Marie Ferbus-Zanda

Serge Grigorieff

Kolmogorov Complexity in perspective Part I: Information Theory and Randomness *

Keywords: Logic, Computer Science, Algoritmmic Information Theory, Shannon Information Theory, Kolmogorov Complexity, Randomness upper bounds for Kolmogorov complexity

We survey diverse approaches to the notion of information: from Shannon entropy to Kolmogorov complexity. Two of the main applications of Kolmogorov complexity are presented: randomness and classification. The survey is divided in two parts in the same volume.

Part I is dedicated to information theory and the mathematical formalization of randomness based on Kolmogorov complexity. This last application goes back to the 60's and 70's with the work of Martin-Löf, Schnorr, Chaitin, Levin, and has gained new impetus in the last years.

Note.

Following Robert Soare's recommendations ([START_REF] Soare | Computability and Recursion[END_REF], 1996), which have now gained large agreement, we write computable and computably enumerable in place of the old fashioned recursive and recursively enumerable.

Notation. By log x (resp. log s x) we mean the logarithm of x in base 2 (resp. base s where s ≥ 2). The "floor" and "ceil" of a real number x are denoted by ⌊x⌋ and ⌈x⌉: they are respectively the largest integer ≤ x and the smallest integer ≥ x. Recall that, for s ≥ 2, the length of the base s representation of an integer k is ℓ ≥ 1 if and only if s ℓ-1 ≤ k < s ℓ . Thus, the length of the base s representation of an integer k is 1 + ⌊log s k⌋ = 1 + ⌊ log k log s ⌋. The number of elements of a finite family F is denoted by ♯F . The length of a word u is denoted by |u|.

Three approaches to a quantitative definition of information

A title borrowed from Kolmogorov' seminal paper ([START_REF] Kolmogorov | Three approaches to the quantitative definition of information[END_REF], 1965).

1.1 Which information?

1.1.1 About anything... About anything can be seen as conveying information. As usual in mathematical modelization, we retain only a few features of some real entity or process, and associate to them some finite or infinite mathematical objects. For instance,

• -an integer or a rational number or a word in some alphabet, -a finite sequence or a finite set of such objects, -a finite graph,...

• -a real, -a finite or infinite sequence of reals or a set of reals, -a function over words or numbers,... This is very much as with probability spaces. For instance, to modelize the distributions of 6 balls into 3 cells, (cf. Feller, [START_REF] Feller | Introduction to probability theory and its applications[END_REF], §I.2, II.5) we forget everything about the nature of balls and cells and of the distribution process, retaining only two questions: "how many balls in each cell?" and "are the balls and cells distinguishable or not?". Accordingly, the modelization considers -either the 729 = 3 6 maps from the set of balls into the set of cells in case the balls are distinguishable and so are the cells (this is what is done in Maxwell-Boltzman statistics),

-or the 28 = 6 + (3 -1) 6 triples of non negative integers with sum 1 6 in case the cells are distinguishable but not the balls (this is what is done in Bose-Einstein statistics) -or the 7 sets of at most 3 integers with sum 6 in case the balls are undistinguishable and so are the cells.

Especially words

In information theory, special emphasis is made on information conveyed by words on finite alphabets. I.e., on sequential information as opposed to the obviously massively parallel and interactive distribution of information in real entities and processes. A drastic reduction which allows for mathematical developments (but also illustrates the Italian saying "traduttore, traditore!").

As is largely popularized by computer science, any finite alphabet with more than two letters can be reduced to one with exactly two letters. For instance, as exemplified by the ASCII code (American Standard Code for Information Interchange), any symbol used in written English -namely the lowercase and uppercase letters, the decimal digits, the diverse punctuation marks, the space, apostrophe, quote, left and right parentheses -together with some simple typographical commands -such as tabulation, line feed, carriage return or "end of file" -can be coded by binary words of length 7 (corresponding to the 128 ASCII codes). This leads to a simple way to code any English text by a binary word (which is 7 times longer) 2 .

Though quite rough, the length of a word is the basic measure of its information content. Now, a fairness issue faces us: richer the alphabet, shorter the word. Considering groups of k successive letters as new letters of a super-alphabet, one trivially divides the length by k. For instance, a length n binary word becomes a length ⌈ n 256 ⌉ word with the usual packing of bits by groups of 8 (called bytes) which is done in computers. This is why all considerations about the length of words will always be developed relative to binary alphabets. A choice to be considered as a normalization of length.

Finally, we come to the basic idea to measure the information content of a mathematical object x : information content of x = length of a shortest binary word which "encodes" x

What do we mean precisely by "encodes" is the crucial question. Following the trichotomy pointed by Kolmogorov in [START_REF] Kolmogorov | Three approaches to the quantitative definition of information[END_REF], 1965, we survey three approaches.

1.2 Combinatorial approach: entropy

1.2.

Constant-length codes

Let us consider the family A n of length n words in an alphabet A with s letters a 1 , ..., a s . Coding the a i 's by binary words w i 's all of length ⌈log s⌉, to any word u in A n we can associate the binary word ξ obtained by substituting the w i 's to the occurrences of the a i 's in u. Clearly, ξ has length n⌈log s⌉. Also, the map u → ξ from the set A * of words in alphabet A to the set {0, 1} * of binary words is very simple. Mathematically, considering on A * and {0, 1} * the algebraic structure of monoid given by the concatenation product of words, this map u → ξ is a morphism since the image of a concatenation uv is the concatenation of the images of u and v.

Variable-length prefix codes

Instead of coding the s letters of A by binary words of length ⌈log s⌉, one can code the a i 's by binary words w i 's having different lengthes so as to associate short codes to most frequent letters and long codes to rare ones. This is the basic idea of compression. Using such codes, the substitution of the w i 's to the occurrences of the a i 's in a word u gives a binary word ξ. And the map u → ξ is again very simple. It is still a morphism from the monoid of words on alphabet A to the monoid of binary words and can also be computed by a finite automaton.

Now, we face a problem: can we recover u from ξ ? i.e., is the map u → ξ injective?

In general the answer is no. However, a simple sufficient condition to ensure decoding is that the family w 1 , ..., w s be a so-called prefix-free code (or prefix code). Which means that if i = j then w i is not a prefix of w j .

This condition insures that there is a unique w i1 which is a prefix of ξ. Then, considering the associated suffix ξ 1 of v (i.e., v = w i1 ξ 1) there is a unique w i2 which is a prefix of ξ 1 , i.e., u is of the form u = w i1 w i2 ξ 2 . And so on.

Suppose the numbers of occurrences in u of the letters a 1 , ..., a s are m 1 , ..., m s , so that the length of u is n = m 1 + ... + m s . Using a prefix-free code w 1 , .

H = -(f 1 log(f 1) + ... + f s log(f s))
(n! m 1 ! × ... × m s !) = (i m i) log(n) -(i m i log m i) + 1 2 log(n m 1 × ... × m s) -(s -1) log √ 2π + α
where |α| ≤ s 12 log e. The difference of the first two terms is equal to n

[i mi n log(mi n)] = nH and the remaining sum is O(log n) since n 1-s ≤ n m1×...×ms ≤ n.
H has a striking significance in terms of information content and compression. Any word u in F m1,...,ms is uniquely characterized by its rank in this family (say relatively to the lexicographic ordering on words in alphabet A). In particular, the binary representation of this rank "encodes" u. Since this rank is < ♯F m1,...,ms , its binary representation has length ≤ nH up to an O(log n) term. Thus, nH can be seen as an upper bound of the information content of u. Otherwise said, the n letters of u are encoded by nH binary digits. In terms of compression (nowadays so popular with the zip-like softwares), u can be compressed to nH bits, i.e., the mean information content (which can be seen as the compression size in bits) of a letter of u is H. Let us look at two extreme cases. • If all frequencies f i are equal to 1 s then the entropy is log(s), so that the mean information content of a letter of u is log(s), i.e., there is no better (prefix-free) coding than that described in §1.2.1.

• In case some of the frequencies is 1 (hence all other ones being 0), the information content of u is reduced to its length n, which, written in binary, requires log(n) bits. As for the entropy, it is 0 (with the usual convention 0 log 0 = 0, justified by the fact that lim x→0 x log x = 0). The discrepancy between nH = 0 and the true information content log n comes from the O(log n) term in Propo-sition1.2.

Shannon's source coding theorem for symbol codes

The significance of the entropy explained above has been given a remarkable and precise form by Claude Elwood Shannon (1916Shannon (-2001)) in his celebrated paper [START_REF] Shannon | The mathematical theory of communication[END_REF], 1948. It's about the length of the binary word ξ associated to u via a prefix-free code. Shannon proved -a lower bound of |ξ| valid whatever be the prefix-free code w 1 , ..., w s , -an upper bound, quite close to the lower bound, valid for particular prefix-free codes w 1 , ..., w s (those making ξ shortest possible, for instance those given by Huffman's algorithm). Proof. First, we recall two classical results.

Kraft's inequality. Let ℓ 1 , ..., ℓ s be a finite sequence of integers. Inequality 2 -ℓ1 + ...+ 2 -ℓs ≤ 1 holds if and only if there exists a prefixfree sequence of binary words w 1 , ..., w s such that

ℓ 1 = |w 1 |, ..., ℓ s = |w s |.
Gibbs' inequality. Let p 1 , ..., p s and q 1 , ..., q s be two probability distributions, i.e., the p i 's (resp. q i 's) are in [0, 1] and have sum 1. Then p i log(p i) ≤p i log(q i) with equality if and only if p i = q i for all i.

Proof of Point 1 of Theorem 1.3. Set p i = mi n and

q i = 2 -|w i | S where S = i 2 -|wi| . Then |ξ| = i m i |w i | = n[i mi n (-log(q i) -log S)] ≥ n[-(i mi n log(mi n) -log S] = n[H -log S] ≥ nH
The first inequality is an instance of Gibbs' inequality. For the last one, observe that S ≤ 1.

Proof of Point 2 of Theorem

1.3. Set ℓ i = ⌈-log(mi n)⌉. Observe that 2 -ℓi ≤ mi n . Thus, 2 -ℓ1 + ... + 2 -ℓs ≤ 1.
Applying Kraft inequality, we see that there exists a prefix-free family of words w 1 , ..., w s with lengthes ℓ 1 , ..., ℓ s . We consider the binary word ξ obtained via this prefix-free code, i.e., ξ is obtained by substituting w i to each occurrence of a i in u. Observe thatlog(mi n) ≤ ℓ i <log(mi n) + 1. Summing, we get nH ≤ |ξ| < n(H + 1).

In particular cases, the lower bound nH can be achieved. 1 . . . 1 , one can recover u and v from the word 1 |u| 0uv : the length of the first block of 1's tells where to stop in the suffix uv to get u. In other words, the map (u, v) → 1 |u| 0uv is injective from {0, 1} * × {0, 1} * → {0, 1} * . In this way, the code of the pair (u, v) has length 2|u| + |v| + 1. This can obviously be extended to more arguments using the map (u 1 , ..., u s , v) → 1 |u1| 0 |u2| . . . ε |us| ε ′ u 1 . . . u s v (where ε = 0 is s is even and ε = 1 is s is odd and ε ′ = 1ε. Proposition 1.5. Let s ≥ 1. There exists a map : ({0, 1} *) s+1 → {0, 1} * which is injective and computable and such that, for all u 1 , ..

., u s , v ∈ {0, 1} * , | u 1 , ..., u s , v | = 2(|u 1 | + ... + |u s |) + |v| + 1.
The following technical improvement will be needed in Part II §2.1. Proof. We consider the case s = 1, i.e., we want to code a pair (u, v). Instead of putting the prefix 1 |u| 0, let us put the binary representation β(|u|) of the number |u| prefixed by its length. This gives the more complex code: 1 |β(|u|)| 0β(|u|)uv with length

|u| + |v| + 2(⌊log |u|⌋ + 1) + 1 ≤ |u| + |v| + 2 log |u| + 3
The first block of ones gives the length of β(|u|). Using this length, we can get β(|u|) as the factor following this first block of ones. Now, β(|u|) is the binary representation of |u|, so we get |u| and can now separate u and v in the suffix uv.

Probabilistic approach: ergodicity and lossy coding

The abstract probabilistic approach allows for considerable extensions of the results described in §1.2.

First, the restriction to fixed given frequencies can be relaxed. The probability of writing a i may depend on what has already been written. For instance, Shannon's source coding theorem has been extended to the so called "ergodic asymptotically mean stationary source models".

Second, one can consider a lossy coding: some length n words in alphabet A are ill-treated or ignored. Let δ be the probability of this set of words. Shannon's theorem extends as follows:

-whatever close to 1 is δ < 1, one can compress u only down to nH bits.

-whatever close to 0 is δ > 0, one can achieve compression of u down to nH bits.

Algorithmic approach: Kolmogorov complexity

Berry's paradox

So far, we considered two kinds of binary codings for a word u in alphabet a 1 , ..., a s . The simplest one uses variable-length prefix-free codes (§1.2.2). The other one codes the rank of u as a member of some set (§1.2.5). Clearly, there are plenty of other ways to encode any mathematical object. Why not consider all of them? And define the information content of a mathematical object x as the shortest univoque description of x (written as a binary word). Though quite appealing, this notion is ill defined as stressed by Berry's paradox3 :

Let N be the lexicographically least binary word which cannot be univoquely described by any binary word of length less than 1000. This description of N contains 106 symbols of written English (including spaces) and, using ASCII codes, can be written as a binary word of length 106×7 = 742. Assuming such a description to be well defined would lead to a univoque description of N in 742 bits, hence less than 1000, a contradiction to the definition of N . The solution to this inconsistency is clear: the quite vague notion of univoque description entering Berry's paradox is used both inside the sentence describing N and inside the argument to get the contradiction. A clash between two levels:

• the would be formal level carrying the description of N • and the meta level which carries the inconsistency argument. Any formalization of the notion of description should drastically reduce its scope and totally forbid any clash such as the above one.

The turn to computability

To get around the stumbling block of Berry's paradox and have a formal notion of description with wide scope, Andrei Nikolaievitch Kolmogorov (1903Kolmogorov (-1987)) made an ingenious move: he turned to computability and replaced description by computation program. Exploiting the successful formalization of this a priori vague notion which was achieved in the thirties 4 . This approach was first announced by Kolmogorov in [START_REF] Kolmogorov | On tables of random numbers[END_REF], 1963, and then developped in [START_REF] Kolmogorov | Three approaches to the quantitative definition of information[END_REF], 1965. Similar approaches were also independently developed by Solomonoff in [START_REF] Solomonoff | A formal theory of inductive inference, part I[END_REF], 1964, and by Chaitin in [START_REF] Chaitin | On the length of programs for computing finite binary sequences[END_REF][START_REF] Chaitin | On the length of programs for computing finite binary sequences: statistical considerations[END_REF], 1966-1969.

Digression on computability theory

The formalized notion of computable function (also called recursive function) goes along with that of partial computable function (also called partial recursive function) which should rather be called partially computable partial function, i.e., the partial character has to be distributed 5 . So, there are two theories :

• the theory of computable functions,

• the theory of partial computable functions. The "right" theory, the one with a cornucopia of spectacular results, is that of partial computable functions.

Let us pick up three fundamental results out of the cornucopia, which we state in terms of computers and programming languages. Let I and O be N or A * where A is some finite or countably infinite alphabet (or, more generally, I and O can be elementary sets, cf. Definition 1.9). Theorem 1.7.

[Enumeration theorem]

The function which executes programs on their inputs: (program, input) → output is itself partial computable. Formally, this means that there exists a partial computable function

U : {0, 1} * × I → O such that the family of partial computable function I → O is exactly {U e | e ∈ {0, 1} * } where U e (x) = U (e, x). Such a function U is called universal for partial computable func- tions I → O.

[Parameter theorem (or s m n thm)]. One can exchange input and program (this is von Neumann's key idea for computers).

Formally, this means that, letting I = I 1 × I 2 , universal maps U I1×I2 and U I2 are such that there exists a computable total map s : {0, 1} * × I 1 → {0, 1} * such that, for all e ∈ {0, 1} * , x 1 ∈ I 1 and

x 2 ∈ I 2 , U I1×I2 (e, (x 1 , x 2)) = U I2 (s(e, x 1), x 2)
3. [Kleene fixed point theorem] For any transformation of programs, there is a program which does the same input → output job as its transformed program 6 . Formally, this means that, for every partial computable map f : {0, 1} * → {0, 1} * , there exists e such that ∀e ∈ {0, 1} * ∀x ∈ I U (f (e), x) = U (e, x)

Kolmogorov complexity (or program size complexity)

Turning to computability, the basic idea for Kolmogorov complexity7 can be summed up by the following equation:

description = program
When we say "program", we mean a program taken from a family of programs, i.e., written in a programming language or describing a Turing machine or a system of Herbrand-Gödel equations or a Post system,.

: O → N K ϕ (y) = min{|p| : ϕ(p) = y}
with the convention that min ∅ = +∞. Intuition: p is a program (with no input), ϕ executes programs (i.e., ϕ is altogether a programming language plus a compiler plus a machinery to run programs) and ϕ(p) is the output of the run of program p. Thus, for y ∈ O, K ϕ (y) is the length of shortest programs p with which ϕ computes y (i.e., ϕ(p) = y).

As said above, we shall consider this definition for partial computable functions {0, 1} * → O. Of course, this forces to consider a set O endowed with a computability structure. Hence the choice of sets that we shall call elementary which do not exhaust all possible ones but will suffice for the results mentioned in this paper.

Definition 1.9. The family of elementary sets is obtained as follows:

-it contains N and the A * 's where A is a finite or countable alphabet, -it is closed under finite (non empty) product, product with any non empty finite set and the finite sequence operator.

Note. Closure under the finite sequence operator is used to encode formulas in Theorem 2.4.

The invariance theorem

The problem with Definition 1.8 is that K ϕ strongly depends on ϕ. Here comes a remarkable result, the invariance theorem, which insures that there is a smallest K ϕ , up to a constant. It turns out that the proof of this theorem only needs the enumeration theorem and makes no use of the parameter theorem (usually omnipresent in computability theory).

Theorem 1.10 (Invariance theorem, Kolmogorov, [START_REF] Kolmogorov | Three approaches to the quantitative definition of information[END_REF], 1965). Let O be an elementary set (cf. Definition 1.9). Among the K ϕ 's, where ϕ : {0, 1} * → O varies in the family P C O of partial computable functions, there is a smallest one, up to an additive constant (= within some bounded interval). I.e.

∃V ∈ P C O ∀ϕ ∈ P C O ∃c ∀y ∈ O K V (y) ≤ K ϕ (y) + c Such a V
∀e ∈ {0, 1} * ∀x ∈ {0, 1} * V (c(e, x)) = U (e, x)
where equality means that both sides are simultaneously defined or not. Then, for every partial computable function ϕ : {0, 1} * → O, for every y ∈ O, if ϕ = U e (i.e., ϕ(x) = U (e, x) for all x, cf. point 1 of Theorem 1.7) then

K V (y) = least |p| such that V (p) = y ≤ least |c(e, x)| such that V (c(e, x)) = y (least is relative to x since e is fixed) = least |c(e, x)| such that U (e, x)) = y = least |x| + 2|e| + 1 such that ϕ(x) = y since |c(e, x)| = |x| + 2|e| + 1 and ϕ(x) = U (e, x) = (least |x| such that ϕ(x) = y) + 2|e| + 1 = K ϕ (y) + 2|e| + 1 2
Using the invariance theorem, the Kolmogorov complexity K O : O → N is defined as K V where V is any fixed optimal function. The arbitrariness of the choice of V does not modify drastically K V , merely up to a constant.

Definition 1.11. Kolmogorov complexity

K O : O → N is K V , where V is some fixed optimal partial function {0, 1} * → O.
When O is clear from context, we shall simply write K. K O is therefore minimum among the K ϕ 's, up to an additive constant.

K O is defined up to an additive constant: if V and V ′ are both optimal then One must, however, suppose that the different "reasonable" [above optimal functions] will lead to "complexity estimates" that will converge on hundreds of bits instead of tens of thousands. Hence, such quantities as the "complexity" of the text of "War and Peace" can be assumed to be defined with what amounts to uniqueness.

∃c ∀x ∈ O |K V (x) -K V ′ (x)| ≤ c 1.4.
In fact, this constant witnesses the multitude of models of computation: universal Turing machines, universal cellular automata, Herbrand-Gödel systems of equations, Post systems, Kleene definitions,... If we feel that one of them is canonical then we may consider the associated Kolmogorov complexity as the right one and forget about the constant. This has been developed for Schoenfinkel-Curry combinators S, K, I by Tromp, cf.

[31] §3.2.2-3.2.6. However, even if we fix a particular K V , the importance of the invariance theorem remains since it tells us that K is less than any K ϕ (up to a constant). A result which is applied again and again to develop the theory.

Considering inputs: conditional Kolmogorov complexity

In the enumeration theorem, we considered (program, input) → output functions (cf. Theorem 1.7). Then, in the definition of Kolmogorov complexity, we gave up the inputs, dealing with program → output functions. Conditional Kolmogorov complexity deals with the inputs. Instead of measuring the information content of y ∈ O, we measure it given as free some object z, which may help to compute y. A trivial case is when z = y, then the information content of y given y is null. In fact, there is an obvious program which outputs exactly its input, whatever be the input.

Let us mention that, in computer science, inputs are also considered as environments.

Let us state the formal definition and the adequate invariance theorem.

Definition 1.12.

If ϕ : {0, 1} * × I → O is a partial function, set K ϕ (|) : O × I → N K ϕ (y | z) = min{|p| | ϕ(p, z) =
∃V ∈ P C O I ∀ϕ ∈ P C O I ∃c ∀y ∈ O ∀z ∈ I K V (y | z) ≤ K ϕ (y | z) + c Such a V is called optimal. Moreover, any universal partial computable map {0, 1} * × I → O is optimal.
The proof is similar to that of Theorem 1.10.

Definition 1.14. K I→O : O × I → N is K V (|)
where V is some fixed optimal partial function.

K I→O is defined up to an additive constant: if V et V ′ are both optimal then

∃c ∀y ∈ O ∀z ∈ I |K V (y | z) -K V ′ (y | z)| ≤ c
Again, an integer defined up to a constant. . . ! However, the constant is uniform in y ∈ O and z ∈ I.

Simple upper bounds for Kolmogorov complexity

Finally, let us mention rather trivial upper bounds: -the information content of a word is at most its length.

-conditional complexity cannot be harder than the non conditional one.

Proposition 1.15.

There exists c such that

∀x ∈ {0, 1} * K {0,1} * (x) ≤ |x| + c , ∀n ∈ N K N (n) ≤ log(n) + c 2.
There exists c such that

∀x ∈ O ∀y ∈ I K I→O (x | y) ≤ K O (x) + c 3. Let f : O → O ′ be computable. There exists c such that ∀x ∈ O K O ′ (f (x)) ≤ K O (x) + c ∀x ∈ O ∀Y ∈ I K I→O ′ (f (x) | y) ≤ K I→O (x | y) + c
Proof. We only prove 1. Let Id : {0, 1} * → {0, 1} * be the identity function. The invariance theorem insures that there exists c such that K {0,1} * ≤ K {0,1} * Id + c. Now, it is easy to see that K {0,1} * Id = |x|, so that K {0,1} * (x) ≤ |x| + c. Let θ : {0, 1} * → N be the function (which is, in fact, a bijection) which associates to a word u = a k-1 ...a 0 the integer

θ(u) = (2 k + a k-1 2 k-1 + ... + 2a 1 + a 0) -1 (i.e.
, the predecessor of the integer with binary representation 1u). Clearly, K N θ (n) = ⌊log(n + 1)⌋. The invariance theorem insures that there exists c such that

K N ≤ K N θ + c. Hence K N (n) ≤ log(n) + c + 1 for all n ∈ N.
The following technical property is a variation of an argument already used in §1.2.5: the rank of an element in a set defines this element, and if the set is computable, so is this process.

Proposition 1.16. Let A ⊆ N × O be computable such that A n = A ∩ ({n} × O)
is finite for all n. Then, letting ♯X be the number of elements of X,

∃c ∀x ∈ A n K(x | n) ≤ log(♯(A n)) + c
Proof. Observe that x is determined by its rank in A n . This rank is an integer < ♯A n hence its binary representation has length ≤ ⌊log(♯A n)⌋ + 1.

Kolmogorov complexity and undecidability

2.1 K is unbounded

Let K = K V : O → N where V : {0, 1} * → O is optimal (cf. Theorem §1.10).
Since there are finitely many programs of size ≤ n (namely, the 2 n+1 -1 binary words of size ≤ n), there are finitely many elements of O with Kolmogorov complexity less than n. This shows that K is unbounded.

K is not computable

Berry's paradox (cf. §1.4.1) has a counterpart in terms of Kolmogorov complexity: it gives a very simple proof that K, which is a total function O → N, is not computable.

Proof that K is not computable. For simplicity of notations, we consider the case O = N. Define L : N → O as follows:

L(n) = least k such that K(k) ≥ 2n
So that K(L(n)) ≥ 2n for all n. If K were computable so would be L. Let V : O → N be optimal, i.e., K = K V . The invariance theorem insures that there exists c such that

K ≤ K L + c. Observe that K L (L(n) ≤ n by definition of K L . Thus, 2n ≤ K(L(n)) ≤ K L (L(n) + c ≤ n + c A contradiction for n > c. 2
The non computability of K can be seen as a version of the undecidability of the halting problem. In fact, there is a simple way to compute K when the halting problem is used as an oracle. To get the value of K(x), proceed as follows:

-enumerate the programs in {0, 1} * in lexicographic order, -for each program p, check if V (p) halts (using the oracle), -in case V (p) halts then compute its value, -halt and output |p| when some p is obtained such that

V (p) = x.
The converse is also true: one can prove that the halting problem is computable with K as an oracle.

The argument for the undecidability of K can be used to prove a much stronger statement: K can not be bounded from below by any unbounded partial computable function.

Theorem 2.1 (Kolmogorov). There is no unbounded partial recursive function ψ : O → N such that ψ(x) ≤ K(x) for all x in the domain of ψ.

Of course, K is bounded from above by a total computable function, cf. Proposition 1.15.

K is computable from above

Though K is not computable, it can be approximated from above. The idea is simple. Suppose O = {0, 1} * . Let c be as in point 1 of Proposition 1.15. Consider all programs of length less than |x| + c and let them be executed during t steps. If none of them converges and outputs x then take |x| + c as a t-bound. If some of them converges and outputs x then the bound is the length of the shortest such program. The limit of this process is K(x), it is obtained at some finite step which we are not able to bound. Formally, this means that there is some F : O × N → N which is computable and decreasing in its second argument such that

K(x) = lim t→+∞ F (x, t) = min{F (x, t) | t ∈ N}

Kolmogorov complexity and Gödel's incompleteness theorem

A striking version of Gödel's incompleteness theorem has been given by Chaitin in [START_REF] Chaitin | Computational complexity and gödel incompleteness theorem[END_REF][START_REF] Chaitin | Information theoretic limitations of formal systems[END_REF] We can now state how the constant N in Theorem 2.2 depends on the theory T .

Theorem 2.5 (Chaitin, [9], 1974

). There exists a constant c such that, for all c.e. sets T satisfying the hypothesis of Theorem 2.2, the associated constant N is such that

N ≤ K CE (T) + c
Chaitin also reformulates Theorem 2.2 as follows:

If T consist of true formulas then it cannot prove that a string has Kolmogorov complexity greater than the Kolmogorov complexity of T itself (up to a constant independent of T).

Remark. 2.6. The previous statement, and Chaitin's assertion that the Kolmogorov complexity of T somehow measures the power of T as a theory, has been much criticized in van Lambalgen ([START_REF] Van Lambalgen | Algorithmic information theory[END_REF], 1989), Fallis ([14], 1996) and Raatikainen ([43], 1998). Raatikainen's main argument in [START_REF] Raatikainen | On interpreting Chaitin's Incompleteness theorem[END_REF] against Chaitin's interpretation is that the constant in Theorem 2.2 strongly depends on the choice of the optimal function V such that K = K V . Indeed, for any fixed theory T , one can choose such a V so that the constant is zero! And also choose V so that the constant is arbitrarily large. Though these arguments are perfectly sound, we disagree with the criticisms issued from them. Let us detail three main rebuttals.

• First, such arguments are based on the use of optimal functions associated to very unnatural universal functions V (cf. point 1 of Theorem 1.7 and the last assertion of Theorem 1.10). It has since been recognized that universality is not always sufficient to get smooth results. Universality by prefix adjunction is sometimes required, (cf., for instance, §2.1 and §6 in Becher, Figueira, Grigorieff & Miller, 2006). This means that, for an enumeration (ϕ e) e∈{0,1} * of partial computable functions, the optimal function V is to satisfy equality V (ep) = ϕ e (p), for all e, p, where ep is the concatenation of the strings e and p.

• Second, and more important than the above technical counterargument, it is a simple fact that modelization rarely rules out all pathological cases. It is intended to be used in "reasonable" cases. Of course, this may be misleading, but perfect modelization is illusory. In our opinion, this is best illustrated by Kolmogorov's citation quoted in §1.4.6 to which Raatikainen's argument could be applied mutatis mutandis: there are optimal functions for which the complexity of the text of "War and Peace" is null and other ones for which it is arbitrarily large. Nevertheless, this does not prevent Kolmogorov to assert (in the founding paper of the theory [START_REF] Kolmogorov | Three approaches to the quantitative definition of information[END_REF]): [For] "reasonable" [above optimal functions], such quantities as the "complexity" of the text of "War and Peace" can be assumed to be defined with what amounts to uniqueness.

• Third, a final technical answer to such criticisms has been recently provided by Calude & Jurgensen in [START_REF] Calude | Is complexity a source of incompleteness? Advances in[END_REF], 2005. They improve the incompleteness result given by Theorem 2.2, proving that, for a class of formulas in the vein of those in that theorem, the probability that such a formula of length n is provable tends to zero when n tends to infinity whereas the probability that it be true has a strictly positive lower bound.

Kolmogorov complexity: some variations

Note. The denotations of (plain) Kolmogorov complexity (that of §1.4.5) and its prefix version (cf. 3.3) may cause some confusion. They long used to be respectively denoted by K and H in the literature. But in their book [START_REF] Li | An introduction to Kolmogorov Complexity and its applications[END_REF] (first edition, 1993), Li & Vitanyi respectively denoted them by C and K. Due to the large success of this book, these last denotations are since used in many papers. So that two incompatible denotations now appear in the literature. In this paper, we stick to the traditional denotations K and H.

Levin monotone complexity

Kolmogorov complexity is non monotone, be it on N with the natural ordering or on {0, 1} * with the lexicographic ordering. In fact, for every n and c, there are strings of length n with complexity ≥ n(1 -2 -c) (cf. Proposition 4.2). However, since n →

1 n is computable, K(1 n) ≤ K(n) + O(1) ≤ log n + O(
: {0, 1} * → N such that K mon ϕ (x) = min{|p| | ∃t x ≤ pref ϕ(p, t)} Theorem 3.1 (Levin ([29], 1973).
1. If ϕ is total computable and monotone non decreasing in its second argument then K mon ϕ : {0, 1} * → N is monotone non decreasing:

x ≤ pref y ⇒ K mon ϕ (x) ≤ K mon ϕ (y)
2. Among the K mon ϕ 's, ϕ total computable monotone non decreasing in its second argument, there exists a smallest one, up to a constant.

Considering total ϕ's in the above theorem is a priori surprising since there is no computable enumeration of total computable functions and the proof of the Invariance Theorem 1.10 is based on the enumeration theorem (cf. Theorem 1.7). The trick to overcome that problem is as follows.

• Consider all partial computable ϕ : {0, 1} * × N → {0, 1} * which are total monotone non decreasing in their second argument.

• Associate to each such ϕ a total ϕ defined as follows: ϕ(p, t) is the largest ϕ(p, t ′) such that t ′ ≤ t and ϕ(t ′) is defined within t + 1 computation steps if there is such a t ′ . If there is none then ϕ(p, t) is the empty word.

• Observe that K mon ϕ (x) = K mon ϕ (x).
In §5.2.3, we shall see some remarkable property of Levin monotone complexity K mon concerning Martin-Löf random reals.

Schnorr process complexity

Another variant of Kolmogorov complexity has been introduced by Klaus Peter Schnorr in [START_REF] Schnorr | A Process complexity and effective random tests[END_REF], 1973. It is based on the subclass of partial computable functions ϕ : {0, 1} * → {0, 1} * which are monotone non decreasing relative to the prefix ordering:

(*) (p ≤ pref q ∧ ϕ(p), ϕ(q) are both defined) ⇒ ϕ(p) ≤ pref ϕ(q)

Why such a requirement on ϕ? The reason can be explained as follows.

• Consider a sequential composition (i.e., a pipeline) of two processes, formalized as two functions f, g. The first one takes an input p and outputs f (p), the second one takes f (p) as input and outputs g(f (p)).

• Each process is supposed to be monotone: the first letter of f (p) appears first, then the second one, etc. Idem with the digits of g(q) for any input q.

• More efficiency is obtained if one can develop the computation of g on input f (p) as soon as the letters of f (p) appear. More precisely, suppose the prefix q of f (p) has already appeared but there is some delay to get the subsequent letters. Then we can compute g(q). But this is useful only in case the computation of g(q) is itself a prefix of that of g(f (p)). This last condition is exactly the requirement (*).

An enumeration theorem holds for the ϕ's satisfying (*), allowing to prove an invariance theorem and to define a so-called process complexity K proc : {0, 1} * → N. The same remarkable property of Levin's monotone complexity also holds with Schnorr process complexity, cf. §5.2.3.

Prefix (or self-delimited) complexity

Levin ([START_REF] Levin | Laws of information conservation (non-growth) and aspects of the foundation of probability theory[END_REF], 1974), Gács ([18], 1974) and Chaitin ([10], 1975) introduced the most successful variant of Kolmogorov complexity: the prefix complexity. The idea is to restrict the family of partial computable functions {0, 1} * → O (recall O denotes an elementary set in the sense of Definition 1.9) to those which have prefix-free domains, i.e. any two words in the domain are incomparable with respect to the prefix ordering.

An enumeration theorem holds for the ϕ's satisfying (*), allowing to prove an invariance theorem and to define the so-called prefix complexity H : {0, 1} * → N (not to be confused with the entropy of a family of frequencies, cf. §1. Let us state the most spectacular property of the prefix complexity. of sequences of non negative real numbers (r x) x∈O such that

• x∈O r x < +∞ (i.e.
, the series is summable), • {(x, q) ∈ O × Q | q < r x } is computably enumerable (i.e., the r x 's have c.e. left cuts in the set of rational numbers Q and this is uniform in x).

The sequence and, up to a multiplicative factor, it is the largest sequence in ℓ c.e.

(2 -H O (x)) x∈O is in ℓ c.e.
1 . This means that

∀(r x) x∈O ∈ ℓ c.e. 1 ∃c ∀x ∈ O r x ≤ c 2 -H O (x)
In particular, consider a countably infinite alphabet A. Let V : {0, 1} * → A be a partial computable function with prefix-free domain such that

H A = K V .
Consider the prefix code (p a) a∈A such that, for each letter a ∈ A, p a is a shortest binary string such that V (p a) = a. Then, for every probability distribution P :

A → [0, 1] over the letters of the alphabet A, which is computably approximable from below (i.e., {(a, q) ∈ A × Q | q < P (a)} is computably enumerable), we have

∀a ∈ A P (a) ≤ c 2 -H A (a)
for some c which depends on P but not on a ∈ A. This inequality is the reason why the sequence (2 -H A (a)) a∈A is also called the universal a priori probability (though, strictly speaking, it is not a probablity since the 2 -H A (a) 's do not sum up to 1).

Oracular Kolmogorov complexity

As is always the case in computability theory, everything relativizes to any oracle Z. Relativization modifies the equation given at the start of §1.4.4, which is now description = program of a partial Z-computable function and for each possible oracle Z there exists a Kolmogorov complexity relative to oracle Z.

Oracles in computability theory can also be considered as second-order arguments of computable or partial computable functionals. The same holds with oracular Kolmogorov complexity: the oracle Z can be seen as a second-order condition for a second-order conditional Kolmogorov complexity

K(y | Z) where K(|) : O × P (I) → N
Which has the advantage that the unavoidable constant in the "up to a constant" properties does not depend on the particular oracle. It depends solely on the considered functional. Finally, one can mix first-order and second-order conditions, leading to a conditional Kolmogorov complexity with both first-order and second-order conditions

K(y | z, Z) where K(| ,) : O × I × P (I) → N
We shall see in §5.6.2 an interesting property involving oracular Kolmogorov complexity.

Sub-oracular Kolmogorov complexity

Going back to the idea of possibly infinite computations as in §3.1, Let us define

K ∞ : {0, 1} * → N such that K ∞ (x) = min{|p| | U (p) = x}
where U is the map {0, 1} * → {0, 1} ≤ω computed by a universal Turing machine with possibly infinite computations. This complexity lies between K and K(| ∅ ′) (where ∅ ′ is a computably enumerable set which encodes the halting problem):

∀x K(x | ∅ ′) ≤ K ∞ (x) + O(1) ≤ K(x) + O(1)
4 Formalization of randomness: finite objects 4.1 Sciences of randomness: probability theory Random objects (words, integers, reals,...) constitute the basic intuition for probabilities ... but they are not considered per se. No formal definition of random object is given: there seems to be no need for such a formal concept. The existing formal notion of random variable has nothing to do with randomness: a random variable is merely a measurable function which can be as non random as one likes.

It sounds strange that the mathematical theory which deals with randomness removes the natural basic questions:

• What is a random string?

• What is a random infinite sequence? When questioned, people in probability theory agree that they skip these questions but do not feel sorry about it. As it is, the theory deals with laws of randomness and is so successful that it can do without entering this problem.

This may seem to be analogous to what is the case in geometry. What are points, lines, planes? No definition is given, only relations between them. Giving up the quest for an analysis of the nature of geometrical objects in profit of the axiomatic method has been a considerable scientific step. However, we contest such an analogy. Random objects are heavily used in many areas of science and technology: sampling, cryptology,... Of course, such objects are in fact "as much as we can random". Which means fake randomness. But they refer to an ideal notion of randomness which cannot be simply disregarded.

In fact, since Pierre Simon de Laplace (1749-1827), some probabilists never gave up the idea of formalizing the notion of random object. Let us cite particularly Richard von Mises (1883-1953) and Kolmogorov. In fact, it is quite impressive that, having so brilliantly and efficiently axiomatized probability theory via measure theory in [START_REF] Kolmogorov | Grundbegriffe der Wahscheinlichkeitsrechnung[END_REF], 1933, Kolmogorov was not fully satisfied of such foundations 8 . And he kept a keen interest to the quest for a formal notion of randomness initiated by von Mises in the 20's.

The 100 heads paradoxical result in probability theory

That probability theory fails to completely account for randomness is strongly witnessed by the following paradoxical fact. In probability theory, if we toss an unbiaised coin 100 times then 100 heads are just as probable as any other outcome! Who really believes that?

The axioms of probability theory, as developped by Kolmogorov, do not solve all mysteries that they are sometimes supposed to.

Gács, [START_REF] Gács | Lectures notes on descriptional complexity and randomness[END_REF], 1993

Sciences of randomness: cryptology

Contrarily to probability theory, cryptology heavily uses random objects. Though again, no formal definition is given, random sequences are produced which are not fully random, just hard enough so that the mechanism which produces them cannot be discovered in reasonable time.

Anyone who considers arithmetical methods of producing random reals is, of course, in a state of sin. For, as has been pointed out several times, there is no such thing as a random number -there are only methods to produce random numbers, and a strict arithmetical procedure is of course not such a method.

Von Neumann, [40], 1951

So, what is "true" randomness? Is there something like a degree of randomness? Presently, (fake) randomness only means to pass some statistical tests. One can ask for more.

Kolmogorov's proposal: incompressible strings

We now assume that O = {0, 1} * , i.e., we restrict to words.

Incompressibility with Kolmogorov complexity

Though much work had been devoted to get a mathematical theory of random objects, notably by von Mises ([START_REF] Von Mises | Grundlagen der wahrscheinlichkeitsrechnung[END_REF][START_REF] Von Mises | Probability, Statistics and Truth[END_REF], 1919-1939), none was satisfactory up to the 60's when Kolmogorov based such a theory on Kolmogorov complexity, hence on computability theory. The theory was, in fact, independently 9 developed by Gregory J. Chaitin (b. 1947), [START_REF] Chaitin | On the length of programs for computing finite binary sequences[END_REF][START_REF] Chaitin | On the length of programs for computing finite binary sequences: statistical considerations[END_REF] who submitted both papers in 1965.

The basic idea is as follows:

• larger is the Kolmogorov complexity of a text, more random is the text, • larger is its information content, and more compressed is the text. Thus, a theory for measuring the information content is also a theory of randomness.

Recall that there exists c such that for all x ∈ {0, 1} * , K(x) ≤ |x| + c (Proposition 1.15). The reason being that there is a "stupid" program of length about |x| which computes the word x by telling what are the successive letters of x. The intuition of incompressibility is as follows: x is incompressible if there no shorter way to get x. Of course, we are not going to define absolute randomness for words. But a measure of randomness telling how far from |x| is K(x).

Incompressibility with length conditional Kolmogorov complexity

We observed in §1.2.3 that the entropy of a word of the form 000...0 is null. i.e., entropy did not considered the information conveyed by the length.

Here, with incompressibility based on Kolmogorov complexity, we can also ignore the information content conveyed by the length by considering incompressibility based on length conditional Kolmogorov complexity.

Definition 4.3 (Measure of length conditional incompressibility). A word x is length conditional c-incompressible if K(x | |x|) ≥ |x| -c.
The same simple counting argument yields the following Proposition.

Proposition 4.4. For all n, the proportion of length conditional c-incompressible

strings of length n is ≥ 1 -2 -c .
A priori length conditional incompressibility is stronger than mere incompressibility. However, the two notions of incompressibility are about the same . . . up to a constant.

Proposition 4.5.

There exists d such that, for all c ∈ N and x ∈ {0, 1} *

1. x is length conditional c-incompressible ⇒ x is (c + d)-incompressible 2. x is c-incompressible ⇒ x is length conditional (2c + d)-incompressible.
Proof. 1 is trivial. For 2, first observe that there exists e such that, for all x,

(*) K(x) ≤ K(x | |x|) + 2K(|x| -K(x | |x|)) + d In fact, if K = K ϕ and K(|) = K ψ(|) , consider p, q such that |x| -K(x | |x|) = ϕ(p) ψ(q | |x|) = x K(|x| -K(x | |x|)) = |p| K(x | |x|) = |q|
With p and q, hence with p, q (cf. Proposition 1.5), one can successively get

       |x| -K(x | |x|) this is ϕ(p) K(x | |x|)
this is q |x| just sum the above quantities x this is ψ(q | |x|) Thus, K(x) ≤ | p, q | + O(1). Applying Proposition 1.5, we get (*). Using K N ≤ log +c 1 and K {0,1} * (x) ≥ |x|c (cf., Proposition 1.15), (*) yields

|x| -K(x | |x|) ≤ 2 log(|x| -K(x | |x|)) + 2c 1 + c + d
Finally, observe that z ≤ 2 log z + k insures z ≤ max(8, 2k).

Incompressibility is randomness: Martin-Löf's argument

Now, if incompressibility is clearly a necessary condition for randomness, how do we argue that it is a sufficient condition? Contraposing the wanted implication, let us see that if a word fails some statistical test then it is not incompressible. We consider some spectacular failures of statistical tests.

Example 4.6.

1. [Constant half length prefix] For all n large enough, a string 0 n u with |u| = n cannot be c-incompressible.

[Palindromes]

Large enough palindromes cannot be c-incompressible.

3. [0 and 1 not equidistributed] For all 0 < α < 1, for all n large enough, a string of length n which has ≤ α n 2 zeros cannot be c-incompressible.

Proof. 1. Let c ′ be such that K(x) ≤ |x| + c ′ . Observe that there exists c ′′ such that K(0 n u) ≤ K(u) + c ′′ hence

K(0 n u) ≤ n + c ′ + c ′′ ≤ 1 2 |0 n u| + c ′ + c ′′
So that K(0 n u) ≥ |0 n u|c is impossible for n large enough.

Same argument:

There exists c ′′ such that, for any palindrome x,

K(x) ≤ 1 2 |x| + c ′′ 3.
The proof follows the classical argument to get the law of large numbers (cf. Feller's book [START_REF] Feller | Introduction to probability theory and its applications[END_REF]). Let us do it for α = 2 3 , so that α 2 = 1 3 . Let A n be the set of strings of length n with ≤ n 3 zeros. We estimate the number N of elements of A n .

N = i= n 3 i=0 n i ≤ (n 3 + 1) n n 3 = (n 3 + 1) n! n 3 ! 2n 3 !
Use inequality 1 ≤ e

[Constant left half length prefix]

Set V m = all strings with m zeros ahead. The sequence V 0 , V 1 , ... is decreasing. The number of strings of length n in V m is 0 if m > n and 2 n-m if m ≤ n. Thus, the proportion ♯{x||x|=n ∧ x∈Vm} 2 n of length n words which are in V m is 2 -m .

[Palindromes]

Put in V m all strings which have equal length m prefix and suffix. The sequence V 0 , V 1 , ... is decreasing. The number of strings of length n in V m is 0 if m > n 2 and 2 n-2m if m ≤ n 2 . Thus, the proportion of length n words which are in V m is 2 -2m .

3. [0 and 1 not equidistributed] Put in V α m = all strings x such that the number of zeros is

≤ (α + (1 -α)2 -m) |x| 2 . The sequence V 0 , V 1 ,
{0, 1} * ⊇ V 0 ⊇ V 1 ⊇ V 2 ⊇ ... ⊇ V m ⊇ ... such that {(m, x) | x ∈ V m }
(U m) m∈N ∀(V m) m∈N ∃c ∀m V m+c ⊆ U m
In terms of functions, up to an additive constant, there exists a largest statistical test ∆ ∀δ ∃c ∀x δ(x) < ∆(x) + c

Proof. Consider ∆(x) = |x| -K(x | |x|) -1. ∆ is a test. Clearly, {(m, x) | ∆(x) ≥ m} is computably enumer- able. ∆(x) ≥ m means K(x | |x|) ≤ |x| -m -1. So no more elements in {x | ∆(x) ≥ m ∧ |x| = n} than programs of length ≤ n -m -1, which is 2 n-m -1. ∆ is largest. x is determined by its rank in the set V δ(x) = {z | δ(z) ≥ δ(x) ∧ |z| = |x|}.
Since this set has ≤ 2 n-δ(x) elements, the rank of x has a binary representation of length ≤ |x|δ(x). Add useless zeros ahead to get a word p with length |x|δ(x).

With p we get |x|δ(x). With |x|δ(x) and |x| we get δ(x) and construct V δ(x) . With p we get the rank of x in this set, hence we get x. Thus,

K(x | |x|) ≤ |x| -δ(x) + c, i.e., δ(x) < ∆(x) + c.
The importance of the previous result is the following corollary which insures that, for words, incompressibility implies (hence is equivalent to) randomness.

Formalization of randomness: infinite objects

We shall stick to infinite sequences of zeros and ones: {0, 1} N .

5.1 Martin-Löf top-down approach with topology and computability

The naive idea badly fails

The naive idea of a random element of {0, 1} N is that of a sequence α which is in no set of measure 0. Alas, α is always in the singleton set {α} which has measure 0 !

Martin-Löf 's solution: effectivize

Martin-Löf's solution to the above problem is to effectivize, i.e., to consider the sole effective measure zero sets. This approach is, in fact, an extension to infinite sequences of the one Martin-Löf developed for finite objects, cf. §4.5.

Let us develop a series of observations which leads to Martin-Löf's precise solution, i.e., what does mean effective for measure 0 sets. To prove a probability law amounts to prove that a certain set X of sequences has probability one. To do this, one has to prove that the complement set Y = {0, 1} N \ X has probability zero. Now, in order to prove that Y ⊆ {0, 1} N has probability zero, basic measure theory tells us that one has to include Y in open sets with arbitrarily small probability. I.e., for each n ∈ N one must find an open set U n ⊇ Y which has probability ≤ 1 2 n . If things were on the real line R we would say that U n is a countable union of intervals with rational endpoints. Here, in {0, 1} N , U n is a countable union of sets of the form u{0, 1} N where u is a finite binary string and u{0, 1} N is the set of infinite sequences which extend u. In order to prove that Y has probability zero, for each n ∈ N one must find a family (u n,m) m∈N such that Y ⊆ m u n,m {0, 1} N and P roba(m u n,m {0, 1} N) ≤ 1 2 n for each n ∈ N. Now, Martin-Löf makes a crucial observation: mathematical probability laws which we consider necessarily have some effective character. And this effectiveness should reflect in the proof as follows: the doubly indexed sequence (u n,m) n,m∈N is computable. In particular, the family of random sequences, being the complement of a constructively null G δ set, has probability 1. And the observation above Definition 5.1 insures that Martin-Löf random sequences satisfy all usual probabilities laws. Notice that the last statement can be seen as an improvement of all usual probabilities laws: not only such laws are true with probability 1 but they are true for all sequences in the measure 1 set of Martin-Löf random sequences.

The bottom-up approach

The naive idea badly fails

Another natural naive idea to get randomness for sequences is to extend randomness from finite objects to infinite ones. The obvious proposal is to consider sequences α ∈ {0, 1} N such that, for some c,

∀n K(α ↾ n) ≥ n -c (1)
However, Martin-Löf proved that there is no such sequence.

Theorem 5.4 (Large oscillations (Martin-Löf, [START_REF]Complexity of oscilations in infinite binary sequences[END_REF], 1971)). If f : N → N is computable and n∈N 2 -f (n) = +∞ then, for every α ∈ {0, 1} N , there are infinitely many k such that K

(α ↾ k) ≤ k -f (k) -O(1).
Proof. Let us do the proof in the case f (n) = log n which is quite limpid (recall that the harmonic series 1 n = 2 -log n has infinite sum). Let k be any integer. The word α ↾ k prefixed with 1 is the binary representation of an integer n (we put 1 ahead of α ↾ k in order to avoid a first block of non significative zeros). We claim that α ↾ n can be recovered from α ↾ [k + 1, n] only. In fact,

• nk is the length of α ↾ [k + 1, n],

• k = ⌊log n⌋ + 1 = ⌊log(nk)⌋ + 1 + ε (where ε ∈ {0, 1}) is known from nk and ε, • n = (nk) + k.

• α ↾ k is the binary representation of n.

The above analysis describes a computable map f : {0, 1} * ×{0, 1} → {0, 1} * such that α ↾ n = f (α ↾ [k + 1, n], ε). Applying Proposition 1.15, point 3, we get

K(α ↾ n) ≤ K(α ↾ [k +1, n])+O(1) ≤ n-k +O(1) = n-log(n)+O(1)

Miller & Yu's theorem

It took about forty years to get a characterization of randomness via Kolmogorov complexity which completes Theorem 5.4 in a very pleasant and natural way. Recently, an elementary proof of this theorem was given by Bienvenu, Merkle & Shen in [START_REF] Bienvenu | A simple proof of Miller-Yu theorem[END_REF], 2008. Equivalence i ⇔ iii is due to Gács, [START_REF] Gács | Exact expressions for some randomness tests[END_REF], 1980.

Variants of Kolmogorov complexity and randomness

Bottom-up characterization of random sequences have been obtained using Levin monotone complexity, Schnorr process complexity and prefix complexity (cf. §3.1, §3.2 and §3.3).

Randomness: a fragile property

Though the notion of Martin-Löf randomness is robust, with a lot of equivalent definitions, as a property, it is quite fragile. In fact, random sequences loose their random character under very simple computable transformation. For instance, even if a 0 a 1 a 2 ... is random, the sequence 0a 0 0a 1 0a 2 0... IS NOT random since it fails the following Martin-Löf test:

Randomness is not chaos

In a series of papers [START_REF] Moschovakis | An intuitionistic theory of lawlike, choice and lawless sequences[END_REF][START_REF] Moschovakis | More about relatively lawless sequences[END_REF][START_REF] Moschovakis | A classical view of the intuitionistic continuum[END_REF], 1993-1996, Joan Rand Moschovakis introduced a very convincing notion of chaotic sequence α ∈ {0, 1} N . It turns out that the set of such sequences has measure zero and is disjoint from Martin-Löf random sequences. This stresses that randomness is not chaos. As mentioned in §5.1.2, random sequences obey laws, those of probability theory.

Oracular randomness

Relativization

Replacing "computable" by "computable in some oracle", all the above theory relativizes in an obvious way, using oracular Kolmogorov complexity and the oracular variants.

In particular, when the oracle is the halting problem, i.e. the computably enumerable set ∅ ′ , the obtained randomness is called 2-randomness. When the oracle is the halting problem of partial ∅ ′ -computable functions, i.e. the computably enumerable set ∅ ′′ , the obtained randomness is called 3randomness. And so on. Of course, 2-randomness implies randomness (which is also called 1-randomness) and 3-randomness implies 2-randomness. And so on.

Kolmogorov randomness and ∅ ′

A natural question following Theorem 5.4 is to look at the so-called Kolmogorov random sequences which satisfy K(α ↾ k) ≥ k -O(1) for infinitely many k's. This question got a very surprising answer involving 2-randomness. though stressing the role of his new theory of random objects for mathematics as a whole in [START_REF] Kolmogorov | Combinatorial foundation of information theory and the calculus of probability[END_REF], p. 39:

The concepts of information theory as applied to infinite sequences give rise to very interesting investigations, which, without being indispensable as a basis of probability theory, can acquire a certain value in the investigation of the algorithmic side of mathematics as a whole.

Contents 1

 1 Three approaches to a quantitative definition of information 1.1 Which information? . 1.1.1 About anything... 1.1.2 Especially words . 1.2 Combinatorial approach: entropy . 1.2.1 Constant-length codes . 1.2.2 Variable-length prefix codes . 1.2.3 Entropy of a distribution of frequencies 1.2.4 Shannon's source coding theorem for symbol codes

Theorem 1 . 3 (

 13 Shannon, [48], 1948). Suppose the numbers of occurrences in u of the letters a 1 , ..., a s are m 1 , ..., m s . Let n = m 1 + ... + m s .

Proposition 1 . 6 .

 16 There exists a map : ({0, 1} *) s+1 → {0, 1} * which is injective and computable and such that, for all u 1 , ..., u s , v ∈ {0, 1} * , | u 1 , ..., u s , v | = (|u 1 | + ... + |u s |) + (log |u 1 | + ... + log |u s |) +2(log log |u 1 | + ... + log log |u s |) + |v| + O(1)

Theorem 3 . 5 (

 35 The Coding Theorem(Levin ([30], 1974)). Consider the family ℓ c.e.

1

 1

1

 1

Definition 4 . 1 (Proposition 4 . 2 .

 4142 Measure of incompressibility).A word x is c-incompressible if K(x) ≥ |x|c.It is rather intuitive that most things are random. The next Proposition formalizes this idea. For any n, the proportion of c-incompressible strings of length n is ≥ 1 -2 -c . Proof. At most 2 n-c -1 programs of length < nc and 2 n strings of length n.

3 + 1) 4 n 8 , we have 3 3 √ 4 < 2 and log 3 3 √ 4 < 1 .log 3 3 √ 4 +

 31483434134 < n for n ≥ 2. Therefore, Using Proposition 1.16, for any element of A n , we haveK(x | n) ≤ log(N) + d ≤ n log 3 Hence, nc ≤ n log n 2 + d is impossible for n large enough. So that x cannot be c-incompressible.Let us give a common framework to the three above examples so as to get some flavor of what can be a statistical test. To do this, we follow the above proofs of compressibility.

Theorem 5 . 5 (

 55 Miller & Yu,[START_REF] Miller | On initial segment complexity and degrees of randomness[END_REF], 2008). The following conditions are equivalent:i. The sequence α ∈ {0, 1} N is Martin-Löf random ii. ∃c ∀k K(α ↾ k) ≥ kf (k)c for every total computable function f : N → N satisfying n∈N 2 -f (n) < +∞ iii. ∃c ∀k K(α ↾ k) ≥ k -H(k)cMoreover, there exists a particular total computable function g : N → N satisfying n∈N 2 -g(n) < +∞ such that one can add a fourth equivalent condition: iv. ∃c ∀k K(α ↾ k) ≥ kg(k)c

Theorem 5 . 6 .

 56 The following conditions are equivalent: i.The sequence α ∈ {0,1} N is Martin-Löf random ii. ∃c ∀k |K mon (α ↾ k) -k| ≤ c iii. ∃c ∀k |S(α ↾ k) -k| ≤ c iv. ∃c ∀k H(α ↾ k) ≥ kc Equivalence i ⇔ iiis due to Levin ([52], 1970). Equivalence i ⇔ iii is due to Schnorr ([45], 1971). Equivalence i ⇔ iv is due to Schnorr and Chaitin ([10], 1975). Now comes the surprising characterizations of randomness in terms of computable functions. Theorem 5.10 (Bienvenu & Merkle, [2], 2007). The following conditions are equivalent: i. The sequence α ∈ {0, 1} N is Martin-Löf random ii. For all prefix-free compressor Γ : {0, 1} * → {0, 1} * ,∃c ∀k |Γ(α ↾ k)| ≥ kc iii. For all compressor Γ, ∃c ∀k |Γ(α ↾ k)| ≥ k -H(k)cMoreover, there exists a particular prefix-free compressor Γ * and a particular compressor Γ # such that one can add two more equivalent conditions: iv.∃c ∀k |Γ * (α ↾ k)| ≥ kc v. ∃c ∀k |Γ # (α ↾ k)| ≥ k -|Γ * (α ↾ k)|c

 n∈N {α | ∀i < n α(2i + 1) = 0} Indeed, {α | ∀i < n α(2i + 1) = 0} has probability 2 -n and is an open subset of {0, 1} N .

 The intuition of the notion of entropy in information theory is as follows. Given natural integers m 1 , ..., m s , consider the family F m1,...,ms of length n = m 1 +...+ m s words of the alphabet A in which there are exactly m 1 , ..., m s occurrences of letters a 1 , ..., a s . How many binary digits are there in the binary representation of the number of words in F m1,...,ms ? It happens (cf. Proposition 1.2) that this number is essentially linear in n, the coefficient of n depending solely on the frequencies m1 n , ..., ms n . It is this coefficient which is called the entropy H of the distribution of the frequencies m1 n , ..., ms n . Definition 1.1 (Shannon,[START_REF] Shannon | The mathematical theory of communication[END_REF], 1948). Let f 1 , ..., f s be a distribution of frequencies, i.e., a sequence of reals in [0, 1] such that f 1 + ... + f s = 1. The entropy of f 1 , ..., f s is the real

.., w s , the binary word ξ associated to u has length m 1 |w 1 | + ... + m s |w s |. A natural question is, given m 1 , ..., m s , how to choose the prefix-free code w 1 , ..., w s so as to minimize the length of ξ ? Huffman (

[START_REF] Huffman | A method for construction of minimum-redundancy codes[END_REF]

, 1952) found a very efficient algorithm (which has linear time complexity if the frequencies are already ordered). This algorithm (suitably modified to keep its top efficiency for words containing long runs of the same data) is nowadays used in nearly every application that involves the compression and transmission of data: fax machines, modems, networks,...

1.2.3 Entropy of a distribution of frequencies

 Proposition 1.2 (Shannon,[START_REF] Shannon | The mathematical theory of communication[END_REF], 1948). Let m 1 , ..., m s be natural integers and n = m 1 + ... + m s . Then, letting H be the entropy of the distribution of frequencies m1

n , ..., ms n , the number ♯F m1,...,ms of words in F m1,...,ms satisfies log(♯F m1,...,ms) = nH + O(log n) where the bound in O(log n) depends solely on s and not on m 1 , ..., m s . Proof. The set F m1,...,ms contains n! m1!×...×ms! words. Using Stirling's approximation of the factorial function (cf. [15]), namely x! = √ 2π x x+ 1 2 e -x+ θ 12 where 0 < θ < 1, and equality n = m 1 + ... + m S , we get log

1 .

 1 For every prefix-free sequence of binary words w 1 , ..., w s (which are to code the letters a 1 , ..., a s), the binary word ξ obtained by substituting w i to each occurrence of a i in u satisfies

	nH ≤ |ξ| n) + ... + ms n log(m1 where H = -(m1 n log(ms n)) is the entropy of the considered distribution of frequencies m1 n , ..., ms n .
	2. There exists a prefix-free sequence of binary words w 1 , ..., w s such that
	nH ≤ |ξ| < n(H + 1)

 The integers m 1 , ..., m s are encoded by their binary representations µ 1 , ..., µ s which all have length ≤ 1 + ⌊log n⌋. Now, to encode m 1 , ..., m s and the rank of u, we cannot just concatenate µ 1 , ..., µ s , ρ : how would we know where µ 1 stops, where µ 2 starts,..., in the word obtained by concatenation? Several tricks are possible to overcome the problem, they are described in §1.2.6. Using Proposition 1.5, we set ξ = µ 1 , ..., µ s , ρ which haslength |ξ| = |ρ| + O(|µ 1 | + ...Notice that this also shows that prefix-free codes are not the only way to efficiently encode into a binary word ξ a word u from alphabet a 1 , ..., a s for which the numbers m 1 , ..., m s of occurrences of the a i 's are known.

	1.2.6 Coding finitely many words with one word
	How can we code two words u, v with only one word? The simplest way is to
	consider u$v where $ is a fresh symbol outside the alphabet of u and v. But
	what if we want to stick to binary words? As said above, the concatenation of
	u and v does not do the job: how can one recover the prefix u in uv? A simple
	trick is to also concatenate the length of |u| in unary and delimitate it by a
	zero. Indeed, denoting by 1 p the word
	Theorem 1.4. In case the frequencies mi n 's are all negative powers of two (i.e., 1 2 , 1 4 , 1 8 ,...) then the optimal ξ (given by Huffman's algorithm) satisfies ξ = nH.
	1.2.5 Closer to the entropy
	In §1.2.3 and 1.2.4, we supposed the frequencies to be known and did not con-sider the information content of these frequencies. We now deal with that ques-
	tion.
	Let us go back to the encoding mentioned at the start of §1.2.3. A word u in the family F m1,...,ms (of length n words with exactly m 1 , ..., m s occurrences of a 1 , ..., a s) can be recovered from the following data:
	-the values of m 1 , ..., m s ,
	-the rank of u in F m1,...,ms (relative to the lexicographic order on words). We have seen (cf. Proposition 1.2) that the rank of u has a binary representa-
	tion ρ of length ≤ nH + O(log n). + |µ s |) = nH + O(log n) (Proposition 1.5 gives a much better bound but this is of no use here). Then u can be recovered from ξ
	which is a binary word of length nH + O(log n). Thus, asymptotically, we get
	a better upper bound than n(H + 1), the one given by Shannon for prefix-free
	codes (cf. Theorem 1.3).
	Of course, ξ is no more obtained from u via a morphism (i.e., a map which
	preserves concatenation of words) between the monoid of words in alphabet A
	and that of binary words.

p times

y}

 Intuition: p is a program (with expects an input z), ϕ executes programs (i.e., ϕ is altogether a programming language plus a compiler plus a machinery to run programs) and ϕ(p, z) is the output of the run of program p on input z. Thus, for y ∈ O, K ϕ (y | z) is the length of shortest programs p with which ϕ computes y on input z (i.e., ϕ(p, z) = y). × I → O, there is a smallest one, up to an additive constant (i.e., within some bounded interval) :

	Theorem 1.13 (Invariance theorem for conditional complexity). Among the
	K

ϕ (|)'s, where ϕ varies in the family P C O I of partial computable functions {0, 1} *

 , 1971-1974, in terms of Kolmogorov complexity. Since Gödel's celebrated proof of the incompleteness theorem, we know that, in the language of arithmetic, one can formalize computability and logic. In particular, one can formalize Kolmogorov complexity and statements about it. Chaitin's proves a version of the incompleteness theorem which insures that among true unprovable formulas there are all true statements K(u) > n for n large enough.Theorem 2.2 (Chaitin,[START_REF] Chaitin | Information theoretic limitations of formal systems[END_REF], 1974). Let T be a computably enumerable set of axioms in the language of arithmetic. Suppose that all axioms in T are true in the standard model of arithmetics with base N. Then there exists N such that if T proves K(u) > n (with u ∈ {0, 1} * and n ∈ N) then n ≤ N .How the constant N depends on T has been giving a remarkable analysis by Chaitin. To that purpose, he extends Kolmogorov complexity to computably enumerable sets.

Definition 2.3 (Chaitin,

[START_REF] Chaitin | Information theoretic limitations of formal systems[END_REF]

, 1974). Let O be an elementary set (cf. Definition 1.9) and CE be the family of computably enumerable (c.e.) subsets of O. To any partial computable ϕ : {0, 1} * × N → O, associate the Kolmogorov complexity K ϕ : CE → N such that, for all c.e. subset T of O,

K ϕ (T) = min{|p| | T = {ϕ(p, t) | t ∈ N}} (observe that {ϕ(p, t) | t ∈ N} is always c.e.

and any c.e. subset of O can be obtained in this way for some ϕ).

The invariance theorem still holds for this notion of Kolmogorov complexity, leading to the following notion. Definition 2.4 (Chaitin,

[START_REF] Chaitin | Information theoretic limitations of formal systems[END_REF]

, 1974). K CE : CE → N is K ϕ where ϕ is some fixed optimal partial function. It is defined up to an additive constant.

 1) (cf. point 3 of Proposition 1.15) is much less than n(1 -2 -c) for n large enough.LeonidLevin ([29], 1973) introduced a monotone version of Kolmogorov complexity. The idea is to consider possibly infinite computations of Turing machines which never erase anything on the output tape. Such machines have finite or infinite outputs and compute total maps {0, 1} * → {0, 1} ≤ω where {0, 1} ≤ω = {0, 1} * ∪ {0, 1} N is the family of finite or infinite binary strings. These maps can also be viewed as limit maps p → sup t→∞ ϕ(p, t) where ϕ : {0, 1} * ×N → {0, 1}

* is total monotone non decreasing in its second argument. To each such map ϕ, Levin associates a monotone non decreasing map K mon ϕ

 2.3).This prefix-free condition on the domain may seem rather technical. A conceptual meaning of this condition has been given by Chaitin in terms of selfdelimitation.If x is in domain(ϕ) (i.e., M on input p halts in an accepting state at some step) then the head of the input tape of M reads entirely the input p but never moves to the cell right to p. This means that p, interpreted as a program, has no need of external action (as that of an end-of-file symbol) to know where it ends: as Chaitin says, the program is self-delimited. A comparison can be made with biological phenomena. For instance, the hand of a person grows during its childhood and then stops growing. No external action prevents the hand to go on growing. There is something inside the genetic program which creates a halting signal so that the hand stops growing.

	Proposition 3.3 (Chaitin, [10], 1975). A partial computable function ϕ :
	{0, 1} * → O has prefix-free domain if and only if it can be computed by a Turing machine M with the following property:
	Theorem 3.2. Among the K ϕ 's, where ϕ : {0, 1} * → O varies over partial computable functions with prefix-free domain, there exists a smallest one, up to
	a constant. This smallest one (defined up to a constant), denoted by H O , is
	called the prefix complexity.

The main reason for the success of the prefix complexity is that, with prefix-free domains, one can use the Kraft-Chaitin inequality (cf. the proof of Theorem 1.3 in §1.2.4) and get remarkable properties. Theorem 3.4 (Kraft-Chaitin inequality). A sequence (resp. computable sequence) (n i) i∈N of non negative integers is the sequence of lengths of a prefix-free (resp. computable) family of words (u i) i∈N if and only if i∈N 2 -ni ≤ 1.

 ... is decreasing. A computation analogous to that done in the proof of the law of large numbers shows that the proportion of length n words which are in V m is ≤ 2 -γm for some γ > 0 (independent of m). , what about other statistical tests? But what is a statistical test? A convincing formalization has been developed by Martin-Löf. The intuition is that illustrated in Example 4.7 augmented of the following feature: each V m is computably enumerable and so is the relation {(m, x) | x ∈ V m }. A feature which is analogous to the partial computability assumption in the definition of Kolmogorov complexity. Definition 4.8. [Abstract notion of statistical test, Martin-Löf, 1964] A statistical test is a family of nested critical sets

	Now

 is computably enumerable and the proportion ♯{x||x|=n ∧ x∈Vm} 2 n of length n words which are in V m is ≤ 2 -m . Intuition. The bound 2 -m is just a normalization. Any bound b(n) such that b : N → Q which is computable, decreasing and with limit 0 could replace 2 -m . The significance of x ∈ V m is that the hypothesis x is random is rejected with significance level 2 -m . Remark. 4.9. Instead of sets V m one can consider a function δ : {0, 1} * → N such that ♯{x||x|=n ∧ δ(x)≥m} 2 n ≤ 2 -m and δ is computable from below, i.e., {(m, x) | δ(x) ≥ m} is recursively enumerable. We have just argued on some examples that all statistical tests from practice are of the form stated by Definition 4.8. Now comes Martin-Löf fundamental result about statistical tests which is in the vein of the invariance theorem. Theorem 4.10 (Martin-Löf, 1965). Up to a constant shift, there exists a largest statistical test

 Thus, the set m u n,m {0, 1} N is a computably enumerable open set and n m u n,m {0, 1} N is a countable intersection of a computably enumerable family of open sets. Definition 5.1 (Martin-Löf,[32], 1966). A constructively null G δ set is any set of the form where P roba(m u n,m {0, 1} N) ≤1 2 n (which implies that the intersection set has probability zero) and the sequence u n,m is computably enumerable.Theorem 5.2 (Martin-Löf, [32], 1966). There exist a largest constructively null G δ setLet us insist that the theorem says largest, up to nothing, really largest relative to set inclusion. Definition 5.3 (Martin-Löf,[START_REF]The definition of random sequences[END_REF], 1966). A sequence α ∈ {0, 1} N is Martin-Löf random if it belongs to no constructively null G δ set (i.e., if it does not belongs to the largest one).

	n m	u n,m {0, 1} N
	Now comes the essential theorem, which is completely analogous to Theo-
	rem 4.10.	

 Theorem 5.11(Nies, Stephan & Terwijn,[START_REF] Nies | relativization and Turing degrees[END_REF], 2005). Let α ∈ {0, 1} N . There are infinitely many k such that, for a fixed c, K(α ↾ k) ≥ kc (i.e., α is Kolmogorov random) if and only if α is 2-random. Now that there is a sound mathematical notion of randomness, is it possible/reasonable to use it as a new foundation for probability theory? Kolmogorov has been ambiguous on this question. In his first paper on the subject, see p. 35-36 of[START_REF] Kolmogorov | Three approaches to the quantitative definition of information[END_REF], 1965, he briefly evoked that possibility :. . . to consider the use of the [Algorithmic Information Theory] constructions in providing a new basis for Probability Theory.However, later, see p.35-36 of [26], 1983, he separated both topics:"there is no need whatsoever to change the established construction of the mathematical probability theory on the basis of the general theory of measure. I am not enclined to attribute the significance of necessary foundations of probability theory to the investigations [aboutKolmogorov complexity] that I am now going to survey. But they are most interesting in themselves.

	5.7 Randomness: a new foundation for probability the-
	ory?

This value is easily obtained by identifying such a triple with a binary word with six letters 0 for the six balls and two letters 1 to mark the partition in the three cells.

For other European languages which have a lot of diacritic marks, one has to consider the 256 codes of Extended ASCII which have length 8. And for non European languages, one has to turn to the 65 536 codes of Unicode which have length 16.

Berry's paradox is mentioned by Bertrand Russell in 1908 ([44], p.222 or 150), who credited G.G. Berry, an Oxford librarian, for the suggestion.

Through the works of Alonzo Church (via lambda calculus), Alan Mathison Turing (via Turing machines) and Kurt Gödel and Jacques Herbrand (via Herbrand-Gödel systems of equations) and Stephen Cole Kleene (via the recursion and minimization operators).

In French, Daniel Lacombe ([START_REF] Lacombe | La théorie des fonctions récursives et ses applications[END_REF], 1960) used the expression semi-fonction semi-récursive.

This is the seed of computer virology, cf.[START_REF] Bonfante | On abstract computer virology: from a recursion-theoretic perspective[END_REF]

Delahaye's books[START_REF] Delahaye | Information, complexité, hasard[END_REF][START_REF] Delahaye | Complexités : Aux limites des mathématiques et de l'informatique[END_REF] present a very attractive survey on Kolmogorov complexity.

This complexity is studied in[START_REF] Becher | Program size complexity for possibly infinite computations[END_REF], 2005, by Becher, Figueira, Nies & Picci, and also in our paper[START_REF] Ferbus-Zanda | Kolmogorov complexity and set theoretical representations of integers[END_REF], 2006.

Kolmogorov is one of the rare probabilists -up to now -not to believe that Kolmogorov's axioms for probability theory do not constitute the last word about formalizing randomness...

For a detailed analysis of who did what, and when, see Li & Vitanyi's book[START_REF] Li | An introduction to Kolmogorov Complexity and its applications[END_REF], p.89-92.

 Corollary 4.11 (Martin-Löf, 1965). Incompressibility passes all statistical tests. I.e., for all c, for all statistical test (V m) m , there exists d such that

Proof. Let x be length conditional c-incompressible. This means that K(x | |x|) ≥ |x|c. Hence ∆(x) = |x| -K(x | |x|) -1 ≤ c -1, which means that x / ∈ U c . Let now (V m) m be a statistical test. Then there is some d such that

Remark. 4.12. Observe that incompressibility is a bottom-up notion: we look at the value of K(x) (or that of K(x | |x|)).

On the opposite, passing statistical tests is a top-down notion. To pass all statistical tests amounts to an inclusion in an intersection: namely, an inclusion in

Shortest programs are random finite strings

Observe that optimal programs to compute any object are examples of random strings. More precisely, the following result holds. Proof. Consider the function V •U : {0, 1} * → O. Using the invariance theorem, let c be such that K V ≤ K V •U + c. Then, for every q ∈ {0, 1} * ,

Random finite strings and lower bounds for computational complexity

Random finite strings (or rather c-incompressible strings) have been extensively used to prove lower bounds for computational complexity, cf. the pioneering paper [START_REF] Paul | Kolmogorov's complexity and lower bounds[END_REF] by Wolfgang [START_REF] Paul | Kolmogorov's complexity and lower bounds[END_REF], (see also an account of the proof in our survey paper [START_REF] Ferbus-Zanda | Is randomnes native to computer science? Current Trends in Theoretical Computer Science[END_REF]) and the work by Li & Vitanyi, [START_REF] Li | An introduction to Kolmogorov Complexity and its applications[END_REF]. The key idea is that a random string can be used as a worst possible input.

Randomness: a robust mathematical notion

Besides the top-down definition of Martin-Löf randomness, we mentioned above diverse bottom-up characterizations via properties of the initial segments with respect to variants of Kolmogorov complexity. There are other top-down and bottom-up characterizations, we mention two of them in this §. This variety of characterizations shows that Martin-Löf randomness is a robust mathematical notion.

Randomness and martingales

Recall that a martingale is a function

The intuition is that a player tries to predict the bits of a sequence α ∈ {0, 1} N and bets some amount of money on the values of these bits. If his guess is correct he doubles his stake, else he looses it. Starting with a positive capital d(ε) (where ε is the empty word), d(α ↾ k) is his capital after the k first bits of α have been revealed. The martingale d wins on α ∈ {0, 1} N if the capital of the player tends to +∞. The martingale d is computably approximable from below if the left cut of d(u) is computably enumerable, uniformly in u (i.e., {(u, q) ∈ {0,