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Introduction

The aim of this paper is to study the dispersive properties of the linear wave equation on real hyperbolic spaces and their application to nonlinear Cauchy problems.

This theory is well established for the wave equation on R n :

(1)

     ∂ 2 t u(t, x) -∆ x u(t, x) = F (t, x) , u(0, x) = f (x) , ∂ t | t=0 u(t, x) = g(x) ,
for which the following Strichartz estimates hold :

(2) u L p (I; L q ) + u L ∞ (I; Ḣσ ) + ∂ t u L ∞ (I; Ḣσ-1 )

f Ḣσ + g Ḣσ-1 + F L p′ (I; Ḣσ+σ-1 q′ ) on any (possibly unbounded) interval I ⊆ R, under the assumptions that

σ = n+1 2 1 2 -1 q , σ = n+1 2 1
2 -1 q , and separately the couples (p, q), (p, q) ∈ (2, ∞] × [2, 2 n-1 n-3 ) satisfy the admissibility conditions 2 p + n-1 q = n-1 2 , 2 p + n-1 q = n-1 2 . The estimate (2) holds also at the endpoint (2, 2 n-1 n-3 ) when n ≥ 4. When n = 3 this endpoint is (2, ∞) and the estimate (2) fails in this case without additional assumptions (see [START_REF] Ginibre | Generalized Strichartz inequalities for the wave equation[END_REF] and [START_REF] Keel | Endpoint Strichartz estimates[END_REF] for more details).

These estimates yield existence results for the nonlinear wave equation in the Euclidean setting. The problem of finding minimal regularity on initial data ensuring local well-posedness for semilinear wave equation was addressed for higher dimensions and nonlinearities in [START_REF] Kapitanski | Weak and yet weaker solutions of semilinear wave equations[END_REF], and then almost completely answered in [START_REF] Lindblad | On existence and scattering with minimal regularity for semilinear wave equations[END_REF][START_REF] Georgiev | Weighted Strichartz estimates and global existence for semilinear wave equations[END_REF][START_REF] Keel | Endpoint Strichartz estimates[END_REF][START_REF] D'ancona | Weighted decay estimates for the wave equation[END_REF].

Once the Euclidean case was more or less settled, several attemps have been made in order to establish Strichartz estimates for dispersive equations in other settings. Here we consider real hyperbolic spaces H n , which are the most simple examples of noncompact Riemannian manifolds with negative curvature. For geometric reasons, we expect better dispersive properties hence stronger results than in the Euclidean setting.

It is well known that the spectrum of the Laplace-Beltrami operator -∆ H n on L 2 (H n ) is the half-line [ρ 2 , +∞), where ρ = n-1

2 . Thus one may study either the non-shifted wave equation

(3)      ∂ 2 t u(t, x) -∆ H n u(t, x) = F (t, x) , u(0, x) = f (x) , ∂ t | t=0 u(t, x) = g(x) ,
or the shifted wave equation ( 4)

     ∂ 2 t u(t, x) -(∆ H n +ρ 2 ) u(t, x) = F (t, x) , u(0, x) = f (x) , ∂ t | t=0 u(t, x) = g(x) .
In [START_REF] Pierfelice | Weighted Strichartz estimates for the Schrödinger and wave equations on Damek-Ricci spaces[END_REF] Pierfelice derived Strichartz estimates for the wave equation [START_REF] Bergh | Interpolation spaces (an introduction[END_REF] with radial data on a class of Riemannian manifolds containing all hyperbolic spaces. The wave equation [START_REF] Bergh | Interpolation spaces (an introduction[END_REF] was also investigated on the 3-dimensional hyperbolic space by Metcalfe and Taylor [START_REF] Metcalfe | Nonlinear waves on 3D hyperbolic space[END_REF], who proved dispersive and Strichartz estimates with applications to small data global well-posedness for the semilinear wave equation. This result was recently generalized by Anker and Pierfelice [START_REF] Anker | Wave and Klein-Gordon equation on hyperbolic spaces[END_REF] to other dimensions. Another recent work [START_REF] Hassani | Wave equation on symmetric spaces[END_REF] by Hassani contains a first study of (3) on general Riemannian symmetric spaces of noncompact type.

To our knowledge, the semilinear wave equation ( 4) was first considered by Fontaine [START_REF] Fontaine | Une équation semi-linéaire des ondes sur H 3[END_REF][START_REF] Fontaine | A semilinear wave equation on hyperbolic spaces[END_REF] in dimension n = 3 and n = 2. The most famous work involving (4) is due to Tataru. In [START_REF] Tataru | Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation[END_REF] he obtained dispersive estimates for the operators

sin t √ ∆ H n +ρ 2 √ ∆ H n +ρ 2
and cos t ∆ H n +ρ 2 acting on inhomogeneous Sobolev spaces and then transferred them from H n to R n in order to get well-posedness results for the Euclidean semilinear wave equation (see also [START_REF] Georgiev | Semilinear hyperbolic equations[END_REF]). Though Tataru proved dispersive estimates with exponential decay in time, these are not sufficient to obtain actual Strichartz estimates on hyperbolic spaces. Complementary results were obtained by Ionescu [START_REF] Ionescu | Fourier integral on noncompact symmetric spaces of real rank one[END_REF], who investigated L q → L q Sobolev estimates for the above operators on all hyperbolic spaces.

In this paper we pursue our study of dispersive equations on hyperbolic spaces, initiated with the Schrödinger equation [START_REF] Anker | Nonlinear Schrödinger equation on real hyperbolic spaces[END_REF], by considering the shifted wave equation ( 4) on H n . We obtain a wider range of Strichartz estimates than in the Euclidean setting and deduce stronger well-posedness results. More precisely, in Section 4 we use spherical harmonic analysis on hyperbolic spaces to estimate the kernel of the operator W (σ,τ ) t = D -τ Dτ-σ e itD , where D = (-∆ H n -ρ 2 ) 1/2 , D = (-∆ H n + ρ2 -ρ 2 ) 1/2 with ρ > ρ, and σ, τ are suitable exponents. In Section 5 we first deduce dispersive L q ′ → L q estimates for W (σ,τ ) t , when 2 < q < ∞, by using interpolation and the Kunze-Stein phenomenon [START_REF] Cowling | The Kunze-Stein phenomenon[END_REF][START_REF] Cowling | Herz's"principe de majoration" and the Kunze-Stein phenomenon[END_REF][START_REF] Ionescu | An endpoint estimate for the Kunze-Stein phenomenon and related maximal operators[END_REF]. In Section 6 we next deduce the following strong Strichartz estimates for solutions to the Cauchy problem (4) : [START_REF] Cowling | The Kunze-Stein phenomenon[END_REF] u L p (I ;

L q ) + u L ∞ I ; H σ-1 2 , 1 2 + ∂ t u L ∞ I ; H σ-1 2 ,-1 2 f H σ-1 2 , 1 2 + g H σ-1 2 ,-1 2 + F L p′ I ; H σ+σ-1 q′ ,
where I is any (possibly unbounded) interval in R, (p, q), (p, q) ∈ [2, ∞) × [2, ∞) are admissible couples such that separately

2 p + n-1 q ≥ n-1 2 , 2 p + n-1 q ≥ n-1 2 , and σ ≥ n+1 2 1 2 -1 q , σ ≥ n+1 2 1
2 -1 q . Notice that the Sobolev spaces involved in (5) are naturally related to the conservation laws of the shifted wave equation (see Section 3). We conclude in Section 7 with an application of (5) to local well-posedness of the nonlinear wave equation for initial data with low regularity. While we obtain the same regularity curve as in the Euclidean case for subconformal powerlike nonlinearities, we prove local well-posedness for superconformal powers under lower regularity assumptions on the inital data.

In order to keep down the length of this paper, we postpone applications of the Strichartz estimates to global well-posedness of the nonlinear wave equation and generalizations of the previous results to Damek-Ricci spaces.

Spherical analysis on real hyperbolic spaces

In this paper, we consider the simplest class of Riemannian symmetric spaces of the noncompact type, namely real hyperbolic spaces H n of dimension n ≥ 2 (we shall restrict to n ≥ 3 in Section 7). We refer to Helgason's books [START_REF] Helgason | Differential geometry, Lie groups, and symmetric spaces[END_REF][START_REF] Helgason | Groups and geometric analysis (integral geometry, invariant differential operators, and spherical functions[END_REF][START_REF] Helgason | Geometric analysis on symmetric spaces[END_REF] and to Koornwinder's survey [START_REF] Koornwinder | Jacobi functions and analysis on noncompact semisimple Lie groups[END_REF] for their algebraic structure and geometric properties, as well as for harmonic analysis on these spaces, and we shall be content with the following information. H n can be realized as the symmetric space G/K, where G = SO(1, n) 0 and K = SO(n). In geodesic polar coordinates on H n , the Riemannian volume writes dx = const. (sinh r) n-1 dr dσ and the Laplace-Beltrami operator

∆ H n = ∂ 2 r + (n-1) coth r ∂ r + sinh -2 r ∆ S n-1 . The spherical functions ϕ λ on H n are normalized radial eigenfunctions of ∆ H n : ∆ H n ϕ λ = -(λ 2 +ρ 2 ) ϕ λ , ϕ λ (0) = 1 ,
where λ ∈ C and ρ = n-1 2 . They can be expressed in terms of special functions :

ϕ λ (r) = φ ( n 2 -1,-1 2 ) λ (r) = 2 F 1 ρ 2 + i λ 2 , ρ 2 -i λ 2 ; n 2 ; -sinh 2 r ,
where φ (α,β) λ denotes the Jacobi functions and 2 F 1 the Gauss hypergeometric function. In the sequel we shall use the integral representations [START_REF] Cowling | Herz's"principe de majoration" and the Kunze-Stein phenomenon[END_REF] 

ϕ λ (r) = K dk e -(ρ+iλ) H(a -r k) = Γ( n 2 ) √ π Γ( n-1 2 ) π 0 dθ (sin θ) n-2 (cosh r -sinh r cos θ) -ρ-iλ = π -1 2 2 n-3 2 Γ( n 2 ) Γ( n-1 2 ) (sinh r) 2-n +r -r du (cosh r -cosh u) n-3 2 e -iλu ,
which imply in particular that

(7) |ϕ λ (r)| ≤ ϕ 0 (r) (1 + r) e -ρr ∀ λ ∈ R , r ≥ 0 .
We shall also use the Harish-Chandra expansion

(8) ϕ λ (r) = c(λ) Φ λ (r) + c(-λ) Φ -λ (r) ∀ λ ∈ C Z, r > 0,
where the Harish-Chandra c-function is given by ( 9)

c(λ) = Γ(2ρ) Γ(ρ) Γ(iλ) Γ(iλ+ρ) and (10) Φ λ (r) = (2 sinh r) iλ-ρ 2 F 1 ρ 2 -i λ 2 , -ρ-1 2 -i λ 2 ; 1-iλ; -sinh -2 r = (2 sinh r) -ρ e iλr +∞ k=0 Γ k (λ) e -2k r ∼ e (iλ-ρ)r
as r → +∞ .

It is well known that there exist ν > 0, ε > 0 and C > 0 such that, for every k ∈ N and

λ ∈ C with Im λ > -ε, |Γ k (λ)| ≤ C (1+k) ν .
We need to improve upon this estimate, by enlarging the domain, by estimating the derivatives of Γ k and by gaining some additional decay in λ for k ∈ N * . The following recurrence formula holds :

Γ 0 (λ) = 1 Γ k (λ) = ρ (ρ-1) k (k-iλ) k-1 j=0 (k -j) Γ j (λ) . Lemma 2.1. Let 0 < ε < 1 and Ω ε = { λ ∈ C | | Re λ| ≤ ε |λ|, Im λ ≤ -1+ε }.
Then, for every ℓ ∈ N, there exists C ℓ > 0 such that

(11) ∂ ℓ λ Γ k (λ) ≤ C ℓ k ν (1+ |λ|) -ℓ-1 ∀ k ∈ N * , λ ∈ C Ω ε .
Proof. Consider first the case ℓ = 0. There exists

A = A(ε) > 0 such that |k -iλ| ≥ A max {k, 1+|λ|}. Choose ν ≥ 1 such that ρ 2 A 1 ν+1 ≤ 1 2 and C > 0 such that ρ 2 A ≤ C 2 . For k = 1, we have Γ 1 (λ) = ρ (ρ-1) 1-iλ , hence |Γ 1 (λ)| ≤ ρ 2 A 1 1+|λ| ≤ C 1 1+|λ| , as required. For k > 1, we have Γ k (λ) = ρ (ρ-1) k-iλ + ρ (ρ-1) k (k-iλ) 0<j<k (k-j) Γ j (λ) , hence |Γ k (λ)| ≤ ρ 2 A 1 1+|λ| + ρ 2 A 1 k 2 0<j<k (k-j) C j ν 1+|λ| ≤ C 2 k ν 1 1+|λ| + C k ν 1+|λ| ρ 2 A 1 k 0<j<k j k ν ≤ C k ν 1+|λ| .
Derivatives are estimated by the Cauchy formula.

Under suitable assumptions, the spherical Fourier transform of a bi-K-invariant function f on G is defined by

Hf (λ) = G dg f (g) ϕ λ (g)
and the following formulae hold :

• Inversion formula :

f (x) = const. +∞ 0 dλ |c(λ)| -2 Hf (λ) ϕ λ (x) ,
• Plancherel formula :

f 2 L 2 = const. +∞ 0 dλ |c(λ)| -2 |Hf (λ)| 2 .
Here is a well-known estimate of the Plancherel density :

(12) |c(λ)| -2 |λ| 2 (1+|λ|) n-3 ∀ λ ∈ R .
In the sequel we shall use the fact that H = F • A, where A denotes the Abel transform and F the Fourier transform on the real line. Actually we shall use the factorization

H -1 = A -1 • F -1 .
Recall the following expression of the inverse Abel transform :

(13) A -1 g(r) = const. -1 sinh r ∂ ∂r n-1 2 g(r) .
If n id odd, the right hand side involves a plain differential operator while, if n is even, the fractional derivative must be interpreted as follows :

(14) -1 sinh r ∂ ∂r n-1 2 g(r) = 1 √ π +∞ r ds sinh s √ cosh s-cosh r -1 sinh s n 2 g(s) .

Sobolev spaces and conservation of energy

Let us first introduce inhomogeneous Sobolev spaces on hyperbolic spaces H n , which will be involved in the conservation laws, in the dispersive estimates and in the Strichartz estimates for the shifted wave equation. We refer to [START_REF] Triebel | Theory of function spaces II[END_REF] for more details about functions spaces on Riemannian manifolds.

Let 1 < q < ∞ and σ ∈ R. By definition,

H σ q (H n ) is the image of L q (H n ) under (-∆ H n ) -σ
2 (in the space of distributions on H n ), equipped with the norm

f H σ q = (-∆ H n ) σ 2 f L q .
In this definition, we may replace -∆ H n by -∆ H n-ρ 2 +ρ 2 , where ρ > | 1 2 -1 q |2ρ. For simplicity, we choose ρ > ρ independently of q and we set

D = (-∆ H n -ρ 2 + ρ2 ) 1 2 . Thus H σ q (H n ) = D -σ L q (H n ) and f H σ q ∼ D σ f L q . If σ = N is a nonnegative integer, then H σ q (H n ) coïncides with the Sobolev space W N,q (H n ) = { f ∈ L q (H n ) | ∇ j f ∈ L q (H n ) ∀ 1 ≤ j ≤ N }
defined in terms of covariant derivatives and equipped with the norm

f W N,q = N j=0 ∇ j f L q . Proposition 3.1 (Sobolev embedding Theorem). Let 1 < q 1 < q 2 < ∞ and σ 1 , σ 2 ∈ R such that σ 1 -n q 1 ≥ σ 2 -n q 2 ( 1 ). Then H σ 1 q 1 (H n ) ⊂ H σ 2 q 2 (H n )
. By this inclusion, we mean that there exists a constant C > 0 such that

f H σ 2 q 2 ≤ C f H σ 1 q 1 ∀ f ∈ C ∞ c (H n ) . Proof.
We sketch two proofs. The first one is based on the localization principle for Lizorkin-Triebel spaces [START_REF] Triebel | Theory of function spaces II[END_REF] and on the corresponding result in R n . More precisely, given a tame partition of unity 1 = ∞ j=0 ϕ j on H n , we have

f H σ 2 q 2 (H n ) ≍ ∞ j=0 (ϕ j f )• exp x j q 2 H σ 2 q 2 (R n ) 1 q 2 .
Using the inclusions

H σ 1 q 1 (R n ) ⊂ H σ 2 q 2 (R n ) and ℓ q 1 (N) ⊂ ℓ q 2 (N), we conclude that f H σ 2 q 2 (H n ) ∞ j=0 (ϕ j f )• exp x j q 1 H σ 1 q 1 (R n ) 1 q 1 ≍ f H σ 1 q 1 (H n ) .
The second proof is based on the L q 1 → L q 2 mapping properties of the convolution operator D σ 2 -σ 1 (see [START_REF] Cowling | L p -L q estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces I[END_REF] and the references cited therein).

1 Notice that σ 1 -σ 2 ≥ n q1 -n q2 > 0.
Beside the L q Sobolev spaces H σ q (H n ), our analysis of the shifted wave equation on H n involves the following L 2 Sobolev spaces :

H σ,τ (H n ) = D -σ D -τ L 2 (H n ), where D = (-∆ H n -ρ 2 ) 1 2 , σ ∈ R and τ < 3
2 (actually we are only interested in the cases τ = 0 and τ = ± 1 2 ). Notice that

     H σ,τ (H n ) = H σ 2 (H n ) if τ = 0, H σ,τ (H n ) ⊂ H σ+τ 2 (H n ) if τ < 0, H σ,τ (H n ) ⊃ H σ+τ 2 (H n ) if 0 < τ < 3 2 . Lemma 3.2. If 0 < τ < 3 2 , then H σ,τ (H n ) ⊂ H σ+τ 2 (H n ) + H ∞ 2 + (H n ), where H ∞ 2 + (H n ) = s∈R q>2 H s q (H n ) (recall that H s q (H n ) is decreasing as q ց 2 and s ր +∞). Proof. Let f ∈ L 2 (H n ). We have D -σ D -τ f = f * k σ,τ ,
where

k σ,τ (x) = const. +∞ 0 dλ |c(λ)| -2 |λ| -τ (λ 2 + ρ2 ) -σ 2 ϕ λ (x)
by the inversion formula for the spherical Fourier transform on H n . Let us split up the integral

+∞ 0 = 1 0 + +∞ 1
and the kernel k σ,τ = k 0 σ,τ + k ∞ σ,τ , accordingly. On the one hand,

1I (1,+∞) (D) D -σ D -τ f = f * k ∞ σ,τ maps L 2 (H n ) into H σ+τ 2 (H n ). On the other hand, k 0 σ,τ is a radial kernel in H ∞ 2 (H n ), hence 1I [0,1] (D) D -σ D -τ f = f * k 0 σ,τ maps L 2 (H n ) into H ∞ 2 + (H n ) by the Kunze-Stein phenomenon. Thus D -σ D -τ f = f * k σ,τ belongs to H σ+τ 2 (H n ) + H ∞ 2 + (H n ), as required. Let us next introduce the energy (15) E(t) = 1 2 H n dx |∂ t u(t, x)| 2 + |D x u(t, x)| 2
for solutions to the homogeneous Cauchy problem ( 16)

     ∂ 2 t u -(∆ H n +ρ 2 )u = 0 , u(0, x) = f (x) , ∂ t | t=0 u(t, x) = g(x) .
It is easily verified that ∂ t E(t) = 0, hence [START_REF] Hassani | Wave equation on symmetric spaces[END_REF] is conserved. In other words, for every time t in the interval of definition of u,

∂ t u(t, x) 2 L 2 x + D x u(t, x) 2 L 2 x = g 2 L 2 + Df 2 L 2 .
Let σ ∈ R and τ < 3 2 . By applying the operator Dσ D τ to (16), we deduce that

∂ t Dσ x D τ x u(t, x) 2 L 2 x + Dσ x D τ +1 x u(t, x) 2 L 2 x = Dσ D τ g 2 L 2 + Dσ D τ +1 f 2 L 2
, which can be rewritten in terms of Sobolev norms as follows :

(17) ∂ t u(t, •) 2 H σ,τ + u(t, •) 2 H σ,τ +1 = g 2 H σ,τ + f 2 H σ,τ +1 .

Kernel estimates

In this section we derive pointwise estimates for the radial convolution kernel w (σ,τ ) t of the operator W (σ,τ ) t = D -τ Dτ-σ e i tD , for suitable exponents σ ∈ R and τ ∈ [0, 3 2 ). By the inversion formula of the spherical Fourier transform,

w (σ,τ ) t (r) = const. +∞ 0 dλ |c(λ)| -2 λ -τ (λ 2 + ρ2 ) τ -σ 2 ϕ λ (r) e itλ .
Contrarily to the Euclidean case, this kernel has different behaviors, depending whether t is small or large, and therefore we cannot use any rescaling. Let us split up

w (σ,τ ) t (r) = w (σ,τ ) t,0 (r) + w (σ,τ ) t,∞ (r) = const. 2 0 dλ χ 0 (λ) |c(λ)| -2 λ -τ (λ 2 + ρ2 ) τ -σ 2 ϕ λ (r) e itλ + const. +∞ 1 dλ χ ∞ (λ) |c(λ)| -2 λ -τ (λ 2 + ρ2 ) τ -σ 2 
ϕ λ (r) e itλ using smooth cut-off functions χ 0 and χ ∞ on [0, +∞) such that 1 = χ 0 + χ ∞ , χ 0 = 1 on [0, 1] and χ ∞ = 1 on [2, +∞). We shall first estimate w (σ,τ ) t,0 and next a variant of w

(σ,τ ) t,∞ . The kernel w (σ,τ )
t,∞ has indeed a logarithmic singularity on the sphere r = t when σ = n+1 2 . We bypass this problem by considering the analytic family of operators

W (σ,τ ) t,∞ = e σ 2 Γ( n+1 2 -σ) χ ∞ (D) D -τ Dτ-σ e i tD in the vertical strip 0 ≤ Re σ ≤ n+1
2 and the corresponding kernels [START_REF] Helgason | Geometric analysis on symmetric spaces[END_REF] w

(σ,τ ) t,∞ (r) = e σ 2 Γ( n+1 2 -σ) +∞ 1 dλ χ ∞ (λ) |c(λ)| -2 λ -τ (λ 2 + ρ2 ) τ -σ 2 
e itλ ϕ λ (r) .

Notice that the Gamma function, which occurs naturally in the theory of Riesz distributions, will allow us to deal with the boundary point σ = n+1 2 , while the exponential function yields boundedness at infinity in the vertical strip. Notice also that, once multiplied by χ ∞ (D), the operator D -τ Dτ-σ behaves like D-σ . 

|w 0 t (r)| ϕ 0 (r). (ii) Assume that |t| ≥ 2. (a) If 0 ≤ r ≤ |t| 2 , then |w 0 t (r)| |t| τ -3 ϕ 0 (r). (b) If r ≥ |t| 2 , then |w 0 t (r)| (1+ |r-|t||) τ -2 e -ρr . Proof. Recall that (19) w 0 t (r) = const. 2 0 dλ χ 0 (λ) |c(λ)| -2 λ -τ (λ 2 + ρ2 ) τ -σ 2 ϕ λ (r) e itλ .
By symmetry we may assume that t > 0.

(i) It follows from the estimates ( 7) and ( 12) that

|w 0 t (r)| 2 0 dλ λ 2-τ ϕ 0 (r) ϕ 0 (r) .
(ii) We prove first (a) by substituting in [START_REF] Herz | Sur le phénomène de Kunze-Stein[END_REF] the first integral representation of ϕ λ in [START_REF] Cowling | Herz's"principe de majoration" and the Kunze-Stein phenomenon[END_REF] and by reducing this way to Fourier analysis on R. Specifically,

w 0 t (r) = K dk e -ρ H(a -r k) 2 0 dλ χ 0 (λ) a(λ) e i{t-H(a -r k)}λ , where a(λ) = |c(λ)| -2 λ -τ (λ 2 + ρ2 ) τ -σ
2 , up to a positive constant. According to the estimate [START_REF] Georgiev | Weighted Strichartz estimates and global existence for semilinear wave equations[END_REF] and to Lemma A.1 in Appendix A, the inner integral is bounded above by

t -H(a -r k) τ -3 ≤ (t -r) τ -3 ≍ t τ -3 . Since K dk e -ρ H(a -r k) = ϕ 0 (r) ,
we conclude that |w 0 t (r)| t τ -3 ϕ 0 (r) . We prove next (b) by substituting in [START_REF] Herz | Sur le phénomène de Kunze-Stein[END_REF] the Harish-Chandra expansion (8) of ϕ λ and by reducing again to Fourier analysis on R. Specifically, [START_REF] Hörmander | The analysis of linear partial differential operators I (distribution theory and Fourier analysis[END_REF] w 0 t (r) = (2 sinh r) -ρ +∞ k=0 e -2k r I +,0 k (t, r) + I -,0 k (t, r) , where

I ±,0 k (t, r) = 2 0 dλ χ 0 (λ) a ± k (λ) e i(t±r)λ and a ± k (λ) = c(∓λ) -1 λ -τ (λ 2 + ρ2 ) τ -σ 2
Γ k (±λ) . By applying Lemma A.1 and by using the estimates [START_REF] Georgiev | Semilinear hyperbolic equations[END_REF] for Γ k and its derivatives, we obtain

|I +,0 k (t, r)| (1+ k) ν (t+r) τ -2 ≤ (1+ k) ν r τ -2 and |I -,0 k (t, r)| (1+ k) ν (1 + |r-t|) τ -2 .
We conclude the proof by summing up these estimates in [START_REF] Hörmander | The analysis of linear partial differential operators I (distribution theory and Fourier analysis[END_REF].

4.2. Estimate of w ∞ t = w (σ,τ ) t,∞ .
Theorem 4.2. The following pointwise estimates hold for the kernel

w ∞ t = w (σ,τ ) t,∞ , for any fixed τ ∈ R and uniformy in σ ∈ C with Re σ = n+1 2 : (i) Assume that 0 < |t| ≤ 2. (a) If 0 ≤ r ≤ 3, then | w ∞ t (r)| |t| -n-1 2 if n ≥ 3, |t| -1 2 (1-log |t|) if n = 2. (b) If r ≥ 3, then w ∞ t (r) = O r -∞ e -ρr . (ii) Assume that |t| ≥ 2. Then | w ∞ t (r)| (1 + |r -|t||) -∞ e -ρ r ∀ r ≥ 0.
Proof of Theorem 4.2.ii. Recall that, up to a positive constant,

w ∞ t (r) = e σ 2 Γ( n+1 2 -σ) +∞ 1 dλ χ ∞ (λ) |c(λ)| -2 λ -τ (λ 2 + ρ2 ) τ -σ 2 ϕ λ (r) e itλ .
By symmetry we may assume again that t > 0. If 0 ≤ r ≤ t 2 , we resume the proof of Theorem 4.1.ii.a, using Lemma A.2 instead of Lemma A.1, and estimate this way

(21) | w ∞ t (r)| (t-r) -∞ ϕ 0 (r) t -∞ e -ρr .
If r ≥ t 2 , we resume the proof of Theorem 4.1.ii.b and expand this way ( 22)

w ∞ t (r) = e σ 2 Γ( n+1 2 -σ) (sinh r) -ρ +∞ k=0 e -2k r I +,∞ k (t, r) + I -,∞ k (t, r) ,
where

I ±,∞ k (t, r) = +∞ 0 dλ χ ∞ (λ) a ± k (λ) e i(t±r)λ and a ± k (λ) = c(∓λ) -1 λ -τ (λ 2 + ρ2 ) τ -σ 2 
Γ k (±λ) . It follows from the expression (9) of the c-function and from the estimates [START_REF] Georgiev | Semilinear hyperbolic equations[END_REF] 

of the coefficients Γ k that χ ∞ a ± k is a symbol of order d = -1 if k = 0, -2 if k ∈ N * .
By applying Lemma A.2, we obtain the following estimates of the expressions

I ±,∞ k (t, r), except for I -,∞ 0 (t, r) : ∀ N ∈ N * , ∃ C N ≥ 0, |I +,∞ k (t, r)| ≤ C N |σ| N (1+ k) ν (t+r) -N ≤ C N |σ| N (1+ k) ν r -N , (23) |I -,∞ k (t, r)| ≤ C N |σ| N (1+ k) ν (1 + |r-t|) -N . ( 24 
)
As far as

I -,∞ 0 (t, r) is concerned, Lemma A.2 yields the estimates (25) |I -,∞ 0 (t, r)| ≤ C N |σ| N |r-t| -N if |r-t| ≥ 1, C 1+ log 1 |r-t| if |r-t| ≤ 1.
The second one can be improved by applying Lemma A.3 instead of Lemma A.2. For this purpose, let us establish the asymptotic behavior of the symbol a - 0 (λ), as λ → +∞. On the one hand,

c(λ) -1 = Γ(ρ) Γ(2ρ) Γ(iλ+ρ) Γ(iλ) = Γ(ρ) Γ(2ρ) e -ρ iλ+ρ iλ iλ-1 2 (iλ+ρ) ρ 1 + O (λ -1 ) = e i ρπ 2 λ ρ 1 + O(λ -1 ) , according to Stirling's formula Γ(ξ) = √ 2π ξ ξ-1 2 e -ξ 1 + O(|ξ| -1 ) .
On the other hand,

λ -τ (λ 2 + ρ2 ) τ -σ 2 = λ -σ 1 + O(|σ|λ -2 ) . Hence a - 0 (λ) = c 0 λ -1-i Im σ + b 0 (λ) with |b 0 (λ)| ≤ C |σ| λ -2
. By applying Lemma A.3 with m = 0 and d = -2, we obtain

(26) |I -,∞ 0 (t, r)| ≤ C |σ| 2 | Im σ | if |r-t| ≤ 1.
Instead of the singularity log 1 |r-t| in [START_REF] Keel | Endpoint Strichartz estimates[END_REF], the estimate (26) of I -,∞ 0 (t, r) involves this time the singularity 1 Im σ , which cancels with the denominator of the front expression ( 27)

e σ 2 Γ( n+1 2 -σ)
in [START_REF] Ionescu | Fourier integral on noncompact symmetric spaces of real rank one[END_REF]. Notice moreover that the numerator of ( 27) yields enough decay to get uniform bounds in σ. In conclusion, by combining ( 22), ( 23), ( 24), ( 25), [START_REF] Koornwinder | Jacobi functions and analysis on noncompact semisimple Lie groups[END_REF], we obtain

| w ∞ t (r)| (1 + |r-t|) -∞ e -ρ r ∀ r ≥ t 2 .
Remark 4.3. The kernel w ∞ t (r) can be estimated in the same way, except that

| w ∞ t (r)| e -ρt log 1 |r-|t|| when r is close to |t|.
Let us turn to the small time estimates in Theorem 4.2. The estimate (i.a) is of local nature and thus similar to the Euclidean case. For the sake of completeness, we include a proof in Appendix C. It remains for us to prove the estimate (i.b).

Proof of Theorem 4.2.i.b. Here 0 < |t| ≤ 2 and r ≥ 3. By symmetry we may assume again that t > 0. We use now the inverse Abel transform given by Formulae ( 13) and ( 14). Up to positive constants, the inverse spherical Fourier transform ( 18) can be rewritten in the following way :

w ∞ t (r) = e σ 2 Γ( n+1 2 -σ) A -1 g t (r)
, where

g t (r) = 2 +∞ 1 dλ χ ∞ (λ) λ -τ (λ 2 + ρ2 ) τ -σ 2
e itλ cos λr .

Let us split up 2 cos λr = e iλr + e -iλr and g t (r) = g + t (r)+ g - t (r) accordingly, so that

g ± t (r) = +∞ 1 dλ χ ∞ (λ) λ -τ (λ 2 + ρ2 ) τ -σ 2 e i(t±r)λ .
Case 1 : Assume that n = 2m+1 is odd. First of all, let us expand

1 sinh r ∂ ∂r m = m ℓ=1 α ∞ ℓ (r) ∂ ∂r ℓ
.

Since the coefficients α ∞ ℓ (r) are linear combinations of products

1 sinh r × ∂ ∂r ℓ 2 1 sinh r × • • • × ∂ ∂r ℓm 1 sinh r , with ℓ 2 + . . . + ℓ m = m-ℓ , and 1 sinh r = 2 +∞ j=0 e -(2j+1)r is O(e -r
), as well as its derivatives, we deduce that α ∞ ℓ (r) is O(e -mr ) as r → +∞. Consider next

∂ ∂r ℓ g ± t (r) = +∞ 1 dλ χ ∞ (λ) λ -τ (λ 2 + ρ2 ) τ -σ 2 (±iλ) ℓ e i(t±r)λ .
According to Lemma A.2, for every N ∈ N * , there exists

C N ≥ 0 such that ∂ ∂r ℓ g ± t (r) ≤ C N |σ| N (r ± t) -N . As a conclusion, | w ∞ t (r)| = C 1 sinh r ∂ ∂r m (g + t + g - t )(r) ≤ C N r -N e -n-1 2 r ∀N ∈ N * .
Case 2 : Assume that n = 2m is even. According to Case 1, for every N ∈ N * , there exists C N ≥ 0 such that

1 sinh s ∂ ∂s m g t (s) ≤ C N |σ| N s -N e -ms ∀ s ≥ 3 .
By estimating cosh s -cosh r = 2 sinh s+r 2 sinh s-r 2 e r sinh s-r 2 , sinh s e s , e -(m-1)s ≤ e -(m-1)r , s -N ≤ r -N , and performing the change of variables s = r+u, we deduce that

| w ∞ t (r)| e σ 2 Γ( n+1 2 -σ) +∞ r ds sinh s √ cosh s -cosh r 1 sinh s ∂ ∂s m g t (s) ≤ C N +∞ r ds sinh s √ cosh s -cosh r s -N e -ms ≤ C N r -N e -(m-1 2 )r +∞ 0 du √ sinh u 2 ≤ C N r -N e -n-1 2 r .

Dispersive estimates

In this section we obtain L q ′ → L q estimates for the operator D -τ Dτ-σ e i tD , which will be crucial for our Strichartz estimates in next section. Let us split up its kernel w t = w 0 t + w ∞ t as before. We will handle the contribution of w 0 t , using the pointwise estimates obtained in Subsection 4.1 and the following criterion based on the Kunze-Stein phenomenon.

Lemma 5.1. There exists a constant C > 0 such that, for every radial measurable function κ on H n , for every 2 ≤ q, q < ∞ and

f ∈ L q ′ (H n ), f * κ L q ≤ C f L q′ +∞ 0 dr (sinh r) n-1 ϕ 0 (r) µ |κ(r)| Q 1 Q .
where µ = 2 min{q, q} q + q and Q = q q q + q ( 2 ).

Proof. This estimate is obtained by complex multilinear interpolation between the following version [START_REF] Herz | Sur le phénomène de Kunze-Stein[END_REF] of the Kunze-Stein phenomenon

f * κ L 2 f L 2 +∞ 0 dr (sinh r) n-1 ϕ 0 (r) |κ(r)|
and the elementary inequalities

f * κ L q ≤ f L 1 κ L q , f * κ L ∞ ≤ f L q′ κ L q .
Specifically, if 2 < q < ∞ and 2 ≤ q ≤ q, define 2 ≤ r ≤ ∞ by 1 r = 1 2 1/q -1/q 1/2-1/q . By complex interpolation, let us deduce the intermediate estimate ( 28)

H n f * ϕ -2 q 0 g (x) h(x) dx f L q′ g L Q h L q ′
from the endpoint estimates (29)

H n f 0 * g 0 (x) h 0 (x) dx ≤ f 0 L r ′ g 0 L r h 0 L 1 and (30) 
H n f 1 * ϕ -1 0 g 1 (x) h 1 (x) dx f 1 L 2 g 1 L 1 h 1 L 2 . 2 Notice that 1 Q = 1 q + 1 q and µ + Q > 2.
Here

f = finite α j 1I A j , g = finite β k 1I B k , h = finite γ ℓ 1I C ℓ
are linear combinations with nonzero complex coefficients of characteristic functions of disjoints Borel sets in H n with finite positive measure, the B k 's being moreover spherical.

As in the proof of the Riesz-Thorin theorem (see for instance [3, § 1.1]), we assume that

f L q′ = g L Q = h L q ′ = 1
, we consider the analytic families of simple functions

f z = finite α j |α j | a(z)-1 1I A j , g z = finite β k |β k | b(z)-1 1I B k , h z = finite γ ℓ |γ ℓ | c(z)-1 1I C ℓ ,
where

a(z) q′ = 1 r -1 2 z + 1 r ′ , b(z) Q = 1 r ′ z + 1 r , c(z) q ′ = -1 2 z
+1, and we apply the Hadamard three lines theorem to the holomorphic function [START_REF] Tataru | Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation[END_REF]. The estimate [START_REF] Metcalfe | Nonlinear waves on 3D hyperbolic space[END_REF] is obtained by applying the three lines theorem to ψ(z) at the point z = 2 q , where

ψ(z) = H n f z * ϕ -z 0 g z (x) h z (x) dx in the vertical strip {z ∈ C | 0 ≤ Re z ≤ 1}. More precisely, if Re z = 0, then          Re a(z) = q′ r ′ =⇒ f z r ′ L r ′ = f q′ L q′ = 1, Re b(z) = Q r =⇒ g z r L r = g Q L Q = 1, Re c(z) = q ′ =⇒ h z L 1 = h q ′ L q ′ = 1, hence |ψ(z)| ≤ 1, according to (29). Similarly, if Re z = 1, then          Re a(z) = q′ 2 =⇒ f z 2 L 2 = f q′ L q′ = 1, Re b(z) = Q =⇒ g z L 1 = g Q L Q = 1, Re c(z) = q ′ 2 =⇒ h z 2 L 2 = h q ′ L q ′ = 1, hence |ψ(z)| ≤ C, according to
   a(z) = 1 =⇒ f z = f , b(z) = 1 =⇒ g z = g, c(z) = 1 =⇒ h z = h.
Eventually, the symmetric case, where 2 < q < ∞ and 2 ≤ q ≤ q , is handled similarly.

For the second part w ∞ t , we resume the Euclidean approach, which consists in interpolating analytically between L 2 → L 2 and L 1 → L ∞ estimates for the family of operators [START_REF] Triebel | Theory of function spaces II[END_REF] W

(σ,τ ) t,∞ = e σ 2 Γ( n+1 2 -σ) χ ∞ (D) D -τ Dτ-σ e i tD in the vertical strip 0 ≤ Re σ ≤ n+1 2 . 5.1. Small time dispersive estimate. Theorem 5.2. Assume that 0 < |t| ≤ 2, 2 < q < ∞, 0 ≤ τ < 3 2 and σ ≥ (n +1)( 1 2 -1 q ). Then, D -τ Dτ-σ e i tD L q ′ →L q |t| -(n-1)( 1 2 -1 q ) if n ≥ 3, |t| -( 1 2 -1 q ) (1-log |t|) 1-2 q if n = 2.
Proof. We divide the proof into two parts, corresponding to the kernel decomposition w t = w 0 t +w ∞ t . By applying Lemma 5.1 and by using the pointwise estimates in Theorem 4.1.i, we obtain on one hand

f * w 0 t L q +∞ 0 dr (sinh r) n-1 ϕ 0 (r) |w 0 t (r)| q 2 2 q f L q ′ +∞ 0 dr (1+ r) 1+ q 2 e -ρ r ( q 2 -1) 2 q f L q ′ f L q ′ ∀ f ∈ L q ′ .
For the second part, we consider the analytic family [START_REF] Triebel | Theory of function spaces II[END_REF]. If Re σ = 0, then

f * w ∞ t L 2 f L 2 ∀ f ∈ L 2 .
If Re σ = n+1 2 , we deduce from the pointwise estimates in Theorem 4.

2.i that f * w ∞ t L ∞ |t| -n-1 2 f L 1 ∀ f ∈ L 1 .
By interpolation we conclude for σ = (n + 1)

1 2 -1 q that f * w ∞ t L q |t| -(n-1)( 1 2 -1 q ) f L q ′ ∀ f ∈ L q ′ . 5.2. Large time dispersive estimate. Theorem 5.3. Assume that |t| ≥ 2, 2 < q < ∞, 0 ≤ τ < 3 2 and σ ≥ (n+1)( 1 2 -1 q ). Then D -τ Dτ-σ e i tD L q ′ →L q |t| τ -3 .
Proof. We divide the proof into three parts, corresponding to the kernel decomposition

w t = 1I B(0, |t| 2 ) w 0 t + 1I H n B(0, |t| 2 ) w 0 t + w ∞ t .
Estimate 1 : By applying Lemma 5.1 and using the pointwise estimates in Theorem 4.1.ii.a, we obtain

f * {1I B(0, |t| 2 ) w 0 t } L q |t| 2 0 dr (sinh r) n-1 ϕ 0 (r) |w 0 t (r)| q 2 2 q f L q ′ +∞ 0 dr (1+ r) 1+ q 2 e -ρ r ( q 2 -1) 2 q <+∞ |t| τ -3 f L q ′ ∀ f ∈ L q ′ .
Estimate 2 : By applying Lemma 5.1 and using the pointwise estimates in Theorem 4.1.ii.b, we obtain

f * {1I H n B(0, |t| 2 ) w 0 t } L q +∞ |t| 2 dr (sinh r) n-1 ϕ 0 (r) |w 0 t (r)| q 2 2 q f L q ′ +∞ |t| 2
dr r e -( q 2 -1)ρr

2 q |t| -∞ f L q ′ ∀ f ∈ L q ′ .
Estimate 3 : In order to estimate the 

L q ′ → L q norm of f → f * w ∞ t ,
dr (sinh r) n-1 ϕ 0 (r) |w ∞ t (r)| q 2 and +∞ |t|+1 dr (sinh r) n-1 ϕ 0 (r) |w ∞ t (r)| q 2 are O(|t| -∞ ) for any σ ∈ R, the integral |t|+1 |t|-1 dr (sinh r) n-1 ϕ 0 (r) |w ∞ t (r)| q 2
is finite provided σ > n+1 2 -2 q , which is too large compared with the critical exponent (n+1)( 12 -1 q ). Instead we use again interpolation for the analytic family [START_REF] Triebel | Theory of function spaces II[END_REF].

If Re σ = 0, then f * w ∞ t L 2 f L 2 ∀ f ∈ L 2 . If Re σ = n+1 2 , we deduce from Theorem 4.2.ii that f * w ∞ t L ∞ |t| -∞ f L 1 ∀ f ∈ L 1 .
By interpolation we conclude for σ = (n+1)

1 2 -1 q that f * w ∞ t L q |t| -∞ f L q ′ ∀ f ∈ L q ′ .
By taking τ = 1 in Theorems 5.2 and 5.3, we obtain in particular the following dispersive estimates.

Corollary 5.4. Let 2 < q < ∞ and σ ≥ (n+1) 1 2 -1 q . Then D-σ+1 e i t D D L q ′ →L q |t| -(n-1)( 1 2 -1 q ) if 0 < |t| ≤ 2, |t| -2 if |t| ≥ 2, with |t| -(n-1)( 1 2 -1 q ) replaced by |t| -( 1 2 -1 q ) (1-log |t|) 1-2 q in dimension n = 2.
Remark 5.5. Notice that Tataru [START_REF] Tataru | Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation[END_REF] obtained dispersive estimates with exponential decay in time for the operators cos tD and sin tD D , but did not prove actual Strichartz estimates. Here we obtain dispersive estimates with polynomial decay in time for the operator e i tD . This difference reflects the fact that the Fourier multipliers associated with the operators cos tD and sin tD D are analytic in a strip of the complex plane, which is not the case of e i tD .

By applying Lemma 5.1 in full generality, we obtain the following decoupled estimate for the operators

W (σ,τ ) t,0 = χ 0 (D) D -τ Dτ-σ e i tD .
Proposition 5.6. Let 2 < q, q < ∞, 0 ≤ τ < 3 2 and σ ∈ R. Then W

(σ,τ ) t,0 L q′ →L q (1 + |t|) τ -3 ∀ t ∈ R.

Strichartz estimates

We shall assume n ≥ 3 throughout this section and discuss the 2-dimensional case in the final remark. Consider the inhomogeneous linear wave equation on

H n : (32)      ∂ 2 t u(t, x) -(∆ H n + ρ 2 )u(t, x) = F (t, x), u(0, x) = f (x), ∂ t | t=0 u(t, x) = g(x),
whose solution is given by Duhamel's formula :

u(t, x) = (cos tD x )f (x) + sin tDx Dx g(x) + t 0 ds sin(t-s)Dx Dx F (s, x) . Definition 6.1. A couple (p, q) is called admissible if ( 1 p , 1 q ) belongs to the triangle (33) T n = 1 p , 1 q ∈ 0, 1 2 × 0, 1 2 2 p + n-1 q ≥ n-1 2 
(see Figure 1 ). 0 1

1 1 2 1 2 1 2 -1 n-1 1 p 1 q Figure 1. Admissibility in dimension n ≥ 4 Remark 6.2. Observe that the endpoint ( 1 2 , 1 2 -1 n-1
) is included in the triangle T n in dimension n ≥ 3 but not in dimension n = 3 (see Figure 2 ). 0 1

1 1 2 1 2 1 p 1 q Figure 2. Admissibility in dimension n = 3
Theorem 6.3. Let (p, q) and (p, q) be two admissible couples. Then the following Strichartz estimate holds for solutions to the Cauchy problem (32) :

(34) u

L p (R;L q ) f H σ-1 2 , 1 2 + g H σ-1 2 ,-1 2 + F L p′ R;H σ+σ-1 q′ , where σ ≥ (n+1) 2 1 2 -1 q and σ ≥ (n+1) 2 1 2 -1 q . Moreover, (35) 
u L ∞ R;H σ-1 2 , 1 2 
+ ∂ t u L ∞ R;H σ-1 2 ,-1 2 f H σ-1 2 , 1 2 + g H σ-1 2 ,-1 2 + F L p′ R;H σ+σ-1 q′ .
Proof. Consider the operator

Tf (t, x) = D-σ+ 1 2 x e ± i t Dx √ Dx f (x), initially defined from L 2 (H n ) into L ∞ (R; H -1 2 , 1 2 (H n ))
, and its formal adjoint

T * F (x) = +∞ -∞ ds D-σ+1/2 x e ∓ i s Dx √ Dx F (s, x), initially defined from L 1 (R; L 2 (H n )) into H -1 2 , 1 2 (H n ). The T T * method consists in prov- ing first the L p ′ (R; L q ′ (H n )) → L p (R; L q (H n )) boundedness of the operator T T * F (t, x) = +∞ -∞ ds D-2σ+1 x e ± i (t-s) Dx Dx F (s, x)
and of its truncated version

T F (t, x) = t -∞ ds D-2σ+1 x e ± i (t-s) Dx Dx F (s, x),
for every admissible couple (p, q) and for every σ ≥ n+1 2 1 2 -1 q , and in decoupling next the indices.

Assume that the admissible couple (p, q) is different from the endpoint (2, 2 n-1 n-3 ). Then we deduce from Corollary 5.4 that the norms T T * F (t, x) L p t L q x and T F (t, x) L p t L q x are bounded above by

(36) 0<|t-s|<1 ds |t -s| -α F (s, x) L q ′ x L p t + |t-s|≥1 ds |t -s| -2 F (s, x) L q ′ x L p t ,
where α = (n-1)( 12 -1 q ) ∈(0, 1). On the one hand, the convolution kernel |t-s| -2 1I {|t-s|≥1} defines obviously a bounded operator from L p 1 (R) to L p 2 (R), for all 1 ≤ p 1 ≤ p 2 ≤ ∞, in particular from L p ′ (R) to L p (R), since p ≥ 2. On the other hand, the convolution kernel |t-s| -α 1I {0<|t-s|<1} with 0 < α < 1 defines a bounded operator from

L p 1 (R) to L p 2 (R), for all 1 < p 1 , p 2 < ∞ such that 0 ≤ 1 p 1 -1 p 2 ≤ 1-α, in particular from L p ′ (R) to L p (R), since p ≥ 2 and 2 p ≥ α. At the endpoint (p, q) = (2, 2 n-1
n-3 ), we have α = 1. Thus the previous argument breaks down and is replaced by the refined analysis carried out in [START_REF] Keel | Endpoint Strichartz estimates[END_REF]. Notice that the problem lies only in the first part of (36) and not in the second one, which involves an integrable convolution kernel on R.

Thus T T * and T are bounded from L p ′ (R; L q ′ (H n )) to L p (R; L q (H n )), for every admissible couple (p, q). As a consequence, T * is bounded from

L p ′ (R; L q ′ (H n )) to L 2 (H n ) and T is bounded from L 2 (H n ) to L p (R; L q (H n )). In particular, (cos tD x )f (x) L p t L q x D-σ+ 1 2 x D -1 2 x e ±i tDx Dσ-1 2 x D 1 2 x f (x) L p t L q x f H σ-1 2 , 1 2
and

sin tDx Dx g(x) L p t L q x D-σ+ 1 2 x D -1 2 x e ±i tDx Dσ-1 2 x D -1 2 x g(x) L p t L q x g H σ-1 2 ,- 1 
2 . We next decouple the indices. Let (p, q) = (p, q) be two admissible couples and let

σ ≥ n+1 2 1 2 -1 q , σ ≥ n+1 2 1 2 -1 q .
Since T and T * are separately continuous, the operator

T T * F (t, x) = +∞ -∞ ds D-σ-σ+1 x e ± i (t-s) Dx Dx F (s, x) is bounded from L p′ (R; L q′ (H n )) to L p (R; L q (H n )).
According to [START_REF] Christ | Maximal functions associated to filtrations[END_REF], this result remains true for the truncated operator

T F (t, x) = t -∞ ds D-σ-σ+1 x e ± i (t-s) Dx Dx F (s, x)
and hence for

T F (t, x) = t 0 ds D-σ-σ+1 x sin(t-s)Dx Dx F (s, x)
as long as p and p are not both equal to 2. We handle the remaining case, where p = p = 2 and 2 < q = q ≤ 2 n-1 n-3 , by combining the bilinear approach in [START_REF] Keel | Endpoint Strichartz estimates[END_REF] with our previous estimates. Specifically let us split up again I = χ 0 (D) + χ ∞ (D) 2 , using smooth cut-off functions, and T = T 0 + T ∞ accordingly. On one hand, it follows from Proposition 5.6 that

T 0 F (t, x) = t -∞ ds χ 0 (D x ) D -1 x D1-σ-σ x e ±i(t-s)Dx F (s, x) is bounded from L p′ (R; L q′ (H n )) to L p (R; L q (H n ))
, for every 2 ≤ p, p ≤ ∞ and 2 < q, q < ∞, in particular for p = p = 2 and 2 < q, q ≤ 2 n-1 n-3 . As far as it is concerned, the

L 2 L q′ → L 2 L q boundedness of T ∞ F (t, x) = t -∞ ds χ ∞ (D x ) 2 D -1 x D1-σ-σ x e ±i(t-s)Dx F (s, x)
amounts to estimating the hermitian form

B ∞ (F, G) = s<t ds dt H n dx χ ∞ (D x ) D -1/2 x D1/2-σ x e ∓isDx F (s, x) × χ ∞ (D x ) D -1/2 x D1/2-σ x e ∓itDx G(t, x) by F L 2 L q′ G L 2 L q ′ . Let us split up dyadically s<t = +∞ j=-∞ 2 j ≤t-s<2 j+1
and B ∞ = +∞ j=-∞ B ∞ j accordingly. For every j ∈ Z, let us further split up

F (s, x) = +∞ k=-∞ 1I [k 2 j ,(k+1)2 j ) (s) F (s, x) F (j) k (s,x)
and

G(t, x) = +∞ ℓ=-∞ 1I [ℓ2 j ,(ℓ+1)2 j ) (t) G(t, x) G (j) ℓ (t,x)
.

Notice the orthogonality

F L 2 L q′ = +∞ k=-∞ F (j) k 2 L 2 L q′ 1/2 , G L 2 L q ′ = +∞ ℓ=-∞ G (j) ℓ 2 L 2 L q ′ 1/2
and the almost orthogonality

B ∞ j (F, G) = k,ℓ∈Z ℓ-k ∈{1,2} B ∞ j (F (j) k , G (j) 
ℓ ) .

We claim that

(37) | B ∞ j (F (j) k , G (j) ℓ )| 2 κ(q,q)j F (j) k L 2 L q′ G (j) ℓ L 2 L q ′ if j ≤ 0, 2 -∞j F (j) k L 2 L q′ G (j) ℓ L 2 L q ′ if j > 0,
when 2 < q, q ≤ 2 n-1 n-3 and κ(q, q) = n-1 2 ( 1 q + 1 q ) -n-3 2 . These estimates will be obtained by complex interpolation between the following cases (see Figure 3) :

(a) q = 2 and 2 ≤ q ≤ 2 n-1 n-3 , (b) 2 ≤ q ≤ 2 n-1 n-3 and q = 2, (c) 2 < q = q < ∞.

0 1 2 1 2 1 2 -1 n-1 1 2 -1 n-1 1 q 1 q Figure 3. Interpolation Case (a ) : Assume that q = 2, 2 ≤ q ≤ 2 n-1 n-3 and Re σ = 0, Re σ = n+1 2 ( 1 2 -1 q ). Consider the operators T ∞ f (t, x) = χ ∞ (D x ) D-σ+ 1 2 x e ± i t Dx √ Dx f (x) and (T ∞ ) * F (x) = +∞ -∞ ds χ ∞ (D x ) D-σ+ 1 2
x e ∓ i s Dx √ Dx F (s, x) . By resuming the proof of Theorem 5.2 and by applying the T ∞ (T ∞ ) * argument, we obtain that (T ∞ ) * is bounded from

L p′ (R; L q′ (H n )) to L 2 (H n ), where 1 p = n-1 2 ( 1 2 -1 q )
. By combining this result with Hölder's inequality, we deduce that

| B ∞ j (F (j) k , G (j) ℓ )| sup t∈R t-2 j+1 <s≤t-2 j ds χ ∞ (D x ) D -1 2 x D 1 2 -σ x e ∓isDx F (j) k (s, x) L 2 x × χ ∞ (D x ) D -1 2 x D 1 2 x e ∓itDx G (j) ℓ (t, x) L 1 t L 2 x sup t∈R 1I (t-2 j+1 ,t-2 j ) (s) F (j) k (s, x) L p′ s L q′ x G (j) ℓ (t, x) L 1 t L 2 x 2 j p′ F (j) k L 2 L q′ G (j) ℓ L 2 L 2 , with 1 p′ = κ(2, q). Case (b ) : If 2 < q ≤ 2 n-1 n-3 , q = 2 and Re σ = n+1 2 ( 1 2 -1 q ), Re σ = 0, we have symmetrically | B ∞ j (F (j) k , G (j) ℓ )| 2 κ(q,2)j F (j) k L 2 L 2 G (j) ℓ L 2 L q ′ .
Case (c ) : Assume that 2 < q = q < ∞ and Re σ = Re σ = n+1 2 ( 1 2 -1 q ). Let us rewrite

B ∞ j (F (j) k , G (j) ℓ ) = 2 j ≤t-s<2 j+1
ds dt

H n dx × χ ∞ (D x ) 2 D -1 x D1-σ-σ x e ± i(t-s)Dx F (j) k (s, x) G (j)
ℓ (t, x) . By using the dispersive estimates

χ ∞ (D) 2 D -1 D1-σ-σ e ± i(t-s)D L q′ →L q (t-s) -(n-1)( 1 2 -1 q ) if 0 < t-s < 2 (t-s) -∞ if t-s ≥ 2
(see the proofs of Theorems 5.2 and 5.3), we obtain

| B ∞ j (F (j) k , G (j) ℓ )| 2 -(n-1)( 1 2 -1 q )j F (j) k L 1 L q ′ G (j) ℓ L 1 L q ′ if j ≤ 0, 2 -∞j F (j) k L 1 L q ′ G (j) ℓ L 1 L q ′ if j > 0.
Hence, by Hölder's inequality,

| B ∞ j (F (j) k , G (j) ℓ )| 2 κ(q,q)j F (j) k L 2 L q ′ G (j) ℓ L 2 L q ′ if j ≤ 0, 2 -∞j F (j) k L 2 L q ′ G (j) ℓ L 2 L q ′ if j > 0.
Our claim (37) follows now by complex interpolation between the estimates obtained in Cases (a), (b) and (c) above. By summing up (37) and by using Hölder's inequality, we conclude that

| B ∞ (F, G)| ≤ j∈Z | B ∞ j (F, G)| ≤ j,k,ℓ∈Z ℓ-k ∈{1,2} | B ∞ j (F (j) k , G (j) ℓ )| j≤0 2 κ(q,q)j + j>0 2 -∞j k∈Z F (j) k 2 L 2 L q′ 1/2 ℓ∈Z G (j) ℓ 2 L 2 L q ′ 1/2 F L 2 L q′ G L 2 L q ′ if 2 < q = q ≤ 2 n-1 n-3 .
Notice that κ(q, q) > 0 under this assumption. Let us turn to (35). On the one hand, the energy estimate [START_REF] Helgason | Groups and geometric analysis (integral geometry, invariant differential operators, and spherical functions[END_REF] yields

(cos tD)f + sin tD D g H σ-1 2 , 1 2 + -(sin tD)Df + (cos tD)g H σ-1 2 ,-1 2 ≤ √ 2 f H σ-1 2 , 1 2 + g H σ-1 2 ,- 1 2 
for every t ∈ R. On the other hand, since

T * is bounded from L p′ (R; L q′ (H n )) to L 2 (H n ), both expressions t 0 ds sin(t-s)Dx Dx F (s, x) H σ-1 2 , 1 2 x = t 0 ds Dσ-1 2 x D -1 2 x sin(t-s)D x F (s, x) L 2 x and t 0 ds cos(t-s)D x F (s, x) H σ-1 2 ,-1 2 x = t 0 ds Dσ-1 2 x D -1 2
x cos(t-s)D x F (s, x) x e ∓isDx Dσ+σ-1

x 1I (0,t) (s) F (s, x)

L 2 x 1I (0,t) (s) Dσ+σ-1 x F (s, x) L p′ s L q′ x F L p′ (R;H σ+σ-1 q′ (H n )) ,
uniformly in t ∈ R. We conclude the proof of (35) by summing up the previous estimates and by taking the supremum over t ∈ R.

Remark 6.4. Observe that, in the statement of Theorem 6.3, we may replace R by any time interval I containing 0.

Remark 6.5. An analogous result holds in dimension n = 2 and its proof is similar, except for the first convolution kernel in (36), which becomes

|t -s| -α (1-log |t -s|) β 1I {0<|t-s|<1} , with α = 1 2 -1 q and β = 2( 1 2 -1 q ). It turns out that, in this case, a couple (p, q) is admissible if ( 1 p , 1 q ) belongs to the region T 2 = ( 1 p , 1 q ) ∈ (0, 1 2 ]×(0, 1 2 ) 2 p + 1 q > 1 2
(see Figure 4 ). We shall assume n ≥ 4 throughout this section and discuss the lower dimensional cases n = 3 and n = 2 in the final remarks. We apply Strichartz estimates for the inhomogeneous linear Cauchy problem associated with the wave equation to prove local well-posedness results for the following nonlinear Cauchy problem

(38)      ∂ 2 t u(t, x) -(∆ H n +ρ 2 ) u(t, x) = F (u(t, x)) u(0, x) = f (x) ∂ t | t=0 u(t, x) = g(x) ,
with a power-like nonlinearity F (u). By this we mean that if, for any bounded subset B of H σ,τ × H σ,τ -1 , there exist T > 0 and a Banach space

X T , continuously embedded into C ([-T, T ]; H s,τ ) ∩ C 1 ([-T, T ]; H s,τ -1 ), such that • for any initial data (f, g) ∈ B, (38) has a unique solution u ∈ X T , • the map (f, g) → u is continuous from B into X T .
The amount of smoothness σ requested for LWP of ( 38) in

H σ-1 2 , 1 2 ×H σ-1 2 ,- 1 
2 depends on γ and is represented in Figure 5.

σ 0 1 1 2 n 2 γ γ 1 γ 2 γ conf γ ∞ C 1 C 2 C 3 Figure 5.

Regularity in dimension n ≥ 4

There

γ 1 = n+3 n = 1+ 3 n , γ 2 = (n+1) 2 (n-1) 2 +4 = 1+ 2 n-1 2 + 2 n-1 , γ conf = n+3 n-1 = 1+ 4 n-1 , γ 3 = n 2 +5n-2+ √ n 4 +2n 3 +21n 2 -12n+4 2n 2 -2n = 1+ 4n+( n-6 2 -2 n-1 ) 2 -( n-6 2 -2 n-1 ) n , γ 4 = n 2 +2n-5 n 2 -2n-1 = 1+ 2 n-1 2 -1 n-1 , γ ∞ = min{γ 3 , γ 4 } = γ 3 if n = 4, 5 γ 4 if n ≥ 6
and the curves C 1 , C 2 , C 3 are given by

C 1 (γ) = n+1 4 1 -n+5 2 nγ -n-1 , C 2 (γ) = n+1 4 -1 γ -1 , C 3 (γ) = n 2 -2 γ -1 .
When γ < γ ∞ , we obtain the same regularity curve as in the Euclidean case. Since our Strichartz estimates hold for a large family of admissible pairs, they are sufficient to study the regularity problem via a fixed point argument ; in the Euclidean setting this problem was solved by different methods, depending on the range of the power γ involved in the nonlinearity and on the regularity of initial data. Theorem 7.2. Let n ≥ 4 and assume that F (u) satisfies (39). Then the NLW (38) is locally well-posed in

H σ-1 2 , 1 2 × H σ-1 2 ,-1 2 in the following cases : (A) 1 < γ ≤ γ 1 and σ > 0 ; (B) γ 1 < γ ≤ γ 2 and σ ≥ C 1 (γ) ; (C) γ 2 ≤ γ < γ conf and σ ≥ C 2 (γ) ; (D) γ conf ≤ γ < γ ∞ and σ > C 3 (γ) .
More precisely, for all such nonlinearity power γ and regularity σ, there exists a positive T , depending on the initial data, and a unique solution u to NLW (38) such that

u ∈ C [-T, T ]; H σ-1 2 , 1 2 (H n ) ∩ L p 0 [-T, T ]; L q 0 (H n )) ,
for a suitable admissible couple (p 0 , q 0 ), and

∂ t u ∈ C [-T, T ]; H σ-1 2 ,-1 2 (H n ) .
Proof. We apply the standard fixed point method based on Strichartz estimates. Define u = Φ(v) as the solution to the following linear Cauchy problem (40)

     ∂ 2 t u(t, x) -D 2 x u(t, x) = F (v(t, x)), u(0, x) = f (x), ∂ t | t=0 u(t, x) = g(x),
which is given by the Duhamel formula

u(t, x) = (cos tD x )f (x) + sin tDx Dx g(x) + t 0 ds sin(t-s)Dx Dx F (v(s, x)) .
We deduce from the Strichartz estimates (34), ( 35) and from Remark 6.4 that

u L ∞ [-T,T ];H σ-1 2 , 1 2 
+ ∂ t u L ∞ [-T,T ];H σ-1 2 ,-1 2 + u L p ([-T,T ];L q ) f H σ-1 2 , 1 2 + g H σ-1 2 ,-1 2 + F (v) L p′ [-T,T ];H σ+σ-1 q′ ,
for all admissible couples (p, q), (p, q) introduced in Definition 6.1, for all σ ≥ n+1

2 1 2 -1 q , σ ≥ n+1 2 1 2 -1
q , and for a positive T to be determined later. According to the nonlinear assumption (39), we estimate the inhomogeneous term as follows :

F (v) L p′ [-T,T ]; H σ+σ-1 q′ |v| γ L p′ [-T,T ];H σ+σ-1 q′ . Assuming σ + σ -1 ≤ n( 1 q′ -1 q′ 1
) ≤ 0, we deduce from Sobolev's embedding (Proposition 3.1) that

u L ∞ [-T,T ];H σ-1 2 , 1 2 
+ ∂ t u L ∞ [-T,T ];H σ-1 2 ,-1 2 + u L p ([-T,T ];L q ) f H σ-1 2 , 1 2 + g H σ-1 2 ,-1 2 + v γ L p′ γ [-T,T ];L q′ 1 γ .
In order to remain within the same function space, we require that q = q′ 1 γ . After applying Hölder's inequality in time, we obtain

(41) u L ∞ [-T,T ]; H σ-1 2 , 1 2 
+ ∂ t u L ∞ [-T,T ]; H σ-1 2 ,-1 2 + u L p ([-T,T ]; L q ) f H σ-1 2 , 1 2 + g H σ-1 2 ,-1 2 + T λ v γ L p ([-T,T ]; L q ) .
Here we have assumed p > p′ γ and set λ = 1 p ′ -γ p > 0. It remains for us to check that the following conditions can be fulfilled simultaneously :

(42)                          (i) p > p′ γ , (ii) 0 < 1 q′ ≤ γ q < 1 , (iii) n-1 2 -n+1 2 1 q + 1 q ≤ n 1 q′ -γ q , (iv) 2 p + n-1 q ≥ n-1 2 , (v) 2 p + n-1 q ≥ n-1 2 , (vi) 1 p , 1 q ∈ 0, 1 2 × n-3 2(n-1) , 1 2 , (vii) 1 p , 1 q ∈ 0, 1 2 × n-3 2(n-1) , 1 2 .
Suppose indeed that there exist indices p, q, p, q satisfying all conditions in (42). Then (41) shows that Φ maps X into itself, where X denotes the Banach space

X = u u ∈ C ([-T, T ]; H σ-1 2 , 1 2 (H n )) ∩ L p ([-T, T ]; L q (H n )) , ∂ t u ∈ C ([-T, T ]; H σ-1 2 ,-1 2 (H n )) ,
equipped with the norm

u X = u L ∞ [-T,T ];H σ-1 2 , 1 2 
+ ∂ t u L ∞ [-T,T ];H σ-1 2 ,-1 2 + u L p [-T,T ];L q ,
Moreover we shall show that Φ is a contraction on the ball

X M = { u ∈ X | u X ≤ M } ,
provided the time T > 0 is sufficiently small and the radius M > 0 is sufficiently large. Let v, ṽ ∈ X and u = Φ(v), ũ = Φ(ṽ). By arguing as above and using Hölder's inequality, we have

(43) u -ũ X ≤ C F (v) -F (ṽ) L p′ [-T,T ];H σ+σ-1 q′ ≤ C {|v| γ-1 + |ṽ| γ-1 } |v -ṽ | L p′ [-T,T ];L q′ 1 ≤ C T λ v γ-1 L p [-T,T ];L q + ṽ γ-1 L p [-T,T ];L q v -ṽ L p [-T,T ];L q ≤ C T λ v γ-1 X + ṽ γ-1 X v -ṽ X .
If v X ≤ M and ṽ X ≤ M , then (41) yields on the one hand

u X ≤ C f H σ-1 2 , 1 2 + g H σ-1 2 ,-1 2 + T λ M γ and ũ X ≤ C f H σ-1 2 , 1 2 + g H σ-1 2 ,-1 2 + T λ M γ , while (43) yields on the other hand u -ũ X ≤ 2 C T λ M γ-1 v -ṽ X . Thus, if we choose M > 0 so large that M 2 ≥ C f H σ-1 2 , 1 2 + g H σ-1 2 ,-1 2 and T > 0 so small that C T λ M γ ≤ M 2 and 2 C T λ M γ-1 ≤ 1 2 , then u X ≤ M , ũ X ≤ M and u -ũ X ≤ 1 2 v -ṽ X if v, ṽ ∈ X M and u = Φ(v), ũ = Φ(ṽ).
Hence the map Φ is a contraction on the complete metric space X M and the fixed point theorem allows us to conclude.

Let us eventually prove the existence of couples (p, q) and (p, q) satisfying all conditions in (42). Condition (42.iii) amounts to (44)

2nγ -n-1 q + n-1 q ≤ n + 1 i.e. 1 q ≤ n+1 n-1 -2nγ-n-1 n-1 1 
q . By combining (44) with (42.ii) and (42.vi), we deduce that n-3

2(n-1) ≤ 1 q ≤ 2 (γ-1)(n+1) .
This implies that γ ≤ γ ∞ = n 2 +2n-7 (n+1)(n-3) = 1+ 4(n-1) (n+1)(n-3) . By combining (44) with (42.vii), we obtain n-3

2(n-1) ≤ 1 q ≤ min 1 2 , n+1 n-1 -2nγ-n-1 n-1 1 q , 1 q = 1 2
. By combining (44) with (42.vii), we also obtain 1 q ≤ n+5 2(2nγ-n-1) . In summary, the conditions on q reduce to n-3

2(n-1) ≤ 1 q ≤ min 1 2 , 1 γ , 2 (γ-1)(n+1) , n+5 2(2nγ-n-1) , 1 q = 1 2 , 1 γ , or case by case to • 1 < γ ≤ γ 1 and n-3 2(n-1) ≤ 1 q < 1 2 , • γ 1 < γ ≤ γ 2 and n-3 2(n-1) ≤ 1 q ≤ n+5 2(2nγ-n-1) , • γ 2 < γ ≤ γ ∞ and n-3 2(n-1) ≤ 1 q ≤ 2 (γ-1)(n+1) .
Let us turn to the indices p and p. According to (42), we have

n-1 2 1 2 -1 q ≤ 1 p ≤ 1 2 and n-1 2 1 2 -1 q ≤ 1 p ≤ min 1 2 , 1 -γ p , 1 p = 1 -γ p .
By taking into account the previous conditions on q, we end up with the following conditions on p and p :

(45) (i) n-1 2 1 2 -1 q ≤ 1 p ≤ min 1 2 , 5-n 4γ + n-1 2γ q , 1 p = 5-n 4γ + n-1 2γ q , (ii) n-1 2 1 2 -1 q ≤ 1 p ≤ min 1 2 , 1 -γ p , 1 p = 1 -γ p .
There exist indices p and p which satisfy (45) provided that 1 q > γ 2 + n-5 2(n-1) -γ q . We thus have to find q such that (46)

max n-3 2(n-1) , γ 2 + n-5 2(n-1) -γ q ≤ 1 q ≤ min 1 2 , n+1 n-1 -2nγ -n-1 (n-1)q , with 1 q = 1 2 , γ 2 + n-5 2(n-1) -γ q .
This implies that q has to satisfy the following conditions : (47)

max n-3 2(n-1) , 1 2 -2 γ (n-1) ≤ 1 q ≤ min 1 2 , 1 γ , 2 (γ-1)(n+1) , n+5 2(2nγ 
-n-1) , n+7-γ (n-1) 2(γ-1)(n+1) , with 1 q = 1 2 -2 γ (n-1) , 1 2 , 1 γ , n+7-γ (n-1) 2(γ-1)(n+1) 
. The fact that n-3 2(n-1) < n+7-γ (n-1) 2(γ-1)(n+1) easily implies that γ < γ 4 < γ∞ . The fact that 1 2 -2 γ (n-1) < n+7-γ (n-1) 2(γ-1)(n+1) implies that γ < γ 3 . In summary, here are the final conditions on q, depending on γ and possibly on the dimension n :

(A) 1 < γ ≤ γ 1 = 1 + 3 n and n-3 2(n-1) ≤ 1 q < 1 2 . (B) γ 1 < γ ≤ γ 2 = (n+1) 2 n 2 -2n+5 and n-3 2(n-1) ≤ 1 q ≤ n+5 2(2nγ-n-1) . (C) γ 2 < γ < γ conf and n-3 2(n-1) ≤ 1 q ≤ 2 (γ-1)(n+1)
when n ≥ 5. When n = 4, we distinguish two subcases :

• γ 2 < γ ≤ 2 and n-3 2(n-1) ≤ 1 q ≤ 2 (γ-1)(n+1) , • 2 < γ < γ conf and 1 2 -2 γ (n-1) < 1 q ≤ 2 (γ-1)(n+1) . (D) When n ≥ 6, we distinguish two subcases : • γ conf ≤ γ ≤ 2 and n-3 2(n-1) ≤ 1 q < n+7-γ (n-1) 2(γ-1)(n+1) , • 2 < γ < γ 4 and 1 2 -2 γ (n-1) < 1 q < n+7-γ (n-1) 2(γ-1)(n+1) . When n = 5, we replace γ 4 by γ 3 . When n = 4, γ conf ≤ γ < γ 3 and 1 2 -2 γ (n-1) < 1 q < n+7-γ (n-1) 2(γ-1)(n+1) .
Let us now examine these cases separately. Case (A). In this case, we choose successively q such that n-3 2(n-1) ≤ 1 q < 1 2 , q satisfying (46), and p, p satisfying (45). Thus, when 1 < γ ≤ γ 1 and σ > 0, there exists always an admissible couple (p, q) such that all conditions (42) are satisfied and σ

≥ (n+1) 2 ( 1 2 -1 q ).
Case (B). In this case, we choose successively q such that n-3

2(n-1) ≤ 1 q ≤ n+5 2(2nγ-n-1)
q satisfying (46), and p, p satisfying (45). and a correspondent q which satisfies (46). Thus, when γ 1 < γ ≤ γ 2 and σ ≥ n+1 4 -(n+1)(n+5) 4(2nγ-n-1) , there exists always an admissible couple (p, q) such that all conditions (42) are satisfied and σ ≥ (n+1) 2 ( 1 2 -1 q ). Case (C). Assume first that n ≥ 5. we choose successively q such that (48

) n-3 2(n-1) ≤ 1 q ≤ 2 (γ-1)(n+1)
, q satisfying (46), and p, p satisfying (45).

Assume next that n = 4. If γ 2 < γ ≤ 2, we choose q according to (48). If 2 < γ < γ conf , we replace (48) by

1 2 -2 γ (n-1) < 1 q ≤ 2 (γ-1)(n+1) .
In both cases, we can choose afterwards q, p, p satisfying (46) and (45).

In summary, when γ 2 < γ < γ conf and σ ≥ n+1 4 -1 γ-1 , there exists always an admissible couple (p, q) such that all conditions (42) are satisfied and σ

≥ (n+1) 2 ( 1 2 -1 q ). Case (D). Assume first that n ≥ 6. If γ conf ≤ γ ≤ 2, we choose successively q such that (49) n-3 2(n-1) ≤ 1 q < n+7-γ(n-1)
2(γ-1)(n+1) , q satisfying (46), and p, p satisfying (45). If 2 < γ < γ 4 , (49) is replaced by

(50) 1 2 -2 γ(n-1) < 1 q < n+7-γ(n-1)
2(γ-1)(n+1) . Assume next that n = 5. We choose again q according to (49) if γ conf ≤ γ ≤ 2 and according to (50) if 2 < γ < γ 3 . In both cases, we can choose afterwards q, p, p satisfying (46) and (45).

Assume eventually that n = 4. Then we choose q according to (49) and q, p, p satisfying (46) and (45).

In summary, when γ conf ≤ γ < γ ∞ and σ > n 2 -2 γ-1 , there exists always an admissible couple (p, q) such that all conditions (42) are satisfied and σ ≥ n+1 2 ( 1 2 -1 q ). This concludes the proof of Theorem 7.2.

Remark 7.3. Notice that, in dimension n = 3, the Strichartz estimates are available in the triangle T 3 without the endpoint (see Remark 6.2). By arguing as above, we prove that the NLW (38) is locally well-posed in In this appendix we collect some lemmata in Fourier analysis on R which are used for the kernel analysis in Section 4 and in Appendix C. Lemma A.1. Let a be a compactly supported homogeneous symbol on R of order d > -1. In other words, a is a smooth function on R * , whose support is bounded in R and which has the following behavior at the origin :

H σ-1 2 , 1 2 × H σ-1 2 ,-1 2 if (see Figure 6 ) • 1 < γ ≤ γ 1 = 2 and σ > 0 ; • 2 < γ < γ conf = 3 and σ ≥ C 2 (γ) = 1-1 γ-1 ; • 3 ≤ γ < γ 3 = 11+ √ 73 6 and σ > C 3 (γ) = 3 2 -2 γ-1 . σ 0 1 1 2 3 2 γ γ 1 = γ 2 = 2 γ conf = 3 γ ∞ = 11+ √ 73 6 C 2 C 3
-posed in H σ-1 2 , 1 2 × H σ-1 2 ,-1 2 if (see Figure 7 ) • 1 < γ ≤ 2 and σ > 0 ; • 2 ≤ γ ≤ 3 and σ > C 1 (γ) = 3 4 -3 2 1 γ ; • 3 < γ < γ conf = 5 and σ ≥ C 2 (γ) = 3 4 -1 γ-1 ; • 5 ≤ γ < γ 3 = 3 + √ 6 and σ > C 3 (γ) = 1-2 γ-1 . σ 0 1 1 1 4 1 2 2 3 γ γ conf = 5 γ ∞ = 3 + √ 6 C 1 C 2 C 3
sup λ∈R * |λ| ℓ-d | ∂ ℓ λ a(λ)| < +∞ ∀ ℓ ∈ N .
Then its Fourier transform

k(x) = +∞ 0 dλ a(λ) e iλx
is a smooth function on R, with the following behavior at infinity:

k(x) = O |x| -d-1 as |x| → ∞ .
More precisely, let N be the smallest integer > d+1.

Then ∃ C ≥ 0, ∀ x ∈ R * , |k(x)| ≤ C |x| -d-1 N ℓ=0 sup λ∈R * (1+|λ|) ℓ-d | ∂ ℓ λ a(λ)| .
Proof. Let us split up

a(λ) = +∞ j=-∞ χ(2 -j λ) a(λ)
and k = +∞ j=-∞ k j accordingly, using a homogeneous dyadic partition of unity

1 = +∞ j=-∞ χ(2 -j • )
on (0, ∞). Notice that a j hence k j vanishes for j large, since a is compactly supported. By the Leibniz formula, we obtain, for every ℓ ∈ N,

|x| ℓ |k j (x)| ≤ |λ|≍2 j dλ ∂ ℓ λ {χ(2 -j λ)a(λ)} ℓ k=0 2 -k j |λ|≍2 j dλ |λ| d-ℓ+k 2 j (1+d-ℓ) . Let N ∈ N * such that N > d+1. Then |k(x)| ≤ 2 j ≤|x| -1 |k j (x)| + 2 j ≥|x| -1 |k j (x)| 2 j ≤|x| -1 2 j (1+d) + |x| -N 2 j ≥|x| -1 2 j (1+d-N ) |x| -d-1 .
Lemma A.2. Let a be an inhomogeneous symbol on R of order d ∈ R. In other words, a is a smooth function on R such that

sup λ∈R (1+|λ|) ℓ-d | ∂ ℓ λ a(λ)| < +∞ ∀ ℓ ∈ N .
Then its Fourier transform

k(x) = +∞ -∞ dλ a(λ) e iλx
is a smooth function on R * , which has the following asymptotic behaviors : (i) At infinity, k(x) = O |x| -∞ . More precisely, for every N > d+1, there exists

C N ≥ 0 such that, for every x ∈ R * , |k(x)| ≤ C N |x| -N sup λ∈R (1+|λ|) N -d | ∂ N λ a(λ)| .
(ii) At the origin, (iii) Similar estimates hold for the derivatives

k(x) =      O(1) if d < -1, O(log 1 |x| ) if d = -1, O(|x| -d-1 ) if d > -1.
∂ ℓ x k(x) = +∞ -∞ dλ (iλ) ℓ a(λ) e iλx
which correspond to symbols a ℓ (λ) = (iλ) ℓ a(λ) of order d+ℓ.

Proof. (i) Since k is the Fourier transform of a, then x N k(x) is the Fourier transform of (i∂ λ ) N a(λ), which is O (1+|λ|) d-N , hence integrable when N > d+1.

(ii) If d < -1, we simply estimate :

|k(x)| ≤ +∞ -∞ dλ |a(λ)| ≤ sup λ∈R (1+|λ|) -d |a(λ)| +∞ -∞ dλ (1+|λ|) d . If d ≥ -1, we split up k(x) = +∞ -∞ dλ χ 0 (|x|λ) a(λ) e iλx k 0 (x) + +∞ -∞ dλ χ ∞ (|x|λ) a(λ) e iλx k∞(x)
, using smooth cut-off functions χ 0 and χ ∞ on [0, +∞) such that 1 = χ 0 + χ ∞ , χ 0 = 1 on [0, 1] and χ ∞ = 1 on [2, +∞). The first integral is estimated as above :

|k 0 (x)| ≤ |λ|≤2|x| -1 dλ |a(λ)| ≤ 2 sup λ∈R (1 + |λ|) -d |a(λ)| 2|x| -1 0 dλ (1+λ) d sup λ∈R (1 + |λ|) -d |a(λ)| log 1 |x| if d = -1, |x| -d-1 if d > -1.
After N integrations by parts, the second integral becomes

k ∞ (x) = i x N +∞ -∞ dλ ∂ ∂λ N χ ∞ (|x|λ) a(λ) e iλx .
Hence

|k ∞ (x)| |x| -N |λ|≥|x| -1 dλ | ∂ N λ a(λ)| + 0<ℓ<N |x| -ℓ |x| -1 ≤|λ|≤2|x| -1 dλ | ∂ ℓ λ a(λ)| |x| -d-1 N -1 ℓ=1 sup λ∈R (1 + |λ|) ℓ-d |a(λ)| .
This concludes the proof of (ii). The proof of (iii) is similar and we omit the details.

Lemma A.3. Assume that

a(λ) = ζ χ ∞ (λ) λ -m-1-iζ + b(λ)
where m ∈ N, ζ ∈ R , and b is a symbol of order d < -m-1. Then

∂ m x k(x) = +∞ -∞ dλ a(λ) (iλ) m e iλx
is a bounded function at the origin. More precisely, there exists C ≥ 0 such that, for every 0

< |x| < 1 2 , | ∂ m x k(x)| ≤ C 1 + ζ 2 + sup λ∈R (1+|λ|) -d |b(λ)| .
Proof. Let us split up

∂ m x k(x) = i m k 1 (x) 1 |x| 2 dλ ζ λ -1-iζ e iλx + i m ζ k 2 (x) +∞ 1 |x| dλ λ -1-iζ e iλx + i m ζ 2 1 dλ χ ∞ (λ) λ -1-iζ e iλx k 3 (x) + i m +∞ -∞ dλ λ m b(λ) e iλx k 4 (x)
.

The first two terms are estimated by integrations by parts. Specifically,

k 1 (x) = i λ -iζ e iλx λ= 1 |x| λ=2 + x 1 |x| 2 dλ λ -iζ e iλx , with λ -iζ e iλx λ= 1 |x| λ=2
≤ 2 and .

1 |x| 2 dλ λ -iζ e iλx ≤ 1 |x| , while k 2 (x) = -i x λ -1-iζ e iλx λ=+∞ λ= 1 |x| + ζ-i x +∞ 1 |x| dλ λ -2-iζ e iλx , with λ -1-iζ e iλx
We conclude by summing up these four estimates.

Let us expand

|c(λ)| -2 λ -τ (λ 2 + ρ2 ) τ -σ 2 = const. λ n-3 2 -i Im σ + O |σ|λ n-5 2
, as λ → +∞, and

a(λ) = a(λ) const. λ n-3 2 -i Im σ + b(λ) accordingly. Since χ ∞ b is a symbol of order n-5
2 , its contribution to (54) can be estimated by

(55) |σ| N (sinh r) 2-n +r -r du (cosh r-cosh u) n-3 2 (t-u) -n-3 2 .
Here we have applied again Lemma A.2 and N is the smallest integer > n-1 2 . By using

     sinh r ≍ r , cosh r-cosh u = 2 sinh r-u 2 sinh r+u 2 ≍ (r-u) (r+u) , t-u ≥ r-u ,
we end up with the estimate

|σ| N r 2-n +r -r du (r+u) n-3 2 |σ| N r -n-3 2 ≍ |σ| N t -n-3 2 .
Notice that the previous computations are valid in dimension n > 3. In dimension n = 3, the last estimate becomes |σ| 

-i Im σ e iλ(t-u) = Γ( n-1 2 -i Im σ) e π 2 Im σ + i π 4 (n-1) (t-u) -n-1 2 + i Im σ
and it remains for us to estimate the expression (57)

Γ( n-1 2 -i Im σ) Γ(-i Im σ) (sinh r) 2-n +r -r du (cosh r-cosh u) n-3 2 (t-u) -n-1 2 + i Im σ .
In order to do so, we discuss separately the odd and even-dimensional cases.

• Subcase 2.a : Assume that n = 2m+1 is odd.

After m-1 integrations by parts, (57) becomes

(-i Im σ) (sinh r) 1-2m +r -r du (t-u) -1+i Im σ m-1 j=1 a j (u) (cosh r-cosh u) m-j-1 ,
where a j (u) is a linear combination of monomials (sinh u) j ′ (cosh u) j ′′ with j ′ , j ′′ ≥ 0, j ′ + j ′′ = j and j ′ ≥ 2j +1-m. In particular a m-1 (u) = (m-1)! (sinh u) m-1 . After one more integration by parts, we get

(m-1)! (sinh r) -m (t-r) i Im σ + (-1) m (t+r) i Im σ + + (sinh r) 1-2m +r -r du (t-u) i Im σ m-1 j=1 a j (u) (cosh r-cosh u) m-j-1 ,
where a j (u) = O(r max{0,2j-m} ) and cosh r -cosh u = 2 sinh r-u 2 sinh r+u 2 = O(r 2 ), hence the last sum is O(r m-2 ) and the last integral is O(r m-1 ). Notice that these terms vanish when m = 1. Thus (57

) is O(r -m ) = O(t -n-1
2 ), when n = 2m+1 is odd. • Subcase 2.b : Assume that n = 2m is even. After m-1 integrations by parts, (57) becomes this time (58)

Γ( 1 2 -i Im σ) Γ(-i Im σ) (sinh r) 2-2m +r -r du (t-u) -1 2 +i Im σ m-1 j=1 a j (u) (cosh r-cosh u) m-j-3 2 , where a m-1 (u) = Γ(m-1 2 ) √ π
(sinh u) m-1 and the other a j (u) are as before. Since

Γ( 1 2 -i Im σ) Γ(-i Im σ) = O(|σ| 1 2 ) , a j (u) (cosh r-cosh u) m-j-3 2 = O(r m-2 ) ∀ 1 ≤ j ≤ m-2 , +r -r du (t-u) -1 2 ≍ r √ t ≍ √ t , the m-2 first terms in (58) are O |σ| 1 2 t -n-1 2 
. Let us turn to the last term (59)

Γ(m-1 2 ) √ π Γ( 1 2 -i Im σ) Γ(-i Im σ) (sinh r) 2-2m × +r -r du (t-u) -1 2 +i Im σ (sinh u) m-1 (cosh r-cosh u) -1 2 ,
which is obtained by taking j = m-1 in (58). Let us split the integral in (59) as follows :

(60)

r -r = 0 -r + 2r-t 0 + r 2r-t .
Notice that our current assumption t 2 < r < t implies that 0 < 2r-t < r. Since cosh r-cosh u = 2 sinh r-u 2 sinh r+u 2 ≍ (r-u)(r+u) , the contribution to (59) of the first integral in (60) can be estimated by

|σ| 1 2 t -1 2 r 1 2 -m 0 -r du √ r +u ≍ |σ| 1 2 t -n-1 2
and the contribution to (59) of the last integral in (60) by

|σ| 1 2 (t-r) -1 2 r 1 2 -m r 2r-t du √ r -u ≍ |σ| 1 2 t -n-1 2 .
We handle the remaining integral by performing the change of variables

v = t-r t-u ⇐⇒ u = t -t-r v
and by integrating by parts

Γ( 1 2 -i Im σ) Γ(-i Im σ) 2r-t 0 du (t-u) -1 2 +i Im σ (r-u) -1 2 A(r,u) sinh r-u 2 r-u 2 -1 2 sinh r+u 2 -1 2 (sinh u) m-1 = Γ( 1 2 -i Im σ) Γ(-i Im σ) (t-r) i Im σ 1 2 1-r t dv v -1-i Im σ (1-v) -1 2 A(r, t-t-r v ) = Γ( 1 2 -i Im σ) Γ(1-i Im σ) (t-r) i Im σ v -i Im σ (1-v) -1 2 A(r, t-t-r v ) v = 1 2 v =1-r t - Γ( 1 2 -i Im σ) 2 Γ(1-i Im σ) (t-r) i Im σ 1 2 1-r t dv v -i Im σ (1-v) -3 2 A(r, t-t-r v ) - Γ( 1 2 -i Im σ) Γ(1-i Im σ) (t-r) 1+i Im σ 1 2 1-r t dv v -2-i Im σ (1-v) -1 2 ∂ 2 A(r, t-t-r v ) . All resulting expressions are O |σ| -1 2 t m-3 2 , since Γ( 1 2 -i Im σ) Γ(1-i Im σ) = O |σ| -1 2 , A(r, u) = O t m-3 2 and ∂ 2 A(r, u) = O t m-5 2 .
Thus (59) and hence (58), (57) are O |σ|

1 2 t -n-1 2 .
As a conclusion, we have obtained the following estimate in all dimensions n ≥ 2 :

| w ∞ t (r)| t -n-1 2 when t 2 < r < t .
• Case 3 : Assume that r > t.

In this case we estimate w t (r) using the inverse Abel transform. More precisely, we apply the inversion formulae ( 13) and ( 14) to the Euclidean Fourier transform

g ∞ t (r) = e σ 2 Γ(-i Im σ) +∞ 1 dλ χ ∞ (λ) |c(λ)| -2 λ -τ (λ 2 + ρ2 ) τ -σ 2 
e itλ cos λr .

• Subcase 3.a : Assume that n = 2m+1 is odd. Then, up to a multiplicative constant, .

w ∞ t (r) = 1 sinh r ∂ ∂r m g ∞ t (r) . Let us expand (61)
The coefficients β ℓ,k in (62) are constants, while the coefficients α 0 ℓ (r) in (61) are smooth functions on R, which are linear combinations of products

r sinh r × 1 r ∂ ∂r ℓ 2 r sinh r × • • • × 1 r ∂ ∂r ℓm r sinh r with ℓ 2 + . . . + ℓ m = m-ℓ. Consider first (63) e σ 2 Γ(-i Im σ) 6 r 1 dλ χ ∞ (λ) λ -τ (λ 2 + ρ2 ) τ -σ 2 e itλ 1 r ∂ ∂r ℓ cos λr . Since χ ∞ (λ)λ -τ (λ 2 + ρ2 ) τ -σ 2 e itλ = O(λ -m-1
) according to the assumption Re σ = m+1 and 1 r ∂ ∂r ℓ cos λr = O(λ 2ℓ ) by Taylor's formula, the expression (63) is .

     O(1) if 1 ≤ ℓ < m 2 , O(log 1 r ) if ℓ = m 2 , O(r m-2ℓ ) if m 2 < ℓ ≤ m , hence O(r -m ) in all cases. Consider next (64) 
The following estimate is obtained by resuming the proof of Theorem 4.2.i.b in the odd-dimensional case : where c ± is a nonzero complex constant.

Proof. We first prove (i). Recall that Notice that the expressions A(r, u) and B(u) can be expanded as follows :

(69) A(r, u) = sinh r r ) From now on, the discussion of Subcase 3.b is similar to Subcase 3.a. On the one hand, we deduce from Lemma C.1.i that 
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  More precisely :• If d < -1, then there exists C ≥ 0 such that, for every x ∈ R,|k(x)| ≤ C sup λ∈R (1+|λ|) -d |a(λ)| . • If d = -1, then there exists C ≥ 0 such that, for every 0 < |x| < 1 2 , |k(x)| ≤ C log 1 |x| sup λ∈R (1+|λ|) |a(λ)| + sup λ∈R (1+|λ|) 2 |a ′ (λ)| . • If d > -1,let N be the smallest integer > d+1. Then there exists C ≥ 0 such that, for every 0 < |x| < 1, |k(x)| ≤ C |x| -d-1 N ℓ=0 sup λ∈R (1+|λ|) ℓ-d | ∂ ℓ λ a(λ)| .

+∞ λ= 1 |x| ≤ |x| and +∞ 1

 11 |x| dλ λ -2-iζ e iλx ≤ |x| . The last two terms are easy to estimate. Obviously |k 3 (x)| ≤ 1, while |k 4 (x)| ≤ sup λ∈R (1+|λ|) -d |b(λ)|

2 ( 1 - 2 0

 212 log t) while, in dimension n = 2, (55) is replaced by |σ| dλ χ 0 (λ) a(λ) e iλ(t-u) yields a bounded contribution to (54). Let us eventually analyze the remaining contri-Im σ e iλ(t-u) , which is a classical distribution. According to the properties of the Riesz distributions (51) in Appendix B, we have indeed

-σ 2 ( 2 τ -σ 2 =II ± = ∓ i e σ 2 Γ 6 r + 1 r±t 1 2

 2222611 i(t±r)λ = (±iλ) k e i(t±r)λ and λ -τ (λ 2 + ρ2 ) τ ±iλ) k e i(t±r)λ = O(λ k-m-1 ) , the expression (64) is easily seen to be O(r m-2ℓ ) as long as k < m. For the remaining case, where k = ℓ = m, let us expandλ -τ (λ 2 + ρ2 ) τ -σ 2 λ m = λ -1-i Im σ 1+ ρ2 λ λ -1-i Im σ + O |σ|λ -3Im σ e i(t±r)λ are uniformly bounded. This is proved by integrations by parts :I ± = e σ 2 Γ(1-i Im σ) O(1)λ -i Im σ e i(t±r)λ λ= 6 Im σ e i(t±r)λ (-i Im σ)1 r±t O(r ±t) λ -1-i Im σ e i(t±r)λ λ=+∞ λ= 6 r + 1 r±t ∓ i e σ 2 (1+i Im σ) Γ(-i Im σ) 1 r±t +∞ dλ λ -2-i Im σ e i(t±r)λ O(r ±t) = O(1).Hence the contributions of (65) and (66) to (64) are O(r -m ). On the other hand, the remainder's contribution to (64) is obviously O(r 2-m ). As a conclusion,| w ∞ t (r)| r -m t -n-when n = 2m+1 is odd.• Subcase 3.b : Assume that n = 2m is even ≥ 4.Then, up to a multiplicative constant,

2 (sinh r) 1 2

 21 u < +∞ , the contribution to (67) of the second integral in (68) is uniformly bounded. Thus we are left with the contribution of the first integral, which is a purely local estimate. Lemma C.1 Let m be an integer ≥ 2 and let λ ≥ 1, r ≤ 3. (i) Assume that λr ≤ 6. Then θ(λ, r) = 6 r ds sinh s √ cosh s -cosh r 1 sinh s ∂ ∂s m cos λs is O(λ 2m-1-ε r -ε ), for every ε > 0. (ii) Assume that λr ≥ 6. Then θ ± (λ, r) = has the following behavior : θ ± (λ, r) = c ± λ m-1 -m e ±iλr + O(λ m-1 r -m )

6 r 1 ds s -ε (s 2 - 1 6 r 2 λ 6 rs+r 2 cosh s -cosh r) -1 2 (

 612162622 λs) = O(λ 2m ) if λs ≤ 6, O(λ m s -m ) if λs ≥ 6, hence 1 sinh s ∂ ∂s m (cos λs) = O(λ 2m-1-ε s -1-ε )in both cases. By combining this estimate with sinh s ≍ s , and cosh s-cosh r ≍ s 2 -r 2 ,and by performing an elementary change of variables, we reach our conclusion :|θ(λ, r)| λ 2m-1-ε ds s -ε (s 2 -r 2 ) -1 2 ≤ λ 2m-1-ε r -ε +∞ ±iλs ) = ± iλ sinh s m e ±iλs + O(λ m-1 s -m-1 )The remainder's contribution to θ ± (λ, r) is estimated as above :6 r ds sinh s √ cosh s -cosh r λ m-1 s -m-1 λ m-1 ds s -m (s 2 -r 2 ) -1 m-1 r -m .In order to handle the contribution of ± iλ sinh s m e ±iλs to θ ± (λ, r), let us perform the change of variables s = r(1+u), so that sinh s) 1-m e ±iλs = r -m e ±iλr (

6 r - 1 00 1 0 6 r - 1 1 1 2 -m r 1 2 e ±iλr 1 0 1 0du e ±iλr u u -1 2 = λ -1 2 r -1 2 +∞ 0 du e ±iu u -1 2 constant+

 6116111112202 u -j-m for u large . Using these behaviors and integrating by parts, we can estimate du e ±iλr u A(r, u) B(u) = 1 ±iλr e ±iλr u A(r, u) B(u) du e ±iλr u ∂ ∂u A(r, u) B(u) by O( 1 λr ). The integrals du e ±iλr u B(u) and du e ±iλr u B(u) are estimated similarly. In summary, we showed that θ ± (λ, r) = (±i) m λ m (sinh r) du e ±iλr u u -1 2 + O(λ m-1 r -m )and we conclude by using the behavior of the elementary integral O(λ -1 r -1 ) .

6 r 1 -σ 2 e 1 2-σ 2 = λ -σ 1 + ρ2 λ 2 τ -σ 2 = 2 ∀ λ ≥ 2 and 6 r-σ 2 e 1 2 -m + O r 1 2 6 r

 61212222262116 dλ χ ∞ (λ) λ -τ (λ 2 + ρ2 ) τ itλ θ(λ, r) = O(r -m ) .On the other hand, by expandingλ -τ (λ 2 + ρ2 ) τ λ -m-1 2 -i Im σ + O |σ| λ -m-5 θ ± (λ, r) according to Lemma C.1.ii, we have e σ 2 Γ(-i Im σ) +∞ dλ χ ∞ (λ) λ -τ (λ 2 + ρ2 ) τ itλ θ ± (λ, r) = c ± (I ± + II ± ) (sinh r) -m ,where I ± and II ± denote the integrals (65) and (66), which are uniformly bounded and whose sum is equal toe σ 2 Γ(-i Im σ) +∞ dλ λ -1-i Im σ e i(t±r)λ .As a conclusion, we obtain again

  we may apply Lemma 5.1 and use pointwise estimates of w ∞ t (see Remark 4.3). While

	|t|-1
	0

  Remark C.2. The analysis above still holds in dimension n = 2, except for the first estimate in Lemma C.1, which is replaced byθ(λ, r) = O(λ log 2 r ). As a result, | w ∞ t (r)| |t| -1 2 (1-log |t|) .Remark C.3. In order to estimate the wave kernel for small time, we might have used the Hadamard parametrix [21, § 17.4] instead of spherical analysis.

	t -n-1 2 .
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Appendix B

In this appendix we collect some properties of the Riesz distributions. We refer to [14, ch. 1, § 3 & ch. 2, § 2] or [20, ch. III, § 3.2] for more details. The Riesz distribution R + z is defined by

when Re z > 0. It extends to a holomorphic family {R + z } z∈C of tempered distributions on R which satisfy the following properties :

when Re z > -m. The Riesz distribution R - z = (R + z ) ∨ is defined similarly. Their Fourier transforms are given by

when Re z > -1 and

z+1 } in general (notice that there are actually no singularities in the last expression).

Appendix C

In this appendix we prove the local kernel estimates

stated in Theorem 4.2.i.a under the assumptions 0 < |t| ≤ 2, 0 ≤ r ≤ 3 and Re σ = n+1 2 . By symmetry, we may assume again that t > 0.

• Case 1 : Assume that r ≤ t 2 . By using the first integral representation of the spherical functions in [START_REF] Cowling | Herz's"principe de majoration" and the Kunze-Stein phenomenon[END_REF], we obtain (53)

• Case 2 : Assume that t 2 < r < t. By using the third integral formula for spherical functions in [START_REF] Cowling | Herz's"principe de majoration" and the Kunze-Stein phenomenon[END_REF]