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We survey diverse approaches to the notion of information: from Shannon entropy to Kolmogorov complexity. Two of the main applications of Kolmogorov complexity are presented: randomness and classification. The survey is divided in two parts published in a same volume. Part II is dedicated to the relation between logic and information system, within the scope of Kolmogorov algorithmic information theory. We present a recent application of Kolmogorov complexity: classification using compression, an idea with provocative implementation by authors such as Bennett, Vitányi and Cilibrasi. This stresses how Kolmogorov complexity, besides being a foundation to randomness, is also related to classification. Another approach to classification is also considered: the so-called "Google classification". It uses another original and attractive idea which is connected to the classification using compression and to Kolmogorov complexity from a conceptual point of view. We present and unify these different approaches to classification in terms of Bottom-Up versus Top-Down operational modes, of which we point the fundamental principles and the underlying duality. We look at the way these two dual modes are used in different approaches to information system, particularly the relational model for database introduced by Codd in the 70's. This allows to point out diverse forms of a fundamental duality. These operational modes are also reinterpreted in the context of the comprehension schema of axiomatic set theory ZF. This leads us to develop how Kolmogorov's complexity is linked to intensionality, abstraction, classification and information system.

Note. All notations and definitions relative to Kolmogorov complexity are introduced in Part I 1 .

Algorithmic information theory and classification

Using Andrei Nikolaevich Kolmogorov complexity, striking results have been obtained on the problem of classification for quite diverse families of objects: let them be literary texts, music pieces, examination scripts (lax supervised) or, at a different level, natural languages and natural species (phylogeny).

The authors, mainly Charles Bennett, Paul Vitányi, Rudi Cilibrasi 2 have worked out refined methods which are along the following lines.

Definition and representation of the family of objects we want to classify

First we have to define a specific family of objects which we want to classify.

For example, a set of Russian literary texts that we want to group by authors. In this simple case, all texts are written in their original Russian language.

Another instance, music. In that case, a common translation is required, i.e., a normalization of music pieces (representing or, in other words, interpreting musical partitions) which we want to group by composer. This common representation (which has to be tailored for computer programs) is necessary in order to be able to compare these diverse music pieces. Let us cite Delahaye [14]:

≪ Researchers considered 36 music pieces coded as MIDI (Musical Instrumental Digital Interface) files. They normalized them by producing piano versions and considering them as data files consisting of long lists of bytes [START_REF] Chaitin | On the length of programs for computing finite binary sequences[END_REF] . Without such a normalization, which is a real informations extraction, nothing would work [. . . ] ≫ An instance at a different level: the 52 main European languages. In that case one has to choose a canonical object (here a text) and its representations (here translations) in each one of the different languages (i.e. corpus) that we consider. For instance, the Universal Declaration of Human Rights and its translations in these languages, an example which was a basic test for Vitányi's method. As concerns natural species (another example developed by Vitányi), the canonical object will be a DNA sequence.

What has to be done is to select, define and normalize a family of objects or a corpus that we want to classify.

Normalization of a family of objects is a complex problem, and it may be also the case for the definition of such a family. Roughly speaking, one can partition the types of considered objects in different classes :

• Well defined families of objects to be classified. Normalization of these objects (rather of their representations) can then be done without loss of information. This is the case of literary texts.

• The family to be classified can be finite though unknown, possibly without a priori bound on its size. Such is the case with informations on the Web (cf. classification using Google, section 3).

• There are some cases where such a normalization is difficult to work out if not impossible. It may be the case for painting, drawing, photography, art-house cinema, etc.

Comparing the common information content

Finally, one gets a family of words in the same alphabet which represent the objects that we want to compare and measure the common information content [START_REF] Chaitin | On the length of programs for computing finite binary sequences: statistical considerations[END_REF] (observe that we can reduce to a binary alphabet). Our goal is to compare and, if possible, to measure the common information content.

This comparison is done by defining a distance for the pairs of such (binary) words with the following intuition:

The more common information is shared by two words, the closer they are and the shorter is their distance. Conversely, the less common information existing between two words, the more they are independent and non correlated, and greater is their distance. Two identical words have a null distance. Two totally independent words (for example, words representing two events as 100 random coin tosses) have a distance of about 1 (for a normalized distance bounded by 1).

Observe that the authors, in their approach of classification of information, follow the ideas pioneered by Claude Shannon and Kolmogorov to define a quantitative measure of information content of words, i.e. a measure of their randomness (in exactly the same way as a volume or a surface gets a numerical measure).

Classification

We now have to associate a classification to the objects or corpus defined in section 1.1 using the numerical measures based on the distances introduced in section 1.2. This step is presently the least formally defined. The authors give representations of the obtained classifications using tables, trees, graphs, etc. This is indeed more a visualization, i.e. a graphic representation, of the obtained classification than a formal classification. Here the authors have no powerful mathematical framework such as the relational model for databases elaborated by Edgar F. Codd in the 70's [10, 11] and its (recent) extension to object database with trees. Codd's approach is currently one of the sole mathematical formal approaches (if not the only one) to the notion of information structuralization. In this way, one can say that structuring a class of informations or (representations of) objects (from the "real world" as computer scientists call it) amounts to a relational database which is itself a perfectly defined mathematical object. Moreover one can question this database and extract "new" informations via queries which can be written in a formal language (namely Codd's relational algebra ). Also, notice that this extremely original theoretical approach is the one which is implemented in all database softwares since the 80's and is used everywhere there is some mention of databases.

Consequently, the question is how are we to interpret in a formal way tables or trees in classification via compression and more particularly how are we to formally extract informations from this classification?

Though valuable, the classification obtained by this method (of classification via compression) is rudimentary and non formal. This is somewhat analogous, for instance, to the classification of words in a dictionary of synonyms. We face a complex problem on which we shall return in section 4. Nevertheless, Vitányi & al. obtained by these methods a classification tree for the 52 European languages which is the one revealed by linguists, a remarkable success. They also obtained phylogenetic trees classifying natural species which are in accordance with those obtained by paleontologists. These trees represent parenthood relations between natural species and are obtained via DNA sequence comparisons.

Normalization

An important problem remains when using a distance as in section 1.3. To obtain a classification, we have to consider the amount of information contained in the considered objects. Let us cite Cilibrasi [7]:

As we shall see later, this problem is relatively easy to solve using a normalization of distances. Notice that this is a different way of normalization that the one proposed in section 1.1.

Compression

Finally, all these methods rely on Kolmogorov complexity which is, as we know, a non computable function (cf. for example [22]).

The remarkable idea introduced by Vitányi is the following:

• Consider the Kolmogorov complexity of an object as the ultimate, ideal and optimal value of the compression of the representation of that object.

• Compute approximations of this ideal compression using usual efficient compression algorithms, implemented with compressors such as gzip, bzip2, PPM, etc. which are of common use with computers.

Observe that the quality and fastness of such compressors is largely due to heavy use of statistical tools. For example, PPM (Prediction by Partial Matching) uses a pleasing mix of statistical5 models arranged by trees, suffix trees or suffix arrays.

We remark that the efficiency of these tools is of course due to several dozens of years of research in data compression. And as time goes on, they improve and better approximate Kolmogorov complexity. Replacing the "pure" but non computable Kolmogorov complexity by a banal compression algorithm such as gzip is quite a daring step taken by Vitányi.

Classification via compression

2.1 The normalized information distance (NID)

We now formalize the notions described above. The basic idea is to measure the information content shared by two binary words representing some objects in a family we want to classify.

The first such tentative goes back to the 90's [2]: Bennett and al. define a notion of information distance between two words x, y as the size of the shortest program which maps x to y and y to x. This notion relies on the idea of reversible computation. A possible formal definition for such a distance is

ID' (x, y) = least |p| such that U (p, x) = y and U (p, y) = x where U : {0, 1} * × {0, 1} * → {0, 1} * is optimal for the conditional complexity K( | ) (cf. Part I).
We shall mainly work with the following alternative definition:

ID (x, y) = max{K(x|y), K(y|x)}
The intuition for these definitions is that the shortest program which computes x from y and y from x takes into account all similarities between x and y.

Observe that the two definitions do not coincide (even up to logarithmic terms) but lead to similar developments and efficient applications.

Note. In the definition of ID, we can consider K to be plain Kolmogorov complexity or its prefix version (denoted H below). In fact, this does not matter for a simple reason: all properties involving this distance will be true up to a O(log(|x|), log(|y|)) term and the difference between K(z|t) and H(z|t) is bounded by 2 log(|z|). For conceptual simplicity, we stick to plain Kolmogorov complexity.

ID' and ID satisfy the axioms of a distance up to a logarithmic term.

The strict axioms for a distance d are

   d(x, x) = 0 (identity) d(x, y) = d(y, x) (symmetry) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)
Theorem.

The up to a log term distance axioms which are satisfied by ID' and ID are as follows:

   d(x, x) = O(1) (1) d(x, y) = d(y, x) (2) d(x, z) ≤ d(x, y) + d(y, z) + O(log(d(x, y) + d(y, z))) (3) 
Proof. We only treat the case of ID. Let f : {0, 1} * × {0, 1} * → {0, 1} * be such that f (p, x) = x for all p, x. The invariance theorem insures that

K(x|x) ≤ K f (x|x) + O(1)
. Now, taking p to be the empty word, we see that K f (x|x) = 0. Thus, ID(x, x) = O(1). Equality ID(x, y) = ID(y, x) is obvious. Let now p, p ′ , q, q ′ be shortest programs such that

U (p, y) = x, U (p ′ , x) = y, U (q, z) = y, U (q ′ , y) = z. Thus, K(x|y) = |p|, K(y|x) = |p ′ |, K(y|z) = |q|, K(z|y) = |q ′ |. Consider the injective computable function : {0, 1} * × {0, 1} * → {0, 1} * (cf. Proposition 1.6 in Part I) which is such that | r, s | = |r| + |s| + O(log |r|). Let ϕ : {0, 1} * × {0, 1} * → {0, 1} * be such that ϕ( r, s , x) = U (s, U (r, x)). Then ϕ( q, p , z) = U (p, U (q, z)) = U (p, y) = x ϕ( p ′ , q ′ , x) = U (q ′ , U (p ′ , x)) = U (q ′ , y) = z
so that, applying the invariance theorem, we get

K(x|z) ≤ Kϕ(x|z) + O(1) ≤ | q, p | + O(1) = |q| + |p| + O(log(|q|)) = K(y|z) + K(x|y) + O(log(K(y|z)))
and, similarly, K(z|x) ≤ K(y|x) + K(z|y) + O(log(K(z|y))). Thus,

max(K(x|z), K(z|x)) ≤ max(K(y|z) + K(x|y) + O(log(K(y|z))), K(y|x) + K(z|y) + O(log(K(z|y))))
≤ max(K(x|y), K(y|x)) + max(K(y|z), K(z|y))

+O(log(max(K(y|z), K(z|y))))

Which means ID(x, z) ≤ ID(x, y) + ID(y, z) + O(log(ID(y, z))), a slightly stronger result than (3).

It turns out that such approximations of the axioms are enough for the development of the theory.

To avoid scale distortion, as said in section 1.4, distance ID is normalized to NID (normalized information distance ) as follows:

NID (x, y) = ID (x, y) max(K(x), K(y))
The remaining problem is that this distance is not computable since K is not.

Here comes Vitányi's daring idea:

Consider NID as an ideal distance which is to be approximated by replacing the Kolmogorov function K by computable approximations obtained via compression algorithms.

The normalized compression distance (NCD)

The approximation of K(x) by C(x) where Γ is a compressor6 , does not suffice. We also have to approximate the conditional Kolmogorov complexity K(x|y). Vitanyi chooses the following approximation:

Γ(y|x) = Γ(xy) -Γ(x)
The authors explain as follows their intuition:

To compress the word xy (x concatenated to y)

• The compressor first compresses x.

• Then it compresses y but skips all information from y which was already in x.

Thus, the output is not a compression of y but a compression of y with all x information removed, i.e. this output is a conditional compression of y knowing x.

Now, the assumption that in the compression of the word xy the compressor first compresses x is questionable: how does the compressor recovers x in xy?

One can argue positively in case x and y are random (i.e. incompressible) and in trivial case x = y. And between these two extreme cases? But it works. The miracle of modeling? Or something not completely understood?

With this approximation, plus the assumption that Γ(xy) = Γ(yx) (also questionable: it depends on the used compressor) we get the following approximation of NID, called the normalized compression distance, NCD :

NCD (x, y) = max (Γ(x|y) , Γ(y|x)) max (Γ(x) , Γ(y)) = max (Γ(yx) -Γ(y) , Γ(xy) -Γ(x)) max (Γ(x) , Γ(y)) = Γ(xy) -min (Γ(x) , Γ(y)) max (Γ(x) , Γ(y))
Remark that clustering according to NCD and, more generally, classification via compression, is a black box 7 as noticed by Delahaye [15]: words are grouped together according to features that are not explicitly known to us except if we had already a previous idea. Moreover, there is no reasonable hope that the analysis of the computation done by the compressor gives some light on the obtained clusters.

For example, what makes a text by Tolstoi so characteristic? What differentiates the styles of Tolstoi and Dostoievski? But it works, Russian texts are grouped by authors by a compressor which ignores everything about Russian literature. . .

When dealing with some classification obtained by compression, one should have some idea about this classification: this is semantics whereas the compressor is purely syntactical and does not "understand" anything". Thus one cannot hope some help in understanding (interpretation) of the obtained classification (cf. section 4). This is very much as with machines which, given some formal deduction system, are able to prove quite complex statements. But these theorems are proved with no explicit semantical idea, how are we to interpret them? No hope that the machine gives any hint, at least in the present context.

The Google classification

Though stricto sensu, it does not use Kolmogorov complexity, we now present another recent approach by Vitányi & Cilibrasi [9] to classification which leads to a very performing tool. New-York, 1942-1953. Indeed, the emergence of cybernetics and information theory owes much to these conferences.

The normalized Google distance (NGD)

This quite original method is based on the huge data mass, constituted by the Web and which is accessible with search engines as Google. They allow for basic queries using a simple keyword or conjunction of keywords. Observe that the Web (the World Wide Web ) is not a formal database: it is merely a crude data bank, in fact a (gigantic) informal information system since data on the Web are not structured as data in relational database. It has a rudimentary form of structuralization based on graphs and graphical user interfaces. Nevertheless, it is endowed with an object-oriented programming language, namely, Java. What is remarkable is that there exists a norm for this programming language and, moreover, this language is Turing-complete (cf. section 4.2). This can explain the success (and fashion) of Java and of the object approach which is also largely due to the success of the Web.

Citing Alberto Evangelista et Bjorn Kjos-Hanssen [20], the idea of the method is as follows:

≪ When the Google search engine is used to search for the word x, Google displays the number of hits that word x has. The ratio of this number to the total number of Web pages indexed by Google represents the probability that word x appears on a Web page [...] If word y has a higher conditional probability to appear on a Web page, given that word x also appears on that Web page, than it does by itself, then it can be concluded that words x and y are related. ≫ Let us cite an example from Cilibrasi and Vitany [8], which we complete with updated figures [START_REF] Cilibrasi | Google teaches computers the meaning of words[END_REF] . The searches for the index term "horse", "rider" and "molecule" respectively return 156, 62.2 and 45.6 million hits. Searches for pairs of words "horse rider" and "horse molecule" respectively return 2.66 and 1.52 million hits. These figures stress a stronger relation between the words "horse" and "rider" than between "horse" and "molecule".

Another example with famous paintings: "Le déjeuner sur l'Herbe","Le Moulin de la Galette" and "La Joconde". Let refer them by a, b, c. Google searches for a, b, c respectively give 446 000, 278 000 and 1 310 000 hits. As for the searches for the conjunctions a+b, a+c and b+c, they respectively give 13 700, 888 and 603 hits. Clearly, Jean Renoir's paintings are more often cited together than each one is with Leonardo da Vinci's paintings. In this way, the method regroups paintings by artists, using what is said about these paintings on the Web. But this does not associate the painters to groups of paintings (we have to add them "by hand").

Formally, Cilibrasi and Vitany [8, 9] define the normalized Google distance as follows:

NGD (x, y) = max(log Λ(x), log Λ(y)) -log Λ(x, y) log Υ -min(log Λ(x), log Λ(y))
where Λ(z 1 , ...z n ) is the number of hits for the conjunctive query z 1 ∧ ... ∧ z n (which is z 1 ... z n with Google; If n = 1, Λ(z) is the total number of hits for the query z). Υ is the total number of Web pages that Google indexes.

Discussing the method

Let us cite some points relative to the use of such a classification method (the list is not exhaustive):

1) The number of objects in a future classification and that of canonical representatives of the different corpora is not chosen in advance nor even boundable in advance and it is constantly moving. This dynamical and uncontrolled feature of a definition of a family is a totally new experience, at least for a formal approach of classification.

2) Domains a priori completely rebel to classification such as the pictorial domain a priori no normalization of paintings being possible or if it is this is not obvious in the present context can now be easily considered. This is also the case (and for the same reasons) for sculpture, architecture, photography, arthouse cinema, etc. This is so because we are no more dealing with the works themselves but with a discourse about them (which is the one on the Web). This speech depends on a "real" language: a natural language or a formal language. Notice that the notion of "pictorial language" remains a metaphor as long as we consider that infra verbal communication is not a language in the usual sense.

The discourse which is considered by Google is the one of the keywords and relations between them, these keywords coming from queries proposed for the NGD and appearing in the texts of the users of the Web.

Notice that there are some works which can be used for an algorithmic approach (possibly a normalization) of pictural pieces, art-house films, etc. For instance, the French psychoanalyst Murielle Gagnebin elaborated a theory of esthetics and creation, based on psychoanalysis and philosophy. Her meta psychological model is quite efficient to point out the fundamental psychical mechanisms involved in art pieces. And this is done from the art pieces themselves, excluding any discursive consideration on these art pieces or on the artists Such a model could much probably be implemented as an expert system.

3) However, there is a big limitation to the method, namely that one which is called: the closed world assumption. That can be interpreted as follow: the world according to Google9 , information according to Google, etc.

If Google finds something, how can one check its pertinence. Else, what does it mean? How can we define (in a general manner) a notion of pertinence for the informations found by Google? Sole certainty, that of uncertainty! Moreover, we notice that when failing to get hits with several keywords, we give up the original query and modify (we change its semantics) it up to the point Google gives some "pertinent" answers. That sort of failure is similar to the use of negation in the Prolog programming language (called negation as failure), which is much weaker than classical negation and which is connected to the closed world assumption for databases.

When failing to get hits, it is reasonable to give up the query and accordingly consider the related conjunction as meaningless. However, one should keep in mind that this is relative to the closed, and relatively small, world of data on the Web, the sole world accessible to Google. Also one has not to underestimate the changing aspect of the informations available on the Web. When succeeding with a query, the risk is to stop on this succeeding query and

• Forget that previous queries have been tried and have failed.

• Omit going on with some other queries which could possibly lead to more pertinent answers.

• Given a query, the answers obtained from Google are those found at a given moment in a kind of snapshot of the Web. But such an instantaneous snapshot betrays what is the essence of the Web: to be a continuously moving information system. All the updates (insertions, deletions, corrections, etc.) are done in a massively parallel context since Google uses about 700 000 computers as servers! Thus, Google answers to a query are not at all final answers nor do they constitute an absolute answer. And this is in contrast with the perfect determinism we are used when computer programs are run (in this way, Prolog is considerably more "deterministic" than Google) or with databases (when they are well written...) Also, the diverse answers given by Google may contradict one another, depending on the sites Google retained. In particular, one is tempted to stop when a site is found that gives an answer which seems convenient (indeed, this is what we do in most cases).

4) So we see some difficulties emerging with the theoretical approach to how Google deals with information from the Web (and the same for any browser).

For such a reflection, we have chosen an idealistic perspective where Google searches according to scientific criteria or at least with some transparency (in particular, on how Web pages are indexed, or even how many are really indexed). However let us mention that there are some controversies about the indexing and consequently on exactness of the results found by Google, in particular, about the number of occurrences of a given word of all existing Web pages (even if not dealing with the content of these pages). Indeed, some queries lead to very surprising results: "Googlean logic" is quite strange (when compared with Boolean logic). This is shown in a very striking (and completely scientific) manner by Jean Véronis in his blog [START_REF] Codd | A relational model of data for large shared databanks[END_REF] .

A highly important task still to be done is to formalize the notion of information on the Web and the relations ruling the data it contains, as it has been done by Codd with the relational model for databases in the 70's. Previous to Codd's work, organizing and structuring data and information in a computer and their accessibility via the notion of query was underlaid by no solid mathematical foundation and was resting on technical tricks. This is still the case for the data on the Web. This remarkable innovative approach via Google search is still in its infancy.

In Whereas classification via the relational model for databases has a neat formalization, we have stressed above how difficult it is to formally define the classification obtained by compression or via Google. Of course, one could base a such formalization on trees and graphs. But with such structures, the way information is recovered is rather poorly formalized. This is in fact what happens with the organization of files in an operating system since none of them uses any database (let it be Unix, Linux, MacOs, Windows and their variants).

It seems to us that one should reconsider these different approaches to the notion of classification in terms of two fundamental modes to define mathematical and computer science objects which are also found in the execution of computer programs. These two main approaches to define mathematical and computer science objects are:

• Iterative definitions (based on set theoretical union )

• Inductive (or recursive) definitions (based on set theoretical intersection ).

For instance, one can define propositional formulas, terms and first-order logic formulas following any one of these two ways.

Recall that Stephen Kleene's presentation12 of partial recursive functions is based on three (meta) operations: composition , primitive recursion and minimization.

• Iterative definitions are connected to minimization (and to the notion of successor ). We can describe these type of definitions as "Bottom-Up " characterizations.

• Inductive definitions are connected to primitive recursion (and to the notion of predecessor ). We can describe these type of definitions as "Top-Down " characterizations.

Notice that composition is related to both characterizations, the bottom-up and top-down ones. We gave, in Part I, formalizations of randomness for infinite objects which follow these two bottom-up and top-down approaches (cf. Part I, section 5.1 and 5.2). These two modes are also found in the execution of computer programs:

• Execution in the iterative mode is called Bottom-Up .

• Execution in the recursive mode is called Top-Down .

This last mode requires the use of a stack which goes on growing and decreasing and into which results of intermediate computations are pushed until getting to the "basic cases", i.e. the initial steps of the inductive definition of the program which is executed. To execute an iterative program, all data necessary for its execution are at disposal without need of any stack. From the computer scientist point of view, these two execution modes are really far apart. Notice that the execution mode (iterative or recursive) follows the definition mode (iterative or recursive) of the program to be executed. Nevertheless, in some cases, recursive programs may be executed in an iterative way avoiding any stack [START_REF] Delahaye | Information, complexité, hasard[END_REF] .

In the same way, one observes that there are two modes -let us also call them Bottom-Up and Top-Down -that are used in the approach to classification of information and/or objects (of the real world) which are formally represented as words or more generally as texts [START_REF] Delahaye | Classer musiques, langues, images, textes et génomes[END_REF] or even as sets of words, in some alphabet (which can, as usual, be supposed to be binary).

• In the Bottom-Up mode, one enters into information details. Otherwise said, one accesses the content of texts, i.e. the words representing the diverse informations and/or objects that one wants to classify (and the meaning of these words and/or texts). Texts, families of words, etc. are grasped from the inside and their meaning is essential.

• In the Top-Down mode, one does not access the content of texts in the above way. Texts are, in fact, handled from the outside, that is "from the top and down" [START_REF] Delahaye | Complexités : Aux limites des mathématiques et de l'informatique[END_REF] . To say things otherwise, one uses a kind of "oracle" to grasp texts and families of words, i.e. means that are exterior to the the understanding of text and the content of words.

Let us illustrate this with an example: the use of keywords to structure families of texts. One then uses both bottom-up and top-down modes to classify texts in the following way:

1) It is usual to follow a bottom-up approach in the choice of keywords. Particular words in texts are chosen in consideration of the content of texts and their meaning and in order to facilitate future searches. More precisely, some words will be considered as keywords and will be declared as. This is typically the case with scientific papers where keywords are chosen by the author, the journal editor, the librarian, etc. in view of future classification. Of course, this supposes that the texts have already been read (and understood).

Observe that translating a text into a natural language to another one (as, for example, this paper from French to English) requires such a reading and (subtle) understanding of the text [START_REF] Dershowitz | A natural axiomatization of computability and proof of Church's thesis[END_REF] .

One can also choose keywords for a text using totally different criteria. For instance, rather than reading the text itself, one can read and understand an outline or the table of contents and this is also a bottom-up mode. One can also look at an index (if it exists some): a limit case which follows a top-down mode. Indeed, no understanding of the words is required to select keywords (though, of course, it does not harm to understand them), one only consider which words are mentioned in the index and their relative importance (which a good index makes clear). Without index, one can also count occurrences of words in a text: this is precisely what Google does in its searches. In practice, both bottom-up and top-down modes are often used together (mix mode).

encoded as special characters) or by a sequence of binary strings (each word in the text being represented by a string in the sequence). It is also possible to consider sequences or sets of texts and to mix such sequences and/or sets In this paper, we mostly consider encodings of texts with binary words (in particular, for the examples) and not sequences of binary words, and we consider sets of such texts. [START_REF] Delahaye | Complexités : Aux limites des mathématiques et de l'informatique[END_REF] It is one way of seeing things! The one reflected by the Anglo-Saxon terminology "topdown". What is essential is that texts are apprehended from the outside, in opposition to apprehension from the inside. [START_REF] Dershowitz | A natural axiomatization of computability and proof of Church's thesis[END_REF] With a purely syntactic automatic translator, such as the one in Google, one can get results like the following one: "Alonzo Church" translated as " Église d'Alonzo" (i.e. church in Alonzo)! Whatever method is chosen, the choice of keywords generally assumes (though it is not always the case) a preliminary knowledge or some general idea of the wanted classification for which the keywords are chosen. This knowledge is a very abstract form of semantics 17 , which can evolve through time as new texts are being read. Generally, the person who writes the text is not the one who has this knowledge, this is rather the person who "manages" the classification.

2) Whatever approach was used, once the keywords have been chosen and stored in some way, they give a kind of classification for this text considered among the other ones which have been treated in a similar way. Using given keywords, one can look for all texts which have been assigned such keywords. Clearly, a notion of query emerges from the so used keywords. In an extended concept of keyword -and this is exactly how Google works -one can look for all texts containing these keywords (i.e. with these keywords in their contents), with no need to define any keyword for texts.

Observe that searching using keywords -and this is a fundamental point -is a top-down approach to texts and to their classification. A set of keywords (a "conjunction" of keywords) is a form of question to some oracle, so as to grasp texts from the outside, without reading nor understanding them. Using such a set of keywords, one can select some texts among a family of texts which can be really big, even gigantic in the case of the Web. The selected texts can then possibly be read and be understood (at least better understood). One can also group them with other texts having some common keywords and thus get a classification of texts.

3) With the Google approach to classification, things are similar: the choice of keywords for queries to Google (which are in fact conjunctions of keywords) can be done in two ways.

• In a bottom-up mode this choice comes from the reading and understanding of the content of the Web.

• In a top-down mode this choice is based on criteria totally exterior to the content of the Web though it is hard not to be somewhat influenced by previous readings from the Web. . . [START_REF] Dijkstra | The Humble Programmer[END_REF] Let us mention that a new concept emerged: that of thesaurus which is somehow an abstract semantics related to classification. A thesaurus is a particular type of documentary language (yet a new concept) which, for a given domain, lists along a graph words and their different relations: synonymy, metaphor, hierarchy, analogy, comparison, etc. Thus, a thesaurus is a kind of normalized and classified vocabulary for a particular domain. Otherwise said, the words a thesaurus contains, constitute an hierarchical dictionary of keywords for the considered domain. One can possibly add definitions of words or consider the classification of words (according to the future usage of the thesaurus) to be sufficient. It is a remarkable tool. First used for disciplines around documentation and for large databanks, it is now used almost everywhere. To build a thesaurus, one follows a bottom-up or a top-down mode or mixes both modes, exactly like in the case of keywords. More details on the notion of thesaurus in the section devoted to databases (cf. section 4.2 ).

In general, both bottom-up and top-down modes are mixed for the choice of keywords.

Whatever approach was used, once the keywords have been chosen, one has at disposal a kind of oracle to grasp the Web. Otherwise said, the Google query written with these keywords will select texts from the Web -and also hypertexts or multimedia data: pages from the Web -with a top-down operational mode. Such selected texts can then be read, classified, etc. Thus, Google as a web search engine behaves as an oracle, which given some query (keywords), returns a set of web sites. The way Google works, as for the oracles, is totally invisible to the user.

One can also surf the Web along a bottom-up mode, that is give up query and go from one page to another one via the links hypertext. Indeed, those links are the main originality of the Web. From a theoretical point of view, they are very interesting since they convey a form of semantics. Thus, the notion of keywords (and more generally of words) appears to be a limit concept between syntax and semantics. In general surfing is done via both approaches: bottomup with hypertext links and top-down with queries. As before, the choice of the keywords submitted to Google in view of a classification is also a form of semantics. Observe that in a top-down approach for the choice of keywords, one can however choose them randomly , then use some counting (with statistical tools) to get classifications of the selected texts. Such random choices are particularly interesting when there is a huge quantity of texts, which is the case with the Web. However, it is doubtful that such an approach to classification -if fundamentally random -can give significant results. Nevertheless, it can be coupled with a more "deterministic" approach.

Let us go back to the title of this section: Bottom-Up versus Top-Down modes. It is reasonable to question: why are there two possible modes in the definition of mathematical and computer science objects and in the runs of computer programs? De Facto, these two modes do exist and they are the fundamental modes which have emerged from the works of the diverse researchers in computability theory in the XX th century. We have seen that these two modes could also be considered in the approach to classification of information and we gave an example with keywords. We have also seen how the use of Google to search the Web was relevant to these approaches. This shows that these bottom-up and top-down modes are not particular to classification: they concern, in fact, any information processing hence any, more or less abstract theory of information. This also concerns all disciplines which deal in some way with the notion of representation or definition , or description , etc. This includes logic, Kolmogorov complexity and computer science, semiotics and also all sciences of cognition: as we detail in [26], information processing by the human brain could fundamentally be structured around these two operational modes. In any case, this is quite an interesting approach to cognition which is much enlightened by the evolution of mathematical logic and computer science.

In this paper, we shall look at these bottom-up and top-down modes in two types of situations (concerning classification) which generalize what we said about keywords. Namely,

• The logical formalization of information systems via databases (section 4.2).

• The set theoretical approach to the notion of grouping, based on the Zermelo-Fraenkel (ZF) axiomatic set theory. We shall particularly look at the comprehension schema in ZF (section 5).

These reflections will help to understand the role played by the Kolmogorov complexity in information classification and more precisely in the notion of grouping of informations. We will have to reconsider the notions of intensionality, abstraction semantics and representation in this context (cf section 6).

Also notice that the existence of two such modes for the definitions of mathematical and computer science objects, functions and programs and for the execution of these programs, is quite interesting. The fact that we find these two modes for the various forms of the information processing and different disciplines, of the information processing indicates that this observation is a fascinating scientific project. Clearly these two modes, so complementary , form a duality relation , a kind of correspondence between two distinct ways of processing which are somewhat distinct and also similar [START_REF] Dijkstra | Selected writings on computing: A personal perpective[END_REF] . More precisely, we have seen that the bottom-up approach (on which are based the iterative definitions), results from the notion of set theoretical union whereas the top-down approach (on which are based the inductive definitions), results from the notion of set theoretical intersection. It is therefore quite natural to revisit these approaches in the framework of Boolean algebras, a theory where the notion of duality is typical, so we do in [25].

Other fundamental dualities for logic and computer science are also developed in those papers. Especially, duality syntax versus semantics and also duality functional versus relational [START_REF] Durand | Kolmogorov Complexity, in Kolmogorov's Heritage in Mathematics[END_REF] which concerns, among others, the relation between algorithms and (functional) programming on the one hand and discrete information system and their formalizations 20 on the other hand. Recall that the essential part of discrete information system is the organization (the structuralization) of information, whatever is their nature (admitting a discrete representation), with the objective of an easily extracting particular informations. Clearly, information system are linked to classification. Thus, we believe it is interesting to present them in this paper. We shall articulate this presentation around the bottom-up versuss top-down duality, which is in this way illustrated.

Information System and Database: a formal approach

First let us point out that : databases ( DB ) are to information systems what are computer programs to the intuitive notion of algorithm: a formal, mathematical presentation and the ability of an also formal processing. Indeed, algorithms and information systems are generally expressed in a natural language (in a more or less clear way) and assume implicit content (which can be important) and also unspoken comment (which may be quite a problem). Recall that algorithms and information systems have existed since Ancient Times [START_REF] Feller | Introduction to probability theory and its applications[END_REF] . In both cases, this formal expression is essentially done in the framework of mathematical logic. Observe that programming and algorithms are particularly related to lambda calculus whereas databases and consequently information system are particularly related to set theory.

As concerns programs and algorithms, let us mention the remarkable work of Yuri Gurevich [16]. He introduced a notion of Abstract State Machines (ASM), which is based on model theory (in logic) and is a mathematical foundation of the notion of algorithm which is as much as possible refined. Not only does he captures the notion of algorithm, but he also formalizes their operational mode. More precisely, Gurevich deals with operational semantics, i.e. the way algorithms and programs are executed, (the outcome is the programming of an interpreter and/or compiler and of an executor of programs). This highly constructive operational point of view completes what is called denotational semantics and which deals with what algorithms and programs compute [START_REF] Ferbus-Zanda | Is randomness native to computer science? In Current Trends in Theoretical Computer Science[END_REF] . This is, in fact, the way Gurevich states his thesis:

≪ ASMs capture the step by step of the execution of sequential algorithms. ≫ For Gurevich, any given algorithm (in particular, any computer program) "is" a particular ASM which is going to mimic his functioning. This allows to consider le langage Prolog (The resolution method and the language Prolog ). Rapport LITP, No-8676, 1986. We present in this paper the link between functional programming and relational programming.

21 Some exhaustive descriptions of algorithms about trading and taxes date from Babylonia (2000 BC to 200 AC). Information systems really emerged with mecanography (end of XIX th century) and the development of computer science. However, there are far earlier examples of what we could now call information systems since they show a neat organization and presentation of data on a particular subject : for instance, the Roman census. [START_REF] Ferbus-Zanda | Is randomness native to computer science? In Current Trends in Theoretical Computer Science[END_REF] Observe that these semantics correspond respectively to Arend Heyting's semantics and Alfred Tarski's semantics.

an algorithm as a formal object (namely, an ASM). Gurevich's thesis extends Church-Turing's thesis [START_REF] Ferbus-Zanda | Kolmogorov complexity and set theoretical representations of integers[END_REF] (at least for sequential algorithms): indeed, Gurevich thesis proves it. More precisely, Church-Turing thesis is about denotational semantics (the diverse computation models which have been imagined are pairwise equivalent: we say they are Turing-complete). Gurevich extends this thesis to operational semantics: ASM are a computation model which is algorithmically complet (cf. also section 7 and [24]). What is really remarkable with ASMs is how their formalization is simple and natural, which, in general, is not the case with the other approaches to operational semantics of computer programs. We come back to ASMs (and their relation with Kolmogorov complexity and classification) in the conclusion.

As concerns, information system (which is an intuitive notion) and their modeling via database (which is a formal approach), we shall see that, historically and conceptually, things were not as simple as they were with programming and the formulation of theoretical models for computability -which, indeed, occurred at a time when there was no computers. In the case of information systems, it was all the opposite.

Recall that the first formalization of the representation and treatment of data, (that is what is now called an information system) is Codd's relational model for databases (1970) [10]. What was quite original with Codd's approach is the idea that there were mathematics which should "manage" information in computers. Though this may seem quite obvious now, up to the time Codd created his theoretical model (a time where programs were written on punched cards), that was not the case: computer files were stored in a great mess [START_REF] Ferbus-Zanda | ASM and operational algorithmic completeness of Lambda Calculus[END_REF] .

One of the most fundamental and unprecedented feature of Codd's relational model is the formalization of the notion of query . He founded this notion on a new calculus: relational algebra which is a kind of combinatory logic with operators acting on tables [START_REF] Ferbus-Zanda | Duality: Logic, Computer Science and Boolean Algebras[END_REF] joined together: classical set theoretic operations (union, intersection, cartesian product and projections) and also new operations: [START_REF] Ferbus-Zanda | Kolmogorov complexity and set theoretical representations of integers[END_REF] Church-Turing thesis states that "Every process or computation which can be done with a machine in a purely mechanical way, i.e. all what is computable with a machine, can be done with a Turing machine " (1936). Thus, this thesis asserts that the intuitive notion of effective computability coincides with a formal mathematical notion: computability with Turing machines. This thesis was first stated by Alonzo Church (1932) with the model of λ-calculus (Church thesis) which appeared at that time far more "theoretical" than Alan Turing machines, cf. the note 55. We shall look at the Kleene computability model of recursive function (1936) in section 4.1. A first (complete) formal definition of recursive function was found by Jacques Herbrand and formalized by Kurt Gödel (1932). [START_REF] Ferbus-Zanda | ASM and operational algorithmic completeness of Lambda Calculus[END_REF] Multics was the first important operating system to store files as nodes in a tree (in fact a graph). Created in 1965, it has been progressively replaced since 1980 by Unix . Derived from Multics, it includes a new feature: multiple users management. Now, all operating systems are based on Unix. Multics was a turning point in the problem of data storage: until now, one speaks of hierarchical model and net model. But, in fact, these "models" have been recognized as models only after Codd introduced the relational model! Finally, observe that the graph structure of the Web also comes from the organization of files with Multics. [START_REF] Ferbus-Zanda | Duality: Logic, Computer Science and Boolean Algebras[END_REF] This combinatory logic has much to do with the programming language Cobol created in 1959.

selection and join. It turns out that the join operator is really a fundamental one in logic. Codd also develops a normalization theory to handle the very difficult problem of removing redundancies in information systems.

Surprising as it is, though Codd worked in an IBM research center, he had to fight very hard [START_REF] Ferbus-Zanda | Logic and Information System: Cybernetics, Cognition Theory and Psychoanalysis[END_REF] to impose his views. The first implementation of his model was not done by IBM but by Oracle , at that time a very small company27 , which saw its exceptional interest and implemented it in 1980. It is only a few years later that IBM also implemented Codd's model. Now, all existing DBMS (database management systems) are based on Codd's relational model. Let us mention that databases are still largely underrated though it could be so profitable in many disciplines. But this is clearly not to last very long due to the dissemination of digital information (with an incredible speed, no one could have expected a few years ago).

There is another theoretical model for databases: the Entity/Relationship model due to Peter Pin-Shan S. Chen [6]. This is a formal approach to databases which essentially relies on Codd's relational model but is more abstract. In this model, a database is represented as a graphic which looks like flow charts used in the 60-70s to modelize computer programs. It is the source of the language UML [START_REF] Kolmogorov | Three approaches to the quantitative definition of information[END_REF] , which is a system of graphic notations for modeling. In our opinion, Chen's theoretical model is very deep and it should still be the source of many important works. Databases rested on the Entity/Relationship model deserve to be called conceptual databases. They constitute an abstract logical extension of relational databases which should have a fundamental role in the future as concerns information processing, classification and any algorithmic information theory.

Object-Oriented Programming Concepts are also inescapable in information processing and in the approaches to classification. Let us mention the inheritance concept in the difficult problem of concurrent access to data, i.e. when the same data is used by several actors: attributes, processes, systems, users. Another important concept from Object-Oriented Programming is that of event-driven programming: a particular value in the execution of a program or particular data in a database trigger the execution of some (other) program.

Lastly, let us mention another theoretical model for databases: the deductive model (also called deductive databases ). This is also a fundamental model. It mixes Codd's relational model and the predicate calculus, bringing intensionality (i.e. abstraction) to Codd's model through the in extenso adjunction of first-order variables. The query language for deductive database is Datalog. It is a pity that the existing implementations of Datalog, which work quite well, are only used in some research labs. Currently, there is no "real" deductive DBMS (Database Management System) with the same facilities offered by relational DBMSs. This is quite surprising as information system, with the Web, have taken such a huge impact.

One can also question why diverse theoretical models, as fundamental as they are, can coexist with no serious attempt to mix them. Maybe, this is because database is a very recent discipline, quite probably, this will happen in the near future. We are working towards this goal with the notion of conceptual databases [START_REF] Kolmogorov | Combinatorial foundation of information theory and the calculus of probability[END_REF] , using logic as a foundational theoretical basis. Consider the general problem of classification of information. Database, with the diverse theoretical models described above, constitute a formal approach to that question. Especially with the notion of query which becomes a mathematical notion (which, moreover, is implemented) far more sophisticated than keywords. In fact, queries generalize keywords [START_REF] Li | The similarity metrics[END_REF] .

Whichever theoretical model of database is used, a fundamental primitive notion is that of attribute (which can be seen as formal keywords) and different kinds of set groupings of attributes so as to make up the relational schema of a database. This constitutes the wanted formal classification of the initially unorganized data. The relational schema of a database is the structural part of a database: its morphology. So, in the relational model, a database is structured in tables . The names of the columns of a table are some attributes for the database. A line in a table describes an entity (from real world): this entity is reduced to the values (for that line) of each of the attributes of the table (i.e. the names of columns). There are relations between the tables of a database, kind of pointers , which follow some "diagram" relying on the chosen relational schema of the database.

The content of the tables constitutes the semantics (otherwise said, the current content ) of the database at some particular time. Each table is structured in columns and can also be seen as a set of lines (the so-called "tuples"). The number of columns is fixed but the set of lines varies along time. Each line is a set of values: one value per attribute (recall columns and attributes are the same thing) [START_REF] Li | An introduction to Kolmogorov Complexity & its applications[END_REF] . This notion of line corresponds exactly to that of card in physical files, (for instance, those used to manage libraries in pre-computer days) or to [START_REF] Kolmogorov | Combinatorial foundation of information theory and the calculus of probability[END_REF] Ferbus-Zanda M. Logic and Information System: Relational and Conceptual Databases. In preparation. [START_REF] Li | The similarity metrics[END_REF] One should rather say that keywords -used with web browsers -constitute very elementary database queries (of course, database queries are much older than the Web which emerged only in the 90's). [START_REF] Li | An introduction to Kolmogorov Complexity & its applications[END_REF] Lines are usually presented as tuples but, conceptually, this is not correct: in Codd's relational model there is no order between the lines nor between the columns. Codd insisted on that point. In fact, conceptually and in practice, this is quite important: queries should be expressed as conditions (i.e. formulas) in the relational algebra, using names of attributes and of tables. For example, it means that queries cannot ask for the first or twentieth line (or column).

the content of a punched card (mechanography).

For instance, suppose we have a table about authors of books in a library which has the following attributes: AuthorSurname, AuthorName, AuthorCountry, AuthorTimes. The AuthorSurname column will contain names (such as Duras, Sarraute, Yourcenar, Nothomb, Japp, etc.).

A typical line could be { AuthorSurname . Duras , AuthorName . Marguerite , AuthorCountry . France , AuthorTimes . XX th century } or also the 4-tuple (Duras , Marguerite , France , XX th century) since the ordering of values in this tuple makes it possible not to "explicit" the associated attributes.

Queries allow to access these contents. Note that the content of the tables evolves through time due to updates of information: adjunction, removal, modification. A database looks like the set of sheets of a spreadsheet (Excel ) augmented with links between them that are managed through queries (which spreadsheets cannot do, or in a very rudimentary and complex way).

Thesauruses (cf. note 17) are, in fact, databases. The relational schema of such a database is the structure of the considered thesaurus, otherwise said, the layout, the architecture of the thesaurus. The diagram of this database (which is a graphic representation of its relational schema) formally expresses this architecture. It is clear that there can be several tables in this database. For instance, in a thesaurus dedicated to the epistemology of mathematics, there could be specific tables for mathematical logic, probabilities, algebra, topology, geometry, functional analysis, differential calculus, integration, etc. and other tables dedicated to mathematicians (mentioning the concepts they introduced), to philosophers, to historians of mathematics, etc.

Of course, the choice of such tables is completely subjective. One could structure the database very differently, considering synonymy, quasi-synonymy, connectivity, analogy, comparison, duality, contrast, etc. among the diverse words of the thesaurus. The internal organization of a given table (the choice of the columns i.e. of attributes) depends on what one intends to do with the thesaurus and on the choices already made for the diverse tables. The contents of the tables are then constituted by all the words put in the thesaurus.

Without definitions, the thesaurus is a kind of hierarchical dictionary of synonyms, associations, etc., i.e., a structure on keywords. To augment it with definitions, we insert them as contents of the tables in specific columns. In any case, let us stress that the relational schema of the associated databases essentially relies on the "association" part of the thesaurus (indeed, its graph) and not on its "definition" part. Also, observe that it is the power of computers and databases which makes it possible to build and use such complete thesauruses. It would unrealistic to try a readable paper version of a dictionary which would be at the same time a usual dictionary and a synonym dictionary and would also give definitions [START_REF] Shannon | The mathematical theory of communication[END_REF] , but any good computer graphical user interface makes it possible.

Note that what is not explicitly represented as a table can be recovered via some query. For instance, if we decided a structure by discipline, one can obtain all synonyms of a given word, whatever be the table of the thesaurus database in which they have been inserted (according to their associated discipline). This shows that any particular choice of a structure for the database leads to no disadvantage as concerns the usage of the database: whatever grouping of information is wanted, it can be obtained via some appropriate query. This is "hidden" to most users which have no idea of the internal organization of the database. In general, one chooses a structure which makes easier the elaboration of the schema of the database, or an optimized structure to get efficient executions of queries (recall there are database tables containing millions of lines). Of course, the synonymy in question is relative to the closed world of the database formalizing the thesaurus.

The result of a query in relational databases is a view which is structured as a table. The only difference between a table and a view is that views are stored in the RAM (random access memory) of the computer (which is a volatile memory: it disappears when the computer is turned off) whereas "real" tables of the database represent persistent data which are stored on non-volatile memory: hard disks, magnetic tapes, etc. Of course, one can nevertheless save a view.

Observe a very interesting phenomenon with this example: the emergence of the notion of database. Indeed, following the same approach, one can build a database dedicated to epistemology of physics, of chemistry, of biology, etc. and group these databases in a unique database in order to get a thesaurus dedicated to epistemology. One can also group epistemology with other disciplines. Clearly, one has to fix the wanted level of abstraction/refinement to build the thesaurus (or, more generally, a database) and what is the limit to the considered subject. This is one of the most difficult problems in modeling. Any scientific activity goes along a particular answer to that problem. This example leads to the following observation: in this paper, the notion of "object" has not been much considered. It is clear that the hierarchical character on a thesaurus relies on inheritance (a concept from OOC, cf. above). It seems therefore necessary to add to Codd's relational model some concepts of the object oriented approach [START_REF] Solomonoff | A formal theory of inductive inference, part I[END_REF] , which is what we try to do with conceptual requires some knowledge external to the dictionary to really grasp the "meaning" of words. Note that this incompleteness is more or less "hidden". On the other hand, in a synonym dictionary, the structure essentially relies on circular definitions. This is less apparent with paper dictionaries: for a given word, there will be only references to its synonyms. However, with digital dictionaries, this circularity is really striking: links "carry" the reader to the diverse synonyms and can be implemented with pointers. [START_REF] Solomonoff | A formal theory of inductive inference, part I[END_REF] Codd was strongly opposed to any addition from the object approach to the relational model. Indeed, the so-called "First Normal Form" (due to Codd) formally forbids the possibility of an attribute structured as a list, a tree or a graph (which is exactly what OOC would do). When he elaborated his model, this was a reasonable choice: the object approach is quite destructuring while Codd's approach was a structuring one. Let us mention that Codd also opposed Chen's Entity/Relationship model (nobody's perfect)! databases [START_REF] Solomonoff | A formal theory of inductive inference, part II[END_REF] .

If we consider the general case, we observe that the notion of query in databases is essentially dependent on the structure of the database associated to the relational schema. Database queries are similar to Google queries with one big difference: queries in relational database are written in a programming language which is far more sophisticated than conjunctions of keywords allowed in Google queries. In all implementations35 of Codd's relational model for databases, queries are written in the programming language SQL (Structured Query Language).

As with keywords, the choice of attributes and that of groups of attributes in a database is completely subjective: this is semantics and this semantics is formalized by the relational schema. Once such choices are done and the relational schema is fixed, the form of possible queries is somewhat constrained but, nevertheless, it is possible to ask whatever is wanted. This was argued above with the example of the thesaurus. As for the Web, such a relational schema is absolutely impossible because the Web is so fundamentally dynamic.

Observe that, at any step, we have with databases a precise idea of the structure we are working on (it is a mathematical object) and extracting information out of such a structure is done in a rigorous way, using the formal notion of query.

Let us then notice that the result of a query is exhaustive relative to the database we consider: we get exactly all objects in the base that satisfy the query, no more no less. Also notice that the information content of a (correctly formalized) database is precisely known at any time and the modifications brought to the base (adding, removing or changing data) is precisely controlled. Of course, this is not the case when extracting information from the Web with a search engine and this is not the case either for large data banks (in biology, medicine, cartography, etc.) which have no solid mathematical foundation as have relational databases neither in the structuralization of data nor for the queries. Databanks are indeed databases which are somewhat not well formalized (or somewhat ill). In other words databanks can be really databases whereas this is intrinsically impossible for the Web.

Database and bottom-up versus top-down duality

Let us now look at the elaboration and use of databases in the perspective of bottom-up et top-down approaches. It turns out that this is much the same as with keywords and Google queries.

) The choice of the relational schema is done using a bottom-up or top-down operational mode. In general, both modes are used jointly (in fact, alternatively).

In the bottom-up mode, one uses the expected future content of the database to build its relational schema (which will structure this content). In the top-down mode one builds the relational schema on considerations which are external to the future content. At first glance, using the bottom-up operational mode may seem paradoxical: to use the content in order to structure it. But this is not the case.

In practice, to build a relational schema for a given database, one starts from some sketchy idea of the schema, represents it as some graphic (top-down approach), then implements it (this is programming work). A kind of prototype is thus obtained. This being done, one fills the tables of the database with a few lines (a "set of data") to test the pertinence of the relational schema, which may lead to adjust it (bottom-up approach). And this may be repeated. . . Recall that the content of a database is precisely what gives the semantics of the database whereas the construction of the relational schema is morphology (syntax). With such a mix approach, one can build the morphological (syntactic) part of the database via some access to a part of the semantics of the database. And vice-versa.

Thus, this approach, so seemingly paradoxical, is not so. In fact, there are two true difficulties. First, to delimit the scope of the information system which is to be modeled, and this is done using the given specifications . Second, to choose the right level of abstraction of each component (attributes, tables,etc.).

2) The choice and programming of queries comes next. And the approach is bottom-up, top-down and mix: this is similar to what we said about the elaboration of the relational schema. However, for quite complex databases, one may have to build the schema and the queries more or less simultaneously: we saw this with the thesaurus.

3) Once the relational schema of a database seems adequate and the main queries have been written down and programmed (some of them testing the coherence of the base), one can really fill the database and complete its content. Queries can be added as wanted. But any modification to the relational schema, even a seemingly minor one, can cause a great damage when the size of the database is somewhat huge. For instance, breaking an attribute Artiste into two attributes Composer and Interpreter in a music database.

4)

The content of the database can then be grasped through a completely topdown mode using queries. This is why relational databases are such a breakthrough. Huge quantities of data can be accessed from the outside in a completely rigorous mathematical way. Thus queries can be viewed as questions to the DBMS in which the query processor really behaves as an oracle (since its works is invisible to the user). Of course, one can also follow a bottom-up approach: browse the content of the database to find some wanted information. Before Codd's relational model, this was, indeed, the sole possible approach (excepted mechanography) with the old physical "files" such as index cards in large libraries: alphabetical (syntactic) sorts caused no problem but sorting such files according to themes (semantic) was a real headache!

Classification and bottom-up versus top-down duality

Let us summarize. Approaches to classification via keywords or via Google queries (such as Google classification), databases (whatever theoretical model is used) have the same intrinsic nature. In the diverse phases of the elaboration, especially with keywords and queries, one can follow a bottom-up operational mode or a top-down one (and generally, both modes are used alternatively in a mix mode). Queries obtained in that way then allow to grasp sets of texts in a top-down mode (that is with no understanding of the meaning of the texts) and classify them.

The approach to classification using compression is entirely relevant to the topdown mode. Observe that, for the classification using compression, the framework is then purely syntactical, there is no use of any keyword or query which would convey some semantics (for instance, that given by the chosen identifiers). Thus, one gets information relative to texts without turning to their semantics: simply compress and compute.

At first glance, this approach may seem somewhat "miraculous": one is able to classify information contained in texts without getting into their contents and with no need to understand them. On the contrary, in the previous approaches, one is lead to use a bottom-up mode (though this is not absolutely needed) to build interesting queries (and the relational schema in a database). Let us recall what we evoked supra: text compression is a highly theoretical science and a simple, current-use algorithm such as "gzip" is the result of years of research. Of course, in classification by compression, texts are not chosen randomly! However, for the next future, one sees no limit to the usage of the above method to all information which is on the Web.

Considering the general problem of classifying information, observe that statistics constitute a particular case. Usually, the statistical approach is top-down, computing correlation factors to group objects and/or informations and get a structure on them. Indeed, Google and compression algorithm heavily use statistics. Nevertheless, one can also follow a bottom-up mode with statistics or even mix these two approaches. This will be seen bellow where we propose a probabilistic version of the comprehension schema (cf. section 5.2).

Set theory interpretation of Bottom-Up versus Top-Down duality

Let us now look the different approaches to classification in the perspective of the comprehension schema in Zermelo-Fraenkel set theory ZF. A theory which can be viewed as one of the first formal mathematical attempts to approach the notion of classification, sets being the most rudimentary way to group elements. As a matter of fact, Codd's relational model for databases relies on (naive) set theory, which is not so surprising in the search of a formal structuralization mode.

Thus, the bottom-up versus top-down duality that we point in classification (cf. section 4), can be illustrated by the way the set theoretical comprehension schema "works". We also discuss a probabilistic version of the comprehension schema which among others illustrates the exact versus approximate duality.

The set theoretical comprehension schema

This is an approach from "pure" mathematics.

It is a global approach, intrinsically deterministic, going along a fundamental dichotomy:

True/False, Provable/Inconsistent.

A quest for absoluteness based on certainty. This is reflected in the classical comprehension schema ∀x ∃y y = {z ∈ x ; P(z)}36 where P is a known property fixed in advance. Thus, the set clustering is done from a well known property which is defined within this dichotomy. To do such a grouping and build such a set, we again find ourselves in top-down operational mode: this set is being constructed from the property P. More precisely, with a constructivist approach:

• We start with a set x.

• We choose a property P relative to elements of the set x. This can be done in both bottom-up and top-down modes exactly as in the choice of keywords for a query or as in the elaboration of a query in a relational database (cf. section 4.3). Note that the idea of the grouping, i.e. the choice of this grouping (formalized by the property P) is completely subjective: this is semantics. Nevertheless, we can also get such a property P in a syntactic way: through a computation (cf. section 6.1).

• Having this property P, we then pick the elements of the set x which satisfy P.

The comprehension schema37 allows us to consider such a set construction (in the ZF axiomatic set theory).

If we do not relativize this construction to some fixed set x (or, equivalently, if we consider a set containing all sets) then we face Russel's paradox 38 . Observe that the solution to this paradox really makes sense: in this approach, one should start from something, and it will be from an existing set of objects to work with such a property! Indeed, the elaboration of the property P is made in a mix mode (as with queries in a relational database) then we can start with a certain idea for the property P (related to what is the set x) then "pick" some elements in the set x to get a better idea of P, and then pick again some elements in x and adjust P, and so on.

Once this property has been "set up" (maybe getting it in extenso), one is now able to group all elements of x which satisfy P. Of course, in the mathematical literature, no one present such successive approximations to get a property: the obtained property is given directly! Nevertheless, this is how things are being done in general. Computer scientists are used to such practice: a modular approach is used to perfect a database or a program. Of course, so do the mathematicians quite often.

It is important to note that the grouping, that is, the definition of the set y or its constitution (though some would rather consider an explicit construction) can be done in a top-down operational mode which is an intensional mode. Intensionality, (one can also say abstraction) is expressed by that property P. This property plays the role of a question which leads to an instantiation of comprehension schema which really behaves as an oracle. The answer of the oracle is exactly the set of elements of x satisfying property P. This is the the opposite (the dual in fact) of an extensional description (which gives the element, one by one) which is necessarily done in a bottom-up mode.

Knowing in advance the property P is a very particular case which does not happen in most "real" situations. Below, we develop this aspect by proposing a "probalistic" comprehension schema. Then we show in section 6, how this probabilistic schema can be generalized using Kolmogorov's complexity. This brings us to the relation between the algorithmic information theory and classification which are the heart of this work.

The probabilistic comprehension schema

In the probabilistic approach, much more pragmatic than the logical one, uncertainty is taken into consideration, it is bounded and treated mathematically 39 .

This can be related to a probabilistic version of the comprehension schema where the truth of P(z) for instances of z is replaced by some limitation of the degree of uncertainty of the truth of P(z). Formally, together with z, we have to consider a new parameter in P, namely the event ω of some probability space Ω and we have to fix some confidence interval I of [0, 1] (representing some prediction interval). Denoting by µ the probability law on Ω, the probabilistic comprehension axiom for property P now states ∀x ∃y y = {z ∈ x ; µ( {ω ∈ Ω ; P(z, ω)} ) ∈ I} 39 We refer the reader to William Feller [21] and also Kolmogorov, [27, 29], and Chaitin [4].

As was the case with the set theoretical comprehension schema, one gets in a top-down operational mode to do such a grouping and build such a set from property P and interval I. This is so even if we allow some degree of uncertainty for the truth or provability of property P(z) (which is then replaced by µ({ω ∈ Ω ; P(z, ω)}) ∈ I ) for particular instances of z.

Once again, this is a precise particular case: though its truth has some uncertainty, this property is well defined and fixed in advance, together with the confidence interval I. However, such a schema is closer to many situations met in the real world. As in the previous case, such a property P (and the confidence interval I) allow to define the set y in a top-down operational mode, that is to get an intensional, abstract description of the set y. It is natural to consider as above, an underlying oracle (the probabilistic comprehension schema), which, given some property P and interval I, returns the set y with non totally accurate answers (the interval I limiting the inaccuracy). Observe that, as above, the choice of P and I is relevant to semantics. Remark that there are other ways to formulate a probabilistic comprehension schema.

As concerns groupings of information relevant to a purely top-down mode (the grouping itself, the elaboration of a property to do it, the definition of sets of information), we treat it in the next section 6 about intensionality and Kolmogorov complexity.

Let us simply recall (cf. section ?? ) that classification by compression and some methods based on statistical inference allow to have such purely top-down approaches. The particular of Google classification is exactly the same as that of set theoretical and probabilistic comprehension schemas (for Google, keywords play the role of a property P) and that of classification via databases, up to one significant exception: with Google, everything is moving: answers as well as the keywords proposed in queries.

6 Information, intensionality , abstraction and Kolmogorov complexity 6.1 Classification, database, intensionality, abstraction, semantics and algorithmic information theory

We stressed in section 4 the importance of the Web expansion and the huge interest of classification by compression and Google classification. The Web can be seen as a gigantic expert system: first, it is a huge information system (this is the network aspect, software and hardware, between machines and servers), second, machines are used and programmed by human beings (their brains) with far more intelligence than what is done in the syntactic world of machines which can only compute.

Classification by compression (and Google classification) will surely be more and more used with information on the Web. The same is true with statistical inference methods. In some sense, all these approaches are tightly correlated and, as any approach to classification (cf. section ?? and section 5), they lead to top-down approaches to information. In particular, they can be used to grasp the information content of a text (and more generally of a set of texts) with no access to it "from the inside", i.e. without reading and understanding the text. These methods look for analogies with other texts, the meaning of which is known, or they compare their respective information content. Somehow, they are "profilers" which will become incredibly efficient in the near future when applied to information on the Web40 .

However we have also explained how these methods still lack some formal development, in particular for the notion of query: for any classification of information, the first question is to find back information from this classification. It is a fact that the notion of query to the Web (with Google or any browser) is still not really formalized.

We have seen that Codd's relational database model led to a completely mathematical structure and processing of the information contained in computer files through the relational schema and the possible queries to the database (the scope of such queries being tightly dependent of the relational schema). As said above, before Codd, there was no such information processing with machines.

Codd had to fight to impose his mathematical model and, even today, operating systems do not really use databases. A reflexion about possible formalizations of classification by compression, Google classification and a notion of query to the Web, is, in our opinion, quite fundamental. Note that with Google (or any other browser) we have no idea how to measure the degree of uncertainty of Google's answers. The percentage of pertinent answers may be anything between 0% and 100%. Google answers are unpredictable and constantly moving. Not an easy situation! However, it seems reasonable to ignore at first the moving character of Google (and also its not completely scientific features, cf. section 3.2, point 4) when looking for a mathematical modeling of these methods.

Indeed, one starts from a clustering or more generally from a classification, obtained by way of conjunctions of keywords which are proposed into queries for Google or from a clustering or a classification obtained by compression or observed by way of the statistical methods.

In the simple case of a clustering, we infer the existence of a property, of a "law", which is a form of regularity. The emergence of such a law coincides with the existence of a certain degree of intensionality in the clustering we accomplish.

Otherwise said, we make obvious a grouping of objects, the description of which can be compressed by using this property. This is an intensional description (when the compression have been performed). This can be seen as an (extended) top-down version of the set theoretical or probabilistic comprehension schema: the property used in the set groupings is not known and fixed beforehand.

For more sophisticated classifications, one will have higher order clusterings , i.e. clusterings of clusterings, etc. Otherwise said, several properties will be involved (in some cases, even infinitely many properties, in a theoretical point of view). Observe that, with a subtle analysis of modelization using relational databases one can see that, up to now, quite a few levels suffices to modelize a lot of discrete information systems (for the "real world)". One can expect a similar situation for classifications obtained via the top-down approaches as evoked above, at least for those relative to the present real world.

In case of some random grouping, no law gives any description: no classification is possible. The sole descriptions which can be given are the extensional ones (element by element): they are intrinsically non intensional. Such random groupings can be called "non intensionalizable", in other words, there is no shorter description and no more abstract one, hence no more intensional one, which is equivalent. Otherwise said such a description is incompressible.

This points out the remarkable pertinence of Kolmogorov complexity theory which is an avant-garde theory. Especially when being considered with several points of view, namely by studying the randomness of a word or its information content or the possibility to compress this word. Somehow, randomness is the "opposite" of classification, More precisely, there is a duality randomness versus classification, coming from the fact that Kolmogorov's theory of algorithmic information allows to look at these two sides of information (this is what Kolmogorov explicitly tells in [28]).

This duality is a quasi-opposition though randomness is not chaos (cf. Part I). This points out deep relations between Komogorov complexity and relational databases (which constitute, up to now, as we saw, the sole implemented -and widely spread -logical approach to information systems). This complexity also appears unavoidable as soon as one is interested in classification problems. This is not surprise since Kolmogorov complexity is primarily a theory about information!

If we go back to Kolmogorov's approach, one can observe that it is relevant to the top-down mode. Indeed, look at the basic definition of Kolmogorov complexity:

The length of the shortest program which outputs a given data (the output being a binary word which represents a given object) 41 .

Larger is the Kolmogorov complexity of an object, larger are all programs to produce it, more random it is, larger is its information content, Larger is the Kolm are all programs to produce it, less intensional is any description of it, less intensional is it itself, less abstract is any property that allows us to describe the object (when we consider the property in a syntactical perspective) .

In this definition one does not enter into the content of the output or into the details of the object, which is therefore taken as a whole. One solely handles the object from the outside via some program and/or some property which allows to describe it. This is indeed a top-down approach as are classification using compression, classification using Google and a part of statistical inference methods. And this suggests that these classifications methods are somewhere related and that Kolmogorov complexity could give an unifying mathematical formal framework.

In other words, thanks to Kolmogorov theory, we are able to measure the complexity of an object (in the sense of Kolmogorov), i.e. to give a numerical measure of the degree of intensionality or even of degree of abstraction which is contained in a computable description of that object. It is remarkable that this can be done with no prerequisite "knowledge" of the structure of the object and that this is indeed what allows us to apprehend this structure.

Kolmogorov complexity and information theories, semiotics

Let us now compare the diverse ways to approach the notion of information followed by Shannon (cf. Part I), Kolmogorov, Codd and other researchers.

• For Shannon (1948) [32], an information is a message which is transmitted through some physical device. In particular, an information is a signal and there can be losses during the transmission. This design is that of a dynamic information approach and the physical communication medium is of outmost importance.

So he looks at robustness of information and comes to a quantitative notion of information content in transmitted messages. To measure variation of this quantity, he borrows to thermodynamics the concept of entropy and he bases his theory on it. So he clarifies, on mathematical basis, how to deal with noisy communication channels. In Shannon's theory, words represent information (messages). It is based on coding letters or groups of letters in a word (cf. Partie I), i.e. it is a purely syntactic analysis of words (and messages they represent) which makes no use of any semantics. Thus Shannon elaborates a mathematical theory of the information content of messages transmitted with some loss of signal. Its main (and hugely important) applications are related to telecommunications (no surprise: Shannon worked in Bell Laboratories).

• The origin of Shannon's work is Wiener's cybernetics (cf. note 7) in the late 40's. This subject was much discussed in the Macy conferences (New-York, 1942 -1953), to which Shannon attended. Before Wiener and these conferences, there was nothing like an information theory. Cybernetics is a theory which establishes, among other things, the concept of auto regulated system , in terms of : global behavior, exchanges, communication and interactions. Fundamentally, this is a top-down approach to information and systems. Wiener talks about ≪ a science of relations and analogies between (living) organisms and machines 42 ≫. In particular, he studies random processes and the "noise" occurring during the exchanges in a system. A fundamental notion in his theory is that of feedback : ≪ An object is controlled by the instantaneous error margin between its assigned objective ≫. This is clearly a prefiguration of Shannon's information theory (Shannon attended Wiener lectures as a student).

Wiener has an avant-garde vision on machines ! His works are the origin of many discoveries, in particular, in sociological, psychological and biological aspects of communication and interaction and, more generally, in all information theories. Besides several research themes generated by Wiener's theory, let us also mention that Wiener's theory has a deep influence on a large part of modern semiotics 43 .

• In particular, Let us cite Umberto Eco [START_REF]Eco is President of the "Scuola Superiore di Studi Umanistici[END_REF] , in The Open Work 45 (1962) which analyses the question of openness of art pieces (that we can see as some form of non-determinism or as a plurality of interpretations). Eco often refers to Wiener in chapter 3 : Openness, Information, Communication. He convincingly pinpoints the necessity to distinguish between 46 : ≪ [. . . ] the signification of a message and the information it brings. ≫

In other words, it is important to differentiate the semantics of a message and its information content. Eco gives a simple and illuminating example (which we slightly modify) to make clear this distinction: the message "tomorrow it will snow in Paris" does not have the same meaning in December than in August! He also adds:

• For Kolmogorov (1965) (see also Chaitin (1966) and Solomonoff (1964)), the fundamental aspect of information is the information content of an object, independently of any consideration on how this information is used (as a message for instance). This is a static vision of information.

What Kolmogorov is interesting in is to give mathematical foundations for the notion of randomness and to explicit the notion of information content of a given object which is intrinsic to that object. Thus, what Kolmogorov looks for is a mathematical theory of information which would be far more abstract than Shannon's one and would be based on semantics not only on a "physical" object like a word. His solution is to consider computer programs (considered as computable descriptions) -considering things in fact in the context of the calculability theory -which output an object and look at the length of a smallest one. With Kolmogorov complexity, one can capture an "objective" mathematical measure of the information content of an object. Moreover, this measure is really inherent to the object -in some way it is an universal specification of the information content of of the object -since it does not depend (up to a constant) on the considered programming language to get programs: this is the content of Kolmogorov's Invariance Theorem. In order to aim an "absolute" mathematical notion of randomness, Kolmogorov makes a drastic abstraction from any physical device to carry information. In this way, he elaborates the algorithmic information theory which allows to "compute"47 Kolmogorov complexity of any object. Introducing a conditional version of Kolmogorov complexity, he refines this notion of intrinsic complexity of an object by relativizing it to a context (which can be seen as an input or an oracle, etc. for the program) carrying some extra information. This exactly matches the problem pointed by Eco about the necessity to distinguish signification and information content.

This is how Kolmogorov founds algorithmic information theory, which can be looked at as much as a mathematical foundation of the notion of randomness than as a mathematical foundation of information classification and structuralization.

• As seen above, for Codd (1970), the fundamental feature of information is its structuralization -which is formally described -and the fact that one can get back information from this structuralization in an exhaustive way.

Codds theory essentially relies on mathematical logic. Thus, Codd bases his work on the static aspect of information Observe that, as Kolmogorov does, Codd also makes abstraction of the physical device carrying the information. This was quite a revolution in information treatment at IBM: previously, any information treatment dealt with the files containing the data: information and files were considered as a whole.

Observe that the modeling of information systems via relational databases also takes into consideration the subtle distinction raised by Eco between semantics and information content: the pertinence of an information with respect to a given information system is seriously considered. The same distinction is taken into account in the construction of the relational schema of a database. For instance, in a database to manage a university, a choice is to be made: is the information about the students hobbies to be considered or to be ignored? Of course, this choice is completely subjective, this is semantics. If the attribute StudentHobby is retained then it will appear in the relational schema of the database, i.e., in the syntactic counterpart of what is retained as the "constitutional" semantics of the information system.

Algorithmic information theory, representation and abstraction

A priori, Kolmogorov complexity does not apply directly to the objects we consider, but only to binary words associated to a chosen representation of objects. However, for the usual different representations, this has quite a minor incidence (this is the content of the invariance theorem ). Thus, we (abusively) speak of the Kolmogorov complexity of objects instead of Kolmogorov complexity of representations of objects.

Nevertheless, if higher order representations are considered, this is no more true. For instance, if we represent integers as cardinals of (finite) recursively enumerable sets. Indeed, Kolmogorov complexity allows to compare higher order representations of integers, leading to a proper hierarchy of natural semantics for integers (Church iterators, cardinals, ordinals, etc.) as we proved in [23]. This hierarchy can be put in parallel with a hierarchy of Kolmogorov complexities obtained by considering infinite computations and/or oracles.

We show, among other things, that Kolmogorov complexity is also useful to get a kind of classification of semantics for integers which is rather amazing. We can also see this classification of different representations of integers as a classification of the degree of intensionality of these representations, i.e. a sort of classification of the less or more abstract nature of different definitions of integers, obtained from the different semantics we consider. We develop this in [23] 48 .

Conclusion

The previous considerations show, in particular, that not only Kolmogorov complexity allows a mathematical foundation of the notion of randomness, but this theory is also intrinsically related to the fundamentals of information: the notions of information content and compression, that of classification and structure , and more generally, database and information system (as they currently are). This theory is also related to the notions of intensionality and abstraction , and also to the notions de representation , syntax and semantics . An enormous scope!

This double aspect (randomness and classification) -drawn by Kolmogorov since the origin of his theory [28] -is partly stressed by the denomination algorithmic information theory commonly used to distinguish Kolmogov complexity theory and Shannon's information theory . Many applications can be expected in various unsuspected domains. And this theory seems to us particularly suited to provide a unifying theoretical framework for a lot of approaches to information processing.

However, it seems to us to be interesting, to look for an extension of Kolmogorov This means that we look at Kolmogorov complexity with a more refined and more structured point of view -in other words with a qualitative point of viewthan that of Kolmogorov. For him a program and an output are binary words (which can represent sets, graphs, information systems, etc.) and his main purpose is to get a quantitative definition of the complexity of an object.

Such a qualitative approach was also followed by Codd himself while he elaborated the relational model for databases. His theory is based on the formal notion of attribute which is to represent qualitative characteristics of objects (which are related via diverse links which are also of qualitative nature) and Codd puts such attributes in a mathematical framework. A database is a formal and mathematical specification as "scientific" as any algorithm which processes data and computes.

In particular, one can look at the smallest program which outputs some given object rather than at its sole length or also look at the set of all programs which give the wanted output. Such an approach enlightens new links between algorithmic theory of and Gurevich's ASMs 50 . It opens promising perspectives.

As Gurevich told us 51 , the ideas of Kolmogorov complexity theory are far from having exhausted all possible applications: it is just the beginning... Classification of information by compression and Google classification witness such new possibilities. It is also in such a structural perspective that Bennet developed the logical depth complexity [1] which considers the running time of the program which gives the output. It is also called the organized complexity.

Keeping the same spirit (with such a level of refinement), comes this question:

Why consider the shortest program? What is so particular with it?

The answer comes from the observation of ASMs and the Curry-Howard correspondence:

The shortest program is the most possible abstract. Let us say briefly that in the Curry-Howard correspondence, one consider that:

• Logical formulas correspond to types in typed λ-calculus and to abstract types in computer science.

• Logical proofs correspond to λ-terms and computer programs.

50 This is what we started in Ibid. Note 49.

51 Personal communication while he was visiting our university in Paris. 52 Howard W. The formulas-as-types notion of construction, in Essays on Combinatory Logic, Lambda Calculus and Formalism. Seldin J.P., Hindley J.R. eds., Academic Press, pp. 479-490, 1980. 53 Joachim Lambeck also published in the 70's, about this correspondence concerning the combinatories of the cartesian closed categories and the intuitionist propositional logic. Note that Nicolaas Debruijn (Authomath system ) and Per Martin-Löf had also a decisive influence upon the original Curry-Howard isomorphism. Martin-Löf saw the typed lambda calculus, which he was developing, as a (real) programming language (Cf. • Cut elimination in a proof 54 corresponds to normalization by diverse rules in λ-calculus, including β-reduction 55 relating λ-terms and runs of computer programs.

This enhances the abstract character of programs evoked above. Indeed, the smallest logical proof (considered in a given context) is in fact the one which contains the most numerous cuts. We saw (cf. Note 54) that in some cases, a cut is a form of abstraction. Notice that a proof, of which we have eliminated cuts (which therefore means in some situations replacing "a general case" by a lot of "particular cases"), has its size bounded in the absolute by a "tower of exponentiations". . .

The more cuts a proof contains the more abstract it is. Somehow, we can say that the more abstract is a proof, the more compressed it is.

In the same way,

The more redexes there is in a λ-term 56 , The more abstract is a λ-term, the more compressed it is.

And for computer programs, the notion of cut can also be defined for programming languages with their usual primitive instructions. For instance, a program containing for i = 1 to 1000000 do print(i) is more abstract than the same program in which this loop is replaced by the sequence of instructions do print(1) and do print(2) and ... and print(1000000)

Thus, the for loop allows for cuts. Hence a result similar to those precedents: 54 The notion of cut in the Sequent Calculus and the Natural Deduction is a fundamental notion in proof theory. It was introduced by Gerhard Gentzen in the 30's -and these two logical calculus too. In some cases one can see a cut as a form of abstraction where a multiplicity of particular cases are replaced by a general case. In the sequent calculus, a cut is defined by means of the cut rule, which is a generalization of the Modus Ponens. The fundamental result of Gentzen is the Hauptsatz, which states that every proof in the sequent calculus can be transformed in a proof of the same conclusion without using this cut rule. 55 In fact, Church's original λ-calculus can be extended with constants and new reduction rules in order to extend to classical logic with the notion of continuation , Thimothy Griffin, 1990. -and possibly classical logic plus axioms such as the axiom of dependent choice -the original Curry-Howard correspondence between intuitionist logic and usual typed λ-calculus. This is the core of Jean-Louis Krivine's work who introduced some of those fundamental constants which have a deep computer science significance (cf. Krivine J.L. Dependent choice, 'quote' and the clock. Theoretical Computer Science. 308, p. 259-276, 2003. see also: http://www.pps.jussieu.fr/∼krivine/).

56 A redex in a λ-term t is a subterm of t on which a one-step reduction can be readily applied, for instance, with β-reduction, this is a subterm of the form ((λx.u)v) and it reduces to u[v/x], which is the term u in which every occurrence of x is replaced by v (some variable capture problems have to be adequately avoided).

The more cuts a program contains, the more compressed it is.

Observe that the more a program is compressed via cuts, the more declarative is this program. Which means that its text contains less control instructions, i.e. less instructions about the technical way some parts of the program are to be executed. A fully compressed program is totally declarative.

But what about ASMs in this context?

As we said, ASMs allow to represent-in a very simple way -the step by step of the execution of any sequential algorithm using models in first-order logic and some simple primitive instructions. As can be expected, it is interesting to look for a notion of cut in the ASM framework. In the same vein, deep relations exist between ASMs, λ-calculus and Curry-Howard correspondence. Cf. our paper to appear in honor of Yuri Gurevich [24], in which we represent ASMs in λcalculus, showing that λcalculus is algorithmically complete as are ASMs.

Going back to Kolmogorov complexity, we can can say that:

The shortest program producing a given output is the most abstract one, hence (viewed in λ-calculus) it is the λ-term containing most redexes, hence also (viewed in proof theory) the proof which contains the most cuts.

In any case, this is a form of abstraction. Which is no surprise since we already noticed that Kolmogorov complexity is fundamentally related to the notion of abstraction.

Going back to the information context, we can say :

Knowledge is abstract information: abstract, compressed, with some intensionality content.

And such a knowledge will be, in its turn, compressed, etc. This is exactly the mode the brain functions with language and mathematics. Observe that some abstractions are somewhat "accidental": they occurred at some time and drastically modify the state of knowledge. Such an abstraction was the invention of phonetic transcription of Indo-European languages: with a handful of symbols as (letters of the Roman or Greek alphabet and some extra signs), one can write down all texts in these languages. One can also enunciate them (which is not the same as understanding them): a few rules suffice to capture specific pronunciation features in any such language. Such an abstraction is lacking in Chinese writing. . . Note that it is really what Kolmogorov complexity shows. Suppose an integer has a long and seemingly lawless binary (or decimal) representation: it takes space to represent it in this way. But if we get a (good) constructible property about this integer, then we can obtain a short, abstract, compressed characterization of it. And this increases our knowledge. In the same way, the development of integral calculus, some parts of geometry and fractal geometry, allow for short (effectively computable) sequential descriptions of shapes.

Especially, it appears that Kolmogorov's complexity can be a very useful theory in order to address in a mathematical way the approaches of classification, which are now essentially, to the exception relational database, heuristic methods (not yet fully formalized as can be expected from a classification method) such as classification using compression and Google classification. One can also hope for applications in other domains such as semiology, cognitive science or biology with the genome, as spectacularly shown by the French biologist Antoine Danchin in his book, [12]. Indeed, classification by compression is already used by some biologists in such a perspective.

Let us conclude by stressing again how much useful are such classification methods using compression or using Google along the top-down operational mode. In many cases, we face huge families of objects (when one can define them) for which there is no obvious structure. So that we really are in a syntactic world and want to grasp this world with some semantic. This is, for example, the case for DNA sequences of living organisms and for the multi billion many files on the Web. . . For that last example, though we are not so much pessimistic, let us cite Edsger W. Dijkstra's penetrating analysis in his famous 1972 Turing award reception speech [17] 57 : ≪ As long as there were no machines, programming was no problem at all; when we had a few weak computers, programming became a mild problem, and now that we have gigantic computers, programming has become an equally gigantic problem. In this sense the electronic industry has not solved a single problem, it has only created them -it has created the problem of using its products. ≫
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  Martin-Löf P. Constructive Mathematics and Computer Programming. Paper read at the 6-th International Congress for Logic, Methodology and Philosophy of Science, Hannover, 22 -29 August 1979.) Similarly, Thierry Coquand elaborated the theory of Construction, on which is based the Coq system, iniatially developed by Gérard Huet at the INRIA (France) in the 80's. (See also note 55).

7

  The notion of black box is a scientific concept introduced by Norbert Wiener in 1948: Wiener N. Cybernetics or Control and Communication in the Animal and the Machine. The Technology Press, 1948 & 2nd Ed. The MIT Press, 1965. This concept is one of the fundamental principles of Cybernetics. It is issued from the multidisciplinary exchanges during the Macy conferences which were held in

  Thus, considering both programs and what the program does, the algorithmic information theory created by Kolmogorov has both syntactic (length of a program) and semantic features (i.e. what the program does).

  Indeed, Curry-Howard correspondence insures a deep relation between logic and λ-calculus -in that sense, this correspondence is an isomorphism -hence by extrapolation logic and computer programming. Curry-Howard correspondence plays a fundamental role in the articulation of proof theory, typed lambda calculus, theory of categories and also with models of computing (either theoretical or implemented ones like programming languages). It was known by Curry for combinatory logic as early as 1934 and for Hilbert proof systems in 1958. It was extended by William Howard in 1969 who published a corner-stone paper 52 in 80 53 .

The notion of information content of an object is detailed in Part I. According to Kolmogorov, this is, by definition, the algorithmic complexity of that object.

≪ Large objects (in the sense of long strings) that differ by a tiny part are intuitively closer than tiny objects that differ by the same amount. For example, two whole mitochondrial genomes of 18, 000 bases that differ by 9, 000 are very different, while two whole nuclear genomes of 3 × 10 9 bases that differ by only 9, 000 bases are very similar. ≫

We come back in section 4 below on information processing with statistics.

A formal definition of compressors is given in Part I.

Point 4, section 3.2 relativizes the obtained results.
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Véronis J. Web : Google perd la boole. (Transl: Web: Googlean logic.) Blog. January 19, 2005 from http://aixtal.blogspot.com/2005/01/web-google-perd-la-boole.html . See also: http://aixtal.blogspot.com/2005/02/web-le-mystre-des-pages-manquantes-de.html and http://aixtal.blogspot.com/2005/03/ google-5-milliards-de-sont-partis-en.html , 2005.

In particular[START_REF] Ferbus-Zanda | Duality: Logic, Computer Science and Boolean Algebras[END_REF],[START_REF] Ferbus-Zanda | Logic and Information System: Cybernetics, Cognition Theory and Psychoanalysis[END_REF] et Ferbus-Zanda M. Logic, Information System and Metamorphosis of a Fundamental Duality. In preparation.

Kleene formally and completely characterizes the notion of recursive function (also called computable function ), by adding the minimization schema (1936) to the composition and recursion schemas -these two last schemas characterize the primitive recursive functions which constitute a proper subclass of the class of computable functions: the Ackermann function (1928) is computable but not primitive recursive. From a programming point of view, the minimization schema corresponds to the while loop (while F(x) do P where F(x) is a Boolean valued property and P is a program). Cf. also Note 23 or the book by Shoenfield J. Recursion theory, Lectures Notes in Logic, (new edition) 2001.

This is the case for tail-recursion definitions. In some programming languages such as LISP such tail-recursion programs are generally executed (when the programs executor is well written) in an iterative way. Tail-recursion programs represent a limit case between iterative programs and recursive programs.

Depending on how much abstraction is wanted (or how much refinement is wanted), a text will be represented by a binary word (the blank spaces separating words being also

The abstract notion of isomorphism in mathematics is a form of duality. Some dualities are not reduced to isomorphisms. Typically, Boolean algebras with the complement operation (in addition to additive and multiplicative operations) contain an internal duality and are the basis of deep dualities such as Stone duality which links the Boolean algebras family and some topological spaces. The complement operation confronts us to many problems and deap results. . .

Since Gottlob Frege invention, at the end of the 19th century, of the mathematical logic and the formalization of the mathematical language that results from it, mathematicians have de facto to deal with two distinct categories of mathematical symbols: the function symbols and relational symbols (or predicate symbols) in complement of symbols representing objects. To each of these two large classes of symbols respectively correspond algorithms and information systems.

The information systems in which we highlight a type of programming that we named relational programming in a research report: Ferbus-Zanda M. La méthode de résolution et

The dedication in his last book ([START_REF] Codd | The relational model for database management[END_REF], 1990) is as follows: ≪ To fellow pilots and aircrew in the Royal Air Force duriring War II and the dons at Oxford. These people were the source of my determination to fight for what I believe was right during the ten or more years in which government, industry, and commerce were strongly opposed to the relational approach to database management. ≫ .

Oracle is now a company worthing billions dollars.

UML (Unified Modelling Language ) is a formal language, which is used as a method for modeling in many topics, in particular, in computer science with databases and Object-Oriented Conception (OOC ) -in fact, this is the source of UML.

In fact, any such "complete" dictionary is necessarily circular: a word a is defined using the word b which is itself defined with other words themselves defined in the dictionary. It

Ibid. Note 29.

An implementation of Codd's relational model for databases is a DBMS (DataBase Management System ). Any DBMS includes an interpreter of the language SQL (such an interpreter is, in fact, an implementation of Codd's relational algebra , the fundamental calculus in this theoretical model).

More formally: ∀x ∃y ∀z (z ∈ y ←→ (z ∈ x ∧ P(z) )).

One can also constraint in different ways this property P. In particular, to avoid circularities such as the one met when P contains some universal quantification on sets, hence quantifies on the set it is supposed to define (this was called impredicativity by Henri Poincaré).

 38 Russel's paradox insures that the following extension of the comprehension schema is contradictory: ∃y y = { z ; P(z) }, i.e. ∃y ∀z (z ∈ y ←→ P(z)). Indeed, consider the property P such that P(u) if and only if u / ∈ u, then we get y ∈ y if and only if y / ∈ y.

Recall that once an information has been put on the Web, it is almost impossible to remove it. . .

Kϕ(y) = min{|p| : ϕ(p) = y} where Kϕ : O → N where ϕ : {0, 1} * → O is a partial function (intuitively ϕ executes program p as a LISP interpreter does) and O is a set endowed with a computability structure. We take the convention that min ∅ = +∞ (cf. Part I).

≪ Wiener said that signification and information are synonyms, both related to entropy and disorder. [. . . information also depends on the source which sends he message. ≫

Recall that the very original idea on which Vitanyi based the classification using compression is to compute an approximate value of this complexity via usual compression algorithms.

As in the two forthcoming (technical) papers: Ferbus-Zanda M. & Grigorieff S. Kolmogorov complexity and higher order set theoretical representations of integers and Ferbus-Zanda M. & Grigorieff S. Infinite computations, Kolmogorov complexity and base dependency.

We study the duality of functional and relational in[START_REF] Ferbus-Zanda | Duality: Logic, Computer Science and Boolean Algebras[END_REF]. The relation between ASMs and Kolmogorov complexity and the reconsideration of these theories with a relational point of view are developed in a forthcoming paper: Ferbus-Zanda M. Kolmogorov Complexity and ASM: the relational point of view, in preparation.