each 2 ≤ k ≤ n, there is a semiorthogonal decomposition

T = 〈A1, . . . ,Ak−2,Ak, RAk
(Ak−1),Ak+1, . . . ,An〉,

where RAk
: Ak−1 → RAk

(Ak−1) is an equivalence, called the right mutation through Ak.

Remark in particular that the mutation of an exceptional object is an exceptional object. If T
is the bounded derived category of a smooth projective variety and n = 2, there is a very useful
explicit formula for left and right mutations.

Lemma 2.6 ([14]). Let X be a smooth projective variety and Db(X) = 〈A,B〉 a semiorthogonal
decomposition. Then LA(B) = B⊗ ωX and RB(A) = A⊗ ω−1

X .

2.3. Fourier–Mukai functors, motives and Chow groups. Fourier–Mukai functors are the
main tool in studying derived categories of coherent sheaves. We recall here the main properties of
a Fourier–Mukai functor and how it interacts with other theories, such as the Grothendieck group,
Chow rings and motives. A more detailed treatment (except for motives, see [41]) can be found in
[23, Chap. 5].

Let X and Y be smooth projective varieties of dimension n and m respectively and E an
object of Db(X × Y ). The Fourier–Mukai functor ΦE : Db(Y ) → Db(X) with kernel E is given by
ΦE(A) = p∗(q

∗A⊗E), where p and q denote the projections form X×Y onto X and Y respectively.
We will sometimes drop the subscript E . If Z is a smooth projective variety, ΦE : Db(Y ) → Db(X)
and ΦF : Db(X) → Db(Z), then the composition ΦF ◦ΦE is the Fourier–Mukai functor with kernel

(2.2) G := p13∗(p
∗
12E ⊗ p∗23F),

where pij are the projections from Y ×X ×Z onto products of two factors. It is worth noting the
similarity between (2.2) and the composition of correspondences (2.1).

A Fourier–Mukai functor ΦE always admits a left and right adjoint which are the Fourier–Mukai
functors with kernel EL and ER resp., defined by

EL := E∨ ⊗ p∗ωX [n] and ER := E∨ ⊗ q∗ωY [m].

A celebrated result from Orlov [40] shows that any fully faithful exact functor F : Db(Y ) → Db(X)
with right and left adjoint is a Fourier–Mukai functor whose kernel is uniquely determined up to
isomorphism.

Given the Fourier–Mukai functor ΦE : Db(Y ) → Db(X), consider the element [E ] in K0(X ×Y ),
given by the alternate sum of the cohomologies of E . Then we have a commutative diagram

(2.3) Db(Y )
ΦE //

[ ]

��

Db(X)

[ ]

��

K0(Y )
ΦK

E // K0(X),

where ΦKE is the K-theoretical Fourier–Mukai transform defined by ΦKE (A) = p!(q
∗A⊗ [E ]). If ΦE

is fully faithful, we have ΦE ◦ΦER = IdDb(Y ). This implies ΦKE ◦ΦKER = IdK0(Y ) and then K0(Y ) is

a direct summand of K0(X).

Lemma 2.7. Let X, {Yi}i=1,...k be smooth projective varieties, Φi : D
b(Yi) → Db(X) fully faithful

functors and Db(X) = 〈Φ1D
b(Y1), . . . ,ΦkD

b(Yk)〉 a semiorthogonal decomposition. Then K0(X) =⊕k
i=1K0(Yi), and CH

∗
Q(X) =

⊕k
i=1 CH

∗
Q(Yi).
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Proof. The full and faithful functors Φi : Db(Yi) → Db(X) have to be of Fourier–Mukai type
and then K0(Yi) are direct summands of K0(X). The generation follows from the definition of a
semiorthogonal decomposition. The decomposition of the rational Chow ring is a straightforward
consequence of Grothendieck–Riemann–Roch Theorem. �

Consider the element e := ch([E ]).Td(Y ) in CH∗
Q(X × Y ). This gives a correspondence e :

CH∗
Q(Y ) → CH∗

Q(X) and we have a commutative diagram

(2.4) Db(Y )
ΦE //

��

Db(X)

��

CH∗
Q(Y ) e // CH∗

Q(X),

where the vertical arrows are obtained by taking the Chern character and multiplying with the
Todd class. The commutativity of the diagram follows from the Grothendieck–Riemann–Roch
formula. Remark that here we used that the relative Todd class of the projection X × Y → X is
Td(Y ).

As for the Grothendieck groups, the Chow ring and the rational cohomology (see [23, Chapt.
5]), one can find a functorial correspondence between derived Fourier–Mukai functors and motivic
maps. This was first carried out by Orlov [41]. Indeed, the cycle e is of mixed type in CH∗

Q(X×Y ).

Its components ei in CH
i
Q(X×Y ) give motivic maps ei : h(Y ) → h(X)(i−n). Denote by F := ER

the kernel of the right adjoint of ΦE , and f = ch([F ]).Td(X) the associated cycle in CH∗
Q(X ×Y ).

Then we get motivic maps fi : h(X)(i − n) → h(Y ). If we consider the cycles e and f , the
Grothendieck–Riemann–Roch formula implies that f.e induces the identity Id : h(Y ) → h(Y ).

Example 2.8. As an example, we describe the result in [10] from the motivic point of view. This
turns out to be very useful in understanding the relationship between the derived category, the
motive and the Jacobian of a smooth projective curve, and contains some ideas that we will use
in the proof of Theorem 1.1

Let C1 and C2 be smooth projective curves and ΦE : Db(C1) → Db(C2) a Fourier–Mukai
functor. In [10] it is shown that the map φ : J(C1) → J(C2) induced by ΦE preserves the principal
polarization if and only if ΦE is an equivalence.

We could describe such result in the following way: consider the motivic maps ei : h(C1) →
h(C2)(i − 1) where e is the cycle associated to E . We define f as before via the right adjoint. If
ΦE is fully faithful, then we have f.e = ⊕2

i=0fi.e2−i = Id. Since h0(Cj) = Q, and h2(Cj) = Q(−1)
for j = 1, 2, if we restrict to h1(C1), we get that (fi.e2−i)|h1(C1) = 0 unless i = 1. In particular we

obtain that (e1.f1)|h1(C1) = Idh1(C1) and then h1(C1) is a direct summand of h1(C2). Every fully
faithful functor between the derived categories of smooth projective curves is an equivalence, and
we can apply the same argument to the adjoint of ΦE , obtaining an isomorphism h1(C1) ≃ h1(C2).
This gives an isogeny JQ(C1) ≃ JQ(C2).

Moreover, the maps e1 and f1 are given both by c1([E ]), and they define a morphism φ :
J(C1) → J(C2) of abelian varieties, with finite kernel. The key point to prove the preservation of

the principal polarization is the fact that that the dual map φ̂ of φ is induced by the adjoint of
ΦE . Being ΦE a Fourier–Mukai functor carries indeed a deep amount of geometrical information.

3. Derived categories, motives and Chow groups of conic bundles

From now on, we only consider varieties defined over C. Let S be a smooth projective surface,
and π : X → S a smooth standard conic bundle. By this, we mean a surjective morphism whose
scheme theoretic fibers are isomorphic to plane conics, such that for any curve D ⊂ S the surface
π−1(D) is irreducible (this second condition is also called relative minimality). The discriminant
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locus of the conic bundle is a curve C ⊂ S, which can be possibly empty, with at most double
points. The fiber of π over a smooth point of C is the union of two lines intersecting in a single
point, while the fiber over a node is a double line. Recall that any conic bundle is birationally
equivalent to a standard one via elementary transformations [44].

In this section, we recall known results about the geometry of π : X → S. In section 3.1 we deal
with the decomposition of h(X) described by Nagel and Saito [38] and with the semiorthogonal
decomposition of Db(X) described by Kuznetsov [31]. In section 3.2 we recall the description of
the intermediate Jacobian and the algebraically trivial part A2(X) := CH2(X)alg=0 of the Chow
group given by [5, 9]. The order of the two sections reverses history, but the decompositions of
h(X) and Db(X) hold in a more general frame.

Before that, recall that to any standard conic bundle, we can associate an admissible double
covering C̃ → C of the curve C, ramified along the singular points of C. The set of vertical lines of
X (that is, the ones contained in a fiber) is then a P1-bundle over C̃ [5]. In the results recalled here,
if C is not smooth, then it has to be replaced by its normalization and the corresponding double
covering. Anyway, with no risk of misunderstanding, we will tacitly assume this replacement when
needed, and keep the notation C̃ → C.

3.1. The decompositions of h(X) and Db(X). Consider the rational Chow motive h(X). Nagel
and Saito [38] provide a relative Chow-Künneth decomposition for h(X). First of all, for a given

double covering C̃ → C of an irreducible curve with at most double points, they define the
Prym motive Prym(C̃/C) as a submotive of h(C̃) via the involution associated to the covering.

In particular Prym1(C̃/C) is a submotive of h1(C̃), Prym(C̃/C) = Prym1(C̃/C) if the double

covering is not trivial and Prym(C̃/C) = h(C̃) otherwise. We refrain here to give the details
of the construction, for which the reader can consult [38]. Moreover they show how h(S) and
h(S)(−1) are direct summands of h(X). Any conic bundle (non necessarily standard) is uniruled
and h(X) = ⊕6

i=0h
i(X) is the Chow–Künneth decomposition [2]. We have the following description:

hi(X) = hi(S)⊕ hi−2(S)(−1) ⊕
r⊕

j=1

Prymi−2(C̃j/Cj)(−1),

where Cj , for j = 1, . . . r, are the irreducible components of the discriminant curve C.
If π : X → S is standard, then there is no component of C over which the double cover is trivial.

It follows that hi(X) = hi(S)⊕ hi−2(S)(−1) for i 6= 3 and

h3(X) = h3(S)⊕ h1(S)(−1) ⊕

r⊕

j=1

Prym1(C̃j/Cj)(−1).

We will focus on the case where S is a rational surface and C is connected (in any other case,
the conic bundle is not rational). We finally end up, recalling section 2.1, with:

(3.1)
hi(X) = hi(S)⊕ hi−2(S)(−1) if i 6= 3,

h3(X) = Prym1(C̃/C)(−1),

and in particular, for i 6= 3, hi(X) is either trivial or a finite sum of Tate motives (with different
twists).

Consider the derived category Db(X). It is well-known (see [5, 45]) that the fibers of π are
plane conics and that there is a locally free rank 3 vector bundle E on S, such that X ⊂ P(E)
is the zero locus of a section s : OS(−1) → Sym2(E) and the map π is the restriction of the
fibration P(E) → S. Kuznetsov defines, in the more general frame of any quadric fibration over
any smooth projective manifold, the sheaf of even parts B0 of the Clifford algebra associated to the
section s. One can consider the abelian category Coh(S,B0) of coherent sheaves with a structure
of B0-algebra and its bounded derived category Db(S,B0). In the case of a standard conic bundle,
B0 = OS ⊕ (Λ2(E)⊗OS(−1)) is a locally free sheaf of rank 4.
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Proposition 3.1 ([31]). Let π : X → S be a conic bundle and B0 the sheaf of even parts of the
Clifford algebra associated to it. Then π∗ : Db(S) → Db(X) is fully faithful and there is a fully
faithful functor Φ : Db(S,B0) → Db(X) such that

Db(X) = 〈ΦDb(S,B0), π
∗Db(S)〉.

We will refer to Proposition 3.1 as the Kuznetsov formula for conic bundles. Remark that
Kuznetsov actually gives a similar semiorthogonal decomposition for any quadric fibration over
any smooth projective manifold. If in particular S is a smooth rational surface with Picard number
ρ, its derived category admits a full exceptional sequence. It follows that

Db(X) = 〈ΦDb(S,B0), E1, . . . , Eρ+2〉,

where (E1, . . . , Eρ+2) is the the pull back of the full exceptional sequence of Db(S).

Remark 3.2. Let S be a smooth projective surface and K(S) its residue field, and Br(−) denote
the Brauer group. A quaternion algebra Aη is an element of order 2 of Br(K(S)). There is an
exact sequence [3]:

0 −→ Br(S) −→ Br(K(S))
α

−→
⊕

D⊂S

H1
et(D,Q/Z)

β
−→

⊕

x∈S

µ−1,

where in the third (resp. fourth) term the sum runs over curves in (resp. points of) S. Recall that
all elements of order two in Br(K(S)) are quaternion algebras [35]. The exact sequence sets up a
1-1 correspondence between maximal orders A in Aη and standard conic bundles with associated

double covering C̃ → C [3, 45].
If S is rational, then Br(S) = 0, the map α is injective and there is unique maximal order A

for a given quaternion algebra Aη. In this case, we have a 1-1 correspondence between quaternion
algebras Aη and standard conic bundles, as explained in [45, 26]. Consider the quadratic form
defining the conic bundle over the generic point of S. Then the even part of its Clifford algebra
is isomorphic to a quaternion algebra. With this in mind, we obtain that the algebra B0 and the
derived category Db(S,B0) are fixed once fixed the admissible double cover C̃ → C. A similar
argument was first developed by Panin ([42] page 450-51) in the case of conic bundles on P2 with
a quintic discriminant curve.

3.2. Algebraically trivial cycles on X and Prym varieties. Given a curve C with at most
double points and an admissible double covering C̃ → C one can define the Prym variety P (C̃/C)

as the connected component containing 0 of the kernel of Nm : J(C̃) → J(C). Remark that if C is

singular, one has to go through the normalizations of C and C̃. The Prym variety is a principally
polarized abelian subvariety of J(C̃) of index 2 ([36, 4]).

Let π : X → S be a standard conic bundle with associated double covering C̃ → C. If S = P2,
Beauville showed that the intermediate Jacobian J(X) is isomorphic as a principally polarized

abelian variety to P (C̃/C) [5]. Moreover, he shows that the algebraically trivial part A2(X) of

CH2(X) is isomorphic to the Prym variety P (C̃/C). The key geometric point is that the family of

vertical lines (that is, lines contained in a fiber of π) in X is a P1-bundle over the curve C̃. There

is then a surjective morphism g : J(C̃) → A2(X) extending the map associating to a point c of

C̃ the line lc over it. The isomorphism ξ : P (C̃/C) → A2(X) is obtained by taking the quotient

via ker(g). The inverse isomorphism G = ξ−1 is a regular map making of P (C̃/C) the algebraic
representative of A2(X) (for more details, see [5, Ch. III]). Similar techniques prove the same
results for any S rational [8, 9].

Definition 3.3 ([5], Déf 3.4.2). Let Y be a smooth projective variety of odd dimension 2n + 1
and A (an abelian variety) the algebraic representative of An+1(Y ) via the canonical map G :
An+1(Y ) → A. A polarization of A with class θA in Corr(A), is the incidence polarization with
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respect to Y if for all algebraic maps f : T → An+1(Y ) defined by a cycle z in CHn+1(Y × T ), we
have

(G ◦ f)∗θA = (−1)n+1I(z),

where I(z) in Corr(T ) is the composition of the correspondences z ∈ Corr(T,X) and z ∈ Corr(X,T ).

Proposition 3.4. Let π : X → S be a standard conic bundle over a smooth rational surface. The
principal polarization ΘP of P (C̃/C) is the incidence polarization with respect to X.

Proof. We prove the statement in the case where C is smooth. In the case of nodal curves, one
has to go through the normalization, and this is just rewriting the proof of [5, Thm. 3.6, (iii)].

If S = P2, this is [5, Prop. 3.5]. If S is not P2, consider the isomorphism ξ. The proof of [5,
Prop. 3.3] can be rephrased in this setting, in particular, recalling the diagram in [8, Pag. 83], one

can check that the map 2ξ is described by a cycle y in CH2(X ×P (C̃/C)). Let f : T → A2(X) be
an algebraic map defined by a cycle z in CH2(X × T ). Denoting by u := G ◦ f and u′ := (IdX , u),
the map 2f is defined by the cycle (u′)∗y. The proof is now the same as the one of [5, Prop.
3.5]. �

4. Reconstructing the intermediate Jacobian

The first main result of this paper is the reconstruction of J(X) as the direct sum of Jacobians
of smooth projective curves, starting from a semiorthogonal decomposition of Db(S,B0). This
Section is entirely dedicated to the proof of Theorem 1.1.

Theorem 1.1. Let π : X → S be a standard conic bundle over a rational surface. Suppose that
{Γi}

k
i=1 are smooth projective curves and k ≥ 0, with fully faithful functors Ψi : D

b(Γi) → Db(S,B0)
for i = 1, . . . k, such that Db(S,B0) admits a semiorthogonal decomposition:

(4.1) Db(S,B0) = 〈Ψ1D
b(Γ1), . . . ,ΨkD

b(Γk), E1, . . . , El〉,

where Ei are exceptional objects and l ≥ 0. Then J(X) =
⊕k

i=1 J(Γi) as principally polarized
abelian variety.

If S is minimal, we obtain the “if” part of Theorem 1.2 from [47, Thm. 10.1].

Corollary 4.1. If π : X → S is a standard conic bundle over a minimal rational surface and

Db(S,B0) = 〈Ψ1D
b(Γ1), . . . ,ΨkD

b(Γk), E1, . . . , El〉,

where Γi are smooth projective curves, Ψi : D
b(Γi) → Db(S,B0) are full and faithful functors, Ei

are exceptional objects and l, k ≥ 0, then X is rational and J(X) =
⊕k

i=1 J(Γi).

If we have the decomposition (4.1), using Prop. 3.1 and that S is rational, we get

(4.2) Db(X) = 〈Ψ1D
b(Γ1), . . . ,ΨkD

b(Γk), E1, . . . , Er〉,

where Ei are exceptional objects, r = l+ρ+2 > 0, and we denote by Ψi, by abuse of notation, the
composition of the full and faithful functor Ψi with the full and faithful functor Db(S,B0) → Db(X).
Remark that we can suppose that Γi has positive genus for all i = 1, . . . , k. Indeed, the derived
category of the projective line admits a semiorthogonal decomposition by two exceptional objects.
Then if there exists an i such that Γi ≃ P1, it is enough to perform some mutation to get a
semiorthogonal decomposition like (4.2) with g(Γi) > 0 for all i (recall we do not exclude the case
k = 0). By Lemma 2.7 we have:

(4.3) CH∗
Q(X) =

k⊕

i=1

CH∗
Q(Γi)⊕Qr,

where we used the fact that the category generated by a single exceptional object is equivalent to
the derived category of a point, and CH∗

Q(pt) = Q. We are interested in understanding how the
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decomposition (4.3) projects onto the codimension 2 cycle group CH2
Q(X) and in particular onto

the algebraically trivial part.
The proof is in two parts: first if Ψ : Db(Γ) → Db(X) is fully faithful and Γ has positive genus,

we get that J(Γ) is isomorphic to a principally polarized abelian subvariety of J(X) (Prop. 4.4).
This is essentially based on constructions from [41] and results from [5]. In the second part, starting
from the semiorthogonal decomposition we deduce the required isomorphism.

Lemma 4.2. Let Γ be a smooth projective curve of positive genus. Suppose there is a fully faithful
functor Ψ : Db(Γ) → Db(X). Then J(Γ) is isogenous to an abelian subvariety of J(X) ≃ P (C̃/C).

Proof. Let E be the kernel of the fully faithful functor Ψ : Db(Γ) → Db(X), and F the kernel of
its right adjoint. If we consider the cycles e and f described in Section 2.3, the Grothendieck–
Riemann–Roch formula implies that f.e induces the identity Id : h(Γ) → h(Γ). If ei and fi are the
i-th codimensional components of e resp. of f in CH∗

Q(X × Γ), then f.e = ⊕fi.e4−i. Remark that

ei gives a map h(Γ) → h(X)(i − 3). If we restrict to h1(Γ), then the motivic decomposition 3.1,
together with the fact that S is rational, gives us (fi.e4−i)|h1(Γ) = 0 for all i 6= 2. This implies that

Idh1(Γ) = (f2.e2)|h1(Γ), and then that h1(Γ) is a direct summand of h(X)(−1) and in particular it

is a direct summand of Prym1(C̃/C)(−1), which proves the claim. �

Remark that we can describe explicitly the map ψQ : JQ(Γ) → JQ(X) induced by Ψ, following
the ideas in [10]. Indeed the map ψQ is given by e2, the codimension 2 component of the cycle
associated to the kernel E . Then ψQ can be calculated just applying the Grothendieck–Riemann–
Roch Theorem.

Let p : Γ × X → X and q : Γ × X → Γ be the two projections. For M in J(Γ) we calculate
the second Chern character (ch(Ψ(M))2, since we know that the image of M lies in J(X), that
is in codimension 2. Applying Grothendieck–Riemann–Roch and using multiplicativity of Chern
characters, we have the following:

(ch(p∗(q
∗M ⊗ E)))2 = p∗(ch(q

∗M).ch(e).(1 − (1/2)q∗KΓ))3,

since the relative dimension of p is 1 and the relative Todd class is 1− (1/2)q∗KΓ. Recalling that
ch(q∗M) = 1 + q∗M and q∗M.q∗KΓ = 0, we get

(ch(p∗(q
∗M ⊗ E)))2 = p∗(q

∗M.ch2(E)− (1/2)q∗KΓ.ch2(E) + ch3(E)).

It is clear that this formula just defines an affine map ΨCH : CH1
Q(Γ) → CH2

Q(X) of Q-vector

spaces. In order to get the isogeny ψQ, we have to linearize and restrict to JQ(Γ), to get finally:

ψQ : JQ(Γ) −→ JQ(X)
M 7→ p∗(q

∗M.ch2(E))

Now that we have the cycle describing the map ψQ, we obtain a unique morphism ψ : J(Γ) → J(X),
whose kernel can only be torsion. That is, we have an isogeny ψ between J(Γ) and an abelian
subvariety of J(X).

Remark 4.3. Arguing as in [10, Sect. 2.3], we can show that the correspondence between Ψ and
ψ is functorial. Moreover, the functor with kernel E [n] induces the map (−1)nψ. The functor with
kernel E∨ induces the map ψ. Given line bundles L and L′ on Γ and X respectively, the functor
with kernel E ⊗p∗L⊗q∗L′ induces the map ψ. The adjoint functor of Ψ is a Fourier–Mukai functor
whose kernel is E∨ ⊗ q∗ωX [3]. Its composition with Ψ gives the identity of Db(Γ). The motivic

map f2 : Prym1(C̃/C)(−1) → h1(Γ) is then given by the cycle −ch2(e). Then, by functoriality
and (2.2), the cycle I(ch2(e)), as defined in Def. 3.3, is −Id in Corr(J(Γ)).

Recall that, by [5, Sec. 3], [8, 9] and Proposition 3.4, P (C̃/C) is the algebraic representative of

A2(X) and the principal polarization ΘP of P (C̃/C) is the incidence polarization with respect to

X. In particular, we have an isomorphism ξ : P (C̃/C) → A2(X) whose inverse G makes the Prym
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variety the algebraic representative of A2(X). Moreover, if f : T → A2(X) is an algebraic map
defined by a cycle z in CH2

Q(X × T ), then, according to Definition 3.3, we have

(G ◦ f)∗θP = I(z).

The map ψ is defined by the cycle ch2(e) in CH
2
Q(X×Γ). Following Remark 4.3, the cycle I(ch2(e))

in CH1
Q(Γ× Γ) gives the correspondence −Id, that is

(G ◦ ψ)∗θP = −Id.

Now going through the proof of [5, Prop. 3.3], it is clear that

ψ∗θJ(X) = Id,

where θJ(X) is the class of principal polarization of J(X). Hence we get an injective morphism
ψ : J(Γ) → J(X) preserving the principal polarization. We can state the following result.

Proposition 4.4. Let π : X → S a standard conic bundle over a rational surface. Suppose that
there is a smooth projective curve Γ of positive genus and a fully faithful functor Ψ : Db(Γ) →
Db(S,B0). Then there is an injective morphism ψ : J(Γ) → J(X) of abelian varieties, preserving
the principal polarization.

Consider the projection pr : CH∗
Q(X) → CH2

Q(X). The decomposition (4.3) is rewritten as:

CH∗
Q(X) =

k⊕

i=0

PicQ(Γi)⊕Qr+k,

where we used that CH∗
Q(Γi) = PicQ(Γi)⊕Q. The previous arguments show that pr restricted to

⊕k
i=1Pic

0
Q(Γi) is injective and has image in A2

Q(X). This map correspond on each direct summand

to the injective map ψi,Q obtained as in Lemma 4.2. Then the restriction of pr to ⊕k
i=1Pic

0
Q(Γi)

corresponds to the sum of all those maps, and we denote it by ψQ. Consider now the diagram

0 //
⊕k

i=0 Pic
0
Q(Γi)

//

_�

pr=ψQ

��

⊕k
i=0 PicQ(Γ)⊕Qk+r

pr

��

p̄r

))SSSSSSSSSSSSSSS

0 // A2
Q(X) // CH2

Q(X) // CH2
Q(X)/A2

Q(X) // 0,

where p̄r denotes the composition of pr with the projection onto the the quotient.
Denote by J := ψ(⊕Pic0(Γi)) the image of Ψ and JQ := J ⊗ Q. We have that the cokernel

A2
Q(X)/JQ is a finite dimensional Q-vector space. Since ψ is a morphism of abelian varieties, its

cokernel is also an abelian variety, and then it has to be trivial. This gives the surjectivity of ψ
and proves Theorem 1.1.

Remark 4.5. Let ρ be the rank of the Picard group of S. The numbers l and k satisfy a linear
equation: using the decomposition (4.3), we obtain l = 2 + ρ− 2k.

5. Rational conic bundles over the plane

Let π : X → P2 be a rational standard conic bundle. In particular, this implies that C has
positive arithmetic genus (see e.g. [26, Sect. 1]). There are only three non-trivial possibilities
for the discriminant curve ([5, 47, 25]). In fact, X is rational if and only if C + 2ωP2 is non-

effective, thus either C is a quintic and the double covering C̃ → C is given by an even theta
characteristic, or C is a quartic or a smooth cubic curve. As we have seen in Remark 3.2, once
we fix the discriminant curve and the associated double cover, we fix the Clifford algebra B0. We
then construct for any such plane curve and associated double cover a model of rational standard
conic bundle X for which we provide the required semiorthogonal decomposition. We analyze the
three cases separately.
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5.1. Degree five degeneration. Suppose C is a degree 5 curve and C̃ → C is given by an even
theta-characteristic. Recall the description of a birational map χ : X → P3 from [42] (see also
[26]). There is a smooth curve Γ of genus 5 and degree 7 in P3 such that χ : X → P3 is the blow-up
of P3 along Γ. In fact the conic bundle X → P2 is obtained [26] by resolving the linear system
of cubics in P3 vanishing on Γ. Let us denote by H the pull-back of OP3(1) via χ, and by D the
exceptional divisor. Remark that J(X) is isomorphic to J(Γ) as a principally polarized abelian
variety.

Let π : X → P2 be the conic bundle structure. We denote by h the pull back of OP2(1) via
π. The construction of the map π gives h = 3H −D, then we have D = 3H − h. The canonical
bundle ωX is given by −4H +D = −H − h.

Proposition 5.1. Let π : X → P2 be a standard conic bundle whose discriminant curve C is a
degree 5 curve and C̃ → C is given by an even theta-characteristic. Then there exists an exceptional
object E in Db(P2,B0) such that (up to equivalences):

Db(P2,B0) = 〈Db(Γ), E〉,

where Γ is a smooth projective curve such that J(X) ≃ J(Γ) as a principally polarized abelian
variety.

Proof. Consider the blow-up χ : X → P3. Orlov formula (see Prop. 2.4) provides a fully faithful
functor Ψ : Db(Γ) → Db(X) and a semiorthogonal decomposition:

Db(X) = 〈ΨDb(Γ), χ∗Db(P3)〉.

The derived category Db(P3) has a full exceptional sequence 〈OP3(−2),OP3(−1),OP3 ,OP3(1)〉. We
get then the semiorthogonal decomposition:

(5.1) Db(X) = 〈ΨDb(Γ),−2H,−H,O,H〉.

Kuznetsov formula (see Prop. 3.1) provides the decomposition:

Db(X) = 〈ΦDb(P2,B0), π
∗Db(P2)〉.

The derived category Db(P2) has a full exceptional sequence 〈OP2(−1),OP2 ,OP2(1)〉. We get then
the semiorthogonal decomposition

(5.2) Db(X) = 〈ΦDb(P2,B0),−h,O, h〉.

We perform now some mutation to compare the decompositions 5.1 and 5.2.
Consider the decomposition 5.2 and mutate ΦDb(P2,B0) to the right through −h. The functor

Φ′ = Φ ◦R−h is full and faithful and we have the semiorthogonal decomposition:

Db(X) = 〈−h,Φ′Db(P2,B0),O, h〉.

Perform the left mutation of h through its left orthogonal, which gives

Db(X) = 〈−H,−h,Φ′Db(P2,B0),O〉,

using Lemma 2.6 and ωX = −H − h.

Lemma 5.2. The pair 〈−H,−h〉 is completely orthogonal.

Proof. Consider the semiorthogonal decomposition 5.1 and perform the left mutation of H through
its left orthogonal. By Lemma 2.6 we get

Db(X) = 〈−h,ΨDb(Γ),−2H,−H,O〉,

which gives us Hom•(−H,−h) = 0 by semiorthogonality. �
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We can now exchange −H and −h, obtaining a semiorthogonal decomposition

Db(X) = 〈−h,−H,Φ′Db(P2,B0),O〉.

The right mutation of −h through its right orthogonal gives (with Lemma 2.6) the semiorthogonal
decomposition:

Db(X) = 〈−H,Φ′Db(P2,B0),O,H〉.

Perform the left mutation of Φ′Db(P2,B0) through −H. The functor Φ′′ = Φ′ ◦ L−H is full and
faithful and we have the semiorthogonal decomposition:

Db(X) = 〈Φ′′Db(P2,B0),−H,O,H〉.

This shows, by comparison with (5.1), that Φ′′Db(P2,B0) = 〈ΨDb(Γ),−2H〉. �

5.2. Degree four degeneration. Suppose C ⊂ P2 is a degree four curve with at most double
points. We are going to describe X as a hyperplane section of a conic bundle over (a blow-up of)
P3, basing upon a construction from [12]. Let Γ be a smooth genus 2 curve, and Picn(Γ) the Picard
variety of Γ that parametrizes degree n line bundles, up to linear equivalence. Since g(Γ) = 2,
Pic1(Γ) contains the canonical Riemann theta divisor Θ := {L ∈ Pic1(Γ)|h0(Γ, L) 6= 0}. It is well
known that the Kummer surface Kum(Γ) := Pic0(Γ)/ ± Id is naturally embedded in the linear
system |2Θ| = P3. The surface Kum(Γ) sits in P3 as a quartic surface with 16 double points.
Note that the point corresponding to the line bundle OΓ is a node, and we will call it the origin
or simply OΓ.

Now we remark that Γ is tri-canonically embedded in P4 = |ω3
Γ|

∗, moreover we have a rational
map

ϕ : P4
99K P3 := |IΓ(2)|

∗

given by quadrics in the ideal of Γ. In [12] it is shown that there exists an isomorphism |IΓ(2)|
∗ ∼=

|2Θ|. Let now K̃um(Γ) be the blow-up of Kum(Γ) in the origin OΓ and P3
O the corresponding

blow up of P3, so that we have K̃um(Γ) ⊂ P3
O. Consider now the curve Γ in P4 and any point

p ∈ Γ. We denote by qp the only effective divisor in the linear system |ωΓ(−p)|. The ruled surface

S := {x ∈ P4|x ∈ pqp, ∀p ∈ Γ}

is a cone over a twisted cubic Y in P3. Let BlSP4 the blow-up of P4 along the cubic cone, then
the main result of [12] can be phrased as follows.

Theorem 5.3. The rational map ϕ resolves to a morphism ϕ̃ : BlSP4 → P3
O that is a conic bundle

degenerating on K̃um(Γ). Hence we have the following commutative diagram.

BlSP4
ϕ̃

//

��

P3
O

��

P4
ϕ

//____ P3

Remark 5.4. The conic bundle described in Thm. 5.3 is standard. This is straightforward from
the description in [12].

For any plane quartic curve C with at most double points, we are going to obtain a structure
of a standard conic bundle on P2 degenerating on C by taking the restriction of ϕ̃ to suitable
hyperplanes of P3 for suitable choices of the genus two curve Γ. In fact every such quartic curve
can be obtained via hyperplane intersection with an appropriate Jacobian Kummer surface, see [1,
Rem. 2.2] and [48].

More precisely consider the composition φ : BlSP4 → P3
O → P3 of the conic bundle of Thm. 5.3

with the blow-down map. Consider a hyperplane N ⊂ P3 not containing the origin OΓ and denote
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by X := φ−1(N) and by π the restriction of φ to X. Then the induced map π : X → N ≃ P2

defines a standard conic bundle that degenerates on the intersection N ∩Kum(Γ). Then it is easy
to see that X is isomorphic to the blow-up along Γ of a smooth (since N does not contain OΓ)
quadric hypersurface Z ⊂ P4 in the ideal of Γ ⊂ P4.

It is also known ([1], [48]) that the admissible double cover of N ∩ Kum(Γ) induced by the
degree 2 cover J(Γ)/ ± Id has Prym variety isomorphic to J(Γ) and ([48]) that in this way one
obtains all admissible double covers of plane quartics. Remark that this is indeed the double cover
of the plane quartic induced by the restriction of the conic bundle degenerating on the Kummer
variety. This means that the intermediate Jacobian J(X) is isomorphic to J(Γ) as a principally
polarized abelian variety.

Finally, remark that we can always assume that the quadric hypersurface Z we are considering
is smooth. The locus of singular quadric hypersurfaces corresponds via φ to hyperplanes in P3

passing through the origin OΓ of the Kummer surface. Notably these correspond to the quadric
cones over the quadrics in P3 vanishing on the twisted cubic Y . It is easy to see, using the invariance
of Kum(Γ) under the action of (Z/2Z)4, that one can get any plane quartic with at most double
points to us by considering hyperplanes in P3 that do not contain the origin.

Resuming, let χ : X → Z be the blow-up of Z along Γ. Let us denote by H both the restriction
of OP4(1) to Z and its pull-back to X via χ, and by D the exceptional divisor. Remark that
ωZ = −3H. Let Σ be the spinor bundle on the quadric Z. Let π : X → P2 be the conic bundle
structure. We denote by h the pull back of OP2(1) via π. The construction of the map π gives
h = 2H−D, then we have D = 2H−h. The canonical bundle ωX is given by −3H+D = −H−h.

Proposition 5.5. Let π : X → P2 be a standard conic bundle whose discriminant locus C is a
degree 4 curve. Then there exists an exceptional object E in Db(P2,B0) such that (up to equiva-
lences):

Db(P2,B0) = 〈Db(Γ), E〉,

where Γ is a smooth projective curve such that J(X) ≃ J(Γ) as a principally polarized abelian
variety.

Proof. Consider the blow-up χ : X → Z. Orlov formula (see Prop. 2.4) provides a fully faithful
functor Ψ : Db(Γ) → Db(X) and a semiorthogonal decomposition:

Db(X) = 〈ΨDb(Γ), χ∗Db(Z)〉.

By [27], the derived category Db(Z) has a full exceptional sequence 〈Σ − 2H,−H,O,H〉. We get
then the semiorthogonal decomposition:

(5.3) Db(X) = 〈ΨDb(Γ),Σ− 2H,−H,O,H〉.

Kuznetsov formula (see Prop. 3.1) provides the decomposition:

Db(X) = 〈ΦDb(P2,B0), π
∗Db(P2)〉.

The derived category Db(P2) has a full exceptional sequence 〈OP2(−1),OP2 ,OP2(1)〉. We get then
the semiorthogonal decomposition:

(5.4) Db(X) = 〈ΦDb(P2,B0),−h,O, h〉.

We perform now some mutation to compare the decompositions (5.3) and (5.4). Surprisingly to
us, we will follow the same path as in the proof of Proposition 5.1.

Consider the decomposition (5.4) and mutate ΦDb(P2,B0) to the right through −h. The functor
Φ′ = Φ ◦R−h is full and faithful and we have the semiorthogonal decomposition:

Db(X) = 〈−h,Φ′Db(P2,B0),O, h〉.

Perform the left mutation of h through its left orthogonal, which gives

Db(X) = 〈−H,−h,Φ′Db(P2,B0),O〉,
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using Lemma 2.6 and ωX = −H − h. We can prove the following Lemma in the same way we
proved Lemma 5.2.

Lemma 5.6. The pair 〈−H,−h〉 is completely orthogonal.

We can now exchange −H and −h, obtaining a semiorthogonal decomposition

Db(X) = 〈−h,−H,Φ′Db(P2,B0),O〉.

The right mutation of −h through its right orthogonal gives (with Lemma 2.6) the semiorthogonal
decomposition:

Db(X) = 〈−H,Φ′Db(P2,B0),O,H〉.

Perform the left mutation of Φ′Db(P2,B0) through −H. The functor Φ′′ = Φ′ ◦ L−H is full and
faithful and we have the semiorthogonal decomposition:

Db(X) = 〈Φ′′Db(P2,B0),−H,O,H〉.

This shows, by comparison with (5.3) that Φ′′Db(P2,B0) = 〈ΨDb(Γ),Σ − 2H〉. �

5.3. Degree three degeneration. Let π : X → P2 be a standard conic bundle whose discrimi-
nant C is a smooth cubic curve. If C had a node, pa(C) = 0 and then X would not be standard
(see e.g. [26, Sect. 1]). Now consider X ⊂ P2 × P2 a hypersurface of bidegree (1, 2). The map π
given by the restriction of the first projection p1 : P2 × P2 → P2 is a conic bundle degenerating on
a cubic curve. Indeed the datum of a nontrivial theta-characteristic α (in fact, a 2-torsion point in
J(C)) on a plane cubic displays the curve as the discriminant curve of a net of conics in P2 (see for
example [6, Sect. 4]). In this way (see also [19], Chap. 3, for these and other classical constructions
related to plane cubic curves and their polars) we get a conic bundle degenerating on C for every
unramified (and hence admissible, since C is smooth) double cover of C. The restriction of the
second projection gives a P1-bundle p : X → P2. Remark that the intermediate Jacobian J(X) is
trivial.

Let h := π∗OP2(1) and H := p∗OP2(1), then H = Oπ(1) and h = Op(1). We denote, by abuse of
notation, H and h the restrictions of H and h to X. We have the canonical bundle ωX = −2h−H
by adjunction.

Proposition 5.7. Let π : X → P2 be a standard conic bundle whose discriminant locus C is a
degree 3 curve. Then there exist three exceptional objects E1, E2 and E3 in Db(P2,B0) such that
(up to equivalences):

Db(P2,B0) = 〈E1, E2, E3〉.

Proof. Consider the P1-bundle structure p : X → P2. Then by Proposition 2.3 we have

Db(X) = 〈p∗Db(P2), p∗Db(P2)⊗Op(1)〉,

which gives, recalling that h = Op(1),

(5.5) Db(X) = 〈−2H,−H,O, h −H,h, h +H〉,

where we used the decompositions 〈OP2(−2),OP2(−1),OP2〉 and 〈OP2(−1),OP2 ,OP2(1)〉 in the first
and in the second occurrence of p∗Db(P2) respectively.

Kuznetsov formula (see Prop. 3.1) provides the decomposition

Db(X) = 〈ΦDb(P2,B0), π
∗Db(P2)〉,

which, choosing the decomposition Db(P2) = 〈OP2(−1),OP2 ,OP2(1)〉, gives

(5.6) Db(X) = 〈ΦDb(P2,B0),−h,O, h〉.

We perform now some mutation to compare the decomposition (5.5) and (5.6).
Consider the decomposition 5.5 and mutate h−H to the left through O. This gives

Db(X) = 〈−2H,−H,E,O, h, h +H〉,
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where E := LO(h −H) is an exceptional object. Perform the left mutation of H + h through its
left orthogonal, which gives

Db(X) = 〈−h,−2H,−H,E,O, h〉,

using Lemma 2.6 and ωX = −2h−H. Finally, mutate the exceptional sequence (−2H,−H,E) to
the left through −h. This gives

Db(X) = 〈E1, E2, E3,−h,O, h〉,

where (E1, E2, E3) := L−h((−2H,−H,E)) is an exceptional sequence. This shows, by comparison
with (5.6), that ΦDb(P2,B0) = 〈E1, E2, E3〉. �

6. Rational conic bundles over Hirzebruch surfaces

Let us consider now the case S = Fn for n 6= 1. In this case, following ([26, 47]), we have only
two non-trivial possibilities for a standard conic bundle π : X → S to be rational: there must exist
a base point free pencil L0 of rational curves such that either L0 · C = 3 or L0 · C = 2. In the
first case C is trigonal, and in the second one C is hyperelliptic. In both instances, the only such
pencil is the natural ruling of S. Hence, if we let q : S → P1 be the ruling map, the trigonal or
hyperelliptic structure is induced by the fibers of q. As we have seen in Remark 3.2, once we fix
the discriminant curve and the associated double cover, we fix the Clifford algebra B0. We then
construct for any such curve and associated double cover a model of rational standard conic bundle
X for which we provide the required semiorthogonal decomposition.

We will proceed as follows: fixed the discriminant curve and the double cover C̃ → C, we
describe a structure of conic bundle π : X → S following Casnati [17] as the blow-up of a P2-
bundle over P1 along a certain tetragonal curve (in the case of hyperelliptic degeneration this
requires a little more work and the tetragonal curve splits into two hyperelliptic curves) given by
Recillas’ construction ([43] for the trigonal case) and one of its degenerations (for the hyperelliptic
case). These constructions can be performed for all the trigonal or hyperelliptic discriminant curves
with at most nodes as singularities. We describe the case of trigonal and hyperelliptic degeneration
separately, following anyway the same path.

The trigonal construction had already been used in the framework of conic bundles, in a slightly
different context, in [21].

6.1. Trigonal degeneration. In the case where C is a trigonal curve on S, we can give an explicit
description of the conic bundle π : X → S degenerating along C, exploiting Recillas’ trigonal con-
struction [43]. We will develop the trigonal construction in the more general framework presented
by Casnati in [17], that emphasizes the conic bundle structure. For a detailed account in the curve
case, with emphasis on the beautiful consequences on the structure of the Prym map, see also [20].

Before going through details let us recall from [16] that any Gorenstein degree 3 cover t′ : C → P1

can be obtained inside a suitable P1-bundle S := P(F) over P1 as the zeros of a relative cubic form
in two variables. On the other hand each Gorenstein degree 4 cover t : Γ → P1 is obtained [16]
as the base locus of a relative pencil of conics over P1 contained in a P2-bundle Z := P(E) over
P1. Moreover, the restriction, both to C and Γ, of the natural projection of each projective bundle
give the respective finite cover map to P1. For instance, the P2-fiber Zx contains the four points
of Γ over x ∈ P1.

In particular, fix a point x of P1 and the corresponding plane Zx, that is the fiber of the natural
projection p : Z → P1 over x. Then consider the pencil of conics through the 4 points given by
intersecting Zx with Γ. What we got is then a pencil of conics with three degenerate conics for
each point of P1. We then have a pencil of such conic pencils (parameterized by the ruled surface
S), which can be described as the 2-dimensional family of vertical conics in Z intersecting Γ in all
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the four points of Γ ∩ Zx. The standard conic bundle over S is then given by resolving the linear
system |OZ/P1(2)− Γ|.

This natural constructions for degree 3 and 4 covers naturally lead us to the result that matters
the most to us, that is Thm. 6.5 of [17] (see also Thm 2.9 of [20]). This theorem basically says that
to any trigonal Gorenstein curve C we can associate a smooth tetragonal curve Γ such that C is
the discriminant locus of the conic bundle that defines Γ. That is: we consider the relative pencil
of conics in the projective bundle Z → P1 that define Γ, this gives a P1-bundle over P1 such that
the locus of degenerate conics is exactly the curve C in its natural embedding as a relative cubic
form. This Theorem ensures that all trigonal curves with at most double points that sit in some
ruled surface S are discriminant divisors of a conic bundle (for details see [17], Sect. 5 and 6).
The reader can easily see that the conic bundle X degenerating on C is isomorphic to the blow-up
of Z along Γ. This tight connection between trigonal and tetragonal curves is reflected also when
considering the corresponding Prym and Jacobian varieties. The Prym variety of the admissible
cover of C induced by the conic bundle is in fact isomorphic to the Jacobian of Γ [43] and to the
intermediate Jacobian of the conic bundle X.

In the following we will stick to the notation we used here above: C will indicate any trigonal
curve, and Γ the tetragonal curve corresponding to C via the Casnati-Recillas construction. Both
curves will be considered in their natural projective bundle embeddings.

Summarizing, we end up with the following commutative diagram:

X
π

~~||
||

||
|| χ

!!B
BB

BB
BB

B D?
_oo

χ

��
@@

@@
@@

@

S

q
  @

@@
@@

@@
@ Z

p
~~}}

}}
}}

}}
Γ?
_oo

P1,

where p : Z → P1 is a P2-bundle, Γ ⊂ Z the tetragonal curve, χ : X → Z the blow-up of Γ
with exceptional divisor D. The surface q : S → P1 is ruled and π : X → S is the conic bundle
structure degenerating along the trigonal curve C.

We denote by H := OZ/P1(1) the relative ample line bundle on Z and by h := OS/P1(1) the
relative ample line bundle on S. By abuse of notation, we still denote by H and h the pull-back of
H and h via χ and π respectively. The construction of the map π gives h = 2H −D, from which
we deduce that D = 2H −h. The canonical bundle ωX is given by ωX = χ∗ωZ +D. Since we have
ωZ = ωZ/P1 + p∗ωP1 = −3H + p∗ωP1 , we finally get ωX = −H − h+ χ∗p∗ωP1 .

Proposition 6.1. Let π : X → S be a conic bundle whose discriminant locus C is a trigonal curve
whose trigonal structure is given by the intersection of C with the ruling S → P1. Then there exist
two exceptional objects E1, E2 in Db(S,B0) such that (up to equivalences):

Db(S,B0) = 〈Db(Γ), E1, E2〉,

where Γ is a smooth projective curve such that J(X) ≃ J(Γ) as a principally polarized abelian
variety.

Proof. Consider the blow-up χ : X → Z. Orlov formula (see Prop. 2.4) provides a fully faithful
functor Ψ : Db(Γ) → Db(X) and a semiorthogonal decomposition:

Db(X) = 〈ΨDb(Γ), χ∗Db(Z)〉.

By Prop. 2.3 we can choose the semiorthogonal decomposition 〈p∗Db(P1)−H, p∗Db(P1), p∗Db(P1)+
H〉 of Db(Z), where the notation p∗Db(P1) + iH stands for p∗Db(P1)⊗OZ/P1(i). We then get:

(6.1) Db(X) = 〈ΨDb(Γ), χ∗p∗Db(P1)−H, χ∗p∗Db(P1), χ∗p∗Db(P1) +H〉.
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Kuznetsov formula (see Prop. 3.1) provides the decomposition:

Db(X) = 〈ΦDb(S,B0), π
∗Db(S)〉.

By Prop. 2.3 we can choose the semiorthogonal decomposition 〈q∗Db(P1)−h, q∗Db(P1)〉 of Db(S).
We then get:

(6.2) Db(X) = 〈ΦDb(S,B0), π
∗q∗Db(P1)− h, π∗q∗Db(P1)〉.

We perform now some mutation to compare the decompositions (6.1) and (6.2). First of all, since
π∗q∗ = χ∗p∗, we have π∗q∗Db(P1) = χ∗p∗Db(P1) and we will denote this category simply by
Db(P1).

Consider the decomposition (6.2) and mutate ΦDb(S,B0) to the right with respect to Db(P1)−h.
The functor Φ′ := Φ◦RDb(P1)−h is full and faithful and we have the semiorthogonal decomposition

Db(X) = 〈Db(P1)− h, Φ′Db(S,B0), D
b(P1)〉.

Perform the right mutation of Db(P1)− h through its right orthogonal. We have

R<Db(P1)−h>⊥(Db(P1)− h) = Db(P1)− h− ωX ∼= Db(P1) +H.

Indeed ωX = −H − h + χ∗p∗ωP1 and the tensorization with χ∗p∗ωP1 gives an autoequivalence of
Db(P1). We then have the decomposition

Db(X) = 〈Φ′Db(S,B0), D
b(P1), Db(P1) +H〉.

Comparing this last decomposition with (6.1) we get

Φ′Db(S,B0) = 〈Ψ(Γ),Db(P1)−H〉,

and the proof now follows recalling that Db(P1) has a two-objects full exceptional sequence. �

6.2. Hyperelliptic degeneration. Also in the case where C is a hyperelliptic curve on S, we
can give an explicit description of the conic bundle π : X → S degenerating along C. The key
remark here is that X can be obtained via a birational transformation starting from a degenerate
case of the Casnati-Recillas construction.

Let us consider the disconnected trigonal curve C ′ = C ∐ L → P1, where L is isomorphic to P1

and the degree 3 cover is the obvious one. Donagi pointed out [20, Ex. 2.10] that the Casnati-
Recillas construction gives in this case a tetragonal curve Γ = Γ0 ∐ Γ1 that splits into the disjoint
union of two hyperelliptic curves. Let Ri be the ramification locus of Γi, and R the one of C.

As a tetragonal curve, Γ is naturally embedded in a P2-bundle Z := P(E) → P1. On the other

hand the double cover C̃ ′ of C ′ splits as C̃ ∐ P1 ∐P1, where C̃ is a double cover of C. The P1 ∐P1

part is of course the trivial disconnected double cover of L. This implies that P (C̃ ′/C ′) ∼= P (C̃/C)
and that the conic bundle Y → S obtained as the blow up of Z along Γ is not standard. Indeed,
being the double cover of L trivial implies that the preimage G of L is a reducible rank 2 quadric
surface.

In order to fix this, we perform some birational transformation to find the standard conic bundle
π : X → S degenerating along the hyperelliptic curve C. Such birational transformation is a slight
generalization of the elementary transformation described in [44, Sect. 2.1] and, roughly, it consists
in contracting one of the two rational components of G. After that, L is no longer contained in the
discriminant locus, hence the discriminant locus is the hyperelliptic curve. This transformation
corresponds to a birational transformation of the projective bundle Z.

Consider the curve Γ0 in Z and blow it up. Let Z̃ → Z be the blow-up and D̃ the exceptional

divisor. Let T ⊂ Z̃ be the strict transform of the ruled surface obtained by taking the closure of
the locus of lines spanned by each couple of points of Γ0 associated by the hyperelliptic involution.

Let us denote Q the 3-fold obtained from Z̃ by blowing down T to a line along the ruling. Remark
that, since Γ1 is disjoint from Γ0, then Γ1 is embedded in Q.
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Lemma 6.2. (i) There is a quadric bundle structure τ : Q → P1 of relative dimension 2, with
simple degeneration along the ramification set R0 of Γ0.

(ii) There exists a full and faithful functor Ψ̄0 : Db(Γ0) → Db(Q) and a semiorthogonal decom-
position

Db(Q) = 〈Ψ̄0D
b(Γ0), τ

∗Db(P1), τ∗Db(P1)⊗OQ/P1(1) > .

Proof. (i) Consider a point x in P1 and the fiber Zx, which is a projective plane. Let ai, bi be
the points where Γi intersects Zx. Then if we blow-up a0 and b0 and we contract the line through
them, we get a birational map Zx 99K Qx, where Qx is a quadric surface, which is smooth if and
only if a0 6= b0 [22, pag. 85] and has simple degeneration otherwise, in fact F1 is isomorphic to the
blow up of a quadric cone in its node.

(ii) By [31], if we denote by C0 the sheaf of even parts of the Clifford algebra associated to τ ,
there is a fully faithful functor Ψ̄0 : D

b(P1, C0) → Db(Q) and a semiorthogonal decomposition

Db(Q) = 〈Ψ̄0D
b(P1, C0), τ

∗Db(P1), τ∗Db(P1)⊗OQ/P1(1) > .

Now apply [31, Cor. 3.14] to get the equivalence Db(P1, C0) ∼= Db(Γ0). �

Now we complete the frame by describing the conic bundle structure π : X → S degenerating
along C, where X is the blow-up of Q along Γ1. Through the birational transformation just
described, the P2-bundle Z has been transformed into the quadric bundle Q and the pencil of
conics in Zx passing through a0, b0, a1, b1 has been transformed into a pencil of hyperplane sections
of Qx passing through a1 and b1. Hence each line of the ruling of S corresponds to a pencil of
quadratic hyperplane sections. Moreover the conics over the rational curve L ⊂ S had simple
degeneration in Y and are smooth in X. On the rest of the ruled surface S the degeneration type
of the conics is preserved.

This implies that π : X → S is a standard conic bundle degenerating along the hyperelliptic C.
It is given by resolving the relative linear system |OQ/P1(1)− Γ1|.

Summarizing, we end up with the following diagram:

X
π

~~}}
}}

}}
}} χ

  B
BB

BB
BB

B D?
_oo

χ

  
AA

AA
AA

A

S

q
��

??
??

??
??

Q

τ
~~~~

~~
~~

~~
Γ1

? _oo

P1,

Where τ : Q→ P1 is a quadric bundle degenerating exactly in the ramification locus of Γ0 → P1

and contains the hyperelliptic curve Γ1. The map χ is the blow-up of Q along Γ1 with exceptional
divisorD. The surface q : S → P1 is ruled and π : X → S is the conic bundle structure degenerating
along the hyperelliptic curve C. Remark that J(X) is isomorphic to J(Γ0)⊕ J(Γ1) as principally

polarized abelian variety. Since J(X) ∼= P (C̃/C), if C is smooth it can be shown that R1∪R0 = R
and the configuration of Pryms and Jacobians is the one described by Mumford in [36].

We denote by H := OQ/P1(1) the relative ample line bundle on Q. We have ωQ/P1 = −2H.
Denote by h := OS/P1(1) the relative ample line bundle on S. By abuse of notation, we still denote
by H and h the pull-backs of H and h via χ and π respectively. The construction of the map π
gives h = H −D, from which we deduce that D = H − h.

The canonical bundle ωX is given by ωX = χ∗ωQ +D. Since we have ωQ = ωQ/P1 + τ∗ωP1 , we
finally get ωX = −H − h+ χ∗τ∗ωP1 .

Proposition 6.3. Let π : X → S be a conic bundle whose discriminant locus C is a hyperelliptic
curve whose hyperelliptic structure is given by the intersection of C with the ruling S → P1. Then
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(up to equivalences):

Db(S,B0) = 〈Db(Γ1),D
b(Γ0)〉,

where Γ0 and Γ1 are smooth projective curves such that J(X) ≃ J(Γ0) ⊕ J(Γ1) as a principally
polarized abelian variety.

Proof. Consider the blow-up χ : X → Q. Orlov formula (see Prop. 2.4) provides a fully faithful
functor Ψ1 : D

b(Γ1) → Db(X) and a semiorthogonal decomposition:

Db(X) = 〈Ψ1D
b(Γ1), χ

∗Db(Q)〉.

Lemma 6.2 gives us

(6.3) Db(X) = 〈Ψ1D
b(Γ1), Ψ0D

b(Γ0), χ
∗τ∗Db(P1), χ∗τ∗Db(P1) +H〉,

where Ψ0 = Ψ̄0 ◦ χ
∗ is fully faithful.

Kuznetsov formula (see Prop. 3.1) provides the decomposition:

Db(X) = 〈ΦDb(S,B0), π
∗Db(S)〉.

By Prop. 2.3 we can choose the semiorthogonal decomposition 〈q∗Db(P1), q∗Db(P1)−h〉 of Db(S).
We then get

(6.4) Db(X) = 〈ΦDb(S,B0), π
∗q∗Db(P1)− h, π∗q∗Db(P1)〉.

We perform now some mutation to compare the decompositions (6.3) and (6.4). First of all, since
π∗q∗ = χ∗τ∗, we have π∗q∗Db(P1) = χ∗τ∗Db(P1) and we will denote this category simply by
Db(P1).

Consider the decomposition (6.4) and mutate ΦDb(S,B0) to the right through Db(P1)−h. The
functor Φ′ := Φ ◦RDb(P1)−h is full and faithful and we have the semiorthogonal decomposition

Db(X) = 〈Db(P1)− h, Φ′Db(S,B0), D
b(P1)〉.

Perform the right mutation of Db(P1)− h through its right orthogonal. We have

R<Db(P1)−h>⊥(Db(P1)− h) = Db(P1)− h− ωX ∼= Db(P1) +H.

Indeed ωX = −H − h + χ∗τ∗ωP1 and the tensorization with χ∗τ∗ωP1 gives an autoequivalence of
Db(P1). We then have the decomposition

Db(X) = 〈Φ′Db(S,B0), D
b(P1), Db(P1) +H〉.

Comparing this last decomposition with (6.4) we get

Φ′Db(S,B0) = 〈Ψ1D
b(Γ1),Ψ0D

b(Γ0)〉.

�

Remark 6.4. Remark that the choice of blowing up first Γ0 and then Γ1 has no influence (up to
equivalence) on the statement of Proposition 6.3.

6.3. A non-rational example. Theorem 1.1 states that if π : X → S is standard and S rational,
then a semiorthogonal decomposition of Db(S,B0) (and then of Db(X)) via derived categories
of curves and exceptional objects allows to reconstruct the intermediate Jacobian J(X) as the
direct sum of the Jacobians of the curves. It is clear by the technique used, that S being rational
is crucial. Using the construction by Casnati [17], we provide here examples of standard conic
bundles π : X → S over a non-rational surface such that both Db(X) and Db(S,B0) admit a
decomposition via derived categories of smooth projective curves. In these cases, X is clearly
non-rational, and J(X) is only isogenous to P (C̃/C)⊕A2(S)⊕A1(S) [9].

Let G be a smooth projective curve of positive genus. Remark that Db(G) contains no ex-
ceptional object, because of Serre duality. Consider a smooth degree four cover Γ → G, and its
embedding in a P2-bundle Z → G. By [17], there is a unique degree 3 cover C → G embedded in
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a ruled surface S → G, and we suppose that C has at most double points. As in 6.1, we end up
with a commutative diagram:

X
π

~~}}
}}

}}
}} χ

  A
AA

AA
AA

A D?
_oo

χ

��
@@

@@
@@

@

S

q
��

@@
@@

@@
@ Z

p
~~}}

}}
}}

}
Γ?
_oo

G,

where X is the blow-up of Z along Γ, D the exceptional divisor and π : X → S a standard conic
bundle degenerating along C, induced by the relative linear system |OZ/G(2) − Γ|. Orlov formula
for blow-ups (see Prop. 2.4) and Prop. 2.3 give a semiorthogonal decomposition

Db(X) = 〈ΨDb(Γ),Db(G)−H,Db(G),Db(G) +H〉,

where we keep the notation of 6.1 and we write Db(G) := χ∗p∗Db(G) = π∗q∗Db(G). Then Db(X)
is decomposed by derived categories of smooth projective curves. Going through the proof of
Proposition 6.1, it is clear that replacing P1 with G does not affect any calculation, except the
fact that Db(G) contains no exceptional object. Keeping the same notation, we end up with the
semiorthogonal decomposition

Φ′Db(S,B0) = 〈ΨDb(Γ),Db(G)−H〉.
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