Global sensitivity analysis of stochastic computer models with joint metamodels - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Statistics and Computing Année : 2012

Global sensitivity analysis of stochastic computer models with joint metamodels

Résumé

The global sensitivity analysis method used to quantify the influence of uncertain input variables on the variability in numerical model responses has already been applied to deterministic computer codes; deterministic means here that the same set of input variables gives always the same output value. This paper proposes a global sensitivity analysis methodology for stochastic computer codes, for which the result of each code run is itself random. The framework of the joint modeling of the mean and dispersion of heteroscedastic data is used. To deal with the complexity of computer experiment outputs, nonparametric joint models are discussed and a new Gaussian process-based joint model is proposed. The relevance of these models is analyzed based upon two case studies. Results show that the joint modeling approach yields accurate sensitivity index estimatiors even when heteroscedasticity is strong.
Fichier principal
Vignette du fichier
sobol_joint_SC3.pdf (375.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00525489 , version 1 (11-10-2010)
hal-00525489 , version 2 (23-05-2011)

Identifiants

Citer

Amandine Marrel, Bertrand Iooss, Sébastien da Veiga, Mathieu Ribatet. Global sensitivity analysis of stochastic computer models with joint metamodels. Statistics and Computing, 2012, 22, pp.833-847. ⟨10.1007/s11222-011-9274-8⟩. ⟨hal-00525489v2⟩
456 Consultations
817 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More