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Abstract

To perform uncertainty, sensitivity or optimization analysis on scalar variables calculated by

a cpu time expensive computer code, a widely accepted methodology consists in first identifying

the most influential uncertain inputs (by screening techniques), and then in replacing the cpu

time expensive model by a cpu inexpensive mathematical function, called a metamodel. This

paper extends this methodology to the functional output case, for instance when the model

output variables are curves. The screening approach is based on the analysis of variance and

principal component analysis of output curves. The functional metamodeling consists in a curve

classification step, a dimension reduction step, then a classical metamodeling step. An industrial

nuclear reactor application (dealing with uncertainties in the pressurized thermal shock analysis)

illustrates all these steps.

Keywords: Functional output, Pressurized thermal shock transient, Principal component anal-

ysis, Uncertainty and sensitivity analysis

1 INTRODUCTION

The uncertainty analysis and sensitivity analysis (UASA) process is one of the key step for

the development and the use of predictive complex computer models (de Rocquigny et al. [7],
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Saltelli et al. [28]). On one hand, this process aims at quantifying the impact of the input

data and parameters uncertainties on the model predictions. On the other hand, it investigates

how the model outputs respond to variations of the model inputs. For example in the nuclear

engineering domain, it has been applied to waste storage safety studies (Helton et al. [12]),

radionuclide transport modeling in the aquifer (Volkova et al. [31]), safety passive system

evaluation (Marquès et al. [20]) and simulation of large break loss of coolant accident scenario

(de Crécy et al. [5]).

In practice, when dealing with UASA methods, four main problems can arise:

1. Physical models can involve complex and irregular phenomena sometimes with strong

interactions between physical variables. This problem is resolved by using variance-based

measures (Sobol [30]; Saltelli et al. [28]);

2. Computing variance-basedmeasures can be infeasible for cpu time consuming code. Metamodel-

based techniques (Sacks et al. [26]; Fang et al. [10]; Iooss et al. [14]) solve this problem

and provide a deep exploration of the model behavior. A metamodel is a mathematical

emulator function, approximating a few simulation results performed with the computer

code and giving acceptable predictions with a negligible cpu time cost;

3. The two preceeding tools (variance-based sensitivity analysis and metamodel’s method)

are applicable for low-dimensional problems while numerical models can take as inputs

a large number of uncertain variables (typically several tens or hundreds). One simple

solution is to apply, in a preliminary step, a screening technique which allows to rapidly

identify the main influent input variables (Saltelli et al. [28]; Kleijnen [15]);

4. Another problem of high dimensionality arises when numerical models produce functional

output variables, for instance spatially or temporally dependent. Until recent years, this

problem has received only little attention in the UASA framework. However, three recent

works have brought some first solutions:

• Campbell et al. [3] use a principal component analysis of output temporal curves, then

compute sensitivity indices of each input on each principal component coefficient;

• Lamboni et al. [17] develop the multivariate global sensitivity analysis method. It

allows to aggregate the different sensitivity indices of the principal component coef-

ficients in a unique index, called the generalized sensitivity index. Each generalized

sensitivity index explains the influence of the corresponding input on the overall out-

put curve variability.

2



• Dealing with complex and cpu time consuming computer codes, Marrel et al. [21]

propose to build a functional metamodel (based on a wavelet decomposition tech-

nique and the Gaussian process metamodel, see Bayarri et al. [1]). Then, Monte

Carlo techniques are applied on the functional metamodel to obtain variance-based

sensitivity indices.

In this paper, we present an overall UASA methodology, from screening to metamodeling,

applicable to output curves of cpu time consuming computer models.

This methodology is motivated by an industrial application concerning the nuclear safety.

Such study requires the numerical simulation of the so-called pressurized thermal shock analysis

using qualified computer codes. This quantitative analysis aims at calculating the vessel failure

probability of a nuclear pressurized reactor. In a general context, structural reliability aims

at determining the failure probability of a system by modeling its input variables as random

variables. The system can be simulated by a numerical model (often seen as a black box

function), which can be written for instance Y = f(X) where Y ∈ R is the monodimensional

output variable, f(·) is the model function and X = (X1, . . . , Xp) ∈ Rp are the p-dimensional

input variables. A reliability problem can consist in evaluating the probability that the output

Y exceeds a given treshold Ys. One problem is that, as the model function (i.e. the numerical

computer code) becomes more and more complex, cpu time of the model increases dramatically

for each run. To solve this problem, authors from structural reliability domain have largely

contributed to the development and promotion of advanced Monte Carlo and FORM/SORM

methods (Madsen et al. [19]). These techniques are now widely used in other physical domains,

from hydraulics to aerospace engineering (see some examples in de Rocquigny et al. [7]). For

our purpose (scenario of a nuclear reactor pressurized thermal shock), past and recent works

have proposed some advanced methods in order to compute the failure probability with a small

number of computer code runs, additionally to a high level and conservative confidence interval

(de Rocquigny [6], Munoz-Zuniga et al. [23]).

At present, one major challenge in such calculations is to propagate input uncertainties

in thermal-hydraulic models, by using for example Monte Carlo methods. However, the four

previously described difficulties turn this problem to an extremely difficult one. First, sophis-

ticated phenomena are implemented in the computer code. Then, the behaviour of the output

variables are particularly complex and trivial method (as linear approximation) are not appli-

cable. Second, the thermal-hydraulic models require several hours to perform one simulation

in order to simulate the full transient, while several thousands simulations are required by the
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Monte Carlo methods. Thus, metamodels are necessary to solve this difficulty. Third, the un-

certainty sources are numerous: several tens of uncertain inputs have to be taken into account

and screening techniques are required. Finally, the model output variables of interest are several

time-dependent curves (temperature, primary pressure, exchange coefficient) while well-known

UASA are defined for scalar output variables.

In the following section, we present more deeply the industrial problem, the associated

numerical model and the variables of interest. In the third section, a functional screening

technique, based on variance decomposition and generalized sensitivity indices, is described and

applied. In the fourth section, the functional metamodeling method is detailed. Finally, a

conclusion summarizes our results and gives some perspectives for this work.

2 THE THERMAL-HYDRAULIC TRANSIENT SIMU-

LATION

In the generic methodology of uncertainty treatment (de Rocquigny et al. [7]), the first step

is devoted to the specification of the problem. In particular, the objectives of the studies, the

computer code which will be used, the studied scenario, the input uncertain variables and the

output variables of interest have to be defined.

2.1 The industrial problem

Evaluating nuclear reactor pressure vessel (NRPV) performance during transient and accidental

conditions is a major issue required by the regulatory authorities for the safety demonstration

of the nuclear power plant. Indeed, during the normal operation of a nuclear power plant,

the NRPV walls are exposed to neutron radiation, resulting in localized embrittlement of the

vessel steel and weld materials in the area of the reactor core. Therefore, the knowledge of

the behaviour of the pressure vessel subjected to highly hypothetic accidental conditions, as a

Pressurized Thermal Shock (PTS) transient, is one of the most important inputs in the nuclear

power plant lifetime program (see Fig. 1).

In our industrial context, the transient critical for the PTS consists of a Small Break LOCA

(Loss of Coolant Accident), located at a hot leg of the studied PWR (see Fig. 1). Consecutive

water loss and depressurization lead to the initiation of the safety injection system. The cold

water injected by this system may enter in contact with the hot walls of the vessel and may

provoke a sudden temperature decrease (thermal shock) associated with severe related thermal
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Figure 1: Scheme of a break in the hot leg of the primary circuit leading to a Pressurized Thermal
Shock (PTS). Adapted from an IRSN document.

stresses. The temperature decrease depends on the way the injected cold water mixes with the

hot fluid and on the level of heat transfer between the more or less mixed cold water and the

vessel. The safety issue corresponding to the PTS is the vessel rupture. Fluid temperature

close to the vessel walls and heat transfer coefficient are, with the pressure inside the vessel, the

three determinant variables in the prediction of PTS consequences. These three curves are time

dependent and calculated by a thermal-hydraulic code. As many of the input variables of the

thermal-hydraulic code are uncertain, it will be a challenging task to evaluate the uncertainties

on these three time dependent responses. In the following of the paper, we will focus on only

one of the responses of interest: the fluid temperature (named Tbas).

2.2 The CATHARE2 model

CATHARE is the French best-estimate code for thermal-hydraulic nuclear reactor safety studies.

It is the result of a more than thirty years joint development effort by CEA (the research

institution), EDF (the utility), AREVA (the vendor) and IRSN (the safety authority). The

code is able to model any kind of experimental facility or PWR (Pressurized Water Reactors,

the present Western type reactors), or is usable for other reactors (already built such as RBMK

reactors, or still underway such as the future reactors of Generation IV). It is also used as a

plant analyzer, in a full scope training simulator providing real time calculations for the plant
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operators.

The code has a modular structure, which allows all the quoted above modelings. The main

module is the 1-D module, but there is also 0-D and 3-D volumes and all the modules can be

connected to walls or heat exchangers. Many sub-modules are available to calculate for example

the neutronics, the fuel thermo-mechanics, pump characteristics, accumulators, etc. All modules

use the two-fluid model to describe steam-water flows. Four non-condensable gases may also be

transported. The thermal and mechanical non-equilibrium are described, as well as all kinds of

two-phase flow patterns.

A stringent process of validation is performed. First of all, quite analytical experiments are

used in order to develop and qualify the physical models of the code. After that, a verification

process on integral effect tests is carried out to verify the overall code performance.

2.3 Definition of uncertainty sources

This section describes how the list of the input variables and the quantification of their uncer-

tainty via a probability density function have been performed. First of all, two existing lists

were used as a basis. The first list is the one established by CEA for the BEMUSE bench-

mark (de Crécy et al. [5]), devoted to the Large Break LOCA. The second list is aimed at

defining the work program of determination by CEA of the uncertainties of the physical models

of CATHARE, both for Small and Large Break LOCA. In both lists, the output variable of

interest is the maximum clad temperature. The PTS is a transient which has some specificities,

of course with respect to the Large Break LOCA, but also to the already studied Small Break

LOCA, owing to the size and the position of the break. In addition to that, the output variables

of interest in a PTS are related to the conditions of pressure, liquid temperature, flow rate and

level in the cold leg and not to the maximum clad temperature. Consequently, a rather detailed

analysis of the PTS scenario has also been performed by experts and has led to the definition

of p = 31 input variables, which are of two types.

The first type of variables is those related to the system behavior of the reactor. They are:

• The initial conditions (e.g. secondary circuit pressure);

• The boundary conditions (e.g. the residual power);

• The flow rate at the break (all the parameters involved in the critical flow rate prediction,

e.g. liquid-interface heat transfer by flashing);

• The conditions upstream from the break (e.g. interfacial friction in stratified flow in the
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hot leg);

• Interfacial friction (e.g. in the core);

• Bypass phenomenon in the vessel upper head.

The second type of variables is those related to the safety injections and accumulators. They

are:

• The temperature and the flow rate of the injections;

• The features of the accumulators (e.g. initial pressure);

• The condensation phenomena (e.g. liquid-interface heat transfer in stratified flow down-

stream from the injections);

• The thermal stratification in the cold leg.

The quantification of the uncertainty of the variables is performed for the physical models

either by using a statistical method of data analysis, the name of which is CIRCE (giving

normal or log-normal distribution types), or by expert judgment (giving also normal or log-

normal distributions). For the initial and boundary conditions, reactor data are generally used,

giving uniform or normal laws. CIRCE (de Crécy [4]) can be used only if there are experiments

with a sufficient numbers of measures, which is the case of a rather large number of variables

of both existing lists: BEMUSE and CATHARE. By lack of time, CIRCE was not used for

the “new” parameters, specific to the PTS. A CIRCE study is nevertheless underway for two

parameters related to the condensation effects resulting from the injection of cold water in the

cold leg.

At the end of this step, 31 random input variables have been defined with their probability

density function. The following step consists in performing a sensitivity analysis in order to

retain only the most influent inputs on the output variables of interest.

3 SCREENING WITH GENERALIZED SENSITIVITY

INDICES

In order to reduce the initial list of 31 variables for the construction of metamodels and the

propagation of uncertainties, it is necessary to implement a method that gives the sensitivity

of the input variables on the responses (i.e. the output variables of interest) obtained with the

code CATHARE2. For a scalar response, this approach is called the screening and numerous
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methods can be applied (Saltelli et al. [28], Dean & Lewis [8]). In this paper, the model response

is a time curve and these classical approaches are not applicable.

A first sensitivity analysis, using a One-At-a-Time (OAT) method has provided a first idea

of the influence of the input variables. OAT is a coarse sensitivity analysis process where each

input value is moved once (for example from a minimal value to a maximal value), and its effect

on the output value is analyzed. In our case, p+ 1 = 32 simulation runs have been performed;

then a subjective visual analysis between the 32 output curves has allowed to detect 14 influent

inputs. For several reasons, OAT is judged as a bad practice for sensitivity analysis (see Annoni

& Saltelli [27]), but engineers still use this approach in order to verify their model. In the

following, we use a more rigorous method for the sensitivity analysis of inputs on an output

curve.

3.1 Generalized sensitivity indices method

For a discrete time response, a sensitivity analysis could be performed separately at each cal-

culation time step. Indeed in this case, the studied output is a scalar and the classical global

sensitivity techniques are applicable. However, this technique has the disadvantage of introduc-

ing a high level of redundancy because of the strong correlations between responses from one

time step to the next one. It may also miss important dynamic features of the response.

Recently, Lamboni et al. [16, 17] have developed the method of generalized sensitivity indices

(GSI), which summarizes directly the effect of each input variable on the time series output of

a computer code. This method can be divided in four steps:

1. n simulations are carried out with the computer code (CATHARE2 in our case) by varying

the p input variables (X1, ..., Xp) randomly or according to a factorial experimental design.

This gives n time responses. The set of outputs can be represented in the form of a n× T

matrix, where T is the number of time sampling points (in our case T = 512):

Y =




Y 1
1 · · · Y T

1

...
. . .

...

Y 1
n · · · Y T

n




. (1)

Each column Y t in Y represents the simulated values of the output variable at a given

time, while each row of Y is a transient simulation obtained for a given set of values of the

input variables.
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2. The principal components analysis (PCA) is used to decompose the whole variability (or

total inertia) in Y. The total inertia is defined as I(Yc) = trace(tYcYc), where Yc is

the matrix Y with each column centered around its mean. Thus tYcYc is the variance-

covariance matrix of the columns of Y. The PCA decomposition is based on the eigenvalues

and eigenvectors of tYcYc. Let λ1, . . . , λT denote the obtained eigenvalues in decreasing

order and let L denotes the T × T matrix of eigenvectors, where each column Ik is the

eigenvector associated to λk. The N × T matrix H of principal components scores is

obtained by: H = YcL. The columns of H, hk for k = 1, 2, . . . , T , are mutually orthogonal

linear combinations of the Yc columns. By construction, H has the same total inertia as

Yc, but its inertia is mainly concentrated in the first principal components scores.

3. The third step in the method involves performing an ANOVA (ANalysis Of Variance) type

decomposition of each principal components hk:

SS(hk) = SS1,k+. . .+SSi,k+. . .+SSp,k+SS12,k+. . .+SSij,k+. . .+SSp−1p,k+. . .+SS1..p,k

(2)

where SS represents the sum of square of the effects. SSi,k is the main effect of input

variable i on the principal component k, SSij,k is the effect of the interaction between the

input variables i and j on the principal component k, etc. Note that this decomposition

is always possible if the factorial design is orthogonal and is unique if the factorial design

is complete (Montgomery [22]). The sensitivity indices SI on the principal component hk

are defined by:

SIW (hk) =
SSW,k(hk)

SS(hk)
(3)

with W = 1, . . . , p for the first order sensitivity indices (main effects), W = {1, 2}, . . . , {p−

1, p} for the second order effects, etc. We have SSW,k(hk) = ‖SWhk‖2 where SW denotes

the orthogonal projection matrix on the subspace associated to W .

4. Finally the GSI are calculated by summing the SIW (hk) of the principal components

weighted by the inertia Ik associated with the component hk:

GSIW =

T∑

k=1

Ik

I
SIW (hk) . (4)

These GSI measure the contribution of the terms W (of first order, second order, etc.) to

the total inertia of the time responses. For practical purposes, only the first T0 principal
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components (T0 ≪ T ) are kept such that

T0∑

k=1

Ik =
x

100
I with x a given percentage (99%

for example).

The dynamic coefficient of determination R2
t evaluates the quality of the approximations

(truncations of the principal components and of the ANOVA decomposition) directly on the

original time series (matrix Y):

R2
t =

∑n

i=1 (ỹ
t
i − ȳt)

2

∑n

i=1 (y
t
i − ȳt)

2 for t = 1, . . . , T , (5)

where ȳt =
∑n

i=1 y
t
i and ỹt are the columns of the approximated matrix of outputs Ỹc =

∑

W

SW H̃L̃
t. The matrix H̃ (resp. L̃) contains the first T0 columns of H (resp. L) and the

summation on W is restricted to those factorial terms in the approximation. A value of R2
t

close to 1 indicates that most of the inertia of Y was captured while a low R2
t means that the

obtained GSI should be interpreted with caution.

The complete decomposition (2) is possible only in the case of a full factorial design (un-

tractable in our case because a full factorial design at 2 levels and 31 variables would require

231 ≃ 215 × 106 simulations). As a consequence, we use a fractional factorial design (Mont-

gomery [22]), which enables only studying a limited number of effects. We focus our study to a

two levels fractional factorial design of resolution IV, which can estimate without bias the first

order effects of p = 31 input variables with n = 2p−q = 26 = 64 simulations (q = 25). The

generated experimental design selects 64 points among the 231 possible points of the two levels

full factorial design.

3.2 Results for the response Tbas

A two levels (corresponding to the selected minimal and maximal values of the variables) exper-

imental design, and then with only 64 points, was generated and the corresponding calculations

performed with the CATHARE2 code. The results concern the response of interest Tbas, the

temperature at the bottom of the cold leg as a function of time. The 64 times series are shown

in the figure 2. 95% of the inertia of these time series are captured by the nine first principal

components (the three first principal components capture 82% of the inertia).

Figure 3 shows at the top the correlation coefficients between the 3 first principal components

(PC) and the outputs Yt for t = 1, . . . , T (with T = 512) and at the bottom the sensitivity indices

SIW (only the six most important are shown) of the 3 first PC. We notice that the first PC is
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Figure 2: 64 simulations of Tbas obtained from the results of the CATHARE2 code.

positively correlated with the output except at the beginning of the transient, while the second

has a better correlation at the beginning of the transient. The first two PC are more sensitive

to the variable 5 (residual power) and the third one to the variable 31 (stratification rate).

Figure 4 shows the dynamic coefficient of determination versus time. The values of R2
t ,

between 0.6 and 1, accredit a good confidence to the GSI estimates. This confidence is better

in the first part of the transient where R2
t are highest. This result is interesting because with

regards to the thermal shock impact, we are more interested by the temperatures in the first

part of the transient. We can therefore conclude that the GSI estimates will be good indicators

of the sensitivity of input variables to the thermal shock.

Table 1 shows the GSI of the variables, listed in decreasing order. The sum of the indices

(75%) represents the percentage of inertia (ie variability of the response) explained by the main

effects. If we accept the variables having a GSI greater than or equal to 1%, we obtain the 12

variables listed in Table 1. When we compare these variables to the 13 variables identified as

important in the OAT analysis (see beginning of section 3), we find six variables in common:

residual power (V 5), steam generator emergency feedwater supply temperature (V 6), injection

system temperature (V 7) and injection system flowrate (V 8), accumulators temperature (V 9)

and nitrogen fraction in accumulators (V 13). The other variables were not included in the

OAT list: liquid-interface exchange in stratified flow (V 29), rate of stratification (V 31), singular

pressure drop in dome bypass (V 14), secondary circuit pressure (V 4), liquid-interface exchange
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Figure 3: Up: correlation coefficients between the 3 first principal components (PC) and the outputs
Yt; bottom: 6 larger sensitivity indices SIW of the 3 first PC.

Figure 4: Dynamic coefficient of determination R2
t versus time.

for all flow types (V 30) and accumulators initial pressure (V 11). It shows that applying OAT

can induce errors on the sensitivity analysis process and that the GSI approach can produce

useful results.

In the following, we supress from this list of 12 inputs one additional input (the nitrogen
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Table 1: First GSI of the inputs (decreasing order).
Input number Input definition GSI(%)

V 5 Residual power 25.45

V 8 Injection System flowrate 10.29

V 7 Injection System temperature 6.71

V 29 Liquid-interface exchange in stratified flow 6.03

V 31 Rate of stratification 3.97

V 9 Accumulators temperature 3.35

V 13 Nitrogen fraction in accumulators 3.27

V 6 Steam generator emergency feedwater supply temperature 2.59

V 14 Singular pressure drop in dome bypass 2.51

V 4 Secondary circuit pressure 2.10

V 30 Liquid-interface exchange for all flow types 1.74

V 11 Initial pressure of accumulators 1.03

fraction in accumulators) and retain only 11 input variables. This is due to a posteriori modeling

considerations.

4 THE FUNCTIONAL METAMODELING

The section 3 has introduced the GSI which accuracy depends on the number of simulations.

Using a small number of simulations (64), this screening step has allowed us to find a restricted

number of influent inputs on the output curves. In this section, a methodology is proposed

in order to build a metamodel of the computer code. Not restricted by the cpu time, this

metamodel will be able to be run as many times as necessary. It will serve us for a quantitative

sensitivity analysis and subsequent reliability studies. Starting from n input-output couples

(X1, Y1), . . . , (Xn, Yn) ∈ Rp×RT , we first cluster the inputs-outputs into K groups, then reduce

the dimension T to d ≪ T (for the reasons given in the paragraph 3.1), learn the relation

between xi and reduced representations (using classical metamodeling techniques), and finally

determine a reconstruction function from Rd to RT .

The clustering step allows to distinguish several physical behaviors, which can be modeled in

quite different ways. Our main ambition is to handle functional clusters of arbitrary shapes, and

then reduce the dimension non-linearly to describe (almost) optimally any manifold. Ascendant

hierarchical clustering (with Ward linkage) will be the algorithm of choice, because it can detect

classes of arbitrary shapes and is well suited to estimate the number of clusters. This last task is

done by estimating prediction accuracy using subsampling, like in Roth et al. [25]. We use the

L2 distance between curves to embed them into a k-nearest-neighbors graph, and then estimate
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the commute-time euclidian distances in this graph (Yen et al. [32]). This preprocessing step

eases the clustering process by increasing long distances and decreasing short ones. The figure

5 shows an example of two well separated clusters produced by the algorithm.

Figure 5: Temperature versus time (CATHARE2 code), two clusters.

4.1 Methods for dimensionality reduction

Assume now that a group of m < n inputs-outputs (Xi, Yi) has to be analyzed for dimension

reduction (the indexation goes from 1 to m, but represents a subset of {1, . . . , n}). The classical

method for the dimension reduction is a (functional) principal components analysis (Ramsay

& Silverman [24]), which is perfectly suited for dimensionality reduction of linear subspaces

embedded into RT . However, in some cases this method is inappropriate; for example a simple

sphere in R3 cannot be represented in two dimensions using principal components. Functions in

RT could have an even more complex structure ; that is why we choose to use a manifold learning

technique, namely Riemannian Manifold Learning (RML) (Lin et al. [18]). This method aims

at approximating Riemannian normal coordinates (see for example do Carmo [9]). It performs

the best in our practical tests versus other nonlinear techniques.

The RML algorithm consists at the beginning in building a graph representing the data;

all the further computations are done inside this graph. It is basically a k-nearest-neighbors

graph, which is used to constrain the representations step by step. In short, RML ensures

that the radial distances along the manifold, as well as the angles in each neighborhood are

(approximately) preserved.
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4.1.1 Building of the initial graph

The algorithm proceeds as follows:

1. Build the k-nearest neighbor graph for some value of k (around
√
n where n is the number

of data points).

2. In each neighborhood, delete all edges not matching the visibility condition below.

3. Whenever two connected points are relatively too far apart, delete the corresponding edge.

The last step is rather heuristic, and could need to be adapted to the data. That is why we do

not describe it there.

For the second step, we define V N as the “visible neighbors” set of Y . We laso define

the function visibility(V N, i) which is true if every index iℓ in V N satisfies Ŷ YiℓYi ≤ π
2 , and

which is false otherwise. This means that the neighbors should not ”eclipse” each other, which

is a natural condition to avoid edge redundancy and thus better models the local geometry.

Considering a neighborhood Yi1 , . . . , Yik of Y in {Yi, i = 1, . . . , n}, the second step proceeds as

follow:

1. Set V N to Yi1 .

2. For i from 2 to k:

if visibility(V N, i), add Yi to V N .

3. Set the neighbors of Y to V N .

The figure 6 summarizes the neighbors selection process.

Figure 6: Visibility neighborhood of a point Y (circle).
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4.1.2 Determining the starting point and initial coordinates

Quite heuristically, Y0 will stand for the point which minimizes the sum of graph distances

from it to all other points (we use the Dijsktra algorithm to find it). This is a way to choose

the “center” of the functional data, which is expected to be a good starting point. Now, to

initialize the stepwise search for coordinates Zi ∈ Rd, we need to know the coordinates of a

small neighborhood around Y0. Practically, this is done by computing a principal component

analysis on the selected small neighborhood (of size k or less). This provides d basis functions,

which generate a d-dimensional space Q0.

If B0 is the matrix of the d discretized basis functions in lines, then the coordinates Zi when

Yi is a neighbor of Y0 are initially determined as follows:

Zi = B0(Yi − Y0) .

That is, Zi is the coordinates of the projection of Yi onto Q0. A final normalization ensures that

radial distances are preserved: Zi is replaced by ‖Yi−Y0‖
‖Zi‖

Zi (with Z0 = 0). This is illustrated on

the figure 7.

Figure 7: Local step in the RML algorithm.

4.1.3 Solving for all coordinates by local optimization

If Y is too far from Y0 for a valid tangent plane approximation, the basic idea is to preserve local

angles with the neighbors of a predecessor on a shortest path from Y0 to Y . Indeed, this results

in an (approximately) locally conformal application. If we write Yp for a predecessor of Y , and

Y
(1)
p , . . . , Y

(q)
p its neighbors with known reduced coordinates Z

(i)
p (some are surely known if we

use a breadth-first walk in the graph), we have to ensure that
̂

ZZpZ
(i)
p ≃ ̂

Y YpY
(i)
p , i = 1, . . . , q
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under the distance constraint ‖Z−Zp‖ = ‖Y −Yp‖. This can be transformed into a least-squares

problem with quadratic constraints, leading to an equation solved numerically. The procedure

is detailed below.

Given three vectors α, β and γ, cos α̂βγ can be written 〈α−β,γ−β〉
‖α−β‖.‖γ−β‖ . Thus, the optimization

problem can be transformed in

∀i = 1, . . . , n ,
〈Z − Zp, Z

(i)
p − Zp〉

‖Z − Zp‖.‖Z(i)
p − Zp‖

− 〈Y − Yp, Y
(i)
p − Yp〉

‖Y − Yp‖.‖Y (i)
p − Yp‖

≃ 0 ,

under the constraint ‖Z −Zp‖ = ‖Y − Yp‖. The ”≃” sign above has to be specified ; we choose

to minimize the euclidian norm of the vector of the angles differences. By writing AZ for the

matrix of the vectors
Zp−Z(i)

p

‖Zp−Z
(i)
p ‖

in lines, and BY for vector of dot products
〈Y−Yp,Y

(i)
p −Yp〉

‖Y
(i)
p −Yp‖

(fully

known), the optimization problem can be stated compactly as follows:

Minimize ‖AZ(Z − Zp)−BY ‖ ,

under the constraint ‖Z−Zp‖ = ‖Y −Yp‖. We can then write the Lagrangian of this optimization

problem, to express Z − Zp in function of all known variables and the Lagrange multiplier λ.

This last parameter can be estimated at low cost by solving an equation numerically. The figure

8 illustrates this process.

Figure 8: Global step in the RML algorithm. Yp (resp. Zp) is a predecessor of Y (resp. Z) and
(Yi1, Yi2, Yi3) (resp. (Zi1, Zi2, Zi3)) are the neighbors of Yp.

The reconstruction function is then easily done. We start from the training sample of func-

tional outputs Yi ∈ RT and corresponding embeddings Zi ∈ Rd. Let us write Zi1 , . . . , Zik the

k nearest neighbors of Z in the d-dimensional space. First, a local functional PCA is achieved

around Yi1 , . . . , Yik to replace the curves by their d-dimensional principal components scores
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Y ′
ij
. Then we solve the problem stated above with reversed roles, before re-expanding reduced

coordinates Y ′ onto the orthonormal basis of (functional) principal components.

4.2 Application to the PTS

A special low discrepancy design of size n = 600 with the 11 influent input variables has

been built. This design is an optimized Latin Hypercube Sample with a minimal wrap-around

discrepancy, which has been proved to be especially efficient for the metamodel fitting process

(Iooss et al. [13]). Therefore, 600 simulation runs have been performed in order to obtain the

600 output curves. Each curve is sampled on T = 414 points (see Fig. 9 for an example of 100

curves).
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Figure 9: 100 curves amonst the 600 output curves.

We compare three kinds of metamodels: functional PCA, (functional) RML and a direct

estimate through a local weighted mean, which does not use any dimensionality reduction. This

last model, written FkNN for ”functional k nearest neighbors”, predicts an output Y ∈ RT from

a new input X ∈ Rp as follows:

1. Determine the k nearest neighbors of X among the set {X1, . . . , Xn} ; write their indices

i1, . . . , ik.

2. Compute Ŷ =
1

C

k∑

j=1

e

−‖X−Xij
‖2

σ2
ij

Yij

, where C =
∑k

j=1 e

−‖X−Xij
‖2

σ2
ij .

The main parameter, k, is estimated by cross-validation. The local parameters σi are computed
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by maximizing the local variations among gaussian similarities, according to the formula

σi =
‖Xi −Xik‖2 − ‖Xi −Xi1‖2

log ‖Xi −Xik‖2 − log ‖Xi −Xi1‖2
.

For the other models (functional PCA and RML), we use the Projection Pursuit Regression

method (see for example Friedman & Stuetzle [11]) as a metamodel to learn the reduced coeffi-

cients.

Figure 10 shows the mean square error (MSE) and the predictivity coefficient Q2 (coeffi-

cient of determination computed on test samples) pointwise errors. These measures have been

computed using a 10-fold cross-validation technique (dividing the 600 simulation sets in 10

simulation sets). A Q2 small or negative corresponds to a poor model, while a Q2 close to 1

corresponds to a good model. The small Q2 values for RML and PCA at the beginning of the

transient (time index smaller than 100) are non significative because they are due to the small

variability of the curves, turning the output variance to be close to 0 (which is the denomina-

tor in the Q2 formula). The corresponding small values of the MSE confirm this behaviour.

For Nadaraya-Watson curve, this effect is not present because this estimator computes a local

mean and the MSE at the beginning of the curves are extremely small. For the other parts

of the curve (time index larger than 100), the FkNN estimate is clearly insufficient compared

to the PCA and RML estimates. Globally, the PCA method performs best: the predictivity

coefficients are larger than 70% (for time index larger than 100) which is clearly a good result

with regard to the complexity and chaotic aspect of the CATHARE2 output curves.
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Figure 10: Mean square error MSE (left) and predictivity coefficient Q2 (right) error curves (solid
line: PCA, dashed line: RML, dotted line: FkNN).
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To visualize more accurately the performances of the different methods, five metamodel-

based predicted curves are given in Figure 11. Several curves are better approximated by

the RML method, but several others are really badly predicted by RML comparing to the

PCA predictions. Indeed, RML reproduces the form of the curves irregularities, but these

irregularities are sometimes misplaced. We have seen previously that PCA gives better results

than RML in terms of MSE and Q2 criteria. In fact, these L2 criteria are not the most adapted

ones to measure the adequacy of the predicted curves when we are interested by reproducing the

irregularities and the jumps of the curves. As a conclusion, linear (PCA) and nonlinear (RML)

techniques seem complementary. We are still working on improvements of the RML technique

in order to improve its L2 performance.

Figure 11: Up left: 5 original (CATHARE2 simulation) curves. Up right: corresponding predicted
curves with functional PCA. Bottom left: corresponding predicted curves with RML. Bottom right:
corresponding predicted curves with FkNN method.

20



5 CONCLUSION

In order to improve the UASA of the PTS analysis using probabilistic methods, a methodology

of metamodel fitting on the output curves of a thermal-hydraulic computer code has been pro-

posed in this paper. Compared to other works on this subject which deal with scalar outputs

(de Rocquigny et al. [7], Saltelli et al. [29]), considering the whole output curve renders the

UASA more difficult. We have shown that the GSI approach of Lamboni et al [16] is partic-

ularly adapted to a screening process by using a fractional factorial design technique. For the

metamodeling process, due to the extremely complex behaviour of the thermal-hydraulic output

curves, a new methodology has been developed in several steps: curves clustering, dimension-

ality reduction, metamodel fitting and curves reconstruction. Even if the functional PCA and

RML methods of dimensionality reduction have provided complementary and promising results,

they need further improvements to precisely capture the irregularities of the output curves. One

first possibility would be to mix these approaches in order to keep the best properties of each

one.

The final goal of a functional metamodel development is to be able to take into account

the thermal-hydraulic uncertainties when performing a reliability analysis of the PTS scenario.

Indeed, such analysis needs several thousands of model runs in order to compute the vessel failure

probability subject to this scenario. Using a best-estimate thermal-hydraulic computer code as

CATHARE2 (required by such safety analyses), this large number of runs remains intractable.

This paper puts a first shoulder to the wheel by proposing to approximate the thermal-hydraulic

computer code by a metamodel. Of course, as our metamodels have been built in the goal of

a global approximation, they cannot be directly used for performing reliability analysis. In the

latter case the metamodel shall be accurate only in the region of the space of input variables

where the performance function is close to zero and not everywhere. For this issue, several

methods have been developed in the context of scalar metamodel (Bect et al. [2]), but none in

the functional metamodel case. Future works will try to estimate and control the uncertainty

of the functional metamodel, then to propagate it inside the reliability problem.

Finally, our methodology can be applied to many other industrial fields and UASA applied

problems, as in automotive, aerospace engineering, environmental sciences, etc., where the com-

puter codes are used for prediction of temporal phenomena.
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