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case 7014

75205 Paris Cedex 13 France

Marie.Ferbus@liafa.jussieu.fr

Serge Grigorieff

LIAFA, CNRS & Université Paris 7
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Abstract

We survey diverse approaches to the notion of information: from Shannon

entropy to Kolmogorov complexity. Two of the main applications of Kol-

mogorov complexity are presented: randomness and classification. The

survey is divided in two parts in the same volume.

Part I is dedicated to information theory and the mathematical formaliza-

tion of randomness based on Kolmogorov complexity. This last applica-

tion goes back to the 60’s and 70’s with the work of Martin-Löf, Schnorr,

Chaitin, Levin, and has gained new impetus in the last years.
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Note. Following Robert Soare’s recommendations ([49], 1996), which have now
gained large agreement, we write computable and computably enumerable in
place of the old fashioned recursive and recursively enumerable.

Notation. By log x (resp. logs x) we mean the logarithm of x in base 2 (resp.
base s where s ≥ 2). The “floor” and “ceil” of a real number x are denoted
by ⌊x⌋ and ⌈x⌉: they are respectively the largest integer ≤ x and the smallest
integer ≥ x. Recall that, for s ≥ 2, the length of the base s representation of
an integer k is ℓ ≥ 1 if and only if sℓ−1 ≤ k < sℓ. Thus, the length of the base
s representation of an integer k is 1 + ⌊logs k⌋ = 1 + ⌊ log k

log s ⌋.
The number of elements of a finite family F is denoted by ♯F .
The length of a word u is denoted by |u|.

1 Three approaches to a quantitative definition
of information

A title borrowed from Kolmogorov’ seminal paper ([25], 1965).

1.1 Which information?

1.1.1 About anything...

About anything can be seen as conveying information. As usual in mathematical
modelization, we retain only a few features of some real entity or process, and
associate to them some finite or infinite mathematical objects. For instance,

• - an integer or a rational number or a word in some alphabet,
- a finite sequence or a finite set of such objects,
- a finite graph,...

• - a real,
- a finite or infinite sequence of reals or a set of reals,
- a function over words or numbers,...

This is very much as with probability spaces. For instance, to modelize the dis-
tributions of 6 balls into 3 cells, (cf. Feller, [15], §I.2, II.5) we forget everything
about the nature of balls and cells and of the distribution process, retaining
only two questions: “how many balls in each cell?” and “are the balls and cells
distinguishable or not?”. Accordingly, the modelization considers
- either the 729 = 36 maps from the set of balls into the set of cells in case the
balls are distinguishable and so are the cells (this is what is done in Maxwell-
Boltzman statistics),

- or the 28 =

(
6 + (3− 1)

6

)
triples of non negative integers with sum1 6 in

1This value is easily obtained by identifying such a triple with a binary word with six
letters 0 for the six balls and two letters 1 to mark the partition in the three cells.
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case the cells are distinguishable but not the balls (this is what is done in Bose-
Einstein statistics)
- or the 7 sets of at most 3 integers with sum 6 in case the balls are undistin-
guishable and so are the cells.

1.1.2 Especially words

In information theory, special emphasis is made on information conveyed by
words on finite alphabets. I.e., on sequential information as opposed to the
obviously massively parallel and interactive distribution of information in real
entities and processes. A drastic reduction which allows for mathematical de-
velopments (but also illustrates the Italian saying “traduttore, traditore!”).

As is largely popularized by computer science, any finite alphabet with more
than two letters can be reduced to one with exactly two letters. For instance,
as exemplified by the ASCII code (American Standard Code for Information
Interchange), any symbol used in written English – namely the lowercase and
uppercase letters, the decimal digits, the diverse punctuation marks, the space,
apostrophe, quote, left and right parentheses – together with some simple ty-
pographical commands – such as tabulation, line feed, carriage return or “end
of file” – can be coded by binary words of length 7 (corresponding to the 128
ASCII codes). This leads to a simple way to code any English text by a binary
word (which is 7 times longer)2.

Though quite rough, the length of a word is the basic measure of its information
content. Now, a fairness issue faces us: richer the alphabet, shorter the word.
Considering groups of k successive letters as new letters of a super-alphabet, one
trivially divides the length by k. For instance, a length n binary word becomes
a length ⌈ n

256⌉ word with the usual packing of bits by groups of 8 (called bytes)
which is done in computers.
This is why all considerations about the length of words will always be devel-
oped relative to binary alphabets. A choice to be considered as a normalization
of length.

Finally, we come to the basic idea to measure the information content of a math-
ematical object x :

information content of x =
length of a shortest binary word

which “encodes” x

What do we mean precisely by “encodes” is the crucial question. Following the
trichotomy pointed by Kolmogorov in [25], 1965, we survey three approaches.

2For other European languages which have a lot of diacritic marks, one has to consider the
256 codes of Extended ASCII which have length 8. And for non European languages, one has
to turn to the 65 536 codes of Unicode which have length 16.
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1.2 Combinatorial approach: entropy

1.2.1 Constant-length codes

Let us consider the family An of length n words in an alphabet A with s letters
a1, ..., as. Coding the ai’s by binary words wi’s all of length ⌈log s⌉, to any
word u in An we can associate the binary word ξ obtained by substituting the
wi’s to the occurrences of the ai’s in u. Clearly, ξ has length n⌈log s⌉. Also,
the map u 7→ ξ from the set A∗ of words in alphabet A to the set {0, 1}∗ of
binary words is very simple. Mathematically, considering on A∗ and {0, 1}∗
the algebraic structure of monoid given by the concatenation product of words,
this map u 7→ ξ is a morphism since the image of a concatenation uv is the
concatenation of the images of u and v.

1.2.2 Variable-length prefix codes

Instead of coding the s letters of A by binary words of length ⌈log s⌉, one can
code the ai’s by binary words wi’s having different lengthes so as to associate
short codes to most frequent letters and long codes to rare ones. This is the
basic idea of compression. Using such codes, the substitution of the wi’s to
the occurrences of the ai’s in a word u gives a binary word ξ. And the map
u 7→ ξ is again very simple. It is still a morphism from the monoid of words on
alphabet A to the monoid of binary words and can also be computed by a finite
automaton.

Now, we face a problem: can we recover u from ξ ? i.e., is the map u 7→ ξ
injective? In general the answer is no. However, a simple sufficient condition to
ensure decoding is that the family w1, ..., ws be a so-called prefix-free code (or
prefix code). Which means that if i 6= j then wi is not a prefix of wj .

This condition insures that there is a unique wi1 which is a prefix
of ξ. Then, considering the associated suffix ξ1 of v (i.e., v = wi1ξ1)
there is a unique wi2 which is a prefix of ξ1, i.e., u is of the form
u = wi1wi2ξ2. And so on.

Suppose the numbers of occurrences in u of the letters a1, ..., as are m1, ...,ms,
so that the length of u is n = m1 + ...+ms. Using a prefix-free code w1, ..., ws,
the binary word ξ associated to u has length m1|w1| + ... +ms|ws|. A natural
question is, given m1, ...,ms, how to choose the prefix-free code w1, ..., ws so as
to minimize the length of ξ ?
Huffman ([21], 1952) found a very efficient algorithm (which has linear time
complexity if the frequencies are already ordered). This algorithm (suitably
modified to keep its top efficiency for words containing long runs of the same
data) is nowadays used in nearly every application that involves the compression
and transmission of data: fax machines, modems, networks,...
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1.2.3 Entropy of a distribution of frequencies

The intuition of the notion of entropy in information theory is as follows. Given
natural integersm1, ...,ms, consider the family Fm1,...,ms

of length n = m1+...+
ms words of the alphabet A in which there are exactly m1, ...,ms occurrences of
letters a1, ..., as. How many binary digits are there in the binary representation
of the number of words in Fm1,...,ms

? It happens (cf. Proposition 1.2) that
this number is essentially linear in n, the coefficient of n depending solely on
the frequencies m1

n
, ..., ms

n
. It is this coefficient which is called the entropy H of

the distribution of the frequencies m1

n
, ..., ms

n
.

Definition 1.1 (Shannon, [48], 1948). Let f1, ..., fs be a distribution of frequen-
cies, i.e., a sequence of reals in [0, 1] such that f1 + ...+ fs = 1. The entropy of
f1, ..., fs is the real

H = −(f1 log(f1) + ...+ fs log(fs))

Proposition 1.2 (Shannon, [48], 1948). Let m1, ...,ms be natural integers and
n = m1+ ...+ms. Then, letting H be the entropy of the distribution of frequen-
cies m1

n
, ..., ms

n
, the number ♯Fm1,...,ms

of words in Fm1,...,ms
satisfies

log(♯Fm1,...,ms
) = nH +O(log n)

where the bound in O(log n) depends solely on s and not on m1, ...,ms.

Proof. The set Fm1,...,ms
contains n!

m1!×...×ms!
words. Using Stir-

ling’s approximation of the factorial function (cf. [15]), namely x! =√
2π xx+

1
2 e−x+

θ

12 where 0 < θ < 1, and equality n = m1+ ...+mS,
we get

log(
n!

m1!× ...×ms!
) = (

∑

i

mi) log(n)− (
∑

i

mi logmi)

+
1

2
log(

n

m1 × ...×ms

)− (s− 1) log
√
2π + α

where |α| ≤ s
12 log e. The difference of the first two terms is equal

to n[
∑

i
mi

n
log(mi

n
)] = nH and the remaining sum is O(log n) since

n1−s ≤ n
m1×...×ms

≤ n.

H has a striking significance in terms of information content and compression.
Any word u in Fm1,...,ms

is uniquely characterized by its rank in this family
(say relatively to the lexicographic ordering on words in alphabet A). In par-
ticular, the binary representation of this rank “encodes” u. Since this rank
is < ♯Fm1,...,ms

, its binary representation has length ≤ nH up to an O(log n)
term. Thus, nH can be seen as an upper bound of the information content
of u. Otherwise said, the n letters of u are encoded by nH binary digits. In
terms of compression (nowadays so popular with the zip-like softwares), u can
be compressed to nH bits, i.e., the mean information content (which can be seen
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as the compression size in bits) of a letter of u is H .
Let us look at two extreme cases.
• If all frequencies fi are equal to

1
s
then the entropy is log(s), so that the mean

information content of a letter of u is log(s), i.e., there is no better (prefix-free)
coding than that described in §1.2.1.
• In case some of the frequencies is 1 (hence all other ones being 0), the infor-
mation content of u is reduced to its length n, which, written in binary, requires
log(n) bits. As for the entropy, it is 0 (with the usual convention 0 log 0 = 0,
justified by the fact that limx→0 x log x = 0). The discrepancy between nH = 0
and the true information content logn comes from the O(log n) term in Propo-
sition1.2.

1.2.4 Shannon’s source coding theorem for symbol codes

The significance of the entropy explained above has been given a remarkable and
precise form by Claude Elwood Shannon (1916-2001) in his celebrated paper
[48], 1948. It’s about the length of the binary word ξ associated to u via a
prefix-free code. Shannon proved
- a lower bound of |ξ| valid whatever be the prefix-free code w1, ..., ws,
- an upper bound, quite close to the lower bound, valid for particular prefix-free
codes w1, ..., ws (those making ξ shortest possible, for instance those given by
Huffman’s algorithm).

Theorem 1.3 (Shannon, [48], 1948). Suppose the numbers of occurrences in u
of the letters a1, ..., as are m1, ...,ms. Let n = m1 + ...+ms.

1. For every prefix-free sequence of binary words w1, ..., ws (which are to code
the letters a1, ..., as), the binary word ξ obtained by substituting wi to each oc-
currence of ai in u satisfies

nH ≤ |ξ|
where H = −(m1

n
log(m1

n
) + ...+ ms

n
log(ms

n
)) is the entropy of the considered

distribution of frequencies m1

n
, ..., ms

n
.

2. There exists a prefix-free sequence of binary words w1, ..., ws such that

nH ≤ |ξ| < n(H + 1)

Proof. First, we recall two classical results.

Kraft’s inequality. Let ℓ1, ..., ℓs be a finite sequence of integers. In-
equality 2−ℓ1 + ...+2−ℓs ≤ 1 holds if and only if there exists a prefix-
free sequence of binary words w1, ..., ws such that ℓ1 = |w1|, ..., ℓs =
|ws|.
Gibbs’ inequality. Let p1, ..., ps and q1, ..., qs be two probability dis-
tributions, i.e., the pi’s (resp. qi’s) are in [0, 1] and have sum 1. Then
−∑

pi log(pi) ≤ −∑
pi log(qi) with equality if and only if pi = qi

for all i.
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Proof of Point 1 of Theorem 1.3. Set pi =
mi

n
and qi =

2−|wi|

S
where

S =
∑
i 2

−|wi|. Then

|ξ| = ∑
imi|wi| = n[

∑
i
mi

n
(− log(qi)− logS)]

≥ n[−(
∑
i
mi

n
log(mi

n
)− logS] = n[H − logS] ≥ nH

The first inequality is an instance of Gibbs’ inequality. For the last
one, observe that S ≤ 1.

Proof of Point 2 of Theorem 1.3. Set ℓi = ⌈− log(mi

n
)⌉. Observe that

2−ℓi ≤ mi

n
. Thus, 2−ℓ1 + ...+ 2−ℓs ≤ 1. Applying Kraft inequality,

we see that there exists a prefix-free family of words w1, ..., ws with
lengthes ℓ1, ..., ℓs.
We consider the binary word ξ obtained via this prefix-free code,
i.e., ξ is obtained by substituting wi to each occurrence of ai in u.
Observe that − log(mi

n
) ≤ ℓi < − log(mi

n
) + 1. Summing, we get

nH ≤ |ξ| < n(H + 1).

In particular cases, the lower bound nH can be achieved.

Theorem 1.4. In case the frequencies mi

n
’s are all negative powers of two (i.e.,

1
2 ,

1
4 ,

1
8 ,...) then the optimal ξ (given by Huffman’s algorithm) satisfies ξ = nH.

1.2.5 Closer to the entropy

In §1.2.3 and 1.2.4, we supposed the frequencies to be known and did not con-
sider the information content of these frequencies. We now deal with that ques-
tion.
Let us go back to the encoding mentioned at the start of §1.2.3. A word u in
the family Fm1,...,ms

(of length n words with exactly m1, ...,ms occurrences of
a1, ..., as) can be recovered from the following data:
- the values of m1, ...,ms,
- the rank of u in Fm1,...,ms

(relative to the lexicographic order on words).
We have seen (cf. Proposition 1.2) that the rank of u has a binary representa-
tion ρ of length ≤ nH +O(log n). The integers m1, ...,ms are encoded by their
binary representations µ1, ..., µs which all have length ≤ 1 + ⌊logn⌋. Now, to
encode m1, ...,ms and the rank of u, we cannot just concatenate µ1, ..., µs, ρ :
how would we know where µ1 stops, where µ2 starts,..., in the word obtained
by concatenation? Several tricks are possible to overcome the problem, they are
described in §1.2.6. Using Proposition 1.5, we set ξ = 〈µ1, ..., µs, ρ〉 which has
length |ξ| = |ρ| + O(|µ1|+ ...+ |µs|) = nH + O(log n) (Proposition 1.5 gives a
much better bound but this is of no use here). Then u can be recovered from ξ
which is a binary word of length nH + O(log n). Thus, asymptotically, we get
a better upper bound than n(H + 1), the one given by Shannon for prefix-free
codes (cf. Theorem 1.3).
Of course, ξ is no more obtained from u via a morphism (i.e., a map which
preserves concatenation of words) between the monoid of words in alphabet A
and that of binary words.
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Notice that this also shows that prefix-free codes are not the only way to effi-
ciently encode into a binary word ξ a word u from alphabet a1, ..., as for which
the numbers m1, ...,ms of occurrences of the ai’s are known.

1.2.6 Coding finitely many words with one word

How can we code two words u, v with only one word? The simplest way is to
consider u$v where $ is a fresh symbol outside the alphabet of u and v. But
what if we want to stick to binary words? As said above, the concatenation of
u and v does not do the job: how can one recover the prefix u in uv? A simple
trick is to also concatenate the length of |u| in unary and delimitate it by a

zero. Indeed, denoting by 1p the word

p times︷ ︸︸ ︷
1 . . . 1, one can recover u and v from

the word 1|u|0uv : the length of the first block of 1’s tells where to stop in the
suffix uv to get u. In other words, the map (u, v) → 1|u|0uv is injective from
{0, 1}∗ × {0, 1}∗ → {0, 1}∗. In this way, the code of the pair (u, v) has length
2|u|+ |v|+1. This can obviously be extended to more arguments using the map
(u1, ..., us, v) 7→ 1|u1|0|u2| . . . ε|us|ε′u1 . . . usv (where ε = 0 is s is even and ε = 1
is s is odd and ε′ = 1− ε.

Proposition 1.5. Let s ≥ 1. There exists a map 〈 〉 : ({0, 1}∗)s+1 → {0, 1}∗
which is injective and computable and such that, for all u1, ..., us, v ∈ {0, 1}∗,
|〈u1, ..., us, v〉| = 2(|u1|+ ...+ |us|) + |v|+ 1.

The following technical improvement will be needed in Part II §2.1.

Proposition 1.6. There exists a map 〈 〉 : ({0, 1}∗)s+1 → {0, 1}∗ which is
injective and computable and such that, for all u1, ..., us, v ∈ {0, 1}∗,

|〈u1, ..., us, v〉| = (|u1|+ ...+ |us|) + (log |u1|+ ...+ log |us|)
+2(log log |u1|+ ...+ log log |us|) + |v|+O(1)

Proof. We consider the case s = 1, i.e., we want to code a pair
(u, v). Instead of putting the prefix 1|u|0, let us put the binary
representation β(|u|) of the number |u| prefixed by its length. This
gives the more complex code: 1|β(|u|)|0β(|u|)uv with length

|u|+ |v|+ 2(⌊log |u|⌋+ 1) + 1 ≤ |u|+ |v|+ 2 log |u|+ 3

The first block of ones gives the length of β(|u|). Using this length,
we can get β(|u|) as the factor following this first block of ones. Now,
β(|u|) is the binary representation of |u|, so we get |u| and can now
separate u and v in the suffix uv.

1.3 Probabilistic approach: ergodicity and lossy coding

The abstract probabilistic approach allows for considerable extensions of the
results described in §1.2.
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First, the restriction to fixed given frequencies can be relaxed. The probability
of writing ai may depend on what has already been written. For instance,
Shannon’s source coding theorem has been extended to the so called “ergodic
asymptotically mean stationary source models”.

Second, one can consider a lossy coding: some length n words in alphabet A are
ill-treated or ignored. Let δ be the probability of this set of words. Shannon’s
theorem extends as follows:
- whatever close to 1 is δ < 1, one can compress u only down to nH bits.
- whatever close to 0 is δ > 0, one can achieve compression of u down to nH
bits.

1.4 Algorithmic approach: Kolmogorov complexity

1.4.1 Berry’s paradox

So far, we considered two kinds of binary codings for a word u in alphabet
a1, ..., as. The simplest one uses variable-length prefix-free codes (§1.2.2). The
other one codes the rank of u as a member of some set (§1.2.5).
Clearly, there are plenty of other ways to encode any mathematical object. Why
not consider all of them? And define the information content of a mathematical
object x as the shortest univoque description of x (written as a binary word).
Though quite appealing, this notion is ill defined as stressed by Berry’s paradox3:

Let N be the lexicographically least binary word which cannot be
univoquely described by any binary word of length less than 1000.

This description of N contains 106 symbols of written English (including spaces)
and, using ASCII codes, can be written as a binary word of length 106×7 = 742.
Assuming such a description to be well defined would lead to a univoque de-
scription of N in 742 bits, hence less than 1000, a contradiction to the definition
of N .
The solution to this inconsistency is clear: the quite vague notion of univoque
description entering Berry’s paradox is used both inside the sentence describing
N and inside the argument to get the contradiction. A clash between two levels:

• the would be formal level carrying the description of N
• and the meta level which carries the inconsistency argument.

Any formalization of the notion of description should drastically reduce its scope
and totally forbid any clash such as the above one.

1.4.2 The turn to computability

To get around the stumbling block of Berry’s paradox and have a formal notion
of description with wide scope, Andrei Nikolaievitch Kolmogorov (1903–1987)
made an ingenious move: he turned to computability and replaced description
by computation program. Exploiting the successful formalization of this a priori

3 Berry’s paradox is mentioned by Bertrand Russell in 1908 ([44], p.222 or 150), who
credited G.G. Berry, an Oxford librarian, for the suggestion.
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vague notion which was achieved in the thirties4. This approach was first an-
nounced by Kolmogorov in [24], 1963, and then developped in [25], 1965. Similar
approaches were also independently developed by Solomonoff in [50], 1964, and
by Chaitin in [6, 7], 1966-1969.

1.4.3 Digression on computability theory

The formalized notion of computable function (also called recursive function)
goes along with that of partial computable function (also called partial recursive
function) which should rather be called partially computable partial function,
i.e., the partial character has to be distributed5.
So, there are two theories :

• the theory of computable functions,
• the theory of partial computable functions.

The “right” theory, the one with a cornucopia of spectacular results, is that of
partial computable functions.

Let us pick up three fundamental results out of the cornucopia, which
we state in terms of computers and programming languages. Let
I and O be N or A∗ where A is some finite or countably infinite
alphabet (or, more generally, I and O can be elementary sets, cf.
Definition 1.9).

Theorem 1.7.

1. [Enumeration theorem] The function which executes programs on
their inputs: (program, input) → output is itself partial computable.
Formally, this means that there exists a partial computable function

U : {0, 1}∗ × I → O

such that the family of partial computable function I → O is exactly
{Ue | e ∈ {0, 1}∗} where Ue(x) = U(e, x).
Such a function U is called universal for partial computable func-
tions I → O.

2. [Parameter theorem (or smn thm)]. One can exchange input and
program (this is von Neumann’s key idea for computers).
Formally, this means that, letting I = I1 × I2, universal maps
UI1×I2

and UI2
are such that there exists a computable total map

s : {0, 1}∗ × I1 → {0, 1}∗ such that, for all e ∈ {0, 1}∗, x1 ∈ I1 and
x2 ∈ I2,

UI1×I2
(e, (x1, x2)) = UI2

(s(e, x1), x2)

4 Through the works of Alonzo Church (via lambda calculus), Alan Mathison Turing (via
Turing machines) and Kurt Gödel and Jacques Herbrand (via Herbrand-Gödel systems of
equations) and Stephen Cole Kleene (via the recursion and minimization operators).

5In French, Daniel Lacombe ([27], 1960) used the expression semi-fonction semi-récursive.

11



3. [Kleene fixed point theorem] For any transformation of programs,
there is a program which does the same input → output job as its
transformed program6.
Formally, this means that, for every partial computable map f :
{0, 1}∗ → {0, 1}∗, there exists e such that

∀e ∈ {0, 1}∗ ∀x ∈ I U(f(e), x) = U(e, x)

1.4.4 Kolmogorov complexity (or program size complexity)

Turning to computability, the basic idea for Kolmogorov complexity7 can be
summed up by the following equation:

description = program

When we say “program”, we mean a program taken from a family of programs,
i.e., written in a programming language or describing a Turing machine or a
system of Herbrand-Gödel equations or a Post system,...
Since we are soon going to consider the length of programs, following what has
been said in §1.1.2, we normalize programs: they will be binary words, i.e.,
elements of {0, 1}∗.
So, we have to fix a function ϕ : {0, 1}∗ → O and consider that the output of a
program p is ϕ(p).
Which ϕ are we to consider? Since we know that there are universal partial com-
putable functions (i.e., functions able to emulate any other partial computable
function modulo a computable transformation of programs, in other words, a
compiler from one language to another), it is natural to consider universal par-
tial computable functions. Which agrees with what has been said in §1.4.3.
Let us give the general definition of the Kolmogorov complexity associated to
any function {0, 1}∗ → O.

Definition 1.8. If ϕ : {0, 1}∗ → O is a partial function, set Kϕ : O → N

Kϕ(y) = min{|p| : ϕ(p) = y}

with the convention that min ∅ = +∞.
Intuition: p is a program (with no input), ϕ executes programs (i.e., ϕ is al-
together a programming language plus a compiler plus a machinery to run pro-
grams) and ϕ(p) is the output of the run of program p. Thus, for y ∈ O, Kϕ(y)
is the length of shortest programs p with which ϕ computes y (i.e., ϕ(p) = y).

As said above, we shall consider this definition for partial computable func-
tions {0, 1}∗ → O. Of course, this forces to consider a set O endowed with a
computability structure. Hence the choice of sets that we shall call elementary
which do not exhaust all possible ones but will suffice for the results mentioned
in this paper.

6This is the seed of computer virology, cf. [4]
7Delahaye’s books [11, 12] present a very attractive survey on Kolmogorov complexity.
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Definition 1.9. The family of elementary sets is obtained as follows:
- it contains N and the A∗’s where A is a finite or countable alphabet,
- it is closed under finite (non empty) product, product with any non empty finite
set and the finite sequence operator.

Note. Closure under the finite sequence operator is used to encode formulas in
Theorem 2.4.

1.4.5 The invariance theorem

The problem with Definition 1.8 is thatKϕ strongly depends on ϕ. Here comes a
remarkable result, the invariance theorem, which insures that there is a smallest
Kϕ, up to a constant. It turns out that the proof of this theorem only needs
the enumeration theorem and makes no use of the parameter theorem (usually
omnipresent in computability theory).

Theorem 1.10 (Invariance theorem, Kolmogorov, [25], 1965). Let O be an
elementary set (cf. Definition 1.9). Among the Kϕ’s, where ϕ : {0, 1}∗ → O
varies in the family PCO of partial computable functions, there is a smallest
one, up to an additive constant (= within some bounded interval). I.e.

∃V ∈ PCO ∀ϕ ∈ PCO ∃c ∀y ∈ O KV (y) ≤ Kϕ(y) + c

Such a V is called optimal.
Moreover, any universal partial computable function {0, 1}∗ → O is optimal.

Proof. Let U : {0, 1}∗ × {0, 1}∗ → O be partial computable and
universal for partial computable functions {0, 1}∗ → O (cf. point 1
of Theorem 1.7).
Let c : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a total computable injective
map such that |c(e, x)| = 2|e|+ |x|+ 1 (cf. Proposition 1.5).
Define V : {0, 1}∗ → O, with domain included in the range of c, as
follows:

∀e ∈ {0, 1}∗ ∀x ∈ {0, 1}∗ V (c(e, x)) = U(e, x)

where equality means that both sides are simultaneously defined or
not. Then, for every partial computable function ϕ : {0, 1}∗ → O,
for every y ∈ O, if ϕ = Ue (i.e., ϕ(x) = U(e, x) for all x, cf. point 1
of Theorem 1.7) then

KV (y) = least |p| such that V (p) = y

≤ least |c(e, x)| such that V (c(e, x)) = y

(least is relative to x since e is fixed)

= least |c(e, x)| such that U(e, x)) = y

= least |x|+ 2|e|+ 1 such that ϕ(x) = y

since |c(e, x)| = |x|+ 2|e|+ 1 and ϕ(x) = U(e, x)

= (least |x| such that ϕ(x) = y) + 2|e|+ 1

= Kϕ(y) + 2|e|+ 1 2
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Using the invariance theorem, the Kolmogorov complexity KO : O → N is
defined as KV where V is any fixed optimal function. The arbitrariness of the
choice of V does not modify drastically KV , merely up to a constant.

Definition 1.11. Kolmogorov complexity KO : O → N is KV , where V is some
fixed optimal partial function {0, 1}∗ → O. When O is clear from context, we
shall simply write K.
KO is therefore minimum among the Kϕ’s, up to an additive constant.
KO is defined up to an additive constant: if V and V ′ are both optimal then

∃c ∀x ∈ O |KV (x) −KV ′(x)| ≤ c

1.4.6 What Kolmogorov said about the constant

So Kolmogorov complexity is an integer defined up to a constant. . . ! But the
constant is uniformly bounded for x ∈ O.
Let us quote what Kolmogorov said about the constant in [25], 1965:

Of course, one can avoid the indeterminacies associated with the
[above] constants, by considering particular [. . . functions V ], but it
is doubtful that this can be done without explicit arbitrariness.
One must, however, suppose that the different “reasonable” [above
optimal functions] will lead to “complexity estimates” that will con-
verge on hundreds of bits instead of tens of thousands.
Hence, such quantities as the “complexity” of the text of “War and
Peace” can be assumed to be defined with what amounts to unique-
ness.

In fact, this constant witnesses the multitude of models of computation: uni-
versal Turing machines, universal cellular automata, Herbrand-Gödel systems
of equations, Post systems, Kleene definitions,... If we feel that one of them
is canonical then we may consider the associated Kolmogorov complexity as
the right one and forget about the constant. This has been developed for
Schoenfinkel-Curry combinators S,K, I by Tromp, cf. [31] §3.2.2–3.2.6.
However, even if we fix a particular KV , the importance of the invariance the-
orem remains since it tells us that K is less than any Kϕ (up to a constant). A
result which is applied again and again to develop the theory.

1.4.7 Considering inputs: conditional Kolmogorov complexity

In the enumeration theorem, we considered (program, input) → output functions
(cf. Theorem 1.7). Then, in the definition of Kolmogorov complexity, we gave
up the inputs, dealing with program → output functions.
Conditional Kolmogorov complexity deals with the inputs. Instead of measur-
ing the information content of y ∈ O, we measure it given as free some object
z, which may help to compute y. A trivial case is when z = y, then the infor-
mation content of y given y is null. In fact, there is an obvious program which
outputs exactly its input, whatever be the input.
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Let us mention that, in computer science, inputs are also considered as envi-
ronments.
Let us state the formal definition and the adequate invariance theorem.

Definition 1.12. If ϕ : {0, 1}∗ × I → O is a partial function, set Kϕ( | ) :
O × I → N

Kϕ(y | z) = min{|p| | ϕ(p, z) = y}
Intuition: p is a program (with expects an input z), ϕ executes programs (i.e., ϕ
is altogether a programming language plus a compiler plus a machinery to run
programs) and ϕ(p, z) is the output of the run of program p on input z. Thus,
for y ∈ O, Kϕ(y | z) is the length of shortest programs p with which ϕ computes
y on input z (i.e., ϕ(p, z) = y).

Theorem 1.13 (Invariance theorem for conditional complexity). Among the
Kϕ( | )’s, where ϕ varies in the family PCO

I of partial computable functions
{0, 1}∗×I → O, there is a smallest one, up to an additive constant (i.e., within
some bounded interval) :

∃V ∈ PCO
I ∀ϕ ∈ PCO

I ∃c ∀y ∈ O ∀z ∈ I KV (y | z) ≤ Kϕ(y | z) + c

Such a V is called optimal.
Moreover, any universal partial computable map {0, 1}∗ × I → O is optimal.

The proof is similar to that of Theorem 1.10.

Definition 1.14. KI→O : O×I → N is KV ( | ) where V is some fixed optimal
partial function.

KI→O is defined up to an additive constant: if V et V ′ are both optimal then

∃c ∀y ∈ O ∀z ∈ I |KV (y | z)−KV ′(y | z)| ≤ c

Again, an integer defined up to a constant. . . ! However, the constant is uniform
in y ∈ O and z ∈ I.

1.4.8 Simple upper bounds for Kolmogorov complexity

Finally, let us mention rather trivial upper bounds:
- the information content of a word is at most its length.
- conditional complexity cannot be harder than the non conditional one.

Proposition 1.15.

1. There exists c such that

∀x ∈ {0, 1}∗ K{0,1}∗

(x) ≤ |x|+ c , ∀n ∈ N KN(n) ≤ log(n) + c

2. There exists c such that

∀x ∈ O ∀y ∈ I KI→O(x | y) ≤ KO(x) + c

3. Let f : O → O′ be computable. There exists c such that
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∀x ∈ O KO′

(f(x)) ≤ KO(x) + c

∀x ∈ O ∀Y ∈ I KI→O′

(f(x) | y) ≤ KI→O(x | y) + c

Proof. We only prove 1. Let Id : {0, 1}∗ → {0, 1}∗ be the identity
function. The invariance theorem insures that there exists c such
that K{0,1}∗ ≤ K

{0,1}∗

Id +c. Now, it is easy to see that K
{0,1}∗

Id = |x|,
so that K{0,1}∗

(x) ≤ |x|+ c.
Let θ : {0, 1}∗ → N be the function (which is, in fact, a bijection)
which associates to a word u = ak−1...a0 the integer

θ(u) = (2k + ak−12
k−1 + ...+ 2a1 + a0)− 1

(i.e., the predecessor of the integer with binary representation 1u).
Clearly, KN

θ (n) = ⌊log(n+1)⌋. The invariance theorem insures that
there exists c such that KN ≤ KN

θ +c. Hence K
N(n) ≤ log(n)+c+1

for all n ∈ N.

The following technical property is a variation of an argument already used in
§1.2.5: the rank of an element in a set defines this element, and if the set is
computable, so is this process.

Proposition 1.16. Let A ⊆ N×O be computable such that An = A∩({n}×O)
is finite for all n. Then, letting ♯X be the number of elements of X,

∃c ∀x ∈ An K(x | n) ≤ log(♯(An)) + c

Proof. Observe that x is determined by its rank in An. This rank
is an integer < ♯An hence its binary representation has length ≤
⌊log(♯An)⌋+ 1.

2 Kolmogorov complexity and undecidability

2.1 K is unbounded

Let K = KV : O → N where V : {0, 1}∗ → O is optimal (cf. Theorem §1.10).
Since there are finitely many programs of size ≤ n (namely, the 2n+1− 1 binary
words of size ≤ n), there are finitely many elements of O with Kolmogorov
complexity less than n. This shows that K is unbounded.

2.2 K is not computable

Berry’s paradox (cf. §1.4.1) has a counterpart in terms of Kolmogorov complex-
ity: it gives a very simple proof that K, which is a total function O → N, is not
computable.

Proof that K is not computable. For simplicity of notations, we
consider the case O = N. Define L : N → O as follows:

L(n) = least k such that K(k) ≥ 2n
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So that K(L(n)) ≥ 2n for all n. If K were computable so would
be L. Let V : O → N be optimal, i.e., K = KV . The invariance
theorem insures that there exists c such that K ≤ KL + c. Observe
that KL(L(n) ≤ n by definition of KL. Thus,

2n ≤ K(L(n)) ≤ KL(L(n) + c ≤ n+ c

A contradiction for n > c. 2

The non computability of K can be seen as a version of the undecidability of the
halting problem. In fact, there is a simple way to compute K when the halting
problem is used as an oracle. To get the value of K(x), proceed as follows:

- enumerate the programs in {0, 1}∗ in lexicographic order,
- for each program p, check if V (p) halts (using the oracle),
- in case V (p) halts then compute its value,
- halt and output |p| when some p is obtained such that V (p) = x.

The converse is also true: one can prove that the halting problem is computable
with K as an oracle.

The argument for the undecidability of K can be used to prove a much stronger
statement: K can not be bounded from below by any unbounded partial com-
putable function.

Theorem 2.1 (Kolmogorov). There is no unbounded partial recursive function
ψ : O → N such that ψ(x) ≤ K(x) for all x in the domain of ψ.

Of course, K is bounded from above by a total computable function, cf. Propo-
sition 1.15.

2.3 K is computable from above

Though K is not computable, it can be approximated from above. The idea
is simple. Suppose O = {0, 1}∗. Let c be as in point 1 of Proposition 1.15.
Consider all programs of length less than |x| + c and let them be executed
during t steps. If none of them converges and outputs x then take |x| + c as a
t-bound. If some of them converges and outputs x then the bound is the length
of the shortest such program.
The limit of this process is K(x), it is obtained at some finite step which we are
not able to bound.
Formally, this means that there is some F : O × N → N which is computable
and decreasing in its second argument such that

K(x) = lim
t→+∞

F (x, t) = min{F (x, t) | t ∈ N}

2.4 Kolmogorov complexity and Gödel’s incompleteness
theorem

A striking version of Gödel’s incompleteness theorem has been given by Chaitin
in [8, 9], 1971-1974, in terms of Kolmogorov complexity. Since Gödel’s cele-
brated proof of the incompleteness theorem, we know that, in the language of
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arithmetic, one can formalize computability and logic. In particular, one can
formalize Kolmogorov complexity and statements about it. Chaitin’s proves a
version of the incompleteness theorem which insures that among true unprovable
formulas there are all true statements K(u) > n for n large enough.

Theorem 2.2 (Chaitin, [9], 1974). Let T be a computably enumerable set of
axioms in the language of arithmetic. Suppose that all axioms in T are true in
the standard model of arithmetics with base N. Then there exists N such that if
T proves K(u) > n (with u ∈ {0, 1}∗ and n ∈ N) then n ≤ N .

How the constant N depends on T has been giving a remarkable analysis by
Chaitin. To that purpose, he extends Kolmogorov complexity to computably
enumerable sets.

Definition 2.3 (Chaitin, [9], 1974). Let O be an elementary set (cf. Definition
1.9) and CE be the family of computably enumerable (c.e.) subsets of O. To any
partial computable ϕ : {0, 1}∗ × N → O, associate the Kolmogorov complexity
Kϕ : CE → N such that, for all c.e. subset T of O,

Kϕ(T ) = min{|p| | T = {ϕ(p, t) | t ∈ N}}

(observe that {ϕ(p, t) | t ∈ N} is always c.e. and any c.e. subset of O can be
obtained in this way for some ϕ).

The invariance theorem still holds for this notion of Kolmogorov complexity,
leading to the following notion.

Definition 2.4 (Chaitin, [9], 1974). KCE : CE → N is Kϕ where ϕ is some
fixed optimal partial function. It is defined up to an additive constant.

We can now state how the constant N in Theorem 2.2 depends on the theory
T .

Theorem 2.5 (Chaitin, [9], 1974). There exists a constant c such that, for all
c.e. sets T satisfying the hypothesis of Theorem 2.2, the associated constant N
is such that

N ≤ KCE(T ) + c

Chaitin also reformulates Theorem 2.2 as follows:

If T consist of true formulas then it cannot prove that a string has
Kolmogorov complexity greater than the Kolmogorov complexity of
T itself (up to a constant independent of T ).

Remark. 2.6. The previous statement, and Chaitin’s assertion that the Kol-
mogorov complexity of T somehow measures the power of T as a theory, has
been much criticized in van Lambalgen ([28], 1989), Fallis ([14], 1996) and
Raatikainen ([43], 1998). Raatikainen’s main argument in [43] against Chaitin’s
interpretation is that the constant in Theorem 2.2 strongly depends on the
choice of the optimal function V such that K = KV . Indeed, for any fixed
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theory T , one can choose such a V so that the constant is zero! And also choose
V so that the constant is arbitrarily large.
Though these arguments are perfectly sound, we disagree with the criticisms
issued from them. Let us detail three main rebuttals.

• First, such arguments are based on the use of optimal functions associated
to very unnatural universal functions V (cf. point 1 of Theorem 1.7 and the
last assertion of Theorem 1.10). It has since been recognized that universality
is not always sufficient to get smooth results. Universality by prefix adjunc-
tion is sometimes required, (cf., for instance, §2.1 and §6 in Becher, Figueira,
Grigorieff & Miller, 2006). This means that, for an enumeration (ϕe)e∈{0,1}∗

of partial computable functions, the optimal function V is to satisfy equality
V (ep) = ϕe(p), for all e, p, where ep is the concatenation of the strings e and p.

• Second, and more important than the above technical counterargument, it
is a simple fact that modelization rarely rules out all pathological cases. It is
intended to be used in “reasonable” cases. Of course, this may be misleading,
but perfect modelization is illusory. In our opinion, this is best illustrated by
Kolmogorov’s citation quoted in §1.4.6 to which Raatikainen’s argument could
be applied mutatis mutandis: there are optimal functions for which the com-
plexity of the text of “War and Peace” is null and other ones for which it is
arbitrarily large. Nevertheless, this does not prevent Kolmogorov to assert (in
the founding paper of the theory [25]): [For] “reasonable” [above optimal func-
tions], such quantities as the “complexity” of the text of “War and Peace” can
be assumed to be defined with what amounts to uniqueness.

• Third, a final technical answer to such criticisms has been recently provided
by Calude & Jurgensen in [5], 2005. They improve the incompleteness result
given by Theorem 2.2, proving that, for a class of formulas in the vein of those
in that theorem, the probability that such a formula of length n is provable
tends to zero when n tends to infinity whereas the probability that it be true
has a strictly positive lower bound.

3 Kolmogorov complexity: some variations

Note. The denotations of (plain) Kolmogorov complexity (that of §1.4.5) and
its prefix version (cf. 3.3) may cause some confusion. They long used to be
respectively denoted by K and H in the literature. But in their book [31] (first
edition, 1993), Li & Vitanyi respectively denoted them by C and K. Due to
the large success of this book, these last denotations are since used in many
papers. So that two incompatible denotations now appear in the literature. In
this paper, we stick to the traditional denotations K and H .

19



3.1 Levin monotone complexity

Kolmogorov complexity is non monotone, be it on N with the natural ordering
or on {0, 1}∗ with the lexicographic ordering. In fact, for every n and c, there
are strings of length n with complexity ≥ n(1 − 2−c) (cf. Proposition 4.2).
However, since n 7→ 1n is computable, K(1n) ≤ K(n)+O(1) ≤ logn+O(1) (cf.
point 3 of Proposition 1.15) is much less than n(1 − 2−c) for n large enough.

Leonid Levin ([29], 1973) introduced a monotone version of Kolmogorov com-
plexity. The idea is to consider possibly infinite computations of Turing ma-
chines which never erase anything on the output tape. Such machines have finite
or infinite outputs and compute total maps {0, 1}∗ → {0, 1}≤ω where {0, 1}≤ω =
{0, 1}∗∪{0, 1}N is the family of finite or infinite binary strings. These maps can
also be viewed as limit maps p→ supt→∞ ϕ(p, t) where ϕ : {0, 1}∗×N → {0, 1}∗
is total monotone non decreasing in its second argument.
To each such map ϕ, Levin associates a monotone non decreasing map Kmon

ϕ :
{0, 1}∗ → N such that

Kmon
ϕ (x) = min{|p| | ∃t x ≤pref ϕ(p, t)}

Theorem 3.1 (Levin ([29], 1973).

1. If ϕ is total computable and monotone non decreasing in its second argument
then Kmon

ϕ : {0, 1}∗ → N is monotone non decreasing:

x ≤pref y ⇒ Kmon
ϕ (x) ≤ Kmon

ϕ (y)

2. Among the Kmon
ϕ ’s, ϕ total computable monotone non decreasing in its second

argument, there exists a smallest one, up to a constant.

Considering total ϕ’s in the above theorem is a priori surprising since there is no
computable enumeration of total computable functions and the proof of the In-
variance Theorem 1.10 is based on the enumeration theorem (cf. Theorem 1.7).
The trick to overcome that problem is as follows.

• Consider all partial computable ϕ : {0, 1}∗ × N → {0, 1}∗ which are total
monotone non decreasing in their second argument.

• Associate to each such ϕ a total ϕ̃ defined as follows: ϕ̃(p, t) is the largest
ϕ(p, t′) such that t′ ≤ t and ϕ(t′) is defined within t+1 computation steps
if there is such a t′. If there is none then ϕ̃(p, t) is the empty word.

• Observe that Kmon
ϕ (x) = Kmon

ϕ̃ (x).

In §5.2.3, we shall see some remarkable property of Levin monotone complexity
Kmon concerning Martin-Löf random reals.
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3.2 Schnorr process complexity

Another variant of Kolmogorov complexity has been introduced by Klaus Peter
Schnorr in [47], 1973. It is based on the subclass of partial computable functions
ϕ : {0, 1}∗ → {0, 1}∗ which are monotone non decreasing relative to the prefix
ordering:

(*) (p ≤pref q ∧ ϕ(p), ϕ(q) are both defined) ⇒ ϕ(p) ≤pref ϕ(q)

Why such a requirement on ϕ? The reason can be explained as follows.

• Consider a sequential composition (i.e., a pipeline) of two processes, for-
malized as two functions f, g. The first one takes an input p and outputs
f(p), the second one takes f(p) as input and outputs g(f(p)).

• Each process is supposed to be monotone: the first letter of f(p) appears
first, then the second one, etc. Idem with the digits of g(q) for any input
q.

• More efficiency is obtained if one can develop the computation of g on
input f(p) as soon as the letters of f(p) appear. More precisely, suppose
the prefix q of f(p) has already appeared but there is some delay to get
the subsequent letters. Then we can compute g(q). But this is useful only
in case the computation of g(q) is itself a prefix of that of g(f(p)). This
last condition is exactly the requirement (∗).

An enumeration theorem holds for the ϕ’s satisfying (∗), allowing to prove
an invariance theorem and to define a so-called process complexity Kproc :
{0, 1}∗ → N. The same remarkable property of Levin’s monotone complexity
also holds with Schnorr process complexity, cf. §5.2.3.

3.3 Prefix (or self-delimited) complexity

Levin ([30], 1974), Gács ([18], 1974) and Chaitin ([10], 1975) introduced the
most successful variant of Kolmogorov complexity: the prefix complexity. The
idea is to restrict the family of partial computable functions {0, 1}∗ → O (recall
O denotes an elementary set in the sense of Definition 1.9) to those which have
prefix-free domains, i.e. any two words in the domain are incomparable with
respect to the prefix ordering.

An enumeration theorem holds for the ϕ’s satisfying (∗), allowing to prove an
invariance theorem and to define the so-called prefix complexityH : {0, 1}∗ → N

(not to be confused with the entropy of a family of frequencies, cf. §1.2.3).

Theorem 3.2. Among the Kϕ’s, where ϕ : {0, 1}∗ → O varies over partial
computable functions with prefix-free domain, there exists a smallest one, up to
a constant. This smallest one (defined up to a constant), denoted by HO, is
called the prefix complexity.
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This prefix-free condition on the domain may seem rather technical. A con-
ceptual meaning of this condition has been given by Chaitin in terms of self-
delimitation.

Proposition 3.3 (Chaitin, [10], 1975). A partial computable function ϕ :
{0, 1}∗ → O has prefix-free domain if and only if it can be computed by a Turing
machine M with the following property:

If x is in domain(ϕ) (i.e., M on input p halts in an accepting state
at some step) then the head of the input tape of M reads entirely the
input p but never moves to the cell right to p.

This means that p, interpreted as a program, has no need of external action
(as that of an end-of-file symbol) to know where it ends: as Chaitin says, the
program is self-delimited. A comparison can be made with biological phenom-
ena. For instance, the hand of a person grows during its childhood and then
stops growing. No external action prevents the hand to go on growing. There
is something inside the genetic program which creates a halting signal so that
the hand stops growing.

The main reason for the success of the prefix complexity is that, with prefix-free
domains, one can use the Kraft-Chaitin inequality (cf. the proof of Theorem
1.3 in §1.2.4) and get remarkable properties.

Theorem 3.4 (Kraft-Chaitin inequality). A sequence (resp. computable se-
quence) (ni)i∈N of non negative integers is the sequence of lengths of a prefix-free
(resp. computable) family of words (ui)i∈N if and only if

∑
i∈N

2−ni ≤ 1.

Let us state the most spectacular property of the prefix complexity.

Theorem 3.5 (The Coding Theorem (Levin ([30], 1974)). Consider the family
ℓc.e.1 of sequences of non negative real numbers (rx)x∈O such that

• ∑
x∈O rx < +∞ (i.e., the series is summable),

• {(x, q) ∈ O × Q | q < rx} is computably enumerable (i.e., the rx’s have
c.e. left cuts in the set of rational numbers Q and this is uniform in x).

The sequence (2−H
O(x))x∈O is in ℓc.e.1 and, up to a multiplicative factor, it is

the largest sequence in ℓc.e.1 . This means that

∀(rx)x∈O ∈ ℓc.e.1 ∃c ∀x ∈ O rx ≤ c 2−H
O(x)

In particular, consider a countably infinite alphabet A. Let V : {0, 1}∗ → A
be a partial computable function with prefix-free domain such that HA = KV .
Consider the prefix code (pa)a∈A such that, for each letter a ∈ A, pa is a shortest
binary string such that V (pa) = a. Then, for every probability distribution P :
A→ [0, 1] over the letters of the alphabet A, which is computably approximable
from below (i.e., {(a, q) ∈ A × Q | q < P (a)} is computably enumerable), we
have

∀a ∈ A P (a) ≤ c 2−H
A(a)
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for some c which depends on P but not on a ∈ A. This inequality is the reason

why the sequence (2−H
A(a))a∈A is also called the universal a priori probability

(though, strictly speaking, it is not a probablity since the 2−H
A(a)’s do not sum

up to 1).

3.4 Oracular Kolmogorov complexity

As is always the case in computability theory, everything relativizes to any or-
acle Z. Relativization modifies the equation given at the start of §1.4.4, which
is now

description = program of a partial Z-computable function

and for each possible oracle Z there exists a Kolmogorov complexity relative to
oracle Z.

Oracles in computability theory can also be considered as second-order argu-
ments of computable or partial computable functionals. The same holds with
oracular Kolmogorov complexity: the oracle Z can be seen as a second-order
condition for a second-order conditional Kolmogorov complexity

K(y | Z) where K( | ) : O × P (I) → N

Which has the advantage that the unavoidable constant in the “up to a con-
stant” properties does not depend on the particular oracle. It depends solely
on the considered functional.
Finally, one can mix first-order and second-order conditions, leading to a condi-
tional Kolmogorov complexity with both first-order and second-order conditions

K(y | z, Z) where K( | , ) : O × I × P (I) → N

We shall see in §5.6.2 an interesting property involving oracular Kolmogorov
complexity.

3.5 Sub-oracular Kolmogorov complexity

Going back to the idea of possibly infinite computations as in §3.1, Let us define
K∞ : {0, 1}∗ → N such that

K∞(x) = min{|p| | U(p) = x}

where U is the map {0, 1}∗ → {0, 1}≤ω computed by a universal Turing ma-
chine with possibly infinite computations. This complexity lies between K and
K( | ∅′) (where ∅′ is a computably enumerable set which encodes the halting
problem):

∀x K(x | ∅′) ≤ K∞(x) +O(1) ≤ K(x) +O(1)

This complexity is studied in [1], 2005, by Becher, Figueira, Nies & Picci, and
also in our paper [17], 2006.
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4 Formalization of randomness: finite objects

4.1 Sciences of randomness: probability theory

Random objects (words, integers, reals,...) constitute the basic intuition for
probabilities ... but they are not considered per se. No formal definition of ran-
dom object is given: there seems to be no need for such a formal concept. The
existing formal notion of random variable has nothing to do with randomness:
a random variable is merely a measurable function which can be as non random
as one likes.

It sounds strange that the mathematical theory which deals with randomness
removes the natural basic questions:

• What is a random string?
• What is a random infinite sequence?

When questioned, people in probability theory agree that they skip these ques-
tions but do not feel sorry about it. As it is, the theory deals with laws of
randomness and is so successful that it can do without entering this problem.

This may seem to be analogous to what is the case in geometry. What are
points, lines, planes? No definition is given, only relations between them. Giv-
ing up the quest for an analysis of the nature of geometrical objects in profit of
the axiomatic method has been a considerable scientific step.
However, we contest such an analogy. Random objects are heavily used in many
areas of science and technology: sampling, cryptology,... Of course, such objects
are in fact “as much as we can random”. Which means fake randomness. But
they refer to an ideal notion of randomness which cannot be simply disregarded.

In fact, since Pierre Simon de Laplace (1749–1827), some probabilists never gave
up the idea of formalizing the notion of random object. Let us cite particularly
Richard von Mises (1883–1953) and Kolmogorov. In fact, it is quite impres-
sive that, having so brilliantly and efficiently axiomatized probability theory
via measure theory in [23], 1933, Kolmogorov was not fully satisfied of such
foundations8. And he kept a keen interest to the quest for a formal notion of
randomness initiated by von Mises in the 20’s.

4.2 The 100 heads paradoxical result in probability theory

That probability theory fails to completely account for randomness is strongly
witnessed by the following paradoxical fact. In probability theory, if we toss
an unbiaised coin 100 times then 100 heads are just as probable as any other
outcome! Who really believes that?

The axioms of probability theory, as developped by Kolmogorov, do
not solve all mysteries that they are sometimes supposed to.

8 Kolmogorov is one of the rare probabilists – up to now – not to believe that Kolmogorov’s
axioms for probability theory do not constitute the last word about formalizing randomness...
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Gács, [20], 1993

4.3 Sciences of randomness: cryptology

Contrarily to probability theory, cryptology heavily uses random objects. Though
again, no formal definition is given, random sequences are produced which are
not fully random, just hard enough so that the mechanism which produces them
cannot be discovered in reasonable time.

Anyone who considers arithmetical methods of producing random
reals is, of course, in a state of sin. For, as has been pointed out
several times, there is no such thing as a random number — there are
only methods to produce random numbers, and a strict arithmetical
procedure is of course not such a method.

Von Neumann, [40], 1951

So, what is “true” randomness? Is there something like a degree of randomness?
Presently, (fake) randomness only means to pass some statistical tests. One can
ask for more.

4.4 Kolmogorov’s proposal: incompressible strings

We now assume that O = {0, 1}∗, i.e., we restrict to words.

4.4.1 Incompressibility with Kolmogorov complexity

Though much work had been devoted to get a mathematical theory of random
objects, notably by von Mises ([35, 36], 1919-1939), none was satisfactory up
to the 60’s when Kolmogorov based such a theory on Kolmogorov complexity,
hence on computability theory.
The theory was, in fact, independently9 developed by Gregory J. Chaitin (b.
1947), [6, 7] who submitted both papers in 1965.

The basic idea is as follows:

• larger is the Kolmogorov complexity of a text, more random is the text,
• larger is its information content, and more compressed is the text.

Thus, a theory for measuring the information content is also a theory of ran-
domness.

Recall that there exists c such that for all x ∈ {0, 1}∗, K(x) ≤ |x|+ c (Proposi-
tion 1.15). The reason being that there is a “stupid” program of length about
|x| which computes the word x by telling what are the successive letters of x.
The intuition of incompressibility is as follows: x is incompressible if there no
shorter way to get x.
Of course, we are not going to define absolute randomness for words. But a
measure of randomness telling how far from |x| is K(x).

9 For a detailed analysis of who did what, and when, see Li & Vitanyi’s book [31], p.89–92.
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Definition 4.1 (Measure of incompressibility).
A word x is c-incompressible if K(x) ≥ |x| − c.

It is rather intuitive that most things are random. The next Proposition for-
malizes this idea.

Proposition 4.2. For any n, the proportion of c-incompressible strings of
length n is ≥ 1− 2−c.

Proof. At most 2n−c − 1 programs of length < n− c and 2n strings
of length n.

4.4.2 Incompressibility with length conditional Kolmogorov com-
plexity

We observed in §1.2.3 that the entropy of a word of the form 000...0 is null. i.e.,
entropy did not considered the information conveyed by the length.
Here, with incompressibility based on Kolmogorov complexity, we can also ig-
nore the information content conveyed by the length by considering incompress-
ibility based on length conditional Kolmogorov complexity.

Definition 4.3 (Measure of length conditional incompressibility). A word x is
length conditional c-incompressible if K(x | |x|) ≥ |x| − c.

The same simple counting argument yields the following Proposition.

Proposition 4.4. For all n, the proportion of length conditional c-incompressible
strings of length n is ≥ 1− 2−c.

A priori length conditional incompressibility is stronger than mere incompress-
ibility. However, the two notions of incompressibility are about the same . . . up
to a constant.

Proposition 4.5. There exists d such that, for all c ∈ N and x ∈ {0, 1}∗

1. x is length conditional c-incompressible ⇒ x is (c+ d)-incompressible

2. x is c-incompressible ⇒ x is length conditional (2c+ d)-incompressible.

Proof. 1 is trivial. For 2, first observe that there exists e such that,
for all x,

(∗) K(x) ≤ K(x | |x|) + 2K(|x| −K(x | |x|)) + d

In fact, if K = Kϕ and K( | ) = Kψ( | ), consider p, q such that

|x| −K(x | |x|) = ϕ(p) ψ(q | |x|) = x
K(|x| −K(x | |x|)) = |p| K(x | |x|) = |q|

With p and q, hence with 〈p, q〉 (cf. Proposition 1.5), one can suc-

cessively get





|x| −K(x | |x|) this is ϕ(p)
K(x | |x|) this is q
|x| just sum the above quantities
x this is ψ(q | |x|)
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Thus, K(x) ≤ |〈p, q〉|+O(1). Applying Proposition 1.5, we get (*).
Using KN ≤ log +c1 and K{0,1}∗

(x) ≥ |x|− c (cf., Proposition 1.15),
(*) yields

|x| −K(x | |x|) ≤ 2 log(|x| −K(x | |x|)) + 2c1 + c+ d

Finally, observe that z ≤ 2 log z + k insures z ≤ max(8, 2k).

4.5 Incompressibility is randomness: Martin-Löf’s argu-
ment

Now, if incompressibility is clearly a necessary condition for randomness, how do
we argue that it is a sufficient condition? Contraposing the wanted implication,
let us see that if a word fails some statistical test then it is not incompressible.
We consider some spectacular failures of statistical tests.

Example 4.6.

1. [Constant half length prefix] For all n large enough, a string 0nu with |u| = n
cannot be c-incompressible.

2. [Palindromes] Large enough palindromes cannot be c-incompressible.

3. [0 and 1 not equidistributed] For all 0 < α < 1, for all n large enough, a
string of length n which has ≤ αn2 zeros cannot be c-incompressible.

Proof. 1. Let c′ be such that K(x) ≤ |x| + c′. Observe that there
exists c′′ such that K(0nu) ≤ K(u) + c′′ hence

K(0nu) ≤ n+ c′ + c′′ ≤ 1

2
|0nu|+ c′ + c′′

So that K(0nu) ≥ |0nu| − c is impossible for n large enough.

2. Same argument: There exists c′′ such that, for any palindrome x,

K(x) ≤ 1

2
|x|+ c′′

3. The proof follows the classical argument to get the law of large
numbers (cf. Feller’s book [15]). Let us do it for α = 2

3 , so that
α
2 = 1

3 .

Let An be the set of strings of length n with ≤ n
3 zeros. We estimate

the number N of elements of An.

N =

i= n

3∑

i=0

(
n
i

)
≤ (

n

3
+ 1)

(
n
n
3

)
= (

n

3
+ 1)

n!
n
3 !

2n
3 !
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Use inequality 1 ≤ e
1

12n ≤ 1.1 and Stirling’s formula (1730),

√
2nπ

(n
e

)n
e

1
12n+1 < n! <

√
2nπ

(n
e

)n
e

1
12n

Observe that 1.1 (n3 + 1) < n for n ≥ 2. Therefore,

N < n

√
2nπ

(
n
e

)n

√
2n3π

(
n

3

e

)n

3
√
2 2n

3 π
(

2n
3

e

) 2n
3

=
3

2

√
n

π

(
3
3
√
4

)n

Using Proposition 1.16, for any element of An, we have

K(x | n) ≤ log(N) + d ≤ n log

(
3
3
√
4

)
+

logn

2
+ d

Since 27
4 < 8, we have 3

3
√
4
< 2 and log

(
3
3
√
4

)
< 1. Hence, n − c ≤

n log
(

3
3
√
4

)
+ logn

2 + d is impossible for n large enough.

So that x cannot be c-incompressible.

Let us give a common framework to the three above examples so as to get some
flavor of what can be a statistical test. To do this, we follow the above proofs
of compressibility.

Example 4.7.

1. [Constant left half length prefix]
Set Vm = all strings with m zeros ahead. The sequence V0, V1, ... is decreasing.
The number of strings of length n in Vm is 0 if m > n and 2n−m if m ≤ n.

Thus, the proportion ♯{x||x|=n ∧ x∈Vm}
2n of length n words which are in Vm is

2−m.

2. [Palindromes] Put in Vm all strings which have equal length m prefix and
suffix. The sequence V0, V1, ... is decreasing. The number of strings of length n
in Vm is 0 if m > n

2 and 2n−2m if m ≤ n
2 . Thus, the proportion of length n

words which are in Vm is 2−2m.

3. [0 and 1 not equidistributed] Put in V αm = all strings x such that the number

of zeros is ≤ (α + (1 − α)2−m) |x|2 . The sequence V0, V1, ... is decreasing. A
computation analogous to that done in the proof of the law of large numbers
shows that the proportion of length n words which are in Vm is ≤ 2−γm for
some γ > 0 (independent of m).

Now, what about other statistical tests? But what is a statistical test? A
convincing formalization has been developed by Martin-Löf. The intuition is
that illustrated in Example 4.7 augmented of the following feature: each Vm
is computably enumerable and so is the relation {(m,x) | x ∈ Vm}. A feature
which is analogous to the partial computability assumption in the definition of
Kolmogorov complexity.
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Definition 4.8. [Abstract notion of statistical test, Martin-Löf, 1964] A statis-
tical test is a family of nested critical sets

{0, 1}∗ ⊇ V0 ⊇ V1 ⊇ V2 ⊇ ... ⊇ Vm ⊇ ...

such that {(m,x) | x ∈ Vm} is computably enumerable and the proportion
♯{x||x|=n ∧ x∈Vm}

2n of length n words which are in Vm is ≤ 2−m.

Intuition. The bound 2−m is just a normalization. Any bound b(n) such that
b : N → Q which is computable, decreasing and with limit 0 could replace 2−m.
The significance of x ∈ Vm is that the hypothesis x is random is rejected with
significance level 2−m.

Remark. 4.9. Instead of sets Vm one can consider a function δ : {0, 1}∗ →
N such that ♯{x||x|=n ∧ δ(x)≥m}

2n ≤ 2−m and δ is computable from below, i.e.,
{(m,x) | δ(x) ≥ m} is recursively enumerable.

We have just argued on some examples that all statistical tests from practice
are of the form stated by Definition 4.8. Now comes Martin-Löf fundamental
result about statistical tests which is in the vein of the invariance theorem.

Theorem 4.10 (Martin-Löf, 1965). Up to a constant shift, there exists a largest
statistical test (Um)m∈N

∀(Vm)m∈N ∃c ∀m Vm+c ⊆ Um

In terms of functions, up to an additive constant, there exists a largest statistical
test ∆

∀δ ∃c ∀x δ(x) < ∆(x) + c

Proof. Consider ∆(x) = |x| −K(x | |x|) − 1.

∆ is a test. Clearly, {(m,x) | ∆(x) ≥ m} is computably enumer-
able.
∆(x) ≥ m means K(x | |x|) ≤ |x| −m− 1. So no more elements in
{x | ∆(x) ≥ m ∧ |x| = n} than programs of length ≤ n −m − 1,
which is 2n−m − 1.
∆ is largest. x is determined by its rank in the set Vδ(x) = {z |
δ(z) ≥ δ(x) ∧ |z| = |x|}. Since this set has ≤ 2n−δ(x) elements, the
rank of x has a binary representation of length ≤ |x| − δ(x). Add
useless zeros ahead to get a word p with length |x| − δ(x).
With p we get |x| − δ(x). With |x| − δ(x) and |x| we get δ(x) and
construct Vδ(x). With p we get the rank of x in this set, hence we
get x. Thus,
K(x | |x|) ≤ |x| − δ(x) + c, i.e., δ(x) < ∆(x) + c.

The importance of the previous result is the following corollary which insures
that, for words, incompressibility implies (hence is equivalent to) randomness.
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Corollary 4.11 (Martin-Löf, 1965). Incompressibility passes all statistical tests.
I.e., for all c, for all statistical test (Vm)m, there exists d such that

∀x (x is c-incompressible ⇒ x /∈ Vc+d)

Proof. Let x be length conditional c-incompressible. This means
that K(x | |x|) ≥ |x| − c. Hence ∆(x) = |x| −K(x | |x|)− 1 ≤ c− 1,
which means that x /∈ Uc.
Let now (Vm)m be a statistical test. Then there is some d such that
Vm+d ⊆ Um Therefore x /∈ Vc+d.

Remark. 4.12. Observe that incompressibility is a bottom-up notion: we look
at the value of K(x) (or that of K(x | |x|)).
On the opposite, passing statistical tests is a top-down notion. To pass all
statistical tests amounts to an inclusion in an intersection: namely, an inclusion
in ⋂

(Vm)m

⋃

c

Vm+c

4.6 Shortest programs are random finite strings

Observe that optimal programs to compute any object are examples of random
strings. More precisely, the following result holds.

Proposition 4.13. Let O be an elementary set (cf. Definition 1.9) and U :
{0, 1}∗ → {0, 1}∗, V : {0, 1}∗ → O be some fixed optimal functions. There
exists a constant c such that, for all a ∈ O, for all p ∈ {0, 1}∗, if V (p) = a and
KV (a) = |p| then KU (p) ≥ |p| − c. In other words, for any a ∈ O, if p is a
shortest program which outputs a then p is c-random.

Proof. Consider the function V ◦U : {0, 1}∗ → O. Using the invariance theorem,
let c be such that KV ≤ KV ◦U + c. Then, for every q ∈ {0, 1}∗,

U(q) = p ⇒ V ◦ U(q) = a

⇒ |q| ≥ KV ◦U (a) ≥ KV (a)− c = |p| − c

Which proves that KU (p) ≥ |p| − c.

4.7 Random finite strings and lower bounds for computa-
tional complexity

Random finite strings (or rather c-incompressible strings) have been extensively
used to prove lower bounds for computational complexity, cf. the pioneering
paper [42] by Wolfgang Paul, 1979, (see also an account of the proof in our
survey paper [16]) and the work by Li & Vitanyi, [31]. The key idea is that a
random string can be used as a worst possible input.
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5 Formalization of randomness: infinite objects

We shall stick to infinite sequences of zeros and ones: {0, 1}N.

5.1 Martin-Löf top-down approach with topology and com-
putability

5.1.1 The naive idea badly fails

The naive idea of a random element of {0, 1}N is that of a sequence α which
is in no set of measure 0. Alas, α is always in the singleton set {α} which has
measure 0 !

5.1.2 Martin-Löf ’s solution: effectivize

Martin-Löf’s solution to the above problem is to effectivize, i.e., to consider the
sole effective measure zero sets.
This approach is, in fact, an extension to infinite sequences of the one Martin-
Löf developed for finite objects, cf. §4.5.
Let us develop a series of observations which leads to Martin-Löf’s precise so-
lution, i.e., what does mean effective for measure 0 sets.
To prove a probability law amounts to prove that a certain set X of sequences
has probability one. To do this, one has to prove that the complement set
Y = {0, 1}N \X has probability zero. Now, in order to prove that Y ⊆ {0, 1}N
has probability zero, basic measure theory tells us that one has to include Y in
open sets with arbitrarily small probability. I.e., for each n ∈ N one must find
an open set Un ⊇ Y which has probability ≤ 1

2n .
If things were on the real line R we would say that Un is a countable union of
intervals with rational endpoints.
Here, in {0, 1}N, Un is a countable union of sets of the form u{0, 1}N where u is a
finite binary string and u{0, 1}N is the set of infinite sequences which extend u.
In order to prove that Y has probability zero, for each n ∈ N one must find a fam-
ily (un,m)m∈N such that Y ⊆ ⋃

m un,m{0, 1}N and Proba(
⋃
m un,m{0, 1}N) ≤ 1

2n

for each n ∈ N.
Now, Martin-Löf makes a crucial observation: mathematical probability laws
which we consider necessarily have some effective character. And this effec-
tiveness should reflect in the proof as follows: the doubly indexed sequence
(un,m)n,m∈N is computable.

Thus, the set
⋃
m un,m{0, 1}N is a computably enumerable open set and

⋂
n

⋃
m un,m{0, 1}N

is a countable intersection of a computably enumerable family of open sets.

Now comes the essential theorem, which is completely analogous to Theo-
rem 4.10.
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Definition 5.1 (Martin-Löf, [32], 1966). A constructively null Gδ set is any
set of the form ⋂

n

⋃

m

un,m{0, 1}N

where Proba(
⋃
m un,m{0, 1}N) ≤ 1

2n (which implies that the intersection set has
probability zero) and the sequence un,m is computably enumerable.

Theorem 5.2 (Martin-Löf, [32], 1966). There exist a largest constructively null
Gδ set

Let us insist that the theorem says largest, up to nothing, really largest relative
to set inclusion.

Definition 5.3 (Martin-Löf, [32], 1966). A sequence α ∈ {0, 1}N is Martin-Löf
random if it belongs to no constructively null Gδ set (i.e., if it does not belongs
to the largest one).

In particular, the family of random sequences, being the complement of a con-
structively null Gδ set, has probability 1. And the observation above Defini-
tion 5.1 insures that Martin-Löf random sequences satisfy all usual probabilities
laws. Notice that the last statement can be seen as an improvement of all usual
probabilities laws: not only such laws are true with probability 1 but they are
true for all sequences in the measure 1 set of Martin-Löf random sequences.

5.2 The bottom-up approach

5.2.1 The naive idea badly fails

Another natural naive idea to get randomness for sequences is to extend ran-
domness from finite objects to infinite ones. The obvious proposal is to consider
sequences α ∈ {0, 1}N such that, for some c,

∀n K(α↾n) ≥ n− c (1)

However, Martin-Löf proved that there is no such sequence.

Theorem 5.4 (Large oscillations (Martin-Löf, [33], 1971)). If f : N → N is
computable and

∑
n∈N

2−f(n) = +∞ then, for every α ∈ {0, 1}N, there are
infinitely many k such that K(α↾k) ≤ k − f(k)−O(1).

Proof. Let us do the proof in the case f(n) = logn which is quite
limpid (recall that the harmonic series 1

n
= 2− logn has infinite sum).

Let k be any integer. The word α ↾ k prefixed with 1 is the binary
representation of an integer n (we put 1 ahead of α ↾ k in order to
avoid a first block of non significative zeros). We claim that α ↾ n
can be recovered from α↾ [k + 1, n] only. In fact,

• n− k is the length of α↾ [k + 1, n],
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• k = ⌊logn⌋ + 1 = ⌊log(n − k)⌋ + 1 + ε (where ε ∈ {0, 1}) is
known from n− k and ε,

• n = (n− k) + k.

• α↾k is the binary representation of n.

The above analysis describes a computable map f : {0, 1}∗×{0, 1} →
{0, 1}∗ such that α ↾ n = f(α ↾ [k + 1, n], ε). Applying Proposi-
tion 1.15, point 3, we get

K(α↾n) ≤ K(α↾ [k+1, n])+O(1) ≤ n−k+O(1) = n− log(n)+O(1)

5.2.2 Miller & Yu’s theorem

It took about forty years to get a characterization of randomness via Kolmogorov
complexity which completes Theorem 5.4 in a very pleasant and natural way.

Theorem 5.5 (Miller & Yu, [34], 2008). The following conditions are equiva-
lent:

i. The sequence α ∈ {0, 1}N is Martin-Löf random

ii. ∃c ∀k K(α ↾ k) ≥ k − f(k) − c for every total computable function
f : N → N satisfying

∑
n∈N

2−f(n) < +∞
iii. ∃c ∀k K(α↾k) ≥ k −H(k)− c

Moreover, there exists a particular total computable function g : N → N satisfy-
ing

∑
n∈N

2−g(n) < +∞ such that one can add a fourth equivalent condition:

iv. ∃c ∀k K(α↾k) ≥ k − g(k)− c

Recently, an elementary proof of this theorem was given by Bienvenu, Merkle
& Shen in [3], 2008. Equivalence i⇔ iii is due to Gács, [19], 1980.

5.2.3 Variants of Kolmogorov complexity and randomness

Bottom-up characterization of random sequences have been obtained using
Levin monotone complexity, Schnorr process complexity and prefix complex-
ity (cf. §3.1, §3.2 and §3.3).
Theorem 5.6. The following conditions are equivalent:

i. The sequence α ∈ {0, 1}N is Martin-Löf random

ii. ∃c ∀k |Kmon(α↾k)− k| ≤ c

iii. ∃c ∀k |S(α↾k)− k| ≤ c

iv. ∃c ∀k H(α↾k) ≥ k − c

Equivalence i ⇔ ii is due to Levin ([52], 1970). Equivalence i ⇔ iii is due to
Schnorr ([45], 1971). Equivalence i ⇔ iv is due to Schnorr and Chaitin ([10],
1975).
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5.3 Randomness: a robust mathematical notion

Besides the top-down definition of Martin-Löf randomness, we mentioned above
diverse bottom-up characterizations via properties of the initial segments with
respect to variants of Kolmogorov complexity. There are other top-down and
bottom-up characterizations, we mention two of them in this §.
This variety of characterizations shows that Martin-Löf randomness is a robust
mathematical notion.

5.3.1 Randomness and martingales

Recall that a martingale is a function d : {0, 1}∗ → R+ such that

∀u d(u) =
d(u0) + d(u1)

2

The intuition is that a player tries to predict the bits of a sequence α ∈ {0, 1}N
and bets some amount of money on the values of these bits. If his guess is
correct he doubles his stake, else he looses it. Starting with a positive capital
d(ε) (where ε is the empty word), d(α ↾k) is his capital after the k first bits of
α have been revealed.
The martingale d wins on α ∈ {0, 1}N if the capital of the player tends to +∞.
The martingale d is computably approximable from below if the left cut of d(u)
is computably enumerable, uniformly in u (i.e., {(u, q) ∈ {0, 1}∗×Q | q ≤ d(u)}
is c.e.).

Theorem 5.7 (Schnorr, [46], 1971). A sequence α ∈ {0, 1}N is Martin-Löf
random if and only if no martingale computably approximable from below wins
on α.

5.3.2 Randomness and compressors

Recently, Bienvenu & Merkle obtained quite remarkable characterizations of
random sequences in the vein of Theorems 5.6 and 5.5 involving computable
upper bounds of K and H .

Definition 5.8. A compressor is any partial computable Γ : {0, 1}∗ → {0, 1}∗
which is one-to-one and has computable domain. A compressor is said to be
prefix-free if its range is prefix-free.

Proposition 5.9.

1. If Γ is a compressor (resp. a prefix-free compressor) then

∃c ∀x ∈ {0, 1}∗ K(x) ≤ |Γ(x)|+ c (resp. H(x) ≤ |Γ(x)|+ c)

2. For any computable upper bound F of K (resp. of H) there exists a com-
pressor (resp. a prefix-free compressor) Γ such that

∃c ∀x ∈ {0, 1}∗ |Γ(x)| ≤ F (x) + c
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Now comes the surprising characterizations of randomness in terms of com-
putable functions.

Theorem 5.10 (Bienvenu & Merkle, [2], 2007). The following conditions are
equivalent:

i. The sequence α ∈ {0, 1}N is Martin-Löf random

ii. For all prefix-free compressor Γ : {0, 1}∗ → {0, 1}∗,

∃c ∀k |Γ(α↾k)| ≥ k − c

iii. For all compressor Γ, ∃c ∀k |Γ(α↾k)| ≥ k −H(k)− c

Moreover, there exists a particular prefix-free compressor Γ∗ and a particular
compressor Γ# such that one can add two more equivalent conditions:

iv. ∃c ∀k |Γ∗(α↾k)| ≥ k − c

v. ∃c ∀k |Γ#(α↾k)| ≥ k − |Γ∗(α↾k)| − c

5.4 Randomness: a fragile property

Though the notion of Martin-Löf randomness is robust, with a lot of equivalent
definitions, as a property, it is quite fragile.
In fact, random sequences loose their random character under very simple com-
putable transformation. For instance, even if a0a1a2... is random, the sequence
0a00a10a20... IS NOT random since it fails the following Martin-Löf test:

⋂

n∈N

{α | ∀i < n α(2i+ 1) = 0}

Indeed, {α | ∀i < n α(2i+1) = 0} has probability 2−n and is an open subset of
{0, 1}N.

5.5 Randomness is not chaos

In a series of papers [37, 38, 39], 1993-1996, Joan Rand Moschovakis introduced
a very convincing notion of chaotic sequence α ∈ {0, 1}N. It turns out that the
set of such sequences has measure zero and is disjoint from Martin-Löf random
sequences.
This stresses that randomness is not chaos. As mentioned in §5.1.2, random
sequences obey laws, those of probability theory.

5.6 Oracular randomness

5.6.1 Relativization

Replacing “computable” by “computable in some oracle”, all the above theory
relativizes in an obvious way, using oracular Kolmogorov complexity and the
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oracular variants.
In particular, when the oracle is the halting problem, i.e. the computably enu-
merable set ∅′, the obtained randomness is called 2-randomness.
When the oracle is the halting problem of partial ∅′-computable functions,
i.e. the computably enumerable set ∅′′, the obtained randomness is called 3-
randomness. And so on.
Of course, 2-randomness implies randomness (which is also called 1-randomness)
and 3-randomness implies 2-randomness. And so on.

5.6.2 Kolmogorov randomness and ∅′

A natural question following Theorem 5.4 is to look at the so-called Kolmogorov
random sequences which satisfy K(α ↾ k) ≥ k − O(1) for infinitely many k’s.
This question got a very surprising answer involving 2-randomness.

Theorem 5.11 (Nies, Stephan & Terwijn, [41], 2005). Let α ∈ {0, 1}N. There
are infinitely many k such that, for a fixed c, K(α ↾ k) ≥ k − c (i.e., α is
Kolmogorov random) if and only if α is 2-random.

5.7 Randomness: a new foundation for probability the-
ory?

Now that there is a sound mathematical notion of randomness, is it possi-
ble/reasonable to use it as a new foundation for probability theory?
Kolmogorov has been ambiguous on this question. In his first paper on the
subject, see p. 35–36 of [25], 1965, he briefly evoked that possibility :

. . . to consider the use of the [Algorithmic Information Theory] con-
structions in providing a new basis for Probability Theory.

However, later, see p. 35–36 of [26], 1983, he separated both topics:

“there is no need whatsoever to change the established construction
of the mathematical probability theory on the basis of the general
theory of measure. I am not enclined to attribute the significance
of necessary foundations of probability theory to the investigations
[about Kolmogorov complexity] that I am now going to survey. But
they are most interesting in themselves.

though stressing the role of his new theory of random objects for mathematics
as a whole in [26], p. 39:

The concepts of information theory as applied to infinite sequences
give rise to very interesting investigations, which, without being in-
dispensable as a basis of probability theory, can acquire a certain
value in the investigation of the algorithmic side of mathematics as
a whole.

36



References

[1] Becher V., Figueira S., Nies A., Picchi S. and Vitányi P. Program size com-
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