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Granular materials are systems consisting of a large number of interacting macroscopic particles, such as sand, rice or apples. For these systems, the range of the interaction is short compared to the particle size and Brownian motion does not play a role. Granular are important in everyday life. A good understanding of the physics of granular materials is desired, for example, to predict and control landslides and avalanches [START_REF] Dorren | A review of rockfall mechanics and modelling approaches[END_REF][START_REF] De Toni | Two-dimensional mathematical and numerical model for the dynamics of granular avalanches[END_REF], to design efficient transport and handling of coal or chemicals [START_REF] Ketterhagen | Modeling granular segregation in flow from quasi-three-dimensional, wedge-shaped hoppers[END_REF][START_REF] Fraige | Distinct element modelling of cubic particle packing and flow[END_REF] and to make high quality tablets (medicine), i.e. the correct amounts of active and inert ingredients [START_REF] Desrosiers Lachiver | Agglomeration tendency in dry pharmaceutical granular systems[END_REF][START_REF] Lee | Compositional distributions in multicomponent aggregation[END_REF]. Unfortunately, there still remains a poor understanding of the behavior of granular matter [START_REF] Van Hecke | Shape matters[END_REF][START_REF] Van Hecke | Granular matter: A tale of tails[END_REF][START_REF] Zhu | Discrete particle simulation of particulate systems: Theoretical developments[END_REF].

Contact forces in granular materials are organized into very heterogeneous force networks, and it is generally accepted that a detailed understanding of the statistics of the contact forces is required for understanding the behavior of these materials [START_REF] Jaeger | Granular solids, liquids, and gases[END_REF]. A convenient way to study and characterize force networks is by means of the probability distribution of contact forces, P (f ). This has been the topic of many experimental [START_REF] Liu | Force fluctuations in bead packs[END_REF][START_REF] Mueth | Force distribution in a granular medium[END_REF][START_REF] Blair | Force distributions in three-dimensional granular assemblies: Effects of packing order and interparticle friction[END_REF][START_REF] Erikson | Force distributions in three-dimensional compressible granular packs[END_REF][START_REF] Løvoll | Force measurements on static granular materials[END_REF]16], theoretical [START_REF] Kruyt | Probability density functions of contact forces for cohesionless frictional granular materials[END_REF][START_REF] Metzger | Granular contact force density of states and entropy in a modified Edwards ensemble[END_REF][START_REF] Metzger | H theorem for contact forces in granular materials[END_REF][START_REF] Metzger | Elegance of disordered granular packings: A validation of Edward's hypothesis[END_REF][START_REF] Ngan | Mechanical analog of temperature for the description of force distribution in static granular packings[END_REF][START_REF] Henkes | Entropy and temperature of a static granular assembly: An ab initio approach[END_REF] and computer simulation studies [START_REF] Makse | Packing of compressible granular materials[END_REF][START_REF] Radjai | Force distributions in dense two-dimensional granular systems[END_REF][START_REF] O'hern | Force distributions near jamming and glass transitions[END_REF][START_REF] O'hern | Jamming at zero temperature and zero applied stress: The epitome of disorder[END_REF][START_REF] Silbert | Statistics of the contact network in frictional and frictionles granular matter[END_REF].

The force network ensemble is a recently introduced statistical formulation to study the statistics of contact forces in static granular media [START_REF] Snoeijer | Force network ensemble: A new approach to static granular matter[END_REF][START_REF] Snoeijer | Ensemble theory for force networks in hyperstatic granular matter[END_REF]. The crucial assumption is that for fixed particle positions, all force configurations of non-cohesive contact forces that result in force-and torque balance on all particles are equally likely. This approach can be regarded as a restricted version of the Edwards ensemble [START_REF] Edwards | Theory of powders[END_REF]. For several regular and disordered packings the contact force distribution P (f ) was calculated [START_REF] Snoeijer | Force network ensemble: A new approach to static granular matter[END_REF][START_REF] Snoeijer | Ensemble theory for force networks in hyperstatic granular matter[END_REF], which had all the features that are typically observed in experiments and numerics, and subsequently the force network ensemble has received a lot of attention [START_REF] Unger | Force Indeterminacy in the Jammed State of Hard Disks[END_REF][START_REF] Tighe | Force distributions in a triangular lattice of rigid bars[END_REF][START_REF] Ostojic | Elasticity from the force network ensemble in granular media[END_REF][START_REF] Mcnamara | Measurement of indeterminacy in packings of perfectly rigid disks[END_REF][START_REF] Snoeijer | Sheared force-networks: anisotropies, yielding and geometry[END_REF][START_REF] Ostojic | Scale invariance and universality of force networks in static granular matter[END_REF][START_REF] Ostojic | Statistical mechanics of static granular matter[END_REF][START_REF] Vlugt | Krachtenbalans op zandkorrels[END_REF]. Recently, using umbrella sampling simulations we unambiguously showed that in the force network ensemble the distribution of contact forces between particles shows a Gaussian decay for large contact forces [START_REF] Van Eerd | The tail of the contact force distribution in static granular materials[END_REF], in sharp contrast to the general believe that exponential force statistics is a characteristic feature of granular matter. It turns out that the Gaussian decay is a direct result of local force balance on particles [START_REF] Tighe | Entropy maximization in the force network ensemble for granular solids[END_REF].

In the present paper, we will use numerical simulations to study several important aspects of the force network ensemble in more detail. In particular, we focus on the details of the stress constraints and finite-size effects for the frictionless triangular lattice (Section 3.1), the angle resolved contact force distribution (Section 3.2), finite-size effects and the maximum possible contact force of a certain network of contact forces (Section 3.3), the maximum shear stress of a packing (Section 3.4) and the effect of walls (Section 3.5). Finally, in Section 3.6, we will investigate a crucial and longstanding question: how well does the force network ensemble describe systems with "real" interactions? We summarize our findings in Section 4.

Model and Simulation Method

In the force network ensemble it is assumed that a separation of length scales between the contact forces and the positions occurs. Therefore, one can treat the forces as independent from the positions [START_REF] Edwards | Theory of powders[END_REF]. In this way, one can construct an ensemble in which the positions of all particles are fixed, and the non-cohesive contact forces are the degrees of freedom that have to satisfy force-and torque balance on each particle. For a fixed packing geometry of frictionless particles, the net force F i on each particle i is zero

F i = j f ij = j f ij r ij |r ij | = 0, (1) 
in which j runs over the particles in contact with particle i, and r ij = r i -r j . Consider a d dimensional system with N particles and periodic boundary conditions. To describe mechanical equilibrium in d directions, dN -d linear constraints are needed. If frictional particles are considered, then N (for 2D) or 3N (for 3D) additional constraints are needed to obtain torque balance on each particle. In addition to the force balance constraints, it is necessary to constrain the applied stress on the system. The applied stress on a system is defined by the stress tensor 

in which

σ αβ = 1 N b ij f ij,α r ij,β . (3) 
In this equation N b = zN/2 equals the total number of contacts. In 2D, the contact force in the direction α, f ij,α can be written as

f ij,x = f n,ij r ij,x |r ij | + f t,ij r ij,y |r ij | , (4) 
f ij,y = f n,ij r ij,y |r ij | -f t,ij r ij,x |r ij | . ( 5 
)
in which f n,ij and f t,ij are the normal and tangential components of the contact force respectively. The dimensionless shear stress is defined as τ = σ αβ /σ αα and the pressure on the system is proportional to α σ αα . An isotropic pressure corresponds to σ xx = σ yy (= σ zz ). By imposing f = 1 a force scale is introduced. This was used in all simulations described in this work. Substituting Eqs. ( 4) and ( 5) into Eq. ( 3) we find σ αα = 1/d in the case that

|r ij | = 1 (monodisperse particles).
It is convenient the represent the collection of all contact forces in the system (f n,ij and f t,ij ) by the vector f. The elements of f are subject to the constraints that all particles have force and torque balance, all contact forces are repulsive, and that the constraints on the stress tensor are satisfied. In Table 1, the number of constraints and the number of elements of f are summarized. For packings with a contact number z larger than the critical contact number z c (z c = 4 for frictionless and z c = 3 for frictional 2D packings respectively [START_REF] Snoeijer | Force network ensemble: A new approach to static granular matter[END_REF]), the number of elements of f exceeds the number of constraints, which means that there is a high-dimensional force space of solutions. Note that in dry granular media all contact forces are repulsive, which is incorporated by demanding all normal forces f n to be positive, For frictional packings, the magnitude of the tangential force is bound by the Coulomb criterion,

f n,ij ≥ 0. ( 6 
|f t,ij | ≤ µf n,ij , (7) 
µ being the friction coefficient. Snoeijer et al. assumed that all allowed solutions of this force space are equally likely, like in the microcanonical ensemble and the Edwards ensemble [START_REF] Edwards | Theory of powders[END_REF]. The corresponding ensemble is therefore called the force network ensemble. Using the force network ensemble with this flat measure, realistic contact force distributions have been obtained, both for triangular lattices and disordered packings [START_REF] Snoeijer | Force network ensemble: A new approach to static granular matter[END_REF]. In Ref. [START_REF] Snoeijer | Ensemble theory for force networks in hyperstatic granular matter[END_REF], analytical solutions for P (f ) in the force network ensemble for various small systems were obtained: "snooker" packings [START_REF] Snoeijer | Statistics of force networks in granular media[END_REF] of 3 and 6 particles, periodic triangular lattices of 2 × 2 and 3 × 3, and a periodic fcc unit cell (8 particles). In Ref. [START_REF] Tighe | Force distributions in a triangular lattice of rigid bars[END_REF] analytical expressions are derived for both isotropic and anisotropic force distributions in the 3 × 3 triangular lattice. However, it was found that these analytical approaches are not usable for larger packings. Therefore, we have to rely on computer simulations for these systems.

To compute a single solution of the force space, a simulated annealing procedure can be applied [START_REF] Press | Numerical Recipes in Fortran 77: The art of scientific computing[END_REF]. For arbitrary contact forces, a penalty function U (f ) is defined that describes the deviation from the required constraints. For a 2D frictionless system with |r ij | = 1, this penalty function is defined as

U (f ) = |σ xy (f ) -σ req xy | + |σ xx (f ) -1 2 | + |σ yy (f ) -1 2 | + N i=1 |F i,x (f )| + N i=1 |F i,y (f )|. ( 8 
)
in which σ req xy is the required (imposed) shear stress of the system. The following Monte Carlo procedure can be used to generate a single force network f that obeys the required constraints 1. Start with a configuration f old in which all contact forces are taken from an arbitrary distribution with f = 1 and f n,ij ≥ 0. Set the control parameter β = 1 (equivalent to the inverse temperature) and calculate the penalty function U (f old ).

2. Select two elements (contact forces) of f at random.

3. Add a randomly selected ∆f to one contact force and -∆f to the other contact force, so that f still equals 1. If any of these (normal) forces becomes smaller than 0, the move is rejected and we return to step 2.

4. Calculate the penalty function U (f new ).

5. Accept the trial move with the usual Metropolis acceptance rule [START_REF] Allen | Computer simulations of liquids[END_REF]. If rejected, the old configuration is kept.

6. Increase β by multiplying with a factor h > 1 (i.e. annealing).

7. Return to step 2 until the penalty function is very small (typically U (f )/N < 10 -12 ). The resulting f is considered as a particular solution of the force network ensemble. It is trivial to extend this scheme for frictional packings and packings with |r ij | = 1. In previous studies [START_REF] Snoeijer | Force network ensemble: A new approach to static granular matter[END_REF][START_REF] Snoeijer | Ensemble theory for force networks in hyperstatic granular matter[END_REF][START_REF] Snoeijer | Sheared force-networks: anisotropies, yielding and geometry[END_REF][START_REF] Ostojic | Universal anisotropy in force networks under shear[END_REF], the solution space of the force network ensemble was sampled by generating many particular solutions obtained using this simulated annealing scheme. This scheme reproduces analytic results for small regular packings very well [START_REF] Snoeijer | Ensemble theory for force networks in hyperstatic granular matter[END_REF] and it was verified that the results do not depend on the initial configurations and details of the annealing scheme. Unfortunately, this simulated annealing procedure is computationally expensive and it cannot be guaranteed that force networks are indeed generated with equal a priori probability. Moreover, accurate statistics for large contact forces can not be obtained directly. At this point it is important to note that the force network ensemble can be formulated as an inhomogeneous matrix equation

Af = b, (9) 
in which static force (and torque) balance on each particle as well as a conserved stress tensor are incorporated. All possible solutions of this matrix equation can be written as

f = f 0 + k a k v k , (10) 
where f 0 is a particular solution and the vectors v k span the null-space of matrix A, i.e.,

Av k = 0. (11) 
The number of independent null vectors is listed in Table 1. The force network ensemble is sampled by the usual Metropolis Monte Carlo technique [START_REF] Frenkel | Understanding molecular simulation: from algorithms to applications[END_REF] in which the coefficients a k are the degrees of freedom. The Monte Carlo scheme is started with a k = 0 and a particular solution f 0 . In a trial move, a coefficient a k is chosen at random and its value is changed randomly. A trial move is accepted when all normal forces f n,ij ≥ 0 and rejected otherwise.

For frictional systems, one has to take into account the Coulomb friction law (Eq. ( 7)) in the acceptance rule. For the triangular, square, and fcc lattice, it is convenient to choose f 0 such that all elements f 0 are all equal to 1. The null-space v k of these systems can be expressed by the so-called "wheel moves" developed by Tighe et al. [START_REF] Tighe | Force distributions in a triangular lattice of rigid bars[END_REF].

To improve the statistics of large contact forces, we employ the umbrella sampling technique [START_REF] Torrie | Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling[END_REF][START_REF] Frenkel | Understanding molecular simulation: from algorithms to applications[END_REF]. Each realization of the force network f is characterized by the largest contact force f max . The Monte Carlo simulations are performed in a modified ensemble with a modified probability density

ρ π (f) = ρ(f) exp[W (f max (f))] ( 12 
)
in which ρ(f) is the probability density in the force network ensemble and W (f max ) is an arbitrary weightfunction. The probability distributions of f max in the original and modified ensemble (denoted by π) are related by

P (f max ) ∝ P π (f max ) exp[-W (f max )] (13) 
In general, the ensemble average of a certain quantity A in the original force network ensemble can be recovered by appropriate reweighting in which we used the shorthand • • • π for averages in the modified ensemble. To ensure that large contact forces are adequately sampled, we choose the function W (f max ) such that the probability distribution of f max in the modified ensemble (P π (f max )) is approximately flat, so W (f max ) = -ln P (f max ). For more details of this scheme, we refer the reader to Ref. [START_REF] Van Eerd | Statistics of large contact forces in granular matter[END_REF].

A = A(f ) exp[-W (f max (f ))] π exp[-W (f max (f ))] π , (14) 5 

Results and Discussion

3.1 Details of the stress constraints and finite-size effects

In the force network ensemble, it is natural to introduce a force scale by imposing f = 1. In case of a monodisperse system (i.e. |r ij | = 1), this directly results in σ xx + σ yy (+σ zz ) = 1. For d dimensional systems under isotropic pressure, it is therefore convenient to consider isotropic pressure, i.e. σ xx = σ yy (= σ zz ) = 1/d. However, in Ref. [START_REF] Vlugt | Krachtenbalans op zandkorrels[END_REF] a different constraint σ xx +σ yy = 1 was used instead. With the latter constraint, small anisotropic pressure fluctuations occur. We used Monte Carlo simulations in the force network ensemble to study the contact force distribution for the frictionless (unsheared) triangular lattice for both isotropic and anisotropic pressure. We also unravel the effect of the system size N for both constraints. Our results are summarized in Fig. 1. Contact force distributions calculated with σ xx = σ yy = 1 2 show no differences at forces below f = 5, but a finite size effect is observed for larger forces, converging to a Gaussian distribution. Contact force distributions calculated with the anisotropic constraint σ xx + σ yy = 1 converge to the same Gaussian distribution, but the finite size effect is much larger. The reason for this is that for small systems, the fluctuations of σ xx and σ yy around 1 2 are quite large. For larger systems, these fluctuations become smaller so eventually σ xx ≈ 1 2 and σ yy ≈ 1 2 . Surprisingly, for small system sizes (N = 168), P (f ) shows an exponential decay when anisotropic pressure fluctuations are allowed. Note that packings of this size are typically used in experiments.

Angle-resolved P (f )

Contact force distributions of sheared packings do not show a single characteristic feature, because shear stress induces force anisotropy that yields a variation in f depending on the orientation of the contact [START_REF] Snoeijer | Sheared force-networks: anisotropies, yielding and geometry[END_REF][START_REF] Van Eerd | The tail of the contact force distribution in static granular materials[END_REF]. In good approximation, the average normal contact force along direction φ (Fig. 2) can be described by

fn (φ) = 1 + 2τ sin(2φ) -b 2 cos(4φ), (15) 
with dφ fn (φ)/ dφ = 1 [START_REF] Snoeijer | Sheared force-networks: anisotropies, yielding and geometry[END_REF][START_REF] Ellenbroek | Bounds on the yield stress of cohesionless granular matter[END_REF]. The parameter b 2 increases with increasing shear stress τ = σ xy /σ xx and by definition b 2 = 0 for τ = 0. The second term in Eq. ( 15) has the largest contribution to the force anisotropy. The "total" P (f ) is a superposition over all orientations φ. Here, we numerically study the angle-resolved contact force distribution P (f, φ) by umbrella sampling. To accurately compute the tail of this distribution, separate simulations are needed for each φ, using the maximum contact force along the direction φ as an order parameter. The following symmetry applies to our system: P (f, 45 A triangular lattice contains contact forces in three distinct orientations: (1) 0 • and 180 • , (2) 60 • and 240 • , and (3) 120 • and 300 • . In Fig. 3, contact force distributions are shown for these three orientations. We see that for τ = 0 all orientations have the same Gaussian decay of P (f, φ). The small differences in Fig. 3(a) can be attributed to finite-size effects induced by periodic boundary conditions. If the system experiences shear stress (τ > 0), the tails of the contact force distributions are still Gaussian, but as expected we observe a different slope in the linear-log plots; the probability of large contact forces oriented close to the direction of the shear stress (60 • and 240 • ) becomes larger, while the probability of large contact forces oriented almost perpendicular to the direction of the shear stress (120 • and 300 • ) becomes significantly smaller.

• -φ) = P (f, 45 • + φ) and P (f, 225 • -φ) = P (f, 225 • + φ).
To study the angle-resolved P (f, φ) for 2D disordered systems, we construct a histogram of all contact forces in which the contact forces are grouped according to their orientation φ, see Fig. 4. In Fig. 5 the average contact force for each orientation is plotted in a polar diagram. Without shear stress, the average contact force equals 1 in all directions. With shear stress (τ > 0), the average contact force in the direction of the shear stress (label 1 in Fig. 4) becomes larger and the average force oriented almost perpendicular to this direction (label 6) becomes smaller (see Fig. 5(a)). The orientation dependence of the average force is given in good approximation by Eq. ( 15), see Fig. 5(d). We also show a polar diagram for frictional particles as a function of shear stress (see Fig. 5(b)) and as a function of the friction coefficient µ (see Fig. 5(c)). From the latter figure we can conclude that force anisotropy decreases if we allow friction.

Fig. 6 shows the angle-resolved P (f, φ) for disordered systems with frictionless particles. We see that the P (f, φ)'s for systems experiencing shear stress decay at least as fast as a Gaussian. Certainly, the decay of the angle-resolved contact force distribution decays significantly faster than an exponential. This means that the (partly) exponential decay of the total P (f ) as was found in Ref. [START_REF] Van Eerd | The tail of the contact force distribution in static granular materials[END_REF] is a direct result of averaging P (f, φ) over all φ, and not a result of exponential statistics of individual contact forces.

We also studied the angle-resolved contact force distribution for a fcc lattice experiencing shear stress. This lattice is oriented such that the close-packed planes lay in the xy-plane and are stacked along the z-axis. Contact forces in the fcc lattice have six distinct orientations, as shown in Fig. 7. Shear stress of the form σ xy = 0 and σ yz = σ xz = 0 is applied and we refer to the parameter τ = σ xy /σ xx as the shear stress. The stress direction is in the xy-plane at 45 • with the x-axis. Fig. 8 shows the direction-resolved P (f ) for a fcc lattice. All P (f ) decay as a exp[-bf α ] with α ≈ 1.7, just as for unsheared disordered systems in 3D [START_REF] Van Eerd | The tail of the contact force distribution in static granular materials[END_REF]. Similar to the triangular lattice, for different directions we observe a different slope in the linear-log plots. Shear stress has the largest effect on the forces oriented in directions 2 and 3 as both are in the xy plane along the direction of the shear stress. Forces not oriented in this plane (e.g. 5) are less affected.

Maximum possible force inside a packing

In Ref. [START_REF] Van Eerd | The tail of the contact force distribution in static granular materials[END_REF] we have observed that for disordered packings in 2D, finite-size effects occur for the contact force distribution P (f ), especially for low coordination numbers (z). One would observe such finite-size effects for contact forces close to the maximum contact force that a certain packing can sustain. When the maximum contact force of a packing (f max (f )) is close to the maximum contact force that a certain packing can sustain, P (f ) will show a very sharp decrease. Eventually, for very large f , P (f ) will decrease to zero for any packing [START_REF] Snoeijer | Ensemble theory for force networks in hyperstatic granular matter[END_REF].

In principle, conventional umbrella sampling [START_REF] Frenkel | Understanding molecular simulation: from algorithms to applications[END_REF] can be used to determine the maximum possible f max . However, a huge number of iterations will be necessary as P (f ) will become extremely small close to the maximum possible f max . To efficiently compute the maximum possible f max for a given packing, we use the central idea of the recently proposed randomwalk algorithm of Wang and Landau [START_REF] Wang | Efficient, multiple-range random walk algorithm to calculate the density of states[END_REF][START_REF] Wang | Determining the density of states for classical statistical models; A random walk algorithm to produce a flat histogram[END_REF]. In this scheme, a random walk is performed in the space of all possible force networks f. The simulation is started by setting a certain function λ(f max ) = 1 for all f max . Starting from a particular solution f = f 0 , we perform a Monte Carlo scheme to sample all possible force networks. Trial moves that result in a configuration for which all f n,ij ≥ 0 are accepted with a probability

P acc (o → n) = min 1, λ(f max (o)) λ(f max (n)) . ( 16 
)
in which o and n are used to denote the old and new configuration respectively. The crucial difference with conventional Monte Carlo simulations is that each time a force network with a certain f max is visited, λ(f max ) is updated as follows:

λ(f max ) → λ(f max ) × m in which m > 1.
This means that this scheme does not obey detailed balance. After many trial moves, eventually all possible values of f max will be visited with (approximately) equal probability. From this, the maximum possible contact force of a certain contact network can be estimated.

In the original version algorithm [START_REF] Wang | Efficient, multiple-range random walk algorithm to calculate the density of states[END_REF][START_REF] Wang | Determining the density of states for classical statistical models; A random walk algorithm to produce a flat histogram[END_REF], the parameter m is slowly decreased from 2 to 1 + δ (typically δ ≈ 10 -9 ) in a controlled way, such that eventually configurations are sampled with a probability inversely proportional to the density of states. In our case, we are only interested in the maximum possible force that a packing can sustain and therefore we can safely set m = 2. Fig. 9(a) shows the computed maximum possible contact force in 2D disordered frictionless systems. Indeed, the maximum possible contact force increases with N and strongly depends on the coordination number z. This figure shows that relatively small systems are sufficient to study the statistics of large contact forces of typically 10 f . In Fig. 9(b), the corresponding P (f ) along with the maximum possible contact force is shown for z = 4.5. This figure shows strong evidence that the finite-size effects obtained in P (f ) are due to the fact that the maximum possible contact force of a small system with low z is quite small. Figs. 9 and 10 suggests that finite-size effects in 3D are much smaller.

Maximum shear stress of a packing

To understand the relation between the maximum shear stress τ m and the coordination number z of a certain packing, we investigated the volume of the phase space of allowed force networks. J.H. Snoeijer et al. showed that for 2D frictionless systems this volume shrinks for increasing τ [START_REF] Snoeijer | Sheared force-networks: anisotropies, yielding and geometry[END_REF]. The point at which the phase space volume is zero (τ m ) can be considered as a measure for the yield stress of the material. Ellenbroek and Snoeijer predicted that the effect of friction on τ m is quite small [START_REF] Ellenbroek | Bounds on the yield stress of cohesionless granular matter[END_REF]: This equation is valid for disordered 2D systems in the limit of z → 6. To estimate the accessible volume of the space of all allowed force networks corresponding to a certain shear stress τ , we have used the following approaches:

τ m = 1 + 1 + 3µ 2 3 . (17 
• An effective linear measure for the size of the force space is the Euclidean distance L:

L(τ ) ≡ ij (f n,ij -f n,ij ) 2 . ( 18 
)
The brackets denote an average over independent force networks with normal forces f n,ij and f n,ij . Close to τ m , L(τ ) will show a sharp decrease.

• Direct calculation of the volume using umbrella sampling. The accessible volume V (τ ) corresponding to a certain τ is proportional to the probability P (τ ) measured in the force network ensemble in which the constraint on σ xy has been removed. The dimension of the null space of this modified ensemble is one higher than given in Table 1. Essentially,

P (τ ) = V (τ )/V tot in which V tot = ∞ 0 dτ V (τ ).
In principle, P (τ ) and L(τ ) will depend on the system size N and the nature of the packing. First we study the Euclidean distance L as a measure for the volume of the phase space. Fig. 11 shows the Euclidean distance L(τ )/L(τ = 0) for 2D disordered systems (N = 1024) without and with friction (µ = 0.5 and µ = 1.0). The data is well described by

L(τ ) L(0) = 1 - τ τ m α , (19) 
in which τ m and α are fitted. For frictionless systems, α ≈ 2 while frictional systems have a larger value for α. The obtained results for τ m are summarized in Table 2. Our simulation results for frictional and frictionless systems are in excellent agreement with the prediction of Ref. [START_REF] Snoeijer | Sheared force-networks: anisotropies, yielding and geometry[END_REF], which can be considered as an upper limit and therefore valid for large z. For τ < 0.2, the Euclidean distance of frictional packings is almost constant, suggesting that small shear stress has a negligible influence on the normal contact forces. In Fig. 12, P (τ )/P (τ = 0) is plotted as a function of τ for 2D disordered systems (N = 1024) without friction and with friction (µ = 0.5 and µ = 1.0). Already for small τ (i.e. far away from τ m ), P (τ )/P (τ = 0) becomes extremely small. This means that within the framework of the force network ensemble, packings do not spontaneously develop a shear stress. Computing P (τ ) beyond τ = 0.2 is very difficult and requires very long simulations, even if more overlapping windows are used in the umbrella sampling simulations. For frictionless systems, P (τ )/P (τ = 0) strongly depends on the coordination number z, while this effect is not present for frictional systems. The latter observation is not surprising, as L(τ ) of frictional systems is almost flat for τ < 0.2.

Wall versus bulk forces

Experimental measurements of contact forces at the boundaries (walls) show convincing exponential contact force distributions [START_REF] Liu | Force fluctuations in bead packs[END_REF][START_REF] Corwin | Structural signature of jamming in granular media[END_REF], while a stronger than exponential decay is observed [START_REF] Brujić | Measuring the distribution of interdroplet forces in a compressed emulsion system[END_REF][START_REF] Zhou | Measurement of forces inside a three-dimensional pile of frictionless droplets[END_REF] and computational studies [START_REF] Radjai | Force distributions in dense two-dimensional granular systems[END_REF][START_REF] O'hern | Force distributions near jamming and glass transitions[END_REF] of bulk force statistics. The observed exponential force distributions have often been attributed to "Boltzmann" type arguments; however, in Ref. [START_REF] Tighe | Entropy maximization in the force network ensemble for granular solids[END_REF] we have shown that the presence of additional local constraints, namely local force balance, leads to an additional global constraint that must be respected. It is this additional constraint that leads to Gaussian tails in P (f ). Because boundary grains have qualitatively different local environments from grains in the bulk, it is reasonable to ask whether this leads to differences in the statistics of forces at a wall.

A simple model for a system with wall and bulk forces is the so-called Snooker triangle first studied by Snoeijer [START_REF] Snoeijer | Statistics of force networks in granular media[END_REF], see Fig. 13. The stress on the system is controlled by constraining the sum of the wall forces for each of the three walls. All contact forces are repulsive and we will not consider friction. For N = 3 and N = 6 balls, it is possible to derive analytical solutions for the bulk and wall force statistics (P (f b ) and P (f w ) respectively) in the framework of the force network ensemble. For larger N , P (f b ) and P (f w ) have been computed in Ref. [START_REF] Snoeijer | Ensemble theory for force networks in hyperstatic granular matter[END_REF]. However, the authors of this study were not able to make conclusive statements about the nature of the tail of these distributions.

We have re-examined the force distribution for snooker packings using umbrella sampling, see Fig. 14. The distributions P (f b ) and P (f w ) have been normalized such that f b = 1 and f w = 1. The results unambiguously show that for large N both the bulk and wall forces have a Gaussian tail. It is not surprising that for large N , P (f b ) approaches the contact force distribution of a triangular lattice, which is known to have a Gaussian tail. Without the presence of local force balance on the balls near the wall, we would have exactly recovered the "Boltzmann" argument resulting in an exponential distribution of wall forces. Apparently, the distribution of wall forces is changed significantly by the presence of bulk forces and local force balance constraints.

Contact force distributions for systems with "real" interactions

Until now we studied contact force distributions in the framework of the force network ensemble. In this ensemble, the contact forces between particles are stochastic variables subject to various constraints (i.e. force balance on each grain, only repulsive contact forces, and a prescribed stress tensor) and do not originate from an interaction potential. It is interesting to investigate to which extent the contact force statistics of the force network ensemble is identical to that of forces derived from "real" interactions, i.e. interactions that follow from an interaction (pair) potential. Two cases are worth studying. First, the contact force distribution of the unconstrained "real" system and second the contact force distribution of the "real" system with the constraint of a zero net force on each particle. We shall refer to the latter systems as force balanced packings.

We first discuss force balanced packings of interacting particles. We expect that the contact force distribution is close to the one obtained in the force network ensemble. Molecular simulations of force balanced packings of interacting particles are non-trivial as one needs to include constraints on the net force on each particle, while one cannot control the contact forces directly. Starting from random configurations of particles at very low density, we used a compression scheme to generate a large number of these packings with equal pressure P [START_REF] Van Eerd | Statistics of large contact forces in granular matter[END_REF]. We studied 2D packings of N = 2000 bidisperse particles with diameter σ i (50%/50% mixture, size ratio 1.4) interacting with either a WCA potential [START_REF] Weeks | Role of repulsive forces in determining the equilibrium structure of simple liquids[END_REF] 

u WCA (r ij ) = u LJ (r ij ) + , r ij ≤ 2 1/6 σ ij 0, r ij > 2 1/6 σ ij , (20) 
or an harmonic potential (corresponding to linear springs)

u HARM (r ij ) = (σ ij -r ij ) 2 , r ij ≤ σ ij 0, r ij > σ ij , (21) 
where σ ij = (σ i + σ j )/2 and is an energy parameter. The Lennard-Jones potential u LJ is defined as

u LJ (r ij ) = 4 σ r ij 12 - σ r ij 6 (22) 
Fig. 15 shows the contact force distributions and the coordination numbers for force balanced packings with pressure P consisting of particles that interact with an harmonic potential. In the same figure we also show P (f ) for a frictionless triangular lattice in the force network ensemble. The distributions for the "real" interactions are obtained from averaging over 4000 force balanced packings for each pressure. The average coordination number z strongly depends on the applied pressure. In the limit of small pressure, the coordination number approaches the isostatic limit z c = 4. For all simulations, we have verified that the system is sufficiently far from z c so that the simulations do not suffer from a lack of selfaveraging [START_REF] O'hern | Jamming at zero temperature and zero applied stress: The epitome of disorder[END_REF][START_REF] O'hern | Random packings of frictionless particles[END_REF]. The contact force distribution for a triangular lattice in the force network ensemble is close to P (f ) for the "real" interactions at dimensionless pressure P ≈ 0.03. Both distributions have a Gaussian tail. For larger pressures (and larger z) the contact force distribution bends down faster than a Gaussian. The observation of a Gaussian tail is in agreement with the simulations of O'Hern et al. [START_REF] O'hern | Force distributions near jamming and glass transitions[END_REF][START_REF] O'hern | Random packings of frictionless particles[END_REF]. These authors also presented an argument based on equilibrium systems to predict the decay of the large force tail, resulting in a Gaussian tail for harmonic potentials and a nearly exponential tail for a WCA potential. It is important to note that the systems of Fig. 15 are not in thermodynamic equilibrium so the argument may not apply.

To investigate the effect of the interaction potential, we have studied force balanced packings of particles interacting with a WCA potential. The equilibrium prediction for the WCA interaction potential gives a tail of P (f ) ∼ exp[-af 12/13 ], i.e. qualitatively different from the case of the harmonic potential. We have investigated the effect of the pressure P as well as the hardness κ of the interaction potential:

κ = f r ij ∂f ∂r ij -1 . ( 23 
)
Particles that are harder have a lower value of κ. The value of κ can be controlled directly by changing the energy parameter of the WCA potential, while keeping the pressure P constant. z, and we have verified that they also have the same contact force distribution. Analogous to what we found for an harmonic interaction, we find that the contact force distribution for a triangular lattice in the force network ensemble is close to P (f ) for energy parameter ≈ 16 and dimensionless pressure P = 15. Again, they both have a Gaussian tail. In fact, all distributions of Fig. 16(d) have a Gaussian tail. Our results suggest that force statistics in ensembles of static packings are independent of the interaction potential, contrary to thermal arguments and in agreement with one of the postulates of the force network ensemble.

Next we turn to the case of the force distribution of an unconstrained "real" system. These systems do not have force balance. In Ref. [START_REF] Tighe | Entropy maximization in the force network ensemble for granular solids[END_REF] we have shown that local force balance determines the decay of the contact force distribution. Fig. 17 shows the contact force distribution of particles interacting with a WCA potential simulated at a finite temperature T . The glass transition temperature of this system is k B T g / ≈ 1.1. Clearly, P (f ) decays exponentially both for T > T g and T < T g , in agreement with previous molecular dynamics simulations [START_REF] O'hern | Force distributions near jamming and glass transitions[END_REF]. Note that, despite the accuracy of our data, it is not possible to distinguish the predicted tail for thermally equilibrated packings, exp[-af 12/13 ], from a simple exponential. In any case, this is qualitatively different from the Gaussian tails of the contact force distribution that we found for the constrained "real" interactions, and strikingly reinforces the conclusion that the presence of local force balance alters tail of P (f ). If we revisit the arguments of Ref. [START_REF] Tighe | Entropy maximization in the force network ensemble for granular solids[END_REF] and remove the additional global constraint that results from local force balance, we find a Boltzmann-like tail, i.e. P (f ) ∼ exp[-af ]. This naive extrapolation neglects the question of when conventional equilibrium statistical mechanics should be abandoned for, i.e., stress-based ensembles of the sort described in Ref. [START_REF] Tighe | Entropy maximization in the force network ensemble for granular solids[END_REF], a question which is beyond the scope of this work.

Conclusions

We showed that in the force network ensemble, in the presence of shear stress the contact force distribution P (f ) is strongly direction dependent. As a result the tail of the orientationaveraged P (f ) may look (partly) exponential even though for each individual direction the tail is Gaussian. We developed a method to find the maximum possible contact force in a system and showed that this maximum possible contact force strongly increases for increasing system size. In the force network ensemble, the wall-contact force distribution may differ essentially from the bulk-contact force distribution. However, for snooker packings we found that both distributions have a Gaussian decay. Finally, we made a detailed comparison between P (f ) in the force network ensemble and P (f ) from molecular simulations of particles with a "real" pair interaction. We show that these distributions are different in general. Nevertheless our calculations suggest that applying the constraint of local mechanical equilibrium, the contact force distribution of the "real" system crosses over towards the distribution of the force network ensemble.
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With these changes and given the positive review, we hope that the paper can now be accepted in its present form. Response to the list of issues raised by the reviewer:

I have carefully reviewed manuscript GMOS-2009-0038 "Numerical study of the force network ensemble" by A. R. T. van Eerd, B. P. Tighe, and T. J. H. Vlugt, which describes numerical calculations of the normal force distributions from the force network ensemble in model frictionless and frictional granular media. This very strong work emphasizes that in mechanical equilibrium, the normal force distributions for granular systems with spherical particles have Gaussian tails at large forces for frictionless particles, in both disordered and ordered packings, with both small and large stress ratios τ , and for both bulk and boundary forces-despite a few previous numerical and experimental studies that suggested the contrary. This manuscript was well-written and clarifies a number of outstanding issues concerning normal force distributions using a robust calculation method-the force network ensemble. I strongly recommend publication of this manuscript in Molecular Simulation; however, prior to publication the authors must address the following comments, questions, and critiques, and I would like to read the revised manuscript again.

1. The first paragraph of the introduction is weak. This is a typical granular media introduction and is not directly relevant to the described studies. The authors should revise it.

We have added the following text, so it becomes clear for the reader that understanding the statistics of force networks is crucial for understanding the behavior of granular matter:

Contact forces in granular materials are organized into very heterogeneous force networks, and it is generally accepted that a detailed understanding of the statistics of the contact forces is required for understanding the behavior of these materials [START_REF] Jaeger | Granular solids, liquids, and gases[END_REF]. A convenient way to study and characterize force networks is by means of the probability distribution of contact forces, P (f ). This has been the topic of many experimental [START_REF] Liu | Force fluctuations in bead packs[END_REF][START_REF] Mueth | Force distribution in a granular medium[END_REF][START_REF] Blair | Force distributions in three-dimensional granular assemblies: Effects of packing order and interparticle friction[END_REF][START_REF] Erikson | Force distributions in three-dimensional compressible granular packs[END_REF][START_REF] Løvoll | Force measurements on static granular materials[END_REF][16], theoretical [START_REF] Kruyt | Probability density functions of contact forces for cohesionless frictional granular materials[END_REF][START_REF] Metzger | Granular contact force density of states and entropy in a modified Edwards ensemble[END_REF][START_REF] Metzger | H theorem for contact forces in granular materials[END_REF][START_REF] Metzger | Elegance of disordered granular packings: A validation of Edward's hypothesis[END_REF][START_REF] Ngan | Mechanical analog of temperature for the description of force distribution in static granular packings[END_REF][START_REF] Henkes | Entropy and temperature of a static granular assembly: An ab initio approach[END_REF] and computer simulation studies [START_REF] Makse | Packing of compressible granular materials[END_REF][START_REF] Radjai | Force distributions in dense two-dimensional granular systems[END_REF][START_REF] O'hern | Force distributions near jamming and glass transitions[END_REF][START_REF] O'hern | Jamming at zero temperature and zero applied stress: The epitome of disorder[END_REF][START_REF] Silbert | Statistics of the contact network in frictional and frictionles granular matter[END_REF].

We also made a few minor other changes to the introduction (section 1, all marked red).

2. The function W in equations ( 12) and ( 13) is not defined.

To clarify this issue, we have modified the following text:

... and W (f max ) is an arbitrary weightfunction. The probability distributions of f max in the original and modified ensemble (denoted by π) are related by

P (f max ) ∝ P π (f max ) exp[-W (f max )]
In general, the ensemble average of a certain quantity A in the original force network ensemble can be recovered by appropriate reweighting

A = A(f ) exp[-W (f max (f ))] π exp[-W (f max (f ))] π
in which we used the shorthand • • • π for averages in the modified ensemble. To ensure that large contact forces are adequately sampled, we choose the function W (f max ) such that the probability distribution of f max in the modified ensemble (P π (f max )) is approximately flat, so W (f max ) = -ln P (f max ).

3. Most of the results (i.e. Figs. [START_REF] Dorren | A review of rockfall mechanics and modelling approaches[END_REF][START_REF] Ketterhagen | Modeling granular segregation in flow from quasi-three-dimensional, wedge-shaped hoppers[END_REF][START_REF] Lee | Compositional distributions in multicomponent aggregation[END_REF][START_REF] Van Hecke | Granular matter: A tale of tails[END_REF] for the distribution of normal forces are shown only for frictionless particles, thus, the manuscript does not make the case that in frictional systems with (d+1) contacts per particle, that the normal force distribution would not be exponential. I would like to see both normal and tangential force distributions for frictional particles as a function of stress ratio τ and static friction coefficient µ in disordered systems. We agree with the reviewer that in principle, angle-resolved normal and tangential force distributions for disordered systems with friction may be interesting as well. As these calculations are computationally very expensive (especially for resolving the nature of the tail of the distribution), we did not perform them. Furthermore, we feel that a detailed discussion on the probability distribution of tangential forces is beyond the scope of the present work, as the present manuscript focuses on normal forces. Our preliminary simulations show that for a given frictional system, the nature of the tail of the distribution of tangential forces is identical to that of the normal forces, both for the frictional triangular lattice and square lattice. We plan to investigate this issue further and publish the results in a subsequent paper.

4. The authors should change the last sentence of the first partial paragraph on page 7 to "From the latter figure we can conclude that force anisotropy disappears if take the infinite friction limit."

We agree with the reviewer. We have replaced the word "disappears" by "decreases".

5.

In the first partial paragraph on page 7, the authors mention that "The orientation dependence of the average force is in good agreement with Eq. 15." It would help if the authors plotted Eq. 15 with the appropriate τ and b 2 in Fig. 5 so that readers can assess the quality of the agreement.

We agree with the reviewer. To clarify this issue, we have added Fig. 6. The large force tails for normal force distributions in the ordered 3D packings systematically deviate from Gaussian behavior. The tails decay as exp[-af α ] with α = 1.7. Does the exponent decrease further for 3D disordered packings or 3D packings with friction? These questions should be addressed in the revised paper since this result raises questions about their strong statements about robust Gaussian behavior of large force tails in force-balanced systems.

For 3D disordered unsheared packings, we also found that α = 1.7. This case is presented in Ref. [START_REF] Van Eerd | The tail of the contact force distribution in static granular materials[END_REF] of the revised manuscript. To clarify this issue, we added the following line to the text:

...just as for unsheared disordered systems in 3D [START_REF] Van Eerd | The tail of the contact force distribution in static granular materials[END_REF].

7. The function κ in Eq. 15 is the same symbol used for the stiffness in Eq. 21. One of these should be changed.

We agree with the reviewer. We have used the symbol λ in Eq. 15 and changed the text accordingly.

8. The last sentence in Sec. 3.3 "Fig. 10 suggests that finite-size effects in 3D are much smaller." needs to be substantiated perhaps by comparing the slopes df max /dN in 2D and 3D.

A comparison between Fig. 9(a) and Fig. 10 clearly shows that f max is much larger for 3D systems than for 2D systems (for the same number of particles N ). Therefore, it is obvious that finite-size effects are much smaller for 3D systems. To clarify this issue, we have changed the last line of section 3.3:

Figs. 9(a) and 10 suggests that finite-size effects in 3D are much smaller. 9. u LJ should be defined in Eq. [START_REF] Metzger | H theorem for contact forces in granular materials[END_REF]. Should the energy parameter drop out of Eq. ( 21)? A more strict test of the Gaussian nature of the tail for stiff LJ-type potentials would be to increase the power-law exponents m and n for the normal forces: f LJ = (1/r n -1/r m ) in dimensionless form for r <= 1.

We have added the definition of u LJ to the text. The reviewer is correct that in principle the Lennard-Jones energy parameter drops out of Eq. ( 21). However, κ will change with if at the same time the pressure P is kept constant. We have clarified this in the revised text. We feel that investigating the precise effect of the powers n and m as suggested by the reviewer is beyond the scope of the present work.

10. More clearly show differentiate system sizes in Fig. 1 (a), (c), and (e).

For systems of 418, 780, and 1840 particles, differences in P (f ) are very small. This is exactly what is shown in these figures.
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  σ = σ xx σ xy σ yx σ yy in 2D, and σ =   σ xx σ xy σ xz σ yx σ yy σ yz σ zx σ zy σ zz   in 3D

  This has been used to improve sampling statistics.
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  Fig. 16(a) shows that systems with the same κ have the same coordination number 11
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 4512 Figure 1: Contact force distribution P (f ) as a function of the system size (number of particles N ) for the frictionless triangular lattice. (a,c,e) The constraint σ xx = σ yy = 1 2 is used. (b,d,f) The constraint σ xx + σ yy = 1 is used. In all simulations, σ xy = σ yx = 0.

Figure 3 :

 3 Figure 3: Angle-resolved contact force distributions for the frictionless triangular lattice (N = 1840 particles) with τ = 0 (a,b), τ = 0.2 (c,d) and τ = 0.4 (e,f). The contact forces are oriented in three directions: (1) 0 • and 180 • , (2) 60 • and 240 • , and (3) 120 • and 300 • . If systems experience shear stress, the distribution P (f, φ) becomes different in the three given directions. For a fixed φ, P (f ) shows a Gaussian decay. In all simulations, σ xx = σ yy = 1/2.

Figure 4 :

 4 Figure 4: Diagram showing the different orientation segments for which the contact forces are evaluated. Note that the symmetries P (f, 45 • -φ) = P (f, 45 • + φ) and P (f, 225 • -φ) = P (f, 225 • + φ) are compatible with the symmetry of simple shear.

Figure 5 :

 5 Figure 5: Polar diagrams of the average contact force per histogram segment for a twodimensional disordered system with N = 1024 and z = 5.5. We have used the segments represented in Fig. 4. In all simulations, σ xx = σ yy = 1/2. (a) Average contact force for frictionless particles as a function of the shear stress τ . The direction of the arrow indicates increasing τ : 0, 0.1, 0.2, 0.3. (b) Average contact force for frictional particles (µ = 0.5) as a function of the shear stress τ . The direction of the arrow indicates increasing τ : 0.1, 0.2, 0.3, 0.4, 0.49. (c) Average contact force for frictional particles experiencing shear stress (τ = 0.2) as a function of the the friction coefficient µ. The direction of the arrow indicates increasing µ: 0.1, 0.5, 1.0, 2.0, 10.0. (d) Average contact force for the system in (a) as a function of the angle φ. The dashed lines shows a fit to Eq. (15). The fitted values for b 2 are: 0.00652 (τ = 0.1), 0.0288 (τ = 0.2), 0.0582 (τ = 0.3).

Figure 6 :Figure 7 : 7 Figure 8 :Figure 9 :

 67789 Figure 6: Angle-resolved contact force distributions of a two-dimensional frictionless disordered system (N = 1024, z = 5.5), divided in six directions. The numbers correspond to the segments in Fig. 4. (a,b) τ = 0.0, (c,d) τ = 0.2, (e,f) τ = 0.3. In all simulations, σ xx = σ yy = 1/2.

Figure 10 :

 10 Figure 10: The maximum possible contact force in unsheared networks of three-dimensional disordered frictionless systems with a different number of particles (N ). σ xx = σ yy = σ zz = 1/3.

Figure 11 :

 11 Figure 11: Euclidean distance L(τ )/L(τ = 0) as a function of τ for 2D disordered systems with N = 1024 and (a) z = 4.5, (b) z = 5.0 (c) z = 5.5. The symbols are simulation data points and the solid lines are fits to Eq. (19): no friction (square), µ = 0.5 (circle) and µ = 1.0 (triangle). In all simulations, σ xx = σ yy = 1/2.
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 1213141516 Figure 12: P (τ )/P (τ = 0) against τ for 2D disordered systems N = 1024: no friction (solid), µ = 0.5 (long dashed) and µ = 1.0 (dot-dashed). (a) z = 4.5, (b) z = 5.0 (c) z = 5.5. In all simulations, σ xx = σ yy = 1/2.
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  5(d) to the text and modified the figure caption. It is clear from the new figure 5(d) that Eq. 15 describes the numerical results very well.

Table 1 :

 1 The number of constraints (force and torque balance on each particle, fixed stress tensor σ) and the number of elements of f for systems with periodic boundary conditions, N particles and an average coordination number z in the force network ensemble.

	dimension d friction # constraints	# elements of f
	2	no	2N -2 + 3	zN/2
	2	yes	2N -2 + 3 + N	zN
	3	no	3N -3 + 6	zN/2
	3	yes	3N -3 + 6 + 3N zN

Table 2 :

 2 The maximum shear stress τ m for disordered systems with coordination number z and N = 1024 particles obtained by fitting Eq. (
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