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Abstract. This paper presents a review, analysis and comparison of numerical methods im-
plementing the curvature motion and the affine curvature motion for 2D images, shapes, and
curves. These curvature scale spaces allow, in principle, to compute an accurate multiscale
curvature in digital images. The fastest and most invariant of them can be used in a com-
plete image processing chain. This numerical chain simulates the accurate sub-pixel evolution
of an image by mean curvature motion or by affine invariant curvature motion. To do so, it
lets all the level lines of the image evolve by curvature shortening (of affine shortening), com-
putes the image curvature directly on the smoothed level lines, and reconstructs the evolved
image and its curvatures in an intrinsic, grid-independent representation. The paper describes
a careful implementation of this chain, and analyzes its effects on many examples. The mi-
croscopic visualization of an image curvature map reveals after processing many image details.
This image process improves graphic images, gets rid of compression and aliasing effects. It
also gives an accurate tool to explore the validity of Attneave’s and Julesz theories on shape
perception and texture discrimination. The “curvature microscope” runs on line for any image
at http://www.ipol.im/pub/algo/cmmm image curvature microscope/ .

1. Introduction

Attneave’s founding 1954 paper [4] on image perception anticipated the numerical analysis
of digital pictures. He stated that in images: “information is concentrated along contours (i.e.,
regions where color changes abruptly), and is further concentrated at those points on a contour
at which its direction changes most rapidly (i.e., at angles or peaks of curvature)”. Yet, because
of noise and aliasing effects, the direct computation of curvatures on a raw image is impossible
and depends anyway on a smoothing scale.

This explains why, in one of the first serious attempts to cope with this numerical challenge,
Asada and Brady [3] introduced the concept of multiscale curvature. They suggested to approx-
imate contours by splines and to smooth them by a 1D heat equation. Their explicit goal was to
implement Attneave’s idea that shapes must be represented by curvature extrema. This paper
led to increasingly sophisticated attempts to analyze planar shapes by their curvatures. A first
difficulty is that, at fine scale, contours have high curvatures everywhere. Another problematic
issue is the extraction of the contours on which the curvature could be computed. Contours
obtained by “edge detection” are broken and plagued with spurious branches, which hinder the
computation of any reliable curvature.

Clarifying the subject has required a fairly elaborate series of mathematical contributions.
Grayson [15] proved that the intrinsic heat equation smooths Jordan curves and preserves their
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(a). Attneave’s cat (b). Curvature map.

Figure 1. Attneave’s figure illustrating the prominent role of curvature peaks in image
perception and its curvature map computed by level lines shortening.

topology. The Osher-Sethian level set method [35] implements the motion by mean curvature
of an embedded manifold by applying the mean curvature PDE to its signed distance function.
Evans-Spruck [12] and Chen-Giga-Goto [10] elaborated a viscosity solution theory for the scalar
mean curvature motion. A mathematical link between the median filter and the motion by
mean curvature was conjectured by Merriman, Bence and Osher [29] and later proved by several
authors [5], [13], [18].

In parallel, Mackworth and Moktharian [26] proposed a fast numerical scheme to smooth a
curve by the intrinsic heat equation. But their shape extraction algorithm was unconvincing.
Caselles et al. realized the potential of using directly the image level lines instead of its edges.
They proposed to perform contrast invariant image analysis directly on the set of level lines, or
topographic map [8]. A fast algorithm computing the topographic map was developed by Monasse
and Guichard in [33]. Sapiro and Tannenbaum [37] discovered the affine curve shortening and
Alvarez et al. [1] the affine invariant and contrast invariant image smoothing. A remarkably
fast and simple geometric algorithm for affine shortening was given by Moisan in [32].

The present paper starts with a review of the main classes of curvature algorithms, focusing
on isotropic curvature equations and on the two curvature powers that are relevant for image
analysis, namely 1 and 1/3. Then, building on the above mentioned contributions, it describes
a complete image processing numerical chain. The chain starts from a digital image, proceeds
to the level lines extraction and to their independent evolution by curve shortening or affine
shortening. The chain ends up with an accurate visualization tool of image curvatures computed
on the smoothed level lines. This, hopefully, advances Attneave’s program and yields what we
shall term a curvature image microscope. Indeed, the evolved level lines and image are not
defined on the initial grid. The level lines have floating coordinates and the image can be
reconstructed from them at any precision.

There is something slightly paradoxical in smoothing an image to see it better. Nevertheless,
noise, JPEG artifacts, and aliasing (pixelization effects) will be shown to be nicely smoothed out
by the subpixel curvature motion. As anticipated by Attneave, the level line evolution eliminates
the erratic curvatures and yields a curvature more conform to our multiscale contour perception.
Finally the level line visualization (after smoothing) reveals many hidden image details which
can be zoomed in, thanks to the grid independent representation of the image by its level lines.
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The resulting algorithm is fast and can be tested on line1. The above described numerical chain
was outlined in [22] and also in [25] where shape recognition algorithms were explored. The
chain will be completed here with a subpixel image reconstruction from an arbitrary tree of
level lines, which results in a powerful visualization tool.

There are several definitions of curvature and of multiscale curvature, and we shall detail
them before entering into the discussion of how to compute them. The next two sections review
and compare the various types of numerical analysis for curvature motion, and clarify the links
between them. Section §4 describes in detail the Level Lines Shortening (LLS) and its variant the
Level Lines Affine Shortening (LLAS). The Image Curvature Microscope is described in section
§5 where many numerical comparisons are performed. Section §6 is devoted to illustrative
experiments on a choice of image parts containing contours, shapes and textures.

2. Curvature Scale Spaces

2.1. Curvatures. Digital images are given in discrete sampled form but the underlying contin-
uous substratum is assumed to be C∞ and interpolated as such. By Sard’s theorem and by the
implicit function theorem for almost every level λ, the iso-level set u(−1)(λ) is a finite union of
disjoint smooth Jordan curves. These Jordan curves are called the level lines of u and coincide
with the topological boundaries of upper and lower level sets.

Assume in the following that u is at least C2 in a neighborhood of a point x0 ∈ Ω and that its
gradient is not null, Du(x0) 6= 0. Then the scalar curvature of u at x0, denoted by curv(u)(x0),
is the real number defined by

(1) curv(u)(x0) =
uxxu2

y − 2uxyuxuy + uyyu
2
x

(u2
x + u2

y)
3/2

(x0).

This scalar curvature at x0 is linked to the vectorial curvature of the level line passing by x0.
The vectorial curvature of a C2 curve x(s) parameterized by a length parameter s (so that
|x′(s)| = 1) is defined by

κ(x) := x′′(s).

The link between the vectorial curvature of an image level line κ(x) and the scalar curvature
curv(u)(x) at nonsingular points is given by the next formula. Denote by x = x(s) the level line
of u passing by x0. Then

(2) κ(x0) = −curv(u)(x0).
Du

|Du|
(x0).

This relation already suggests that the curvature can be computed in two quite different ways:
either as the curvature of a level line extracted from the image and parameterized by length, or
as a 2D differential operator. In both cases, a previous smoothing (of the level line, of the level
sets) is necessary, which introduces a new parameter, the smoothing scale. Hence the notion of
curvature scale space which will be associated with curve or image evolutions.

2.2. Curve evolutions. Curve smoothing by the heat equation was one of the first versions of
curve analysis proposed by Mackworth and Mokhtarian in [26]. Smoothing a curve by separately
smoothing the coordinate functions seems reasonable, yet the evolved curve may develop self-
crossings and singularities. This model error was corrected in [27] by the same authors. Instead

1http://www.ipol.im/pub/algo/cmmm image curvature microscope/
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of applying the heat equation for relatively long times, they proposed an evolution by Curve
Shortening (also called intrinsic heat equation)

(CS)
∂x

∂t
= κ(x).

By this (nonlinear) evolution a curve instantly becomes smooth, shrinks asymptotically to a
circle and develops no singularities or self-crossings. The proofs of these properties were given
by Gage and Hamilton for convex Jordan curves [14] and later extended to embedded curves by
Grayson [15]. The Affine Shortening equation

(AS)
∂x

∂t
=

(

|κ|1/3ν
)

(x)

where ν(x) stands for the inner unit normal vector at point x0 is a surprising variant of curve
shortening introduced by Sapiro and Tannenbaum in [37], [39]. Angenent, Sapiro and Tannen-
baum [40] gave the existence and uniqueness proofs for affine shortening and showed a result
similar to Grayson’s theorem: a shape eventually becomes convex and thereafter evolves towards
an ellipse before collapsing.

In computer vision the above equations are referred to as curve scale spaces or shape scale
spaces. The term designates any process that smooths a Jordan curve and depends on a real pa-
rameter t, the scale. A shape scale space associates with an initial Jordan curve x(0, s) = x0(s)
a family of smooth curves x(t, s). Curve shortening and affine shortening eliminate spurious de-
tails of the initial shape and retain simpler, more reliable versions of the shape. These smoothed
shapes have finite codes in the sense of Attneave, since they have finitely many curvature ex-
trema. A scale space is causal in the terminology of vision theory if it does not introduce new
features. (New feature here means: a new extremum for some image differential operator). Thus,
curve shortening and affine curve shortening define causal scale spaces. Indeed, the number of
curvature extrema and inflexion points decreases by their application.

2.3. Image evolutions. Alvarez et al. [1] characterized axiomatically all image multiscale
theories, and gave explicit formulae for the partial differential equations generated by scale
spaces. They showed that causal, local scale spaces are governed by PDEs and that under sound
stability conditions for the scale space, the PDE’s have unique viscosity solutions. In particular
all causal, local, isometric and contrast invariant scale spaces are given by curvature evolution
equations:

∂u

∂t
= |Du|G(curv(u), t).

The mean curvature equation

(MCM)
∂u

∂t
= |Du|curv(u)

is the simplest equation in this class for which existence, and uniqueness of viscosity solutions can
be proved [12], [10]. Planar shape recognition algorithms should ideally be projective invariant,
namely invariant to all planar homographies. The affine curvature evolution

(ACM)
∂u

∂t
= |Du|curv(u)1/3

has a more restrictive form of projective invariance: it commutes with all planar affine maps
with determinant 1. It is therefore preferable to the scalar curvature motion, and is definitely
the most invariant image smoothing algorithm ever. Indeed, like the curvature motion, it is
invariant to any continuous increasing contrast change u→ g(u).

A consequence of the contrast invariance for both mentioned equations is that, at least for-
mally, an image evolves by scalar mean curvature motion (resp. affine curvature motion) if and
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only if its level lines evolve by curvature shortening (resp. affine shortening). This fact can be
checked by elementary differential calculus under the assumption that the scalar solution u(t,x)
is smooth [17]. Yet, precisely, the curvature evolution does not yield a C2 function in time and
space. Thus, the above equivalence is a bit trickier and is proved in [11].

3. Curvature algorithms

All sound shape smoothing algorithms in the computer vision literature perform a curvature
or an affine curvature shortening. But the numerical variety of the underlying numerical algo-
rithms is worth noticing. This section discusses their history, implementation, advantages and
drawbacks. There are three kinds of initial data for the algorithm: digital curves, digital sets,
or digital images. We shall examine each in turn.

3.1. Algorithms on curves.

3.1.1. Dynamic curve evolution. As mentioned before, Mackworth and Mokhtarian proposed an
algorithm consistent with curve shortening (CS). Instead of applying the linear heat equation
for relatively long times, it applies to a plane curve the non-linear heat equation, by successively
convolving the arc length parameterization x(·, t) at time n with a Gaussian kernel Gh of stan-

dard deviation proportional to h
1

2 . The consistency of Algorithm 1 with (CS) is given by the

Algorithm 1: Discrete Curve Shortening (CS)

Input: Polygon Σ0, gaussian signal G
Output: Evolved polygon Σn, after n iterations
for all i = 0, n do1

sample uniformly curve Σi ;2

convolve curve Σi with G.3

(easy) Theorem 3.1.

Theorem 3.1. Let x be a C2 curve parameterized by its length parameter s ∈ [0, L]. Then

(3) Gh ∗ x(s)− x(s) = chκ(x(s)) + o(h).

where c is a positive constant.

3.1.2. Affine plane curve evolution. Several attempts to define an affine-invariant analysis for
polygons are described in [38]. The 1/3 power law of planar motion perception and generation
was related to affine invariance in [36]. Moisan [32] discovered an extremely fast and fully affine
invariant geometric curve evolution consistent with affine shortening, which we summarize below.
In the mathematical morphology terminology, this algorithm is an alternate filter, alternating
an affine erosion and an affine dilation. The consistency of Algorithm 3 with affine shortening
(AS) is given in Theorem 3.2.

Theorem 3.2. Let x be a C2 curve parameterized by its length parameter s ∈ [0, L] and σ > 0.
To each point of x(s), we associate xσ(s), defined as the middle point of the chord (x(s−δ),x(s+
δ)), where δ > 0 is chosen in order that the area of the region enclosed by this chord and the
piece of curve x

∣

∣

(s−δ,s+δ)
be equal to δ. Then

xσ(s)− x(s) = cσ2/3|κ|1/3(x)ν(x) + o(σ2/3) as σ → 0

where c is a positive constant.
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Algorithm 2: Discrete Affine Shortening (AS)

Input: Polygon Σ0,
Output: Evolved polygon Σσ, at scale σ2/3

break the curve into convex and concave parts ;1

for every convex/concave component do2

replace each component by the sequence of the middle points of each σ-chord such that3

one endpoint is a vertex of the polygonal curve;

concatenate the pieces of curves previously obtained.4

Lisani and al. [24] and later Musé and al. [34] have used the affine curve evolution scheme
for shape recognition and image comparison algorithms. We have limited ourselves to numerical
schemes that are extremely fast, being linear or, in the case of Moisan’s scheme, super-linear
in time and unconditionally stable. There is, however, a rich literature on numerical schemes
for anisotropic curvature motions occurring (e.g.) in crystalline formation. These motions can
depend on other powers of the curvature than the relevant ones for image processing (1 and
1/3) and have a spatial anisotropy. Mikula and Ševčovič have given theoretical and numerical
methods for such more general curvature motions [30], [31]. They use implicit methods for curve
evolution, which are very accurate but too slow to be performed on all image level lines. Their
schemes are able to cope with almost arbitrarily high or low powers of the curvature, and they
display an accurate asymptotic behavior.

Algorithm 3: Backward Euler Method for intrinsic heat equation

Input: Polygon Σ0,
Output: Evolved polygon Σσ, parametrized by xi at time ti = iτ
for each i = 0,n do1

find xi+1 by a semi-implicit finite difference scheme of the type2

xi+1 − xi

τ
= fi(ki, xi+1)

with fi a nonlinearity depending on the curvature ki of the curve xi and the natural
parameterization of the curve itself.

Cao and Moisan [7] have also proposed “morphological” schemes for the motion of curves by
arbitrary powers of the curvature. They are described in detail in the book by Frédéric Cao
[6], which also contains a thorough numerical and mathematical analysis. For more general
image PDE’s performing nonlinear diffusion, finite volume methods have been proposed with
remarkable results in [23].

3.2. Algorithms on sets. Koenderink and van Doorn defined a shape in R
N as any closed

subset X of R
N [21]. They proposed to simulate the shape multiscale perception by applying

the heat equation to the characteristic function of the shape, or, in other terms, to convolve it
with Gaussians with increasing variance. Of course, the solution Gt ∗ 1X is not a characteristic
function and therefore the authors defined the evolved shape at scale t to be

Xt = {x | u(t,x) ≥ 1/2}.

The very same process was suggested in Attneave [4]: “The perceived contour of a cat (...) is
the resultant of an orthogonal averaging process in which texture is eliminated or smoothed out
almost entirely, somewhat as if a photograph of the object were blurred and then printed on
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high-contrast paper (...)” Similar to the heat equation for curve evolution, the method presents
two inconveniences: the possible fusion of shapes which are too close, and the development of
new singularities, which occur precisely at the times where two disjoint shapes coalesce.

The improvement of dynamic shape analysis is due to Merriman, Bence, and Osher who
discovered and heuristically argued in [29] that the convolution of the indicator function of a
shape with a Gaussian followed by a threshold at 1/2 simulated the mean-curvature motion.

Algorithm 4: Merriman-Bence-Osher Algorithm (threshold dynamic shape)

Input: initial shape X0

Output: Evolved shape Xn at scale nh
for i=0,n-1 do1

convolve the characteristic function of the shape Xi with Gh, where h is small;2

define Xi+1 = {x | Gh ∗ 1Xi
≥ 1/2}.3

The consistency of their arguments was checked by Barles and Georgelin [5] and Evans [13]. In
addition they showed that iterated median filters converge asymptotically to the Mean Curvature
Motion

(MCM) ut = |Du|curv(u).

An extension of this result to all iterated weighted median filters was given by Ishii in [18].
Algorithm 4 of Merriman, Bence and Osher is nothing but an iterated median filter applied

to a binary image. The main problem of discrete median filters is their grid dependence which
make them blind to small curvatures. For instance a black disk with radius 9 does not move if
the discrete gaussian has a 2 pixels standard deviation. It is observed that the iterated process
stops after a few iterations, making it an inaccurate scheme for MCM.

3.3. Algorithms on images.

3.3.1. Median filters and threshold dynamics. Weighted median filters are defined by

(4) Medku(x) = inf
B∈B

sup
y∈x+B

u(y).

where k is a radial density distribution and B = {B |
∫

B k(x)dx = 1/2
∫

k(x)dx}, B being
formed of measurable sets. The discrete implementation of the median filter is almost trivial.

Algorithm 5: Iterated Median Filter Algorithm

Input: initial image u(x)
Output: evolved image Medku(x)
for every point x do1

consider the points y in a discrete neighborhood of x;2

compute the weight of y as the integral of k over the pixel of center y;3

take the weighted median value of the discrete neighborhood.4

Algorithm 5 is fast but, like the dynamic shape, it is blind to small curvatures. Indeed, this
algorithm applied on binary images is nothing but the dynamic shape, with the kernel k instead
of a Gaussian [17]. The link with the curvature motion is obtained by scaling the convolution,
exactly as in the Merriman-Bence-Osher dynamic shape algorithm. Define the scaled median
by (Medk)h = Medkh

, where kh(x) := 1
h2 k(x

h ). Then:



8 A. CIOMAGA, P. MONASSE AND J.-M. MOREL

Theorem 3.3. [17] If u : R
2 → R is C2, then there is a constant ck depending only on the

kernel k such that

(1) on every compact set K ⊂ {x | Du(x) 6= 0},

Medkh
u(x)− u(x) = ck|Du(x)|curv(u)(x)h2 + O(x, h3),

where |O(x, h3)| ≤ CKh3 for some constant CK that depends only on u, k and K;
(2) on every compact set K in R

2,

|Medkh
u(x)− u(x)| ≤ CKh2

where the constant CK depends only on u, k and K.

In short, by the above theorem the iterated median filter is in theory an implementation of the
mean curvature motion but, when applied on a digital image, it stops prematurely because of
the blindness of the grid to small curvatures.

3.3.2. Finite difference schemes. An efficient finite difference scheme (FDS) implementation of
the scalar curvature motions was proposed by Alvarez and Guichard and is described in [16]
and [2]. The 3× 3 scheme takes advantage of the diffusive interpretation of the mean curvature,
which can be expressed as the second derivative of u in the direction orthogonal to the gradient

|Du|curv(u) = uξξ,

where ξ = Du⊥/|Du|. A straightforward variant of the FDS applies to the affine curvature
motion. The FDS is optimized to be as isotropic as possible and as close as possible to satisfy the
maximum principle. It improves on the dynamic shape by computing correctly small curvatures,
but it cannot properly handle the contrast invariance of the curvature equation. It creates new
grey levels and blurs edges. Spurious diffusions occur around image extrema. Even worse, as
we shall see, the computed curvature can be nonzero on straight structures that should have a
zero curvature.

3.3.3. Level set extension, superposition principle, stack filters. FDSs for image curvature mo-
tions do not commute with increasing contrast changes. Yet, a full contrast invariance can be
restored on any numerical scheme by coupling two techniques: the superposition principle, and
the Osher-Sethian level set extension. The idea of the level set extension [35] is to treat a given
curve as the zero level line of a signed distance to the curve. More generally a set, understood
as a shape, is identified with its characteristic function. After applying the FDS to this function
the evolved set can be obtained as the 1/2 upper level set of the evolved function. Thus, the
level set extension is a generalization of the threshold dynamic.

By the level set extension, a curve evolution is made in two steps: a) apply the FDS to the
characteristic function of the shape bounded by the curve; b) take the 1/2 level line of the result.

Since the image level lines are boundaries of the image upper level sets, it is natural to apply
directly the level set extension to all upper level sets. This processes implicitly all level lines
of each level. After evolution of all upper level sets, an image is reconstructed by superposition
principle. The superposition principle and its link to the contrast invariance property come
from mathematical morphology [41], [28]. If all upper level sets of a given image have been
processed independently by an inclusion preserving scheme, then there is a single image having
for level sets the evolved level sets. Any process that decomposes the image into the stack of
its level sets and then reconstructs the processed image from the stack of its processed level
sets is called a stack filter. The only requirement to make a stack filter with any numerical
scheme is its monotonicity. Indeed, the inclusion of upper level sets in each other must be
preserved. Every stack filter is contrast invariant. Indeed, the image upper (resp. lower) level
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sets Xλu0 := {x, u0(x) ≥ λ} (resp. ≤ λ) of an image u0 are invariant to increasing contrast
changes.

In short a stack filter consists of: a) extracting all image upper level sets, b) processing each
of them by a (monotonic) set operator (e.g. the FDS) and c) reconstructing the evolved image
by “superposition”. Thus Algorithm 6 is a contrast invariant curvature evolution. For example

Algorithm 6: Stack Filter

Input: initial image u(x)
Output: evolved image u(t,x)
for each λ ∈ [0, 255], in increasing order do1

let vλ(x) be the characteristic function of Xλu0 := {x, u0(x) ≥ λ};2

apply to vλ an FDS-scheme until scale t; this yields the images wλ(t, .);3

set u(t,x) = max{λ | wλ(t,x) ≥ 1/2} at each point (t,x).4

(see [16]) the image median filter is the stack filter of the threshold dynamics. It makes sense
to apply the superposition principle strategy to FDSs because they are not contrast invariant,
being diffusive and creating spurious level lines.

3.4. Discussion. Pondering the simplicity of the underlying PDEs, the obvious curvature im-
age algorithms would be the FDSs, but they lack all invariance and structural properties that
curvature motions possess, namely:

• monotonicity: they always lead to slightly oscillatory solutions;
• contrast invariance: FDSs create new grey levels and blurs edges, leading to spurious

diffusions around image extrema.
• Euclidean or affine invariance: FDSs are grid dependent.

We have just seen that the full contrast invariance can be restored by the stack filters. But are
stack filters based on FDS a sufficient solution? We will see that they are not. By evolving sets
sampled on a fixed grid, boundaries either jump by a positive integer number of pixels, or they
don’t move at all. If follows that these numerical motions are quantized, and in particular blind
to small curvatures. As we shall see in the experiments, they fall short of matching the human
perception precision. The experiments will show that human fine perception of curvatures is
better explained by sampling all image level lines at fine sub-pixel resolution and by smoothing
them very accurately.

4. Level Lines Shortening

In this section, we set forth a continuous, grid independent evolution of a digital image by
curvature motion, that will jump over all hurdles listed above. Yet to do so the process must be
almost ludicrously sophisticated. The last sections will have to prove that the effort was worth
it. This image processing algorithm, that we shall call Level Lines Shortening (LLS) or Level
Lines Affine Shortening (LLAS), first extracts all level lines of a digital image, with a number
of levels sufficient to grant an exact reconstruction of the initial image. Then the algorithm
simulates an image evolution by moving independently and simultaneously all of its level lines
by curve shortening (CS) (resp. affine curve shortening (AS)). The evolved image is eventually
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reconstructed from its evolved level lines. Thus the algorithm realizes the commutative diagram:

u0(·)

MCM/ACM=LLS/LLAS

��

level lines extraction // {Σλ,i
0 }λ,i

CS/AS
��

u(·, t) {Σλ,i
t }λ,i

reconstructionoo

We prove in a companion paper [11] that the image reconstructed from the evolved level lines
is a viscosity solution of the mean curvature motion (MCM) (resp. affine curvature motion
(ACM)) provided that the level lines at almost all levels evolve by curve shortening (resp. affine
shortening). The initial image will be considered as an element of the space BL(Ω) of the digital
images on a rectangle Ω interpolated by bilinear interpolation. We state the theorem in this
exact numerical framework, used in the algorithm.

Theorem 4.1. Let u0 ∈ BL(Ω). Then the Level Lines Shortening evolution of the function u0,

u(x, t) = LLS(t)u0(x),∀x ∈ R
2,∀t ∈ [0,∞)

is a viscosity solution for the mean curvature PDE, with the initial data u0

(MCM)

{

ut = curv(u)|Du|, in R
2 × [0,∞)

u(·, 0) = u0, on R
2.

A similar result holds for LLAS and the affine curvature PDE, (ACM) with initial condition u0.

The level lines (affine) shortening chain LL(A)S, described in Algorithm 7, is based on a
topological structure, the inclusion tree of level lines as a full and non-redundant representation
of an image, and on a topological property, the monotonicity of curve shortening with respect
to inclusion. The hierarchy of the level lines is therefore maintained while performing the
smoothing. Thus, the reconstruction can start with the largest level line, namely the frame of
the image, and continue by filling from top to bottom in this inclusion the interior of each level
line. At each step the lamina bounded by the current level line is filled in with its own level,
and these levels are updated when passing to its descendants.

Algorithm 7: Level Lines Shortening (LL(A)S) Algorithm

Input: Original Image u0.
Output: The LL(A)S evolution of u0 at scale t: u(·, t).

Extract the tree of level lines {Σλ,i
0 }i∈Fλ,λ;1

for Level line Σλ,i
0 do2

Σλ,i
t = Discrete Curve/Affine Shortening of (Σλ,i

0 );3

for Evolved Level line Σλ,i
t do4

fill the interior of level line Σλ,i
t .5

LLAS is illustrated in Figure 2. From left to right we perform each step of the numerical chain.
The level lines were extracted at half-integer gray values and were chosen with a quantization
step q = 4. The Moisan affine plane curve evolution [32] is then applied independently to all level
lines, at renormalized scale s = 4. This scale is chosen so that a circle with radius r = 4 (where
the unit is given by the length of a pixel edge) disappears at scale s = 4. This normalization by
the result is numerically important for comparing numerical schemes with very different settings.
A new image which has exactly these curves as level lines is finally reconstructed. The result is
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(a) (b)

(c) (d)

Figure 2. Illustration of the LL(A)S numerical chain. (a) Original image. (b) Bilinear
level lines extraction. (c) Simultaneous and independent smoothing of level lines by affine
shortening. (d) Image reconstructed from shortened level lines.

by Theorem 4.1 an affine invariant curvature motion (ACM) of the original image. The rest of
this section is devoted to several crucial details of LL(A)S regarding the level lines extraction,
their evolution, and the reconstruction algorithm.

4.1. Level Lines extraction. The simplest image interpolation that preserves its continuity
is the bilinear interpolation on the dual pixels. (A dual pixel is any square whose vertices are
centers of contiguous pixels). The bilinear interpolation in the dual pixel is written in the form

u0(x, y) = axy + bx + cy + d

where the parameters a, b, c, d are computed from the values taken at the four vertices of the
dual pixel, which are normal pixel values. The bilinear interpolated image is the concatenation
of the bilinear interpolations on all dual pixels; it is continuous, but its gradient may present
discontinuities.
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4.1.1. Bilinear level lines. The equation for a level line at level λ of the bilinear interpolated
image inside a dual pixel can be written

a(x− xs)(y − ys) + (λs − λ) = 0

or

bx + cy + (d− λ) = 0.

In the first case, level lines are pieces of hyperbola, of asymptotes x = xs, y = ys. When λ = λs

the level line consists of two orthogonal straight lines crossing at the saddle point (xs, ys),
provided this point is inside the dual pixel. In the second case, level lines are straight lines.
This may lead to visual pixelization effects, for instance when level lines pass through the center
of a pixel and follow a dual-edge. This phenomenon will be attenuated by taking for λ only
half-integer values (given that the digital image has integer values).

4.1.2. The inclusion tree. One can decompose an interpolated image into its level lines at pre-
defined levels. A fast algorithm, the Fast Level Set Transform (FLST) performing the decom-
position into a tree of shapes, is described in [9] and [33]. The image is parsed into a set of
parametric Jordan curves. This set is ordered in a tree structure, induced by the geometrical
inclusion. We say that a curve Σλ1 is a child of the curve Σλ2 and we denote

Σλ1 ≺ Σλ2

if its interior is included in the interior of the latter. In addition, each curve has an assigned
tag ±1 according to whether it is the boundary of a connected component of a lower level set
(sgn(Σλ) = −1) or upper level set (sgn(Σλ) = +1).

Figure 3. Tree of bilinear level lines.

For each gray level λ ∈ N + 1/2 there corresponds a finite set F λ of level lines {Σλ,i
0 }i∈F λ .

Each level line Σλ,i
0 is stored as a set of ordered points leaving the level line interior on the left

hand side. Thus, the tree of level lines is given by a finite set of tagged polygonal lines, indexed
by half-integer gray values

(5) T0 = {Σλ,i
0 ; i ∈ F λ, λ ∈ N + 1/2}.

An inclusion tree of bilinear level lines is displayed in Figure 3.

4.2. Independent evolution of all level lines. As already described, the affine shortening is
numerically defined as an alternate filter of affine erosion and affine dilation. Up to re-sampling
issues, the scheme is monotonous with respect to geometrical inclusion and therefore the tree
structure of the level lines is preserved. It consists of a finite set of Jordan curves, denoted by

(6) Tn = {Σλ,i
n ; i ∈ F λ, λ ∈ N + 1/2}.
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Figure 2.(c) displays the affine evolution of the level lines appearing in Figure 2.(b). As can
be observed, the curves become smoother, oscillations due to the grid reduce, and curves with
small perimeter vanish. The inclusion tree structure is clearly preserved under the affine short-
ening evolution. The same chain applies to the curve shortening by the Mackworth-Mokhtarian
scheme. With a fine enough curve sampling it is consistent with the curve shortening and
therefore also numerically monotone.

4.2.1. The fattening effect. Bilinear level lines can present self-intersections at image saddle
points. In that case, LLS develops a non-empty interior, meaning that two distinct touching
curves instantly tear apart, and that the space liberated becomes a flat region with a grey level
equal to the level line value. Thus the level line “fattens”. This effect is easily explained by
considering the classic evolution of the level curves just above and just below the saddle curve.
Let Σµ be a level line passing through a saddle point (see Figure 4). Assume that the curve
is the limit of level lines from above and from below. More precisely, suppose (e.g.) that for
slightly higher levels λ the interiors of level lines Σλ include the interior of Σµ and that for
smaller levels each connected component of the interior of Σµ contains the interiors of Σλ (this
is always the case if u0 is a bilinear interpolation). Then the exterior curve will evolve as the
limit of the level lines surrounding it from the outside and simultaneously all interior (touching)
Jordan curves will evolve as the monotone limits of interior level lines. Consequently, they will
tear apart from the exterior curves, thus liberating a flat region.

Figure 4. Fattening effect. From left to right, the original image, its extracted level
lines with quantization step s = 16, their independent evolution by affine shortening
at renormalized scale l = 8 and the image reconstructed from the evolved level lines.
Observe that distinct, touching level lines tear apart and non-empty interiors appear at
the saddle points. At these points four squares, two black, two white, meet initially by
their corners. After evolution, fattened grey regions are liberated by the retraction of
the square level lines surrounding the black and the white squares.

4.3. Image Reconstruction from a set of level lines. The algorithm described in this
section performs an exact image reconstruction from a topographic map, i.e. from an arbitrary
family of Jordan curves organized in a tree structure with respect to geometrical inclusion.

The reconstruction starts from a topographic map, namely a family of discrete level lines
(typically obtained after (affine) curve shortening) {Σλ,i}i∈F λ,λ∈Λ organized in an inclusion tree
structure. This tree is walked down (parent before children) and the interior of the current level
line is filled in with its level λ. Using that order, each level line interior is painted before its
descendants, ensuring that its private pixels are at the correct level while non-private pixels get
painted over by the children. This yields an exact reconstruction for any digital image ud from
its level lines at half-integer levels:



14 A. CIOMAGA, P. MONASSE AND J.-M. MOREL

Theorem 4.2. Let T = {Σλ,i; i ∈ F λ, λ ∈ N + 1/2} be the tree of bilinear level lines associated

to ud. For every x let λ be such that x ∈ Int(Σλ) and ∀Σλ̃ ≺ Σλ, x 6∈ Int(Σλ̃) and define

ũd(x) =

{

λ− 1/2, if sgn(Σλ) = −1
λ + 1/2, if sgn(Σλ) = +1

Then ud ≡ ũd.

A closed curve Σ is stored as a set of ordered points {Pk(xk, yk)}1≤k≤N with N depending
on Σ. The real numbers xk and yk are the floating point coordinates of the vertex number k of
the polygon Σ. We need to fill in all pixels with integral coordinates (j, i) inside the polygon.
To avoid any ambiguity, the algorithm secures that yk is never an integer by translating when
necessary Σ by a tiny amount ε vertically or horizontally, at the price of a minor numerical
uncertainty in the reconstructed image. The filling in of each curve is performed by a fast ray
casting algorithm described below.

4.3.1. Polygon intersections with the grid. The goal of Algorithm 8, which is a preliminary to
the filling algorithm, is to find the intersections of the polygonal level line with all horizontal
lines y = i. For any given i the intersection is in fact the intersection of a segment [PkPk+1] of
the polygon with the line y = i. These intersections are ordered by their abscissas so that

xi
1 ≤ xi

2 ≤ · · · ≤ xi
p,

where p is even because Σ is a closed curve. This gives a simple and fast decision rule: a pixel
(j, i) is surrounded by the polygon if and only if j is within an odd interval [xi

2k+1, x
i
2k+2].

Algorithm 8: Intersections of a polygon Σ with the grid

Input: Vertices Pk(xk, yk) of polygon Σ
Output: For each i, the ordered list Li of points of Σ on the line of equation y = i
for all i do Li ← ∅;1

for all segments [PkPk+1] do2

for i ∈ [yk, yk+1] ∩ N do3

(x, i)← [PkPk+1] ∩ {y = i};4

Insert x in Li;5

for all i do sort list Li
6

4.3.2. Filling the interior. Line by line all odd intervals on Li are enumerated and filled in with
level λ± 1/2 at all pixels with ordinate i whose abscissa is inside such an interval, as shown in
Algorithm 9.

Algorithm 9: Filling polygon Σ

Input: Sorted lists Li of intersections of Σ with lines {y = i}, level λ
Output: Pixels inside polygon Σ are at level λ± 1/2, pixels outside unchanged
for all i do1

for all xi
2k+1 ∈ Li do2

for j ∈ N ∩ [xi
2k+1, x

i
2k+2] do3

pixel (j, i)← λ± 1/24

Due to the inclusion principle it is possible to go from the 2D topology of the level lines to

the 1D topology on a dual edge and conversely. Suppose that two or more level lines belonging
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Figure 5. The level line 2D inclusion topology is reflected in the 1D ordering of their
intersections with the dual edges.

to different gray levels intersect a dual edge, leaving the same data points outside and inside:
denote them Pin and Pout (Figure 5(a)). Then the restored gray value at Pout is the gray value
associated to the largest shape ordered by inclusion which leaves the pixel outside, whereas Pin

belongs to the smallest shape that includes the pixel. If curves with different orientation cross
the same dual edge it is enough to update the gray value at Pin. This conforms to our choice of
filling the interiors of the lines in the order given by the level line inclusion tree.

Numerical examples of image reconstruction from the tree of evolved level lines are displayed
in Figure 2 and Figure 4.

4.4. Numerical properties of the LLS numerical chain.

4.4.1. Fixed point property. The filling algorithm itself is a stand alone image reconstruction
method, working for every family of curves endowed with levels and a tree inclusion structure.
To check its consistency, it is enough to take any digital image u0, to extract its level lines at
quantized gray levels, with quantization step s = 1 but without applying any evolution. Then
the digital image is reconstructed exactly from its level line tree by the filling algorithm.

4.4.2. Local comparison principle and regularity. The order preserving property or inclusion
principle is the main structural requirement of a level line evolution algorithm. It basically
prevents the crossing of two different level curves and therefore permits the construction of
a unique image having a prescribed set of level lines. Some level lines may present multiple
crossings at saddle points, in which case the level lines shortening develops a non-empty interior.
The phenomenon is due to an instantaneous tearing apart of two distinct, touching curves. Any
level curve with self-contact points develops a non-empty interior by CS (curve shortening),
which implies the formation of a flat area (see Figure 6.) The finite difference schemes (FDS)
tested here have been optimized by its authors to ensure a maximal rotation invariance and
stability. Nonetheless, they ensure neither monotonicity nor full contrast invariance. They
create new grey levels and blurs out the edges. It is true that the full contrast invariance
of an FDS is restored by its stack filter. Nevertheless, spurious diffusions occur around the
image extrema and at T-junctions or X-junctions. At saddle points both algorithms create new
extrema, and therefore spurious level lines. Only LLS resolves this issue, by separately evolving
the level lines and then reconstructing the image.

Figure 6 compares various implementations of the mean curvature motion on a checkerboard
image (a) with calibration of the numerical scales. The left images of each pair show the
evolutions of the image by the various implementations of mean curvature motion, while the
right ones display a zoom at the X-junction and the corresponding level lines. The iterated
median filter (a) instantaneously stops and leaves the checkerboard invariant. This may look
fine, but it is not consistent with curvature motion. LLS (b) is performed with a 1D gaussian
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(a) (b)

(c) (d)

Figure 6. The four pairs present various implementations of the mean curvature mo-
tion on a checkerboard image (left column) and zooms at an X-junction, with its level
lines overprinted on the image (right). From top to bottom : (a). original image (the
zoom is by bilinear interpolation), (b). Level lines shortening, (c). Finite difference
scheme, (d) FDS stack filter. Only LLS does not create new extrema.

kernel of standard deviation σ = 2. The level lines are encoded with a p = 5 points per pixel
precision and displayed with a s = 4 quantization step, starting at an offset o = 96 . The figure
next shows the effect of FDS (c) at normalized scale l = 3, the FDS stack filter (d) at normalized
scale l = 3, and finally the LLS evolution with the same normalized scale. At X − junctions,
both FDS and the FDS stack filter create spurious diffusions, while LLS doesn’t. With LLS a
grey region develops at the junction, because level lines corresponding to different gray levels
instantly tear apart. This is not necessarily gratifying perceptually, but it is mathematically
consistent.

Figures 7 and 8 on a binary fingerprint put in evidence the failures of FDSs. Up to some critical
scale, FDS stack filters restore the correct topology, but in case of fast diffusions they break off
as well. Oscillating ridges with high gradient amplitudes make it difficult to keep separated the
various connected components during the smoothing process. A visual comparison of these two
figures proves abundantly that the affine curvature is a much better shape preserver than the
curvature motion.

4.5. JPEG artifacts reduction on color images. The prevailing JPEG 1992 image coding
format aims at compressing images while maintaining acceptable image quality. This is achieved
by dividing the image in 8×8 pixels blocs and applying a discrete cosine transform (DCT) on the
partitioned image. The resulting coefficients are quantized. In particular the less significant co-
efficients are set to zero. This process causes several types of artifacts such as Gibbs oscillations,
staircase noise along curving edges, and checkerboard patterns (which are nothing but cosine
functions). The phenomenon is illustrated in Figure 9. LLS seems to be a useful postprocessing
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Figure 7. Various implementations of the affine curvature motion. the original image
is displayed alone in the left column. In the other columns, from left to right: LLAS, FDS
and FDS-stack filter at renormalized scales l = 4 (top) and l = 8 (bottom). In the case
of the affine curvature scale space, the gradient amplitude keeps down ridge diffusion,
unlike the mean curvature scale space. In general the affine smoothing performs better
than the curvature motion (compare with Figure 8).

Figure 8. Various implementations of the mean curvature motion. Are compared
(from left to right): LLS, FDS, the FDS-stack filter and the median filter at renormalized
scales l = 4 (top) and l = 8 (bottom). Up to some critical scale, the stack filters restore
the correct topology, but in case of fast diffusions they break off as well. Observe that
spurious diffusion mixing the ridges occurs in all cases except LLS, which tears apart
ridges and emphasizes crossovers. A comparison with Figure 7 shows that the affine
curvature schemes perform all better than their analogous curvature schemes.

technique for JPEG artifact reduction. In color images LLS is applied independently to each
color channels.
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(a)

(b)

Figure 9. (a). Original image, suffering of JPEG artifacts such as Gibbs oscillations,
staircase noise along curving edges and checkerboarding. (b). LLAS is applied separately
to each RGB channel. Although diffusions occur at junctions, LLAS considerably reduces
these artifacts.

4.5.1. Accurate mean curvature evolution. The main goal of the implementation is to obtain
and move level lines with arbitrarily high sub-pixel precision. Indeed, level lines are encoded as
polygons whose vertices have double precision coordinates. Moving simultaneously level lines
extracted with high sample precision allows straight level lines with high gradient to stand still
with LLS, whereas they are diffused by FDS, even in its stack variant. The phenomenon is
shown in Figure 10 on a photograph of one of Botticelli’s paintings. Are displayed the original
detail (left column) and the differences in absolute value between the original and its evolutions
by LLS (middle column) and by the FDS stack filter (right column). The FDS stack filter was
applied at normalized scale l = 2 and the LLS evolution at an equivalent normalized scale. For
FDS the level lines were quantized at half integer levels with a step s = 1 and extracted with
p = 5 points per pixel. Zooms of the highlighted regions in the original image show fast diffusions
of shapes for stack FDS, even though the curvature is zero. See for example the window frames
(b) the trees in the background (c) or the finely textured bricks (d).
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(a)

(b)

(c)

(d)

Figure 10. Zooms on three highlighted details in the painting “Three miracles
of St. Zenobius” by Sandro Botticelli (Left). Middle column: the differences
in absolute value between the original image and the evolutions by level line
shortening. Right: same result, after applying the FDS stack filter. Even though
the curvature is zero, the FDS stack filter lets level lines with high gradient evolve,
while with LLS straight lines stand still.
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5. The Curvature Microscope

Whenever we talk about curvatures in a digital image, we actually refer to the curvatures of
the level lines associated to the image. Yet, most curvature computation algorithms are based
on finite difference schemes (FDS) with formula (1). But with FDSs, the curvature depends on
the gray values of a whole neighborhood. Consequently, high oscillations along transverse level
lines do appear.

For the sake of precision, curvatures should be computed directly on level lines and not on
a discrete grid. A polygonal line approximation followed by uniform and fine sampling allows
one to compute reliable curvatures, but only after level line smoothing. This smoothing is
necessary because the initial level lines present oscillations due to the initial aliasing and to the
interpolation itself. Thus curvatures wouldn’t correspond to our visual perception. But, more
fundamentally, the perception of curvature is and must be multiscale. The striking difference
between an FDS result and an LLS result is displayed in Figure 11. With LLS, the curvature is

(a) (b) (c)

Figure 11. The curvature color display rule. Zero curvatures are displayed in yellow,
positive curvatures are shown in a gradation from yellow to red, and negatives from
yellow to green. The initial image (a) had its curvatures computed in two different ways:
by an FDS by formula (1) (b), and by LLS (c). In the first case the curvature presents
oscillations, whereas the second result is coherent with our perception.

computed at each vertex of each level line. A curvature image is then created by associating to
each dual pixel an average of all curvatures computed in it.

5.1. Discrete curvature for a polygonal line. We recall that each level line is stored as a
set of ordered points

Σ = {Pi(xi, yi)}i=0..n, with P0 = Pn.

The simplest discrete scalar curvature ki computed at each vertex Pi is obtained by taking the
triple (Pi−1, Pi, Pi+1) and computing ki as the inverse of the circumscribed radius Ri of this

triangle. Set −→ui =
−−−−→
Pi−1Pi and its length ui = |

−−−−→
Pi−1Pi|, respectively −→vi =

−−−−−−→
Pi−1Pi+1, with the

corresponding length vi = |
−−−−−−→
Pi−1Pi+1|. Then

Lemma 5.1. The curvature at vertex Pi is given by

(7) ki = 2
u1

i u
2
i+1 − u2

i u
1
i+1

uiui+1vi
.
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(a) (b) (c) (d)

Figure 12. The curvature map numerical chain: (a) original image, (b) level lines,
uniformly sampled, (c) evolved level lines, (d) curvature image.

5.2. Curvature map. The algorithm computing the curvature map of any digital image is
based on LLS. The image level lines at given quantization levels are first extracted, then uni-
formly sampled with fine sub-pixel step, and smoothed by affine or curve shortening. Curvatures
are then computed at each vertex of each level curve and associated to the dual pixels containing
the vertex. A curvature image is eventually created by attributing to each dual pixel the average
of all curvatures computed in it.

Algorithm 10: Curvature map

Input: Original Image u0.
Output: Curvatures u0 at scale t: u(·, t).

Extract the tree of level lines {Σλ,i
0 }i∈Fλ;λ;1

Sample uniformly each level line Σλ,i
02

for Level line Σλ,i
0 do3

Σλ,i
t = Curve Shortening Flow (Σλ,i

0 );4

for Σλ,i
t = {Pi(xi, yi)}i=0..n do5

ki = 1/Ri;6

for each dual pixel do7

k = mean(ki1 , ki2 , ..., kim).8

Topological curvatures and scalar curvatures can be computed as well. Indeed, the information
encoded in the tree enables the computation of signed curvatures, where the sign is either given
by the gradient ascent, or by the topological orientation of the curve. In the first case, the
curvature changes sign when the grey scale is reverted. Indeed, curv(−u) = −curv(u). Thus,
a black disk and a white disk on grey background have opposite curvatures. The topological
curvature is instead invariant to contrast changes. But it is nonlocal, since its sign depends on
the global curve topology and not on the local curve shape. Figure 13 illustrates the difference
on a famous Julesz texture discrimination experiment. On the left image, a pre-attentively
undiscriminate texture pair. The “10” in random orientations surround a square made of “S”.
The middle image shows the scalar curvature defined by formula (1). This curvature is identical
for both shapes. The topological curvature (right) changes because the “0” have an interior
circle missing in the “S”. This proves that our perception does not compute the topological
curvature. If it did, we would discriminate the two textures.
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(a) (b) (c)

Figure 13. (a) Original image, Julesz pair of undiscriminate textures (b). Signed
curvatures, no discrimination (c). Topological curvatures: probably not computed in
our perception, it would discriminate the texture pair.

5.3. Curvature Microscope. By performing a scaled zoom on the considered image one can
expect to have one level line passing through each dual pixel, and thus to observe more and
more exactly the curvatures at microscopic scale. The fact that all level lines are polygons with
real coordinates allows one to zoom in the image at an arbitrary resolution. This is necessary
to explore visually the intricacy of the local image structure. Hence the name of curvature
microscope given to the final visualization.

Since the curve shortening is only defined for closed curves, a rule is needed for the level lines
finishing on the image border. One could close these lines by joining their endpoints by (e.g.)
a geodesic on the image boundary. But such junctions would create strong curvatures at the
meeting points of the level lines with the image frame. To avoid this phenomenon a standard
extrapolation is performed by flipping the image left and right, up and down and extending it
in that way by a wide band.

For better rendering, the curvature map is printed over the smoothed image and the latter
is attenuated (its gray values are concentrated around 128). Curvature values shade from red
to green as follows: positive curvatures scale from red down to yellow; negative ones go down
from yellow to green. Thus yellow means a small curvature. The image curvature microscope is
a complex visualization tool dealing with three scale space parameters

(1) the zooming factor;
(2) the quantization step of the level lines;
(3) the renormalized smoothing scale (the scale l at which a circle of radius r = l vanishes).

These parameters vary according to the total variation and the gradient amplitude of the image
and therefore cannot be a priori fixed for any type of image. However, the zooming factor is
proportional to the renormalized smoothing scale. The quantization step can be fixed once for
all.
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(a)

(b)

(c)

Figure 14. Image curvature microscope. (a) the original image, 2X zoom and 4X
zoom of the up-right corner; (b) curvature map computed on the original level lines
with a quantization step s = 36; (c) curvature map computed on shortened level lines at
normalized scales l = 1, l = 2, and l = 4 (the zoom factor must be equal to the normalized
smoothing scale). The left column permits to observe the curvature densities. A zoom is
necessary to observe the single curvatures. The middle column and right column focus
more and more on shape and texture details.



24 A. CIOMAGA, P. MONASSE AND J.-M. MOREL

6. The curvature Gallery

After processing the pixelized level lines become accurate curves with sub-pixel control points,
whose curvature can be faithfully computed. Thus the whole chain can be viewed as a numerical
preprocessing before further numerical analysis and feature extraction. Indeed, after processing,
the curvature extrema are easily detected. But there is also a strong interest in the direct
visualization of the level lines and of the microscopic curvature map of an image. The following
gallery on a variety of image details illustrates the recovery of shapes freed from their aliasing,
JPEG, and noise artifacts.

6.1. Attneave’s cat. Short time smoothing reveals useful invariant features (curvature ex-
trema, inflection points, angles and junctions). Therefore, as pointed out by Attneave, objects
are represented with great economy and striking fidelity by marking the points at which their
contours change direction maximally. In Figure 15, the head of the Attneave cat is scanned and
processed by LLAS. Before filtering, the curvature values reflect essentially the pixel staircases:
Positive and negative curvatures in red and green alternate along contours. A visual inspection
shows that, after LLAS, the level curves can be easily segmented into concave and convex parts,
separated by flat parts (in yellow).

Figure 15. Zoom on the Attneave cat, its corresponding level lines and curvatures.
LLAS evolution, affine smoothed level lines and curvature map after filtering.

6.2. Geometric shapes. The same improvements can be demonstrated on the geometric draw-
ings of Figures 16, 17 and 18. A straight oblique line appears serrated because of its pixel rep-
resentation. Thus the right angle that it forms with another line is simply lost in clutter: there
are locally right angles everywhere. When a curve stops onto another curve, T-junctions or
Y-junctions are created. In such cases, our perception tends to interpret the interrupted curve
as the boundary of some object undergoing occlusion. In the image on the left of Figure 17,
which is a typical Kanizsa experiment demonstrating our layered perception, one tends to see a
grey rectangle on top of a black polygon. The T-junctions creating this layered illusion can be
detected by their adjacent positive and negative curvatures. Note that a short time smoothing
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Figure 16. Top: original image, extracted level lines and corresponding curvatures.
Bottom: LLAS evolution and curvature map after filtering.

is necessary to extract these meaningful curvatures from the clutter of oscillating curvatures due
to the staircase effect. Another series of typical experiments was dedicated by Kanizsa to the

Figure 17. Original image, non-filtered curvatures, smoothed level lines by LLAS and
curvature map.

transparency illusion, by which, in presence of X-junctions, our perceptions infers the presence
of two objects on top of each other, the upper one being transparent. For instance the left image
of Figure 18 is spontaneously described by viewers as a grey transparent disk in front of a black
wedge. Kanizsa [20] pointed out the paradox of such a description, which sees two objects where
there are in fact four regions with different grey levels. The local configuration responsible for
the transparency illusion is the X-junction, seen as the apparent crossing of the boundaries of
the disk and of the black wedge. As illustrated after applying LLAS to the figure, X junctions
can be detected as a particular configuration of adjacent negative, positive, and zero curvatures.
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Figure 18. Top: original image, extracted level lines, non-filtered curvatures. Bottom:
LLAS image, smoothed level lines and curvature map.

6.3. Graphics and aliasing. Aliasing due to pixelization is common in scanned documents. As
illustrated by all experiments, LLAS can be used for a graphic quality improvement smoothing
contours. This is actually done at the cost of smoothing out corners and junctions, but this
smoothing is necessary to single them out as the stable peaks of curvature. All in all, in most
zoomed-in figures the improvement is manifest, starting with the laughing mouse of Figure 19.
A decent recovery is possible even with badly pixelized shapes such as the one reproduced in

Figure 19. Top: original image, its corresponding level lines and curvatures. Bottom:
LLAS evolution, affine smoothed level lines and curvature map after filtering.

Figure 20. This drawing is not perfectly restored because of the fattening effect at junctions,
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but it definitely improves on the original, and opens the way to a geometric analysis that would
be impossible on the original. But the example in Figure 21 demands the impossible. Although

Figure 20. Top: original image, its corresponding level lines and curvatures. Bottom:
LLAS evolution, affine smoothed level lines and curvature map after filtering.

some undulating curves still may be figured out by an intelligent viewer, the figure locally is
nothing but a checkerboard at pixel size. Thus the curvature motion removes all squares, black
and white, and creates a huge fattening effect.

Figure 21. Top: original image, its corresponding level lines and curvatures. Bottom:
LLAS evolution, affine smoothed level lines and curvature map after filtering.
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6.4. Pre-attentively undiscriminable textons. Julesz conjectured in his second texture per-
ception theory [19] that two different textures cannot be pre-attentively discriminated if they
have the same texton density. For instance the Julesz patterns in Figure 22 are different, but
have the same “texton densities”, namely the same number of bars, corners, and terminators.
After filtering, the microscopic curvature map will permit to compute a density of positive,
negative and zero curvatures.

Figure 22. Top: original image, its corresponding level lines and curvatures. Bottom:
LLAS evolution, affine smoothed level lines and curvature map after filtering.

6.5. Bacteria morphologies. Bacteria shapes are determined by the bacterial cell wall and
cytoskeleton. The curvature is an intrinsic geometrical descriptor, useful for shape discrimi-
nation. In Figure 23 we display bacterial morphologies and the corresponding curvature map.
Bacteria porosities are characterized by strong curvature oscillations, whereas the borders of
bacterial shapes present smooth curvature variations. In microbiology, many tasks involve the
counting of geometrically simple objets. An accurate curvature filter permits to make curvature
statistics.

Figure 23. (a). Original image (b). Curvature Map
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6.6. Topography. Digital elevation models represent ground surface topography. Gray levels
indicate ground elevation (lightest shades for highest elevations) and therefore the image level
lines are true level lines. As can be seen in Figure 24, the set of level lines of a digital image
is a natural representation of the shape contents, because it provides topological information
invariant to contrast changes. The bilinear interpolation is the most local of continuous interpo-
lations preserving the order between the gray levels of the image. Because the interpolation is
continuous, level lines with different gray levels never touch. However, they are concatenations
of pieces of hyperbolae and straight segments and hence present oscillations along transverse
contours. A short time smoothing reduces the oscillations and straightens up the edges. The
remaining curvature extrema after filtering become relevant as geometric shape descriptors. The

Figure 24. Digital elevation map, its corresponding level lines (for once a real topo-
graphic map), the affine smoothed level lines and their curvature map.

fragment of scanned map in Figure 25 is exemplary, in its amount of ringing, aliasing, and JPEG
artifacts. Such graphic images are satisfactorily restored with short time affine smoothing. The
essential ingredient in restoring graphic image, is to remove the lines distortion without creating
new level lines. This requirement is respected to the letter by LL(A)S, which only smooths out
existing level lines.
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Figure 25. Top: Piece of map with roads, its corresponding level lines and curvatures.
Bottom: LLAS evolution, affine smoothed level lines and curvature map after filtering.

6.7. Textures. The experiments of Figures 26 and 27 illustrate the potential use of LLAS to
restore the image micro-geometry and to facilitate the identification of smoothly varying shapes
in a texture.

Figure 26. Original image, extracted level lines, affine smoothed level lines and cur-
vature map.

Figure 27. Original image, extracted level lines, affine smoothed level lines and cur-
vature map
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6.8. Paintings. Even on details of paintings, this geometric analysis can be relevant. As already
mentioned, the LLAS evolution can be used for noise reduction and picture restoration. In
Figure 28 the desaliasing successfully restores the paint strokes and improves for example the
perception of the pearls and of their shadows. Leonardo’s portrait of Mona Lisa is remarkable

Figure 28. Original photo-painting, LLAS evolution and curvature map after filtering.

for its sfumato technique of soft shaded modeling. The stylistic motifs are reflected in the fact
that level lines fall widely apart like if it were a very blurry image. The experiment of Figure
29 demonstrates the amazing sparsity of visual information in the Mona Lisa. It is only by a
few level lines, falling widely apart, and with very smooth corners, that all nuances of the Mona
Lisa face are suggested.

Figure 29. Extraction with zoom of Mona Lisa photograph, its corresponding level
lines and curvatures. LLQS evolution, affine smoothed level lines and curvature map

after filtering.
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6.9. Text processing. The same good effects are observable with pixelized written text. After
the application of LLAS the image in Figure 30 retrieve a curvature signature that is obviously
usable for handwriting recognition. To that aim the causality of the process is essential: no
creation of new levels and no creation of new curvatures.

Figure 30. Top: original image and its corresponding LLAS evolution, affine smoothed
level lines and curvature map after filtering.

6.10. Fingerprints restoration and discrimination. Minutiae such as cores, bifurcations
and ridge endings characterize uniquely fingerprints. Their detection requires a careful smooth-
ing, particularly to avoid a spurious diffusion mixing the ridges. The main objective of smoothing
is to sieve the curvature extrema. Indeed, many are present everywhere on the ridge borders
before smoothing. LLAS removes these ridge border oscillations and provides a smooth version
of the fingerprint on which the curvature map locates its characteristic points. Figure 31 shows
the results and compares LLAS to finite difference scheme and to the level set method. Observe
that by performing pixel evolutions, the ridge endings shrink fast, and the islands and crossovers
diffuse. The subpixel smoothing instead tears apart ridges and emphasizes crossovers.

Figure 31. Original fingerprint, Level Lines Affine Shortening and its Curvature map.
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7. Conclusion

Full contrast invariance can be restored by the stack filters based on finite difference schemes
but they are not sufficient at any scale. Numerical motions based on pixel approximation are
quantized, and in particular blind to small curvatures. This drawback was overcome by evolving
independently the level curves of the image and by reconstructing from them a new image which
has exactly these level lines. The first outcome of the Level lines Shortening algorithm is the
evolved image, which presents some sort of denoising, simplification, and desaliasing. But the
main outcome is an accurate curvature estimate on all level lines. As a visualization tool, the fact
that all level lines are polygons with real coordinates allows to zoom in the image at an arbitrary
resolution. This is necessary to explore visually the intricacy of the local image structure. Hence
the name of curvature microscope given to the final visualization.
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pages 111–127. Gakkōtosho, Tokyo, 1995.

[19] B. Julesz. Textons, the elements of texture perception, and their interactions. Nature, 290(5802):91–97, 1981.
[20] G. Kanizsa. Organization in Vision: Essays on Gestalt Perception. Praeger, 1979.
[21] J. J. Koenderink and A. J. van Doorn. Dynamic shape. Biological Cybernetics, 53:383–396, 1986.
[22] G. Koepfler and L. Moisan. Geometric multiscale representation of numerical images. In Proc. of the Second

International Conference on Scale Space Theories in Computer Vision, volume 1682 of Lecture Notes in
Computer Science, pages 339–350, Corfu, Greece, 1999. Springer.



34 A. CIOMAGA, P. MONASSE AND J.-M. MOREL
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