
HAL Id: hal-00525490
https://hal.science/hal-00525490

Submitted on 12 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Automatic Integration Of Or-BAC Security
Policies Using Aspects
Yliès Falcone, Mohamad Jaber

To cite this version:
Yliès Falcone, Mohamad Jaber. Towards Automatic Integration Of Or-BAC Security Policies Using
Aspects. International Conference on Software Engineering Research and Practice (SERP 2010), Jul
2010, Las Vegas, Nevada, United States. pp.5. �hal-00525490�

https://hal.science/hal-00525490
https://hal.archives-ouvertes.fr


Towards Automatic Integration Of Or-BAC Security Policies Using

Aspects

Ylies Falcone1 and Mohamad Jaber2

1INRIA, Rennes - Bretagne Atlantique, France
2VERIMAG Laboratory, Grenoble Universities, France

Abstract— We propose a formal method to automatically

integrate security rules regarding an access control pol-

icy (expressed in Or-BAC) in Java programs. Given an

untrusted application and a set of Or-BAC security rules,

our method derives corresponding AspectJ aspects. Derived

aspects modify the behaviour of the underlying program so

as to meet the policy. Then, these aspects are weaved into

the target program (using the AspectJ compiler). The result

is a trusted program on which the security policy is enforced.

This approach was applied in order to secure the behaviour

of a travel agency application.

Keywords: Security policy, Or-BAC, Aspect Oriented Program-

ming, AspectJ

1. Introduction

To answer the growing security needs in software and

information systems, an approach widely used nowadays

is the one based on security policies. The system secu-

rity is ensured via the application of a set of rules and

recommendations applying to several levels (physical and

logical). The complexity of systems for which the policy

can apply generated lots of endeavor in order to find models

for security policies. These policies have to deal more and

more with distributed systems where local policies might

differ on the locations.

One of the most advanced modeling approaches is the

one based on access control, see [9] for a survey. It rules

the access, through actions, from subjects (system entities)

to objects (system resources). The plethora of formalisms to

express security policies allows to express at a high level of

abstraction the set of requirements a system is supposed to

satisfy. Among them, the Or-BAC [1] (Organization-Based

Access Control) model adds structuring concepts guided by

the notion of organization. The Or-BAC model generalizes

the Role-Based Access Control models and adds an organi-

zational dimension to the policy. An organization is an entity

in charge of management of a set of security rules (obliga-

tions, permissions, prohibitions). The organization affords

to structure the system entities: the subjects (resp. objects,

actions) are abstracted into roles (resp. views, activities). A

context [7] notion is added to define circumstances under

which a rule applies. A policy is then a set of relations (e.g.

interdiction) between organizations, roles, views activities

and contexts.

A classical problem is then to enforce the security policy

on the target system. Indeed, a gap usually exists between

a security model and its derived implementation. Moreover,

during system development, it turns out to be difficult for

system administrators to borrow the formalisms on which

models rely on. Three ways, based on their approach, tend

to be distinguished in access control enforcement [12]: static

code analysis, monitor generation, and code transforma-

tion/rewriting. The principle of enforcing a security policy

by code rewriting is to transform unsafe code (that may

violate the policy) into safe one prior to its execution.

Recent works [11], [15] proposed theoretical frameworks for

security policy enforcement. They have notably shown that

program rewriting is the most powerful technique for enforc-

ing a security policy. The principle is to transform unsafe

code (that may violate the policy) into safe one prior to its

execution. Also, Aspect-Oriented Programming (AOP) [13]

is an efficient technique to deal with orthogonal concerns in

software development. Notably, it offers practical means to

transform program in an efficient and systematic way.

a) Proposed Approach: In this paper we use Or-BAC

(Organization Based Access Control) to model the security

policy and Aspect-Oriented Programming as an underlying

technique for its enforcement. It is possible to consider our

approach as the automatic integration of security into an

implementation. Starting from a system and its Or-BAC pol-

icy, we use policy rules to modify the initial application by

weaving the corresponding aspects. To do so, our approach

proposes a model/integration of the Or-BAC concepts in the

initial application. For this purpose we combine the Or-BAC

rules to generate security aspects. These program rewriters

are in charge of enforcing the security policy. Thereby,

our method is similar to a deployment activity for security

policies.

The remainder of this article is organized as follows.

We review in Sect. 2 the Or-BAC model and the Aspect-

Oriented Programming paradigm. Aspect generation from an

Or-BAC policy is described in Sect. 3. In Sect. 4 we present

the application of our method to some aspect generation

examples taken from a case study. Then, in Sect. 5 we



compare our proposal with other authors’ work. Finally, we

made concluding remarks and future work in Sect. 6.

2. Preliminaries

In this section we briefly review the Or-BAC model

for security policies and the paradigm of Aspect-Oriented

Programming (AOP).

2.1 Organisation-Based Access Control

The Or-BAC model [1], [7] generalizes the Role Based

Access Control models and adds an organizational dimen-

sion to the policy. An organization is an entity in charge of a

set of security rules management (obligations, permissions,

prohibitions). The system operations are called actions. A

subject is an active entity of the system that may realize

actions inside. By opposition to the subjects, the objects

are the non-active entities of the system (liable to subject

operations). The organization affords to structure the system

entities. The subjects (resp. objects, actions) are abstracted

into roles (resp. views, activities). A context notion is added

to define circumstances under which a rule applies.

An Or-BAC security policy is then a set of relations

between organizations, roles, views activities and contexts.

The relations Obligation (org, r, a, v, c) (resp. Permission

(org, r, a, v, c), Prohibition (org, r, a, v, c) means that

the organization org forces the realization (resp. grants the

permission, prohibits) to a subject of role r to realize the

activity a on the view v in the context c.

2.2 Aspect-Oriented Programming.

An aspect [13] brings together joinpoints, pointcuts, ad-

vices, introduction, and declaration. A joinpoint is a control

point in the program where aspects can act, e.g. methods,

constructors, and classes. . . Pointcuts are elements linked to

the program execution flow where it is possible to graft an

aspect around. From an abstract point of view, a pointcut

defines a set of joinpoints, a “cut”. The advice defines the

grafted code by the aspect into the original application.

The advice are typed in order to define the place of the

code insertion regarding the pointcut (before, after, around).

Introduction mechanism is an other important features of an

aspect. It allows one to add some methods or some attributes

to a class or an interface. The declaration mechanism affords

process instruction during the compiling step (e.g.: display

some messages).

3. The proposed approach

We present here the generation of security aspects from

Or-BAC rules. It relies on the following steps (see Fig. 1):

1) extraction of needed system information (class names,

hierarchy,. . . );

2) aspect generation using the policy and the system

information;

3) integration of the aspects into the original application

using aspect weaving.

The technique we adopt considers that the initial system

is developped without any security consideration (everything

permitted). For example there is no user notion or authentifi-

cation facility. Meaning that initially, only functionnal sys-

tem activities are considered. The non-functionnal activities

are supposed to be provided separately (e.g. authentication

mechanism, user support). The specification of an Or-BAC

security policy is done at an abstract level, aside any deploy-

ment condideration. We link the Or-BAC concepts with the

one of Object-Oriented Programming.

3.1 Extraction of the system information

We present now the information that we need from the

underlying system implementation in order to cope with

aspect generation. The need for this first stage is explained

by the difference of abstraction level in the concepts of Or-

BAC and Object-Oriented Programming. First, let us remark

that Or-BAC concepts are independent from any implemen-

tation. Roughly speaking, the purpose of any security policy

is to sort the system configurations into authorized and

prohibited ones. Moreover, due to the numerous development

methodologies available to software developers, it is highly

difficult to identify patterns of code to be linked to access

control concepts. Our proposal is to let software developers

identify some patterns (events) in their implementation and

then link these events to those addressed in the security

policy. So the purpose of this first stage is to bridge this

gap. The correspondences are summarized in Tab. 1.

The first match we make is related to the actions of the

Or-BAC policy (concrete level). We choose to link actions to

methods (one to one) of interest in the underlying program. It

would have been possible to link one action to a sequence of

methods, but in this case, it is always possible to encapsulate

the method sequence into one global method.

Access control policies are dealing with the application of

an action by a subject on an object. One can see an access

security rule as Modality(role, activity, view, context)
where Modality states an abstract appraisal on the 4-

tuple (role, activity, view, context). We will consider con-

text in the advice part of the aspect. Indeed, they are

specific to Or-BAC. As so, by restricting to 3-tuple

(role, actvity, view) we are dealing with role-based poli-

cies, it allows our method to be applied to most of ac-

cess control policies. Each appraisal on an abstract 3-tuple

(role, activity, view) corresponds to a set of concrete ap-

praisals {subject, action, object | subject ∈ role, action ∈
activity, object ∈ view}. Basically we need to know how

such actions are performed under the system implementa-

tion.

We can distinguish three possible ways to express how a

subject applies an action on an object.



modelisation

1) Extraction

Application

A Or−BAC

P A(functional)

Application

description

Policy
concerns
Security

Security
aspects

3) Aspect Weaving

Application A’ secured

hypothesis

A
′ |= P

2) Aspect Generation

Fig. 1: Approach overview.

• In the first case we suppose that a view is related to

the class notion, this means an object in the policy is

related to the instance (an object) of a certain class.

In this case, the funtion ViewClass : View → Class

associates to each view in the policy the corresponding

class (not surjective function). Thus, in the underlying

system that the action is performed by the application

of the method (the action) on the object. The subject is

then a parameter of the action. In this case, concretely,

an action a is performed by a subject s on an object o by

the method call obj.ActionMethod(a)(s) where obj is

an instance of V iewClass(V iew(o)) corresponding to

object o.

• In the second case, a role is related to the class notion;

a subject is represented by the instance of a class.

In this case, the funtion RoleClass : Role → Class

associates to each role in the policy the correspond-

ing class (not surjective function). Subjects of a role

are instances of the corresponding class. So, in the

underlying implementation, an action a is performed

by a subject s on an object o by the method call

sub.ActionMethod(a)(obj) where sub is the instance

of RoleClass(Role(s)).
• In the third case, the method of an action could be per-

formed in any class. Meaning that, the implementation

representation of subject and the object related to this

action are parameters of the method. So an action a is

performed by a subject s on an object o by the method

call x.ActionMethod(a)(o, s) where x is an instance

of X and X the classe where ActionMethod(a) be-

longs to.

The previously described application of the action depends

on the implementation. To abstract from this detail, we

denote by apply(s, α, o) the underlying code for the applica-

tion of α by s on o, and by EP (r, a, v) the set of execution

points {apply(s, α, o) | s ∈ r ∧ α ∈ a ∧ o ∈ v}.

3.2 Aspect generation

The aspect generation uses as inputs the policy, the system

information previously extracted, and additional modules. It

produces aspects in two steps: the generation of pointcuts

and advices. Due to space limitations, we only present the

generation from prohibition rules (see Fig. 3 in Sect. 4.2 for

an example).

Pointcut generation. The pointcut definition catches the

set of execution points defined by EP (r, a, v). For each

element apply(s, α, o) of EP (r, a, v), we generate a point-

cut. Each of these pointcuts pickouts the execution of

ActionMethod(α) (depending on the underlying implemen-

tation). To be effective it also dynamically checks at the cur-

rent execution state that the α action is genuinely performed

by the subject s on object o. One can see the pointcut as

in-lined monitors of events in the underlying system. we

generate the pointcut shown on Fig. 2 for apply(s, α, o).
Advice generation. The advice code performs the rule

enforcement, triggered by the pointcut. It starts by verifying

the context Context, this corresponding code depends on the

implementation. It is generated from information provided

by the system designer in the mapping, or is provided

by an additional module. Note that the context verification

can be performed only at the execution time, since it may

depend on dynamically created content. Thus contexts must

be assessable by a computable function. Then, if the context

is verified, the advice code prevents from performing the

action, and raises an exception. Otherwise, the rule should

not be applied, the method ActionMethod(α) is proceeded

normally. We generate the pointcut shown on Fig. 3.

Additional modules. Some activities or actions may not

be initially present in the application, though they can

be addressed in the policy. The implementation of these

functions can be considered as an input of the aspect

generation. Typical examples of such additional modules

is context authentication. These additional functions are

imported using some security libraries. We then use the

introduction mechanism of Aspect-Oriented programming to

make them available in the aspect definitions.

4. Case study : a travel agency
We depict here how we apply the previously presented

technique to study the security of an application of vir-

tual travel agency named Travel. To show the feasibility

of our approach, we derived from the original version a



Or-BAC (abstract) Object Oriented Implementation (concrete)

Action α Method ActionMethod(a)
Activity a on view v by role r {apply(s, α, o) | s ∈ r ∧ α ∈ a ∧ o ∈ v}

Context cxt A method able to evaluate it ContextVerification(cxt)

Table 1: Correspondance between Or-BAC and OO concepts

pointcut apply_S_Alpha_O(T_S subject, T_O object) :

execution (apply(s,alpha,o) )

&& args(subject,object);

Fig. 2: Pointcut generated for an execution point

apply(s, α, o)

Object around() : apply_S_Alpha_O() {

String s=null;

if (VerificationContext(Context))

s="Violating self validation rule";

else

s = proceed();

return s;}

Fig. 3: Advice of the aspect

mutant where no security mechanism is included. Then we

generated aspects from Or-BAC rules stating some security

requirements the application must fulfill.

4.1 The Travel application and its security

policy

The Travel application originates from the french national

project Politess [10]. It allows the management of travel

requests for its user. To record requests, a user should hold

an account on the application. Validators are attributed to

each user (as well a Travel user) who is the only person

able to perform the final mission validation. In the case of a

long absence, a user can delegate his access rights to another

user. The delegated person can act in the name of the original

user.

We formalized security requirements of the Travel policy

using Or-BAC. For example, one of the requirement ex-

presses the refusal of self-validation: “A validator cannot

validate his own business mission: for a given mission

the validator and the traveller are distinct”. This could

be reasonably understood and formalized in the follow-

ing Or-BAC rule: Prohibition(Travel, validator, validate

, business_mission, mission_ownership). Where the

context mission_ownership states that the mission is reg-

istered by the current traveler. This context can be checked

at runtime.

4.2 Aspect generation for Travel

Following our generation method, the aspect generated for

the previous rule is presented on Fig. 4 and Fig. 5. In this

case we create the aspect with a pointcut (Fig. 4) defined

by apply(traveler, validMission,mission) corresponding

to EP (validator, validate, business_mission). Then, we

generate the code advice (Fig. 5) of type around where we

check the context mission_ownership using the function

V erificationContext defined in the additional modules. If

it is confirmed that we must prohibit the execution of the

action validMission (no call of proceed). Otherwise, the user

is authorized to execute the action (call of proceed).

5. Related works
The idea of using automatic rewriting techniques to en-

force security policies is not new. And then some other

works are similar to the one presented in this paper.

• In [5] Cuppens and al. derive AspectJ abstract aspects

from requirements expressed in Nomad [6], a Metric

temporal logic. They focus on availability properties:

maximum execution and maximum waiting time policy

to prevent the SYN flooding attack in TCP/IP protocol.

• In [8] de Oliveira and al. enforce rewrite-based security

policies using AspectJ. Access control policies are

formalized using rewriting systems. Policies are weaved

in the underlying program using Tom, an extension of

Java to define rewrite systems.

Those approaches differ from the one introduced in this

paper. To the best of our knowledge our proposed approach

is the first which translates directly high level access-control

requirements to direct program modificators so as to enforce

the property.

An other approach is the so called Monitoring Oriented

Programming (MOP) [2] which is a programming paradigm

in wich the monitor synthesis is realised from a user-defined

specification, using Aspect-Oriented Programming. This en-

vironment is implemented in a tool, Java-MOP [3], based on

AspectJ. The objective of this framework is to monitor the

underlying program. So, it differs of our approach, indeed

the monitoring approach aims mainly to detect misbehaviors,

not prevent them.

6. Conclusion and future works
This article presents an aspect generation technique from

an Or-BAC security policy. This method allows to develop

a system without taking into consideration any security

concern. Then, from the security policy we generate a set

of security aspects. The aspects are then integrated into

the initial application using the aspect weaver. We have

presented the method for Or-BAC which is a generalization

of a majority of Role Based Access Control policy models.



pointcut valider1() :

execution (String DiagImpl.validMission(int , int) )

&& if(getRole((Integer)thisJoinPoint.getArgs()[0].intValue())== Validator

&& getView((Integer)thisJoinPoint.getArgs()[1].intValue())== business_mission)

Fig. 4: Pointcut of the aspect generated for rule preventing self-validation

Object around() : valider1() {

String s=null;

if (VerificationContext(mission_ownership))

s="Violating self validation rule";

else

s = proceed();

return s;}

Fig. 5: Advice of the aspect generated for rule preventing

self-validation

We generate aspects described with AspectJ, which is one of

the most famous AOP implementations. We claim that the

proposed method is general and it can be applied to several

RBAC-like policies and aspect languages.

This work opens several research perspectives that we are

currently investigating. First of all, it seems to us possible

to extends the presented method with underlying program

semantics consideration. Also, we plan to integrate this

method into an Or-BAC policy deployment tool integrating

in MotOr-BAC [4]. In addition it seems interesting to

combine this approach with a test generation approach [14]

from an Or-BAC policy. Another working direction is to for-

mally analyze possible interactions between weaved aspects.

Notably, we are looking to how to formally prevent conflicts

between aspects.

References

[1] A. Abou El Kalam, R. E. Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Miège, C. Saurel, and G. Trouessin. Organization
Based Access Control. In 4th IEEE International Workshop on

Policies for Distributed Systems and Networks (Policy’03), June 2003.

[2] F. Chen, M. D’Amorim, and G. Roşu. Checking and correcting
behaviors of java programs at runtime with java-mop. In Workshop on

Runtime Verification (RV’05), volume 144(4) of ENTCS, pages 3–20,
2005.

[3] F. Chen and G. Roşu. Java-mop: A monitoring oriented programming
environment for java. In Proceedings of the Eleventh International

Conference on Tools and Algorithms for the construction and analysis

of systems (TACAS’05), volume 3440 of LNCS, pages 546–550.
Springer-Verlag, 2005.

[4] F. Cuppens, N. Cuppens-Boulahia, and C. Coma. MotOrBAC : un
outil d’administration et de simulation de politiques de sécurité. In
Security in Network Architectures (SAR) and Security of Information

Systems (SSI), First Joint Conference, June 6-9 2006.

[5] F. Cuppens, N. Cuppens-Boulahia, and T. Ramard. Availability
enforcement by obligations and aspects identification. In ARES ’06:

Proceedings of the First International Conference on Availability,

Reliability and Security (ARES’06), pages 229–239, Washington, DC,
USA, 2006. IEEE Computer Society.

[6] F. Cuppens, N. Cuppens-Boulahia, and T. Sans. Nomad: A se-
curity model with non atomic actions and deadlines. In CSFW

’05: Proceedings of the 18th IEEE workshop on Computer Security

Foundations, pages 186–196, Washington, DC, USA, 2005. IEEE
Computer Society.

[7] F. Cuppens and A. Miège. Modelling Contexts in the Or-BAC Model.
In 19th Annual Computer Security Applications Conference (ACSAC

’03), 2003.
[8] A. S. de Oliveira, E. K. Wang, C. Kirchner, and H. Kirchner.

Weaving rewrite-based access control policies. In ACM Conference

on Computer and Communication Security, November 2007.
[9] S. di Vimercati, P. Samarati, and S. Jajodia. Policies, models, and

languages for access control, 2005.
[10] French National Project. RNRT Politess, 2007. http://www.rnrt-

politess.info.
[11] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability

classes for enforcement mechanisms. ACM Trans. Program. Lang.

Syst., 28(1):175–205, 2006.
[12] Kevin W. Hamlen. Security Policy Enforcement by Automated

Program-rewriting. PhD thesis, Cornell University, Aug. 2006.
[13] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,

J.-M. Loingtier, and J. Irwin. Aspect-oriented programming. In
M. Akşit and S. Matsuoka, editors, Proceedings European Conference

on Object-Oriented Programming, volume 1241, pages 220–242.
Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

[14] K. Li, L. Mounier, and R. Groz. Test purpose generation from or-bac
security rules. In 31st Annual IEEE International Computer Software

and Applications Conference, 2007.
[15] J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of

nonsafety policies. ACM Transactions on Information and System

Security, 2007.


