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THE WAVE EQUATION ON HYPERBOLIC SPACES
JEAN-PHILIPPE ANKER, VITTORIA PIERFELICE, AND MARIA VALLARINO

ABSTRACT. We study the dispersive properties of the wave equation associated with
the shifted Laplace—Beltrami operator on real hyperbolic spaces, and deduce Strichartz
estimates for a large family of admissible pairs. As an application, we obtain local
well-posedness results for the nonlinear wave equation.

1. INTRODUCTION

The aim of this paper is to study the dispersive properties of the linear wave equation
on real hyperbolic spaces and their application to nonlinear Cauchy problems.
This theory is well established for the wave equation on R™:

Ou(t, ) — Ayu(t,r) = F(t,x),
(1) u(0,z) = f(z),

Oile=o u(t, x) = g(x),
for which the following Strichartz estimates hold:

(2) Wellzoqrs oy + Mull oo 1 7oy + N0etull e 1 7101y S W Mo+ Wgllzzo= + MW o 1 o)

on any (possibly unbounded) interval I C R, under the assumptions that

pxE(-1), azE(i-h),

and the couples (p, q), (p,q) € (2,00] x [2,2 Z—:;) satisfy

2 n—1 _ n—1
p+ qg

—1 -1
5 =

q 2

o

The estimate () holds also at the endpoint (2,22=) when n > 4. When n = 3 this
endpoint is (2, 00) and the estimate (§) fails in this case without additional assumptions
(see [L0] and [R] for more details).

These estimates yield existence results for the nonlinear wave equation in the Eu-
clidean setting. The problem of finding minimal regularity on initial data ensuring local
well-posedness for semilinear wave equation was addressed for higher dimensions and
nonlinearities in [RQ], and then almost completely answered in [B, BT].

2000 Mathematics Subject Classification. 35L05, 43A85; 22E30, 35171, 43A90, 47J35, 58D25, 58J45.
Key words and phrases. Hyperbolic space, semilinear wave equation, dispersive estimate, Strichartz
estimate, local well-posedness.
This work was mostly carried out while the third author was a CNRS postdoc at the Fédération
Denis Poisson Orléans—Tours.
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Once the Euclidean case was more or less settled, several attemps have been made in
order to establish Strichartz estimates for dispersive equations in other settings. Here we
consider real hyperbolic spaces H", which are the most simple examples of noncompact
Riemannian manifolds with negative curvature. For geometric reasons, we expect better
dispersive properties hence stronger results than in the Euclidean setting.

It is well known that the spectrum of the Laplace-Beltrami operator —Ag» on L?(H")
is the half-line [p?, +00), where p = "T_l Thus one may study either the non-shifted
wave equation

O2u(t, ) — Agnu(t,z) = F(t, ),
(3) u(0,z) = f(z),
Oili=ou(t, z) = g(x),

or the shifted wave equation

Ofu(t, ) — (Amn+p?) ult,v) = F(t, z),
(4) u(0,z) = f(z),
Oli=ou(t, ) = g(x).

In BF] Pierfelice derived Strichartz estimates for the wave equation () with radial
data on a class of Riemannian manifolds containing all hyperbolic spaces. The wave
equation (B]) was also investigated on the 3-dimensional hyperbolic space by Metcalfe
and Taylor [P4], who proved dispersive and Strichartz estimates with applications to
small data global well-posedness for the semilinear wave equation.

To our knowledge, the semilinear wave equation ([]) was first considered by J. Fontaine
B, [ in dimension n =3 and n=2. The most famous work involving (f) is due to D.

i / 2
Tataru. In [Pg] he obtained dispersive estimates for the operators M and
v/ Agn+p?
cos (t Agn+ ,02) acting on inhomogeneous Sobolev spaces and then transferred them
from H" to R™ in order to get well-posedness results for the Euclidean semilinear wave
equation (see also [§]). Complementary results were obtained by A. Ionescu [L§], who
investigated L?— L? Sobolev estimates for the above operators on all hyperbolic spaces.

In this paper we pursue our study of dispersive equations on hyperbolic spaces, ini-
tiated with the Schrodinger equation [, by considering the shifted wave equation ()
on H". We obtain again a wider range of Strichartz estimates than in the Euclidean
setting and deduce stronger well-posedness results. More precisely, in Section [l we use
spherical harmonic analysis on hyperbolic spaces to estimate the kernel of the opera-
tor Wt(o’T) = D7D 7e*P where D = (—Agn—p*)V2, D = (—Agn +p? — p?)'/? with
p>p, and o, T are suitable exponents. In Section [] we first deduce dispersive L? — L4
estimates for Wt(O’T), when 2 < ¢ < oo, by using interpolation and the Kunze-Stein phe-
nomenon [J, fl, [9]. In Section f we next deduce the following Strichartz estimates for
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solutions to the Cauchy problem (f):

lull o rs oy + ||U||Loo< + ||8tu||Loo<

I;H"_%’%> I;H"_%’_%>

(5)

ST P I P
q

where I is any (possibly unbounded) interval in R, (p,q), (p,q) € [2,00) X [2,00) are
admissible couples such that

n—1 n—1
+5 2

and o0 > 234 (3—1), ¢ > "1 (3 —3). Notice that the Sobolev spaces involved in (f)

are naturally related to the conservation laws of the shifted wave equation (see Section
f). We conclude in Section [] with an application of (f]) to local well-posedness of the
nonlinear wave equation for initial data with low regularity.

)

2 n—1 n—1
24al>nd

N

In order to keep down the length of this paper, we postpone applications of the
Strichartz estimates to global well-posedness of the nonlinear wave equation and gener-
alizations of the previous results to Damek—Ricci spaces.

2. SPHERICAL ANALYSIS ON REAL HYPERBOLIC SPACES

In this paper, we consider the simplest class of Riemannian symmetric spaces of the
noncompact type, namely real hyperbolic spaces H" of dimension n > 2. We refer
to Helgason’s books [12, [3, [4] and to Koornwinder’s survey [BJ] for their algebraic
structure and geometric properties, as well as for harmonic analysis on these spaces, and
we shall be content with the following information. H"™ can be realized as the symmetric
space G/K, where G = SO(1,n)y and K = SO(n). In geodesic polar coordinates, the
Laplace—Beltrami operator on H" writes

Apn = 02 + (n—1) cothr 0, + sinh™?r Agn1 .
The spherical functions ¢, on H" are normalized radial eigenfunctions of Agn :
Apnpyn = —(N+p%) @a,
QOA(O) =1,

where AeC and p= ”T’l They can be expressed in terms of special functions:

Q,L,l . . . '
ea(r) = 0% ) = 2R (543, 5 —i3; 5 —sinh’r),

where ngE\a’ﬁ ) denotes the Jacobi functions and oF) the Gauss hypergeometric function.
In the sequel we shall use the integral representations

o (r) :/ dk e~ (p+id) Ha—rk)
K

F(g) " . n—2 : —p—iA
(6) - NG / df (sin )" (coshr — sinhr cos@)~"
"2/ J0
;s (% +r negz
= 722" F(Eﬁl) (sinh r)zn/ du (coshr — cosh u)Tgeﬂ)‘“,
5 ~r
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which imply in particular that

(7) loa(r)] < o(r) S (I+r)e™  VAER, r>0.
We shall also use the Harish—Chandra expansion
(8) pa(r) = c(A) @a(r) +c(=A) ®_s(r)  VAeCNZ, r>0,
where the Harish-Chandra c—function is given by

['(2p) TN
) ‘YN =T6) Tir+ )
and

Oy (r) = (ZSinhr)”‘*ngl(g—i%,—pTl —i3;1—i)\; —sinh~? r)

. “+o0
. . —p iAT —2kr
(10) = (2sinhr) e E o I'r(N)e
~ eliA=P)T as r——+0o.

It is well known that there exist v >0, € >0 and C > 0 such that, for every k€ N and
AeC with ImA>—¢,

Te(N)] < C (1+k)".
We need to improve upon this estimate, by enlarging the domain, by estimating the

derivatives of 'y, and by gaining some additional decay in A for k € N*. The following
recurrence formula holds:

F()()\) - 1,
e(\) = L8 S0 (k= ) T5(0).
Lemma 2.1. Let 0<e<1 and Q. ={A€C||ReA| <e|\|,ImA<—1+¢c}. Then, for
every L €N, there exists Cy>0 such that

(11) |OATR(A) | S Cok? (14 A" VEeN', AeC Q..
Proof. Consider first the case ¢ = 0. There exists A = A(¢) >0 such that |k—i\| >
A max {k,1+|A|}. Choose v >1 such that 2 1 <1 and C>0 such that & < <.

Av+l — 2 A
For k=1, we have I'y(\) = pl(p Z; , hence

TN < &1

as required. For £>1, we have

Te() = 20 4 gD S BT,

hence , ,
1 1 N CgY
TN < G + G Zo<j<k(l<:—]) T
c 1 kY p? 1 iy
<3 kl}up\ Jr01+\>\| A kzo<]<k k)
k.V
<C T+

Derivatives are estimated by the Cauchy formula. U
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Under suitable assumptions, the spherical Fourier transform of a bi—K-invariant func-
tion f on G is defined by

HI(N) = /G dg £(g) er(9)

and the following formulae hold :

e Inversion formula:
—+o0

flz) = const./ dX [c(N)| 2 HF(N) palx),

0
e Plancherel formula:

+oo
7] = const. [~ an|e| 2 OV
0
Here is a well-known estimate of the Plancherel density :
(12) lcN) 2 AP A+ VAeR.

In the sequel we shall use the fact that H = F oA, where A denotes the Abel transform
and F the Fourier transform on the real line. Actually we shall use the factorization
H1= A"1to F~1. Recall the following expression of the inverse Abel transform :

n—1
(13) A~lg(r) = const. (—2=2) % g(r).

If n id odd, the right hand side involves a plain differential operator while, if n is even,
the fractional derivative must be interpreted as follows:

n—1 oo . n
(14> (_sinlhr %) ’ g(T) - %/ ds \/cosiusﬂlzoshr (_sinlhs) 29(8) '

3. SOBOLEV SPACES AND CONSERVATION OF ENERGY

Let us first introduce inhomogeneous Sobolev spaces on hyperbolic spaces H", which
will be involved in the conservation laws, in the dispersive estimates and in the Strichartz
estimates for the shifted wave equation. We refer to [R7] for more details about functions
spaces on Riemannian manifolds.

Let 1<g<oo and o € R. By definition, HJ(H") is the image of L?(H") under

(—Apn)~% (in the space of distributions on H"), equipped with the norm

1 fllzrg = 11(=Dgn) 2 f I s

In this definition, we may replace —Agn by —Agn—p*+p2, where p> |%—% |2p. For simpli-
city, we choose p>p independently of ¢ and we set

D = (—Age—p*+57)7 .

Thus HZ(H") — D7 L4(H") and | f g ~ |D?f||ze. If o = N is a nonnegative integer,
then HJ(H") coincides with the Sobolev space

WNYH") = { fe LY(H") | VIfe LIY(H") V1<j<N}
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defined in terms of covariant derivatives and equipped with the norm

N .
1 flwe = ZFO IV f | -

Proposition 3.1 (Sobolev embedding Theorem). Let 1< g < gy < oo and 01,09 € R
such that ol—q"—l > O'Q—q% (M. Then

HJ'(H") C H7?(H").
By this inclusion, we mean that there exists a constant C' >0 such that
1l < Cllflgg ¥ FeCE(HD.

Proof. We sketch two proofs. The first one is based on the localization principle for
Lizorkin—Triebel spaces [7 and on the corresponding result in R™. More precisely,
given a tame partition of unity 1 = Z;io @; on H", we have

1 gy = {2 1o o expe, | oy
Using the inclusions HJ(R") C HZ2(R") and (% (N)C £%(N), we conclude that

”fHHf;QQ(H") S {Z H o f OeprJHHGl(Rn } = Hf”H"l(Hn

The second proof is based on the L? — L% mapping properties of the convolution
operator D727 (see [ and the references cited therein). O

Beside the L? Sobolev spaces HJ(H"), our analysis of the shifted wave equation on
H" involves the following L? Sobolev spaces :

HU,T(]HITL) — ﬁfonTL2<Hn)’

where D=(—Agn—p?)%, 0 €R and 7 <3 (actually we are only interested in the cases
7=0 and 7=+1). Notice that

HoT(H") = Hg(H") if 7=0,
He™(H") C HSY(H") if 7 <0,
He™(H") D HJYT(H") if 0<7<3.
Lemma 3.2. If 0 <7< §, then
HUT(HH) C HJJrT(]H[n) + (Hn)
where H3S (H") = () yer Hi(H") (recall that HZ(H") is decreasing as ¢ \,2 and s /' +00).
q>2

I Notice that 01— 09 >ﬁ——>0.

q1 q2
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Proof. Let fe L?(H"). We have ZND*"D*Tf = f %k, ., where

—+00

kor(z) = Const./ d\ |c()\)|_2 IA77 ()\2+ﬁ2)_% ()
0

by the inversion formula for the spherical Fourier transform on H". Let us split up the

integral
400 1 400
o=h
0 0 1

kow = KO, + k2

o,T )

and the kernel

accordingly. On one hand,

L(1,400) (D) D7 D77 f = [k,

maps L*(H") into HS"(H"). On the other hand, k!

o- is a radial kernel in H3°(H"),
hence

Tjo.) (D)D" D" f = f+k{,

maps L*(H") into HS (H") by the Kunze-Stein phenomenon. Thus DD f=fx ko -
belongs to Hy ™™ (H") + H3 (H"), as required. O

Let us next introduce the energy

(15) Blt) = %/ da {|0yu(t, o) + | Dyut, o)}
Hn
for solutions to the homogeneous Cauchy problem

Ofu — (Apn+p*)u=0,
(16) u(0,z) = f(x),
Ot|t=o u(t,z) = g(x) .

It is easily verified that 0,F(t) =0, hence ([[§) is conserved. In other words, for every
time ¢ in the interval of definition of wu,

10u(t, 2)lI22 + I Dault, )l|72 = llgllz> + IDfI1Z-
Let c€R and 7< % By applying the operator D?D7 to ([g), we deduce that
10: D7Dy ut )| 22 + | DFDT ult, @) |72 = | D7D7g|22 + | D°DTf | 22
which can be rewritten in terms of Sobolev norms as follows :

(17) 19eu(t, W Ero.r + ult, M zrersn = lgllzor + 11f s
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4. KERNEL ESTIMATES

In this section we derive pointwise estimates for the radial convolution kernel wg‘”) of
the operator VVt(O’T) =D "D P for suitable exponents o €R and 7€ 0, %) By the
inversion formula of the spherical Fourier transform,

+oo
Wl (r) = const./ A\ [c(N)[T2ATT (N2 45H) 727 pa(r) e
0

Contrarily to the Euclidean case, this kernel has different behaviors, depending whether
t is small or large, and therefore we cannot use any rescaling. Let us split up

wi () = wif () + il ()
2
= const. / dX xo(A) [cON) 72N (A2 4557 pa(r) e
0

+oo
+ const. / AN Xoo(N) [c(N) | TZATT (A2 452 727 p(r) et
1

using smooth cut—off functions xo and y on [0,400) such that 1= xo + Xeo, Xo =1 0On
(o (0,7)

[0,1] and xoo =1 on [2,+00). We shall first estimate wt7(’)7) and next a variant of w; ...

The kernel w(;j;g) has indeed a logarithmic singularity on the sphere r=¢ when o = 2.

We bypass this problem by considering the analytic family of operators
— 0_2 ~ .
W(O’T) — e 3 Xoo(D) DT DrfoeztD

t,00 F(”‘QH_

in the vertical strip 0<Reo < ”T“ and the corresponding kernels
—+o00
o2 — —T ~NTZ=Z 4
1) TE0) = i [ e AT ()T ().
1

Notice that the Gamma function, which occurs naturally in the theory of Riesz distri-

butions, will allow us to deal with the boundary point o= "TH, while the exponential

function yields boundedness at infinity in the vertical strip. Notice also that, once mul-
tiplied by Xoo(D), the operator D~"D7~? behaves like D~7.

4.1. Estimate of w! :w%ﬂ.

Theorem 4.1. Let 0 € R and 7 < 2. The following pointwise estimates hold for the
kernel w? = wg‘fo’ﬂ :

(i) Assume that |t|<2. Then, for every r >0,

[wi(r)] S olr).
(ii) Assume that |t|> 2.
(a) If 0<r< ‘—;', then

[wi(r)] < [t o(r).
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(b) If r> %, then
[wi(r)| S (T+|r=[ ) e

Proof. Recall that
2

(19) wi(r) = const./ dA xo\) [lcN) 2T (V245272 oa(r) e,
0

By symmetry we may assume that ¢>0.
(i) It follows from the estimates ([]) and () that

2
h&ms/dmhwmg¢w»
0

(i) We prove first (a) by substituting in ([9) the first integral representation of ) in
(B) and by reducing this way to Fourier analysis on R. Specifically,

2
w? (r) :/deepH(“‘rk)/O dA xo(A) a()\)ei{t’H(“—rk)}’\,

where a()\) = [c(A)|72A"7 (A2 4 52)=7, up to a positive constant. According to the
estimate ([J) and to Lemma A.1 in Appendix A, the inner integral is bounded above by

{t—H(ak)} < (t—r)3 =773
Since

[ et = g,
K

we conclude that

[wi(r)] < 7 po(r).
We prove next (b) by substituting in ([[9) the Harish-Chandra expansion (f) of ¢, and
by reducing again to Fourier analysis on R. Specifically,

(20) w}(r) = (2sinh 7)™ Z;:; e kT {I;“O(t, ry+ 10t r) },
where

2
L0t r) = / dA xo(X) ai (A) '+
0
and
ar(N) = c(FA) AT (W 57) T Th(£N).

By applying Lemma A.1 and by using the estimates ([[1]) for T, and its derivatives, we
obtain

\[;’O(t,r)\ S(+E) (t4+r)" 2 < (1+k)" r7 2
and
1108 r) | S (k) (T [r—t]) 72
We conclude the proof by summing up these estimates in (P(). O]
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4.2. Estimate of w$° —wgaog).

Theorem 4.2. The following pointwise estimates hold for the kernel w$® = wz(fog , for
any fired T€R and uniformy in o € C with Reo = "TH :

(i) Assume that 0<|t|<2.
[t| = if n>3,

If 0<r<3, th wE(r)| <
(a) If 0<r< en |wiE(r)| S {W 2( —loglt|) if n=2

(b) If r>3, then w°(r) = O(r—>e 7).
(ii) Assume that |t|>2. Then
(o) s (A fr=[t[)™> e ¥r=0.

Proof of Theorem [{.3.7i. Recall that, up to a positive constant,

2

+o0 Y )
B0) = sy [ AT 045 () e

By symmetry we may assume again that ¢ >0. If 0 <r <%, we resume the proof of
Theorem [L.T.ii.a, using Lemma A.2 instead of Lemma A.1, and estimate this way

(21) W) S (E=r) T @olr) S 77",
If r> %, we resume the proof of Theorem f.1.ii.b and expand this way
~ 00 602 . — + — T ,O0
(22) W (r) = gy (sinhr) ™ S eI ) + ()
where

+o0
It r) = / A\ Xoo(N) aE(N) et 1ENA
0
and
0y 1 =T (V2 52\ 752
GEN) = e(FA) AT (N2 57) 5 Th(N)
It follows from the expression () of the c—function and from the estimates ([L1]) of the
coefficients I'y that .o a:,f is a symbol of order

d:{—lﬁk:&

-2 if keN*

By applying Lemma A.2, we obtain the following estimates of the expressions [ :,f’oo(t, T),
except for I,"(t,r): VNeN* 3 Cy>0,

(23) [T5(t, )| < Cylo|N (14+k)Y (t4+r)™N < Cy o)V (1+k)» r=N
(24) |t r)| < Cy oV (14+k)" (1+]|r—t))™

As far as I,"™(t,r) is concerned, Lemma A.2 yields the estimates

~ Cn oV |[r—t|= if |r—t|>1,
|[O (t,T>| — . .
C’(1+log‘ ‘) if [r—t|<1.

Y

(25)



WAVE EQUATION ON HYPERBOLIC SPACES 11

The second one can be refined by applying Lemma A.3. For this purpose, let us establish
the asymptotic behavior of the symbol a; (), as A— +o00. On one hand,

_ i\ _ i ix—% . _
c(N) 7t = f B = Tob e (202)272 (x4 p)e {140 (A7)}

= co N {14+ 0\ 1)},

according to Stirling’s formula
[(€) = var &2 e {1+ 0(EI )}
On the other hand,
AT ) =27 {1+0([o[A )}
Hence A
ag(N) = co AT L po(N) with  [bo(N)] < Clo| A2,
As announced, it follows now from Lemma A.3 that

(26) 1177 r)| < C A if |r—t|<1.

| Im o|

By combining (B1)), (R2), (B3), (B4), (RF) and (RE), we conclude that
|wE(r)] S (L+[r=t])7e"  Vr=3.

Remark 4.3. The kernel w$*(r) can be estimated in the same way, except that =

|wt ( )| S et 10g| mn

when 1 is close to |t|.

Let us turn to the small time estimates in Theorem [.3. The estimate (i.a) is of local
nature and thus similar to the Euclidean case. For the sake of completeness, we include
a proof in Appendix C. It remains for us to prove the estimate (i.b).

Proof of Theorem [[.3.i.b. Here 0<|t|< 2 and r>3. By symmetry we may assume again
that ¢ > 0. We use now the inverse Abel transform given by Formulae ([3) and ([4).

Up to positive constants, the inverse spherical Fourier transform ([§) can be rewritten
in the following way :

wie(r) = p(n+1 0 A Ygu(r),

where

o

+o0
gi(r) = 2/ AN Xoo (M) AT (N2 45237 e cos Ar .
1

AT

and g;(r)= g7 (r)+ g; (r) accordingly, so that

+o00
g1 (r) = / AA Xoo(A) AT ()\2+/32)% pitEMA
1

Let us split up 2cos A\r = e+ e~

Case 1: Assume that n=2m+1 is odd. First of all, let us expand

m 4
(sinlhr%)m - Zﬁ:l a%o(r) (%) '
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Since the coefficients a3°(r) are linear combinations of products

12 L
(sinlhr) X (%) 2(sinlhr) Xowee X (%) (sinlhr)’

with ly+ ...+l =m—{, and = =23 %0 e @D is O(e™), as well as its deri-

sinhr

vatives, we deduce that a°(r) is O(e™™")

as r—+00. Consider next
+oo
¢ —r ~o\I=Z - i(tr
(3)050) = [ A ) AT (0 2)F (i) e 0,
1
According to Lemma A.2, for every N & N* there exists C'y>0 such that

[(2) g5 (r)| < Cn oY (r£t)~N.

As a conclusion,

sinhr or

@) = O () (6 +90)() SOyr Ve ™s'r N eN-.

Case 2: Assume that n=2m is even. According to Case 1, for every N € N*, there

exists Cn >0 such that
(5= 2) " g:(s)| < COn|o|N sV ems Vs>3.

sinh s 9s

By estimating
cosh s — cosh r = 2 sinh #* sinh 5 > e sinh 55
sinhs <es, e (M™Us < emm=Dr = =N < =N

)

and performing the change of variables s=r-+wu, we deduce that

2 +oo
501 S i s i | () ")
r
+oo

< sinh s —N _—ms
- CN ds v/ cosh s —cosh r s €

T

1 +oo du 1
< Cyr N e(m2)r/ < CyrNe 2.
0

y/sinh g —

5. DISPERSIVE ESTIMATES

0

In this section we obtain L? — L7 estimates for the operator D" D7 7¢tP  which
will be crucial role for our Strichartz estimates in next section. Let us split up its kernel
wy = wl+ w3 as before. We will handle the contribution of w?, using the pointwise
estimates obtained in Subsection [l and the following criterion based on the Kunze-

Stein phenomenon.

Lemma 5.1. There exists a constant C > 0 such that, for every radial measurable

function k on H", for every 2<q,G<oo and f€ L7 (H"),

+o0 1
17 %00 < Ol { [ arsinnr) o) ()]}
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where = % and Q= 4 qq i)}

Proof. This estimate is obtained by interpolation between the following version [[[§] of
the Kunze-Stein phenomenon

+oo
[ hlle S ||f||L2/ dr (sinh r)" ™" o(r) [ (r)]
0
and the elementary inequalities

1 * kil < WMl e s N * 8l e < Il za 1l g -
O

For the second part w;°, we resume the Euclidean approach, which consists in inter-

polating analytically between L? — L? and L' — L™ estimates for the family of operators
—~ 0_2

(27) wlen _ e —

i F(nTH ) XOO(D) DT D79 eitD

in the vertical strip 0 < Reo < "T“

5.1. Small time dispersive estimate.

Theorem 5.2. Assume that 0 < [t| <2, 2<qg<o00, 0<7<3 and 0> (n+1)(%—%).
Then,
~(-1)(h-2) -
-7 yT—0 _itD ‘t| 2o an237
D7D Pl . S --9) =2 =
D (1 log |t])'F if n=2

Proof. We divide the proof into two parts, corresponding to the kernel decomposition
= wd+w. By applying Lemma [.1 and by using the pointwise estimates in Theorem
E1.i, we obtain on one hand

R R A e e e e T I
S{ [ Tarasneran}iy,

Sl Y FeL”.
For the second part, we consider the analytic family (7). If Reo =0, then

If*@ e S NI flle VY fel”
If Reo = 24, we deduce from the pointwise estimates in Theorem [ that

If @l S 17 (1 fl ¥ fell.
By interpolation we conclude for o = (n + 1) (———) that

—
NI

M)

1Fwll, S D fll ¥ feLr

2 Notice that ézi—i—% and p+Q > 2.
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5.2. Large time dispersive estimate.
Theorem 5.3. Assume that |t|>2,2<q<o0, 0<7<2 and o> (n+1)(%—%). Then
HDfTDTfoeitD HLQ/*)LQ 5 ‘t|773 )
Proof. We divide the proof into three parts, corresponding to the kernel decomposition
_ 0 0 )
wy = ]IB(O’%)wt + ]IHn\B(o,‘QL‘)wt + wi.

FEstimate 1: By applying Lemma p.1] and using the pointwise estimates in Theorem
B 1.ii.a, we obtain

1t

1+ (g0 loe 5 {7t sinha) ot L)

M)

L

+o0
S {/0 dr (14 7)! T e } 2 e ¥ feL.

-~

<+o00

Estimate 2: By applying Lemma .1 and using the pointwise estimates in Theorem
E1.ii.b, we obtain

2

+oo 2 q q
| f * {HHn\B(o,%)w?} [P {/t dr (sinh 7)™ o (r)a |w?(r)]|2 } £ Lo
5

+oo 2
< {/ drre @0 L fy Y FeLY.

1t
2

[\ J/

S [t=e

Estimate 3: In order to estimate the L¢ — L9 norm of f — f wy®, we may apply
Lemma p.]] and use pointwise estimates of w{® (see Remark [.3). While

[t|—1 +00
/ dr (sinh r)"’l wo(r) |w(r)|z2  and / dr (sinh r)"’l ©o(r) |w§°('r’)\%
0 |

t+1
are O([t|~>°) for any o €R, the integral

[t+1 ,
/ dr (sinh r)"’l wo(r) |w(r)|z
|

t]-1

"+1 %, which is too large compared with the critical exponent

(SIS

is finite provided o >

(n+1)(3— q). Instead we use again interpolation for the analytic family (7). If Reo =0,
then

Ifx@P e S IIflle ¥ fel?
If Reo =2, we deduce from Theorem [2.ii that

If % @ e S 7N flle YV fEL
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By interpolation we conclude for o = (n+1)(5— é) that

1 xwll, S 2 flle ¥ fELT.
U

By taking 7=1 in Theorems f.9 and p.3, we obtain in particular the following disper-
sive estimates.

Corollary 5.4. Let 2<g<oo and aZ(n—l—l)(%—é). Then

—(n—1)(1=1 .
| Do+ eith e < t] (VG g 0<t| <2,
R W if [t=2,

N

with |t|7("71)(%7%) replaced by [t|™¢ 7%)(1—log|t|)17§ in dimension n=2.

Remark 5.5. Notice that Tataru G obtained dispersive estimates with exponential
decay in time for the operators costD and %, but did not prove actual Strichartz
estimates. Here we obtain dispersive estimates with polynomial decay in time for the

operator e'*P . This difference reflects the fact that the Fourier multipliers associated
with the operators costD and % are analytic in a strip of the complex plane, which

is not the case of e''P.

By applying Lemma p.]] in full generality, we obtain the following decoupled estimate
for W) = Wég’ﬂ.
Proposition 5.6. Let 2<q,g<o0, 0<7< % and o €R. Then
IWPllprope S (L) ViEeR.
6. STRICHARTZ ESTIMATES

We shall assume n >3 throughout this section and discuss the 2-dimensional case in
the final remark. Consider the inhomogeneous linear wave equation on H"™ :

OFu(t,z) — (Aun+ p*)u(t, v) = F(t, ),
(28) u(0,z) = f(x),
Ot|i=ou(t,z) = g(z),

whose solution is given by Duhamel’s formula:
t
u(t,x) = (costD,) f(x) + %g(w) +/ ds %F(s, ).
0
Definition 6.1. A couple (p,q) is called admissible if (
(29) To={(53) 03] x(0.3) [ ;+2 =}

Remark 6.2. Observe that the endpoint (

11
: _ av ' 272 n-1
dimension n > 3 but not in dimension n = 3.
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N[ =

0 ! 1 1

FIGURE 1. Admissibility in dimension n >4

1

q

1

1

) i

0 ! 1 5

FIGURE 2. Admissibility in dimension n=3

Theorem 6.3. Let (p,q) and (p,q) be two admissible couples. Then the following
Strichartz estimate holds for solutions to the Cauchy problem (£3):

(30) ull gy S WA o33 + gl og-3 + IIFHL,;/(R;H?&_l),
where o > @(%—5) and & > (";Ll) (%—%) Moreover,
”u|’L°°(R;H"_%’%) + Hatu”L‘X’(R;H"_%’—%)

(31)
S Wl 190 gogs + I sy
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Proof. Consider the operator

Tf(ta) = D775 <2 f (),

initially defined from L?*(H") into L>°(R;L*(H")), and its formal adjoint
400
" X —o+41/2 ¢FisDa
TF(x):/ ds D;77? 528 F (s, ),
initially defined from LY(R;L*(H")) into L*(H"). The TT* method consists in proving
first the LP'(R; LY (H")) — LP(R; LI(H")) boundedness of the operator

+oo ~ i (t—s
TT*F(t,z) = / ds D20+ 2008 pig )

Dq
0o

and of its truncated version

t .
TF(t,x) :/ ds D20t eil(;% F(s,x),

for every admissible couple (p,q) and for every o > "TH (% — %), and in decoupling next
the indices.

Assume that the admissible couple (p, ¢) is different from the endpoint (2,22=). Then
we deduce from Corollary p.4 that the norms |TT*F(t,x)||prg and || TF(t, )| prg are
bounded above by
@ | [ asiesielEsol, |,

0<|t—s|<1

)

Ly

,* H/ ds [t —s| 2| F(s,2)]| ,
[t—s|>1 ®

where a = (n— 1)(——5) (0,1). On one hand, the convolution kernel |t—s| 2T ¢j;_s>13
defines obviously a bounded operator from LP'(R) to LP*(R), for all 1 < p; < ps<oo, in
particular from L”(R) to LP(R), since p > 2. On the other hand, the convolution kernel
[t—5]7 Tjocjt—s|<1} With O<a <1 deﬁnes a bounded operator from Lpl(R) to LP2(R),
for all 1 <py,ps <oo such that 0 < 11 ——2 <1—a, in particular from L”(R) to LP(R),
since p > 2 and %Z Q.

At the endpoint (p, q) =(2, 2;‘—:?1)), we have o =1. Thus the previous argument breaks
down and is replaced by the refined analysis carried out in [BI]. Notice that the problem
lies only in the first part of (BJ) and not in the second one, which involves an integrable
convolution kernel on R.

Thus TT* and T are bounded from L¥(R; LY (H")) to LP(R;LI(H")), for every ad-
missible couple (p, q). As a consequence, T* is bounded from L¥ (R; L% (H")) to L?*(H")
and T is bounded from L?(H") to LP(R;L?(H")). In particular,

a1 1 Lo 1 1
(costD,) f(x) | pra < 1|1 D2” 2 Dy? et P=D3 2 D3 f ()|l pprs S [ e
and

smtDz < D—UJF%D—% :tithDU_%D—% <
H (x)”Lng ~ H T z € T T g(.T)”Lng N Hg”HU_%’_% .
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We next decouple the indices. Let (p,q) # (p,q) be two admissible couples and let

o> "TH (%—%), o> "TH (%—%) Since T and T™ are separately continuous, the operator
oo ~ - +i(t—s)D
TT*F(t, l’) = / ds D;UﬁoJrl ET

—00

F(s, )

is bounded from LP (R; L% (H")) to LP(R;L(H")). According to [g], this result remains
true for the truncated operator

t .
TF(t,x) = / ds Dyo=o+t 200 g o

[e.9]

and hence for
t

TF(t,x) = / ds Do+ 0D pig gy
0

Dy

as long as p and p are not both equal to 2. We handle the remaining case, where
p=p=2and 2 < q# ¢<22%L by combining the bilinear approach in [RI] with

n— 3’
our previous estimates. Specifically let us split up again I = xo(D) + Xoo(D)?, using
smooth cut—off functions, and 7 = T°+ T accordingly. On one hand, it follows from
Proposition p.§ that

t
TF(t,x) = / ds xo(Dy) D7t D170=9 o Filt=9)Dx p(g o)
is bounded from L7 (R; L7 (H")) to LP(R; LI(H")), for every 2 <p,p < oc and 2 < ¢,§ <
0o, in particular for p = p =2 and 2 < ¢,q < 2—; As far as it is concerned, the
L?L7 — [?L% boundedness of

t
T¥F(t,x) = / ds Xoo(Dg)? D DL7070 ¢2it=9)De p(5 o)

amounts to estimating the hermitian form

B>(F, Q) :// dsdt/ dx Xoo(Dy) DFV2 D270 e FisDe B (5 7)

X Xoo(Dz) Dz > DY?*% e¥itD: G(t, z)

by [|F|| 214Gl ;21 Let us split up dyadically

+oo
//s<t j=—o00 //Zigt—s<21+1

and B> = B% accordingly. For every j€Z, let us further split up

_]_700

Z]Ik2ﬂ k+121()F(>$) and Gtx ZH[Z2J(2+12J )G( )

k=—o00 g {=—00 g
Fm(w) G%J)(t,x)
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Notice the orthogonality

+00 : 1/2 +00 : 1/2
1Pl = {30 WEO e} s G = {30 1G5 )

and the almost orthogonality
BY(F,G) =3 ez BIFY.GY).
l—ke{1,2}
We claim that

25@03 | FD|| g | GV || o if § <0,

(33) |B2(FP. e < s T | Y
7 2 (| | o | GV o if 5> 0,

when 2 < ¢,¢ <22= and k(q,q) = %5+ (%+%) — 23 These estimates will be obtained

by complex interpolation between the following cases :
(a) g=2and 2< g <222,
(b) 2<¢<27= and =2,

(c) 2<qg=q¢<o0.

1
q
1
2
1_ 1
2 n—1
1_ 1 1 1
0 2 n—1 2 q

FI1GURE 3. Interpolation

Case (a): Assume that ¢=2,2<§<22= and Reo =0, Red = 2+ (5—1). Consider
n q
the operators

o ~—G+1 otitDa
T4 (t,) = xoelDa) D2 €552 £ (1)

and

+00 -1 .
00\ * ~ —0+5 eFisDx
(T )F(x):/ ds Xeo(Dy) D3° 2 DDL’ F(s,z).

(e}
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By resuming the proof of Theorem [.9 and by applying the T°°(T>)* argument we
obtain that (7>)* is bounded from LP(R;LY(H")) to L*(H"), where {="31(;—1). By
combining this result with Hélder’s inequality, we deduce that

BEEP.GP) S sw | [ s Xe<(D2) D
t 2]’+1<s<t 279

teR

% ~%76 FisDy p(d)
D: e F(s,x)

L3

X HXoo( 2) Do’ DQ@HF”DI G(J (t,z HL1L2
< sup H Ti2i+1,4—24)(5) F,gj)(S,x HLﬁ'L‘f/
tER S xT
g j j
< 27 | FO g || G 11212

with 5 =x(2,q).
Case (b): If2<q<22= G=2and Reo = Tl(%—%), Re d = 0, we have symmetrically
B (FY, 2”>| S 2N D a2 |G g

Case (c): Assume that 2 <g=¢<oo and Rec =Red = ”—“(%—%) Let us rewrite

2
BR(FY.GY) :// | dsdt/ dz
27 <t—s<23+1 n

X {XOO(Dm)2D;1Diﬁ"’&eii(t’swz F,gj)(s, :c)} G(zj)(t, x).

By using the dispersive estimates

H XOO(D>2 Dfl leaf& e:l:i(tfs)D HL(;/HL(; g {

(see the proofs of Theorems .2 and f.J), we obtain

(t—s) VG if 0<t—s<2
(t—s)~ if t—s>2

|BOO(F]£] G(] )| 2~ (n— 1)(“‘)] HF(J ”Lqu ” G HLqu if jg 07
9—00j ||F(J HLqu || G j)”Lqu it >0

Hence, by Holder’s inequality,
Be(F, 60| < § 2 I e ||G Npope i 5 <0,
. 2N EP g G porw iG>0,
Our claim (B3) follows now by complex interpolation between the estimates obtained in
Cases (a), (b) and (c) above. By summing up (B3) and by using Holder’s inequality, we
conclude that

[BXR.G)| <Y IBFEG) <D jueez |BFE.GY)

l—ke{1,2}
N A ‘ 1/2 A 1/2
(g, -0 ()2 ()12
S {ZJSOQ (qq)]+zj>02 ]}{Zkez I ”LQUY} {Zzez IG: ”LQU/}

5 ||F||L2Lri’ ||G||L2Lq’
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if 2<q# ¢<2%=. Notice that x(g,7) >0 under this assumption.
Let us turn to () On one hand, the energy estimate ([[7) yields

| (costD) f + =22 g HH“" 1+ || = (sintD)Df + (costD)g ||
< V2 {Ifllo33 + gl g1}

for every t€R. On the other hand, since T* is bounded from L7 (R; L7 (H")) to L?(H"),
both expressions

t
sin(t—s) Dy
H/ ds %F(s,x)’
0
and

t
H/ds cos(t—s)D, F(s, ) ’
0

are bounded above by

. +oo ~ 54
H e:I:Zth/ ds Dm

5 H ]I(O,t)(s) Dg+&_1F(37$)HL5’Lg’ 5 ||F||Lﬁ’(]R;Hg,+5_1(Hn))v

1
HO= 3%

b1
= H/ds D3 2DQCQsin(t—s)DmF(S,:c)’
0

o—%.%
,
H L2

1 _1
272

1
H/dsD 2D 2Cos(t—s)Dch(s,ac)’

o
SC

L3

DL e isDe DT g (s) F(s, ) |

NI

L3

uniformly in ¢ €R. We conclude the proof of (BI) by summing up the previous estimates
and by taking the supremum over t€R. O

Remark 6.4. Observe that, in the statement of Theorem [6.3, we may replace R by any
time interval I containing 0.

1
q
1
1 oo el
2 N !
\ 1
\ 1
\\\ :
\ 1
\ 1
\ 1
L v
1 1 1
0 4 2 1 p

FIGURE 4. Admissibility in dimension n=2
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Remark 6.5. An analogous result holds in dimension n =2 and its proof is similar,
except for the first convolution kernel in (BY), which becomes

[t =57 (1=log |t — s])” Tjo)i—sl<1} ,

with a« = =1 and B = 2(%—%). It turns out that, in this case, a couple (p,q) is

2 g
admissible if (%, %) belongs to the region Ty = {(%, %)E(O, 11x(0,3) | %—i—% >11.

7. LWP RESuULTS FOR NLW EQUATION ON H"

We shall assume n > 4 throughout this section and discuss the lower dimensional
cases n = 3 and n = 2 in the final remarks. We apply Strichartz estimates for the
inhomogeneous linear Cauchy problem associated with the wave equation to prove local
well-posedness results for the following nonlinear Cauchy problem

O2ult, ) — (Dsnt?) u(t, ) = Flu(t, 7))
(34) u(0,z) = f(x)

at|t:0 U(t, "L‘) = g(l’) )
with a power—like nonlinearity F'(u). By this we mean that
(35) [F(u)| < Clul” and  [F(u) = F(v)] < C(Ju]""" + o) [u—v]
for some C'>0 and y>1. Let us recall the definition of local well-posedness.
Definition 7.1. The NLW Cauchy problem (B4) is locally well-posed in H®™ x H®T~1
if, for any bounded subset B of H"x H%™'  there exist T >0 and a Banach space Xr,
continuously embedded into C([=T,T); H>")NCY([-T,T]; H>™'), such that

e for any initial data (f,g)€ B, (B4) has a unique solution ue Xr,
e the map (f,g)— u is continuous from B into Xr.

The amount of smoothness o requested for LWP of (B4) in H 33X HO 93 depends
on « and is represented in Figure 4 below. There

n n+1)2 n
n=EE =l eeptpn s Ui e =R = L
g = n2+5n—2+\/g‘;—22_7123:21n2—12n+4 14 4n+(";6—%_:l)2—("7_6—%)’
_ n?42n—-5 _ 2 . o Y3 if TL:4,5
M= rg = e Yoo = Min{ys, 74} = {% it n>6
and the curves C4, Cy, C3 are given by
Ci(y) =" (1 - 520=), Coly) =" — -39, Ca(v) =% — 25

When 7 < 74, we obtain the same regularity curve as in the Euclidean case. Since
our Strichartz estimates hold for a large family of admissible pairs, they are sufficient
to study the regularity problem via a fixed point argument; in the Euclidean setting
this problem was solved by different methods, depending on the range of the power
involved in the nonlinearity and on the regularity of initial data.
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0|3

N[

FiGURE 5. Regularity in dimension n >4

Theorem 7.2. Let n>4 and assume that F(u) satisfies (BY). Then the NLW (B4) is
locally well-posed in Ho 23 x H° 272 in the following cases:

(A) 1<v<~ and 0>0;

(B) m<v<9e and 0=Ci(v);

(C) Y2 §7<f}/conf and 0202(7>7
(D) Yeont <Y <Yoo and o >C5(7).

More precisely, for all such nonlinearity power v and reqularity o, there exists a positive
T, depending on the initial data, and a unique solution u to NLW (B4) such that

we C([=T,T); Ho#2(H") n LP ([T, T); L°(H")),
for a suitable admissible couple (po,qo), and
dyu € C([-T,T); H 273 (H")).

Proof. We apply the standard fixed point method based on Strichartz estimates. Define
u=®(v) as the solution of the following linear Cauchy problem

O%u(t,x) — D2u(t,x) = F(v(t, x))
(36) u(0, ) = f(x)
Otli=ou(t, v) = g(x),

which is given by the Duhamel formula

t
u(t, ) = (costDy) f(x) + 2L= g () + / ds %F(U(s, z)).
0
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We apply the Strichartz estimates (Bd) and (BI]) to the above solution u

+ 0wl + ]

I ——

S W ge-gy + M9l go-gmg + WE@ (g 7y, 15001
’ ’ [il

([~r1);H°"33) LP([-T,T); L9)

which hold for all admissible couples (p,q), (p,q) introduced in Definition .1}, for all

o> "TH (% — %), o> ”T“ (% — %), and for a positive T' to be determined later. According

to the nonlinear assumption (BY), we estimate the inhomogeneous term as follows:
HF<U) HLI;/ ([7T,T}, H;_T/+&71) SJ H "U|VHLIS/ ([7T,T},Hg,+&71) .

Assuming 04+ —1 < n(% - qi,) <0, we deduce from Sobolev’s embedding (Proposition
1
B.1) that

+ [|Ggul] + [lull

”u”Loo( [~TT);H %) Lo ([~r.r);Ho 3 h) LP([-T,T); L)

’
N P Rl Ll P

In order to remain within the same function space, we require that ¢ = ¢jy. After
applying Holder’s inequality in time, we obtain

HUHLOO([_TT};HF%,%) + (| Opul] (T e [

< oy + 9l ooy oy + Tl

Lp([-T,T]; L9)

P(~TT); L9)

Here we have assumed p > p'v and set A = ﬁ —; > (. It remains for us to check that
the following conditions can be fulfilled simultaneously :

p

i)  p>p,
(i) 0<g5<I<l,
i) =2 oe (4 <a(d-3),
(39) (v) 24ost>nd,
V) ez
(vi) (%v %) = (O> %] x (2&131)’ %) )
[ (vii) (Il), %) € (0,3] x (2(’;—‘_31), ).

Suppose indeed that there exist indices p,q, p, ¢ satisfying all conditions in (B§). Then
(BM) shows that ® maps X into itself, where X denotes the Banach space

11

X = {u| we O[T, T); H* 34 (|") 0 /([ T, T); LI(H"))
dyue C([=T,T]; Ho >~ (H") },
equipped with the norm

lull = HUHLOO([fT,T];H"*%v%) T HatuHLOO([fT,T};H"*%v*%) + ||u||LP([—T,T];LQ) ’
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Moreover we shall show that ® is a contraction on the ball
Xy = {ueX | lulx <M},

provided the time T >0 is sufficiently small and the radius M >0 is sufficiently large.
Let v,0€ X and u=®(v), u=®(?). By arguing as above and using Hélder’s inequality,
we have

fu—all, < C|F(v) -

F(,{}) ||L5/ ([—T,T] ;H:;-F&—l)

- < CILl ™+ 1™ Ho =0y ()
39 s
A -1 Al _5
S CT {”UHLP(%T,T};LQ)_'_ ”UHLP([—T,T}-L‘I)} ”U UHLp([,Tj];Lq)

< CTM Il + 1ol } v —allx
If [|v||x <M and ||9]|x <M, then (B7) yields on one hand
fullx < Ol pogs + gl o sy + M7}
and
lillx < C{IFN o1 + N9l L+ TAMTY

while (BY) yields on the other hand !

lu—a|x <2CT M v —17]x.
Thus, if we choose M > 0 so large that & > C {| /||
small that C’T)‘M“’g% and 2C T M7~ 1< %, then

lullx <M, Jlilx <M and Ju—ilx <3 lv-0]x

. ||g||HU_%7_%} and 7'>0 so

if v,0 € Xy and u= ®(v), @ = P(0). Hence the map P is a contraction on the complete
metric space Xj; and the fixed point theorem allows us to conclude.

Let us eventually prove the existence of couples (p, ¢) and (p, ¢) satisfying all conditions
in (BY). Condition (Bg.iii) amounts to

(40) %Jﬂ%lgwﬂ i.e. %gZ—j}—Q"j;_’;‘lé.
By combining (0) with (B§.ii) and ( vi), we deduce that
1 2
3D S 4 S oD -

.. . ~ n242n—7 4(n—1) . ‘e
This 1mphes that ¥ < Yoo = iiing = L+ Grpnmog) - BY combining (EQ) with (BY.vii),
we obtain

n—3 1 1 n+l 2ny—n—11 1 1
ey <3 Smin{g tH -l LA
By combining (fI() with (B§vii), we also obtain % < Wfl_l) In summary, the condi-
tions on ¢ reduce to
1 11 2 nts 1411
2(n 1) < q < m1n{§, v (y=1)(n+1) 2(2ny—n—1) } g 7 2750

or case by case to
o 1<y < and 57—
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n+5
< 2(2ny—n—1)’
< 2

e <y<7 and ;5 " 5 <

'72<7§%oand CENCESE

. According to (BY), we have

and

oY <pmn{}i-3), 413

By taking into account the previous conditions on g, we end up with the following
conditions on p and p :

. —-1/1 1 1 1 5— 1 1 5_ B
(41) {9? o) <p<min (LR LR
(ii) %(g—g)ﬁgﬁmln 5,1—%}, 57&1_%

There exist indices p and p which satisfy ({]) provided that 1 > 14 . We thus

have to find ¢ such that

2(n 1 q

1
(42) maX{Qn 1)’;/_'_2(71 ) -3 <3 20 n—1 (n—1)q J°

with % #+ %, 24 2(7;1) — 5. This implies that ¢ has to satisfy the following conditions:

n=3 1 2 n+5 n+7—y(n—1)
(43) maX{2(n71)> 2 'y(n ) } < < mm{ Y (=1 (nt1)’ 2@ny—n—1)° 2(771;(n+1) }’
1 1 nt7—y(n-1) n+7—y(n—1) e .
with 1 7& m, 31 9 m The fact that ) < 2(7—1;(n+1) easily implies
that fy<’y4 < Joo. The fact that 1— > (n2_1) < ;2:/7_352 +B 1mphes that v <~3. In summary,

here are the final conditions on ¢, depending on ~ and possibly on the dimension n:
(A)1<7§71:1+ andQ(n31)§q<—
_ _(n+1)? n—3 1 n+5
B)m<y<r= n2— 2n+5 and 2(n—1) < q < 2(2ny—n—1)
(C) 72 <7y < Yeont and 2(n 1) < % < m when n > 5.
When n =4, we distinguish two subcases:

n—3 1 2
® 12 <7=2and 575 < | < G-
1 2 1 2
® 2<9 <Yeont and 5 — 5y < o < ooy -

(D) When n > 6, we distinguish two subcases:

n—3 1 _ nt7—y(n—1)
® Joont <7 52 and —n_a<m7
0o 2<y< Yy and < < M7=y (n—1)

(n 1) 2(y=1)(n+1) "

When n =15, we replace Y4 by ’73
When n = 47 “Yconf S Y <73 and iy

<3 < 2(v=1) (n11) -

(n 1)
Let us now examine these cases separately.
Case (A). In this case, we choose successively ¢ such that

n—3 1
2(n—1) — ¢

1
2

<
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q satisfying (£2), and p, p satisfying (fI)). Thus, when 1 <y < v and o > 0, there

exists always an admissible couple (p,q) such that all conditions (B§) are satisfied and
o> (n+1) (l . l)
= T3 \g 7T )

Case (B). In this case, we choose successively ¢ such that

n—3 1 n+5
2(n—1) — q¢ — 2(2ny—n-—1)

g satisfying ([2)), and p, p satisfying (fJ]). and a correspondent ¢ which satisfies (f3).
n+1 _ (n+1) (n+5)
4(2ny—n—1)7

couple (p, q) such that all conditions () are satisfied and o > w (3— %)
Case (C). Assume first that n > 5. we choose successively ¢ such that

n—3 1 2
(44) D) = ¢ S oD

q satisfying ([2), and p, p satisfying ().
Assume next that n =4. If 7, < v <2, we choose ¢ according to (f4). If 2 < v < Yeont,
we replace ([4]) by

Thus, when v < v < v, and o > there exists always an admissible

1 2 2
2T 50 S g S et

In both cases, we can choose afterwards ¢, p, p satisfying (E2) and ([)).

In summary, when 75 < v < Yeont and o > 2L — L , there exists always an admissible

couple (p, q) such that all conditions (Bg) are satisﬁed and o > w (3 - %)
Case (D). Assume first that n > 6. If yeonr < v < 2, we choose successively ¢ such that

A\

W~

n—3 1 n+7—y(n—1)
(45) 200D =g < 2Dt )
q satisfying ([2), and p, p satisfying ([]). If 2 <y <4, (E5) is replaced by
1 2 1 n+7—y(n—1)
(46) 2 T3 < <Dt

Assume next that n = 5. We choose again ¢ according to () if vyeont < v < 2 and
according to (fG) if 2 <y < 3. In both cases, we can choose afterwards ¢, p, p satisfying

(E2) and ().

Assume eventually that n = 4. Then we choose ¢ according to (f5) and ¢, p,p satis-
fying (£2) and ().

In summary, when Yeont <7 < Vo and o > 4 — “/_ there exists always an admissible
couple (p, ¢) such that all conditions (Bg) are satlsﬁed and o > 2 (3 — %)

This concludes the proof of Theorem [7.2. O
Remark 7.3. Notice that, in dimension n=3, the Strichartz estimates are available in
the triangle Ts without the endpoint (see Remark 6-3). By argumg as above, we prove

that the NLW (B3) is locally well-posed in HO 22 x HO 22 if
o I<y<ym=2ando>0;
o 2<y<Yeont =3 and g > Cy(y)=1— A{ -
o 3<y<y=YB gnd o> Oy(r) = %—Ll
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g
3
5 B N e N N N e .
7
5
1
2
Yoo = 11+6\/ﬁ
0 —
1 71:72:2 f}/conf:3 Y

FI1GURE 6. Regularity in dimension n=3

Remark 7.4. In dimension n =2, the Strichartz estimates are available in the region
T (see Remark[06.]). By following again the same line of the above proof, we obtain that
the NLW (B) is locally well-posed in HO 22 x H" 22 if

o l<y<2and oc>0;

o 2<y<3ando>Ci(y)=3-351;
o 3<Y<Yeont =5 and chCE(y):%-ﬁ-
e 5<y<y3=3+V6 and o> C3(y) =1—-2%.

O =3B

1 2 3 Yeonf = ) Y

FIGURE 7. Regularity in dimension n=2

APPENDIX A

In this appendix we collect some lemmata in Fourier analysis on R which are used for
the kernel analysis in Section f] and in Appendix C.
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Lemma A.1. Let a be a compactly supported homogeneous symbol on R of order d>—1.
In other words, a is a smooth function on R*, whose support is bounded in R and which
has the following behavior at the origin :

sup [A“74dYa(N)| < +oo  VILEN.
AER*
Then its Fourier transform

+oo
k(x) = / d\a(\) e®
0
1s a smooth function on R, with the following behavior at infinity:
k(z) = O(|lz|™*")  as |z|—o0.

More precisely, let N be the smallest integer > d+1. Then 3 C>0, VzeR*,

N
k()] < C el ™" ) Sup (1+ AN dxa(N) .

=0

Proof. Let us split up
400 .
=" x@nan)

and k= Ejioo k; accordingly, using a homogeneous dyadic partition of unity
+00 .
1= Zj:—oo X<2 J )

on (0,00). Notice that a; hence k; vanishes for j large, since a is compactly supported.
By the Leibniz formula, we obtain, for every /€N,

2 ()] < /| X |2\ )a(V)}

| <27

¢ : .
—kj d—t+k j(14d—0)
<y 2 / AN S 2 .

|\ =27
Let N eN* such that N> d+1. Then

k@) < Y k@) + Y k()]

21 <|z| 1 21 >|x|~1
< E 97 (1+d) + |l‘|_N E 9 (1+d=N) < |x|_d_1_
21 <|z| 1 21> |z|~1

0

Lemma A.2. Let a be an inhomogeneous symbol on R of order d€R. In other words,
a 1s a smooth function on R such that

sup (1+[A)?|0fa(N)| < +oo  VILEN.
AER



30 JEAN-PHILIPPE ANKER, VITTORIA PIERFELICE, AND MARIA VALLARINO

Then its Fourier transform

k(x) = / +Ood)\ a(\) e”

e}

s a smooth function on R*, which has the following asymptotic behaviors :
(i) At infinity, k(z) = O(|z|=°). More precisely, for every N > d+1, there exists
Cy > 0 such that, for every xr€R*,
[k(2)| < C |2 sup (1A 0 a(N)] -
A€R

(ii) At the origin,
0(1) if d<-—1,
k(x) = O(logﬁ') if d=—1,
O(Jx|=%Y) if d>—1.
More precisely :
o If d<—1, then there exists C'>0 such that, for every xeR,

[k(z)[ <C ilé%(HlAl)*dla()\)l-

o If d=—1, then there exists C'>0 such that, for every 0<|z|<3,
|k(2)| < Clog iy {sup (1+[A]) [a(A)] + sup (1+[A])*[a'(N)] } .
AER A€R

o Ifd>—1, let N be the smallest integer > d+1. Then there exists C' >0 such
that, for every 0<|z|<1,

N
k(@) < Cla[~" Y~ sup (1+]AD 4 95a(N)].
" AER
(iii) Similar estimates hold for the derivatives

0L k(x) = / +Ood)\ (i) a(N) et

oo

which correspond to symbols ap(\) = (i) a()\) of order d+/.

Proof. (i) Since k is the Fourier transform of a, then zNk(z) is the Fourier transform of
(10x)Na(), which is O((1+[A|)*""), hence integrable when N >d+1.
(i) If d<—1, we simply estimate :

400 +00
Bl < [ ja()] < sup(1+AD a(h)] [ dA 1+,

If d>—1, we split up

—+00

k(x) I/_ Ood)\xo(‘xp\) a(X) e™® _|_/_ A\ Yoo (|2]N) a(N) €7

J/
—~ —~

ko (x) koo (z)
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using smooth cut—off functions xo and y on [0,400) such that 1= xg + Xeo, Xo =1 0On
[0,1] and yo =1 on [2,4+00). The first integral is estimated as above :

i< [ ey

2|ax| 71
< 2sup (1 + [A]) " |a(N)] / d\ (14+N)?
R 0

XS
{1og|71| if d=—1,

S sup (1 ) “lal 4 R T

AER

After N integrations by parts, the second integral becomes

koo(x) = (%) / d\ (a%) {Xoo(|$|)\) a()\)} eirT
Hence
knol2)] S o] / NENTOL

A= ||~

—L l
DI 4] 9fa(N)

2] =1 <A <2[e| 1
N-1

S ) sup (L [A) T fa(M)]-
—1 AER

This concludes the proof of (ii). The proof of (iii) is similar and we omit the details. O
Lemma A.3. Assume that
a(A) = CXoo(A) AT+ B(A)
where meN, (€R, and b is a symbol of order d<—m—1. Then
400
ol k(z) = / d\a()\) (i\)™eire

oo

is a bounded function at the origin. More precisely, there exists C' > 0 such that, for
every 0<|z|<3,

0K (x)| < C {14 ¢ sup (14 ) b3 }.

Proof. Let us split up
kl(:l:) kQ(fL')

A A

& o " oo o
OMk(z) = zm/ d\ (AT piAe +z‘m§/ dA NG gide
2 1
Jz|

2 +o0
+ z’mg/ dX Xoo (M) AT1TIC gt +N”/ AN B(N) e
1

—00
7 J/

k3(z) ka(x)
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The first two terms are estimated by integrations by parts. Specifically,

A=qr ol o
+ x/ dA N et
=2 9

8|~

< X . while

|z

_ +
Ty g/ TAANTC e

1
A=t

ek ol o
with ’A—wem “’g2 and )/ AN NC pida
A=2 9

k’Q(ZL‘) — _%A—l—icei)\a:

with | A717C i

Bl
+oo too o
) ’ < |z| and ’/ dA N2 e | < |z|. The last two terms are
A=— 1
ol B

]

easy to estimate. Obviously |ks(z)| < 1, while

+oo
|ka(@)] < Sup(1+|A|)‘d|b(A)|/ dA (1+ D)™
AER — 0

J

~
< 4o

We conclude by summing up these four estimates. O

APPENDIX B

In this appendix we collect some properties of the Riesz distributions. We refer to [[LT],
ch. 1, § 3 & ch. 2, § 2] or [Id, ch. ITI, § 3.2] for more details. The Riesz distribution R}
is defined by

400
(47) (Rfo) = [ vl
0

when Rez>0. It extends to a holomorphic family { R} }.cc of tempered distributions
on R which satisfy the following properties:
(i) ARf =zR},, Vz€eC,
(i) (£)RE = RY, V2eC,
(ili) R{=do and more generally RY, = (&£)™dy VmeN,
(iv) Rf., = RIxR} VzZeC.
Hence

+o00
(RE9) = ()" R = 2555 [ anaem ()"
when Re z>—m. The Riesz distribution R = (R})" is defined similarly. Their Fourier
transforms are given by
(v) FRE =e*27 (x £i0)™* V 2€C,
where
((x£1i0)%, ) = limE\O/d:L’ (xtie)® p(z)
R
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when Rez>—1 and
(x£i0)* =T(z+1){RS,+eF ™R}

in general (notice that there are actually no singularities in the last expression).

AprpPENDIX C

In this appendix we prove the local kernel estimates

N It~ if n>3
48 o < 1
(48) @) {|t\_2(1—10g|t\) if n=2

stated in Theorem [L.2/i.a under the assumptions 0< |[t| <2, 0<r <3 and Reo= ”T“ By
symmetry, we may assume again that ¢>0.

e Case 1: Assume that r<<.

By using the first integral representation of the spherical functions in (), we obtain

(49) wee(r) = F(%;U)/de e—pH(ark)/l X Xoo(A) a(N) e M t-Ha—h)}

where
a(A) = le(N)[ AT (A2+p%)27 2.
n—3

According to Lemma A.2 in Appendix A, since Y@ is a symbol of order “Z= and

|t —H(a k)| >t—r > 1,
the inner integral in (£9) is
O(loN|t—H(a_k)| "7 ) = O(|o|¥t7),
where N is the smallest integer > "T_l Hence
[wE)l S
e Case 2: Assume that £ <r<t.

By using the third integral formula for spherical functions in (), we are lead to estimate
the expression

+r 0o
(50) (sinh 7’)2”/ du (coshr— cosh u)n23/ dX Xoo(N) a(N) piA(t=u)
1

-r

Let us expand

T—o

eV 2ATT (24577 = const. A7~ L O([o| A7),

as A—+oo, and a0

A

Ve

a(\) = const. AT ime b(\)
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accordingly. Since Y b is a symbol of order "T_E’, its contribution to (b() can be estimated
by

+r
(51) oY (sinhr)Q"/ du (coshr—coshu)n%3 (t—u)’%3

T

Here we have applied again Lemma A.2 and N is the smallest integer > "T_l By using

sinhr =< r,

coshr—coshu = 2 sinh 5% sinh % =< (r—u) (r4u),

t—u>r—u,
we end up with the estimate

+r
|0|NT2”/ du(r+u)"s < |o|Nr " < |o|Nt "2 .

T

Notice that the previous computations are valid in dimension n>3. In dimension n=3,
the last estimate becomes |o|? (1—1logt) while, in dimension n=2, (F1) is replaced by

+r +r
‘0-| \/Coshj’hicoshu = ‘O-|/ \/r;hi—qﬂ = |0-‘
r —r

Similarly
2
| anany e e
0

yields a bounded contribution to (B(). Let us eventually analyze the remaining contri-
bution of

+o0
(52> / d\ )\"Tf?’filmo ei)\(tfu) ’
0

which is a classical distribution. According to the properties of the Riesz distributions
(E7) in Appendix B, we have indeed

+oo
/ d\ )\"T*?’—z‘lmoez‘)\(tfu) — P(nT_l—i Imo) G%ImUJri%(nfl) (t_u),anlJriImo
0

and it remains for us to estimate the expression

F(”T_l—iIma) inh )2 +Td h h n=3 " —2=l i Tmo
W(sm T) u (coshr—coshu)™z (t—u) "2 :

(53)

In order to do so, we discuss separately the odd and even—dimensional cases.
o Subcase 2.a: Assume that n=2m-+1 is odd.
After m—1 integrations by parts, (5J) becomes
+r 1
(—7Imo) (sinh T)12m/ du (t—y)~tHilme Z a;j(u) (coshr—coshu)™ =1,

. =1
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where a;j(u) is a linear combination of monomials (sinhu)?(coshu)?” with 5/, j” > 0,
j'+7"=7j and j/ > 2j+1—m. In particular a,, ;(u)=(m—1)!(sinhu)™ 1. After one
more integration by parts, we get

(m—1)! (sinh 7)™ { (t—r) o4 (= 1) (¢ +r)ime) 4

+r . m—1 )
+ (sinh T)lzm/ du (t—wu)Hme Z : a;(u) (coshr—coshu)™ 91
—r J1=

where @;(u) = O(rm{0:27=m}) and coshr— coshu = 2 sinh 5% sinh “£* = O(r?), hence
the last sum is O(r™2) and the last integral is O(r™!). Notice that these terms vanish
when m=1. Thus (F3) is O(r—™) =0 (¢t "= ), when n=2m+1 is odd.

o Subcase 2.b: Assume that n=2m is even.

After m—1 integrations by parts, (b3)) becomes this time

Ll ilmo r 1, m—1 ;
(54) =i (gipp r)22m/ du (t—u) 2Fime Z _, a;j(u) (coshr—cosh w)m™i~z
_r j=

I'(—i¢Imo)
where a,,_1(u) = F(%f) (sinhw)™ ! and the other a;(u) are as before. Since
[(i—iImo) 1
F(Q—ilma) = O(|U| 2) )

aj(u) (cosh’r’—coshu)m’j’% = 0O(r™?) V1<j<m-2,

+r
/ du(t—u)"2 X 7= =< Vi,

T

N

the m—2 first terms in (54) are O( o|z t— "= ) Let us turn to the last term

(m—3%) N(i—ilmo) , . _2m
ﬁQ F({”mo) (sinhr)?—2
(55) o - 1 1
X / du (t—u)"27"™7 (sinhu)™ ! (coshr— coshu) ™2
which is obtained by taking j=m—1 in (b4). Let us split the integral in (53) as follows:

) [-] /2” o

Notice that our current assumption % 5 <r<t implies that 0 <2r—t<r. Since

coshr—coshu = 2 sinh '5* sinh 5% =< (r—u)(r+u),

the contribution to (b3) of the first integral in (B) can be estimated by

0
ozt zrzm [ < o|3 T
-

and the contribution to (B3) of the last integral in (B€) by
T
oz (t—r)"2r3™ [ A < g3t

Vr—u
2r—t
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We handle the remaining integral by performing the change of variables

_ ot _ t—
V=T, o ou=t—or
and by integrating by parts Alra)
I(3—ilmo) et “liitme _1 (sinh 5 -3, . i\ % m—1
Titmo) |, du (t—u)2 (r—u)2 = (sinh £%) 2 (sinhw)

N

I'(—iImo) .

1 iImo ; ;
_ I'(5—ilmo) (t_,r)zlmo/ dy p~1-imo (1_1))7% A('f’, _ﬂ)
1

Y i ;
= Ty (=)™ 0TI (1) A £ )

1

Ll _ilmo . 2 .
_ % (t_r>zIma/1‘ dy p~tmo (1_1})7% A(T,t—ﬂ)

13

N

F(%filma) + 1+ilmo d —2—ilmo (1 718 A Er
_m(—r) 1 v U (1=v)72 O2A(r, t—=7).

r
t

. . S R SN
All resulting expressions are O ( lo| 72t 2 ), since

Pooimo) _ o (jg|=3),  A(r,u) = O(t™ %) and 0yA(r,u) = O(t™3).

I'(l—¢Imo)

Thus (BY) and hence (p4), (b]) are O(|cr|% t_nT_l).

As a conclusion, we have obtained the following estimate in all dimensions n>2:

|@(r)| St when t<r<t.

e Case 3: Assume that r>t.

In this case we estimate w;(r) using the inverse Abel transform. More precisely, we apply
the inversion formulae ([[J) and ([4) to the Euclidean Fourier transform

2 +oo o .
T = i || O eI AT 4 e cosAr

o Subcase 3.a: Assume that n=2m-+1 is odd.

Then, up to a multiplicative constant,

{D?O(r) = (sinlhr %)m gfo(r) :

Let us expand r_1

(57) ()" =2, ad0) (22)

and furthermore

(58) (22) =3 Burt2(2)"
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The coefficients 3y, in (B§) are constants, while the coefficients o} (r) in (1) are smooth
functions on R, which are linear combinations of products

¢ 4
(sinrhr) X (%%) 2(sirrhr) X X (%%) m(sinrhr)

with lo+ ... +/{,,=m—/{. Consider first

6

0'2 T—

(59) F(—eilma) /lrd)‘ Xoo(A) AT (A2452)72" et (%%)ZCOS AT
Since Xoo(A)ATT(A2452) 7 e = O(A\™™!) according to the assumption Reo=m+1

and (%%)KCOS Ar = O(A\*) by Taylor’s formula, the expression (§F9) is

0(1) if 1<<m,
O(logl) if (=2
O(rm=2f) if Z<l<m,

hence O(r~™) in all cases. Consider next

+oo
60 e AN (N2 52)55% ph—20 (O \Foi(tEn)n |
( ) p or

Since (%)kei(tﬂ#))\ — (:l:i)\)kei(tir))‘ and

AT ()\24_,52)% (:I:i)\)kei(tir))‘ _ O(}\kfmfl)’
the expression () is easily seen to be O(r™=2¢)
case, where k=/¢=m, let us expand

as long as k <m. For the remaining

r—C T—0O

T ()\2+52) 7o\ — )\flfiImo (1+ ;\’_2) 2 A717i1m0+o(|0|>\73)

and split

1

+oo g+rit +oo
6 6 6 1
T T R

rtt

in (BQ). On one hand, the resulting integrals

6 1
61 [o= <o ;erd)\ N\—l-ilmo gi(tEr)A
( ) + = T(—ilmo) s e
and "
o +OO . A
(62) I, = m o d\ \~1-ilmo gi(tEr)A
T rEt

are uniformly bounded. This is proved by integrations by parts:
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O(1)
Va )\:§ 1\
I — 602 )\—iImaei(t:l:r)A CANE
+ 7 T(1—ilmo) N6
™

1 1

: e’ ri —ilmo _i(tEr)A
:F Zm(Tit) . d)\)\ e = O(l),

1
O(riz)
while
O(r+t)
2 A=+o00
_ : e’ 1 y—1—ilmo ji(tEr)A
[[i = F I'(—ilmo) r+t A € A6y L
- rtt
’ (14ilmo) o (tr)
.e? (1+ilmo) 1 —2—ilmo i(txr)\ __
R ey s = ld)‘>‘ € = O(1).
\F rtt P
O(r+t)

Hence the contributions of (61]) and (62) to (Bd) are O(r~™). On the other hand, the

remainder’s contribution to (B0) is obviously O(r?~™). As a conclusion,

(@) S St
when n=2m-+1 is odd.
o Subcase 3.b: Assume that n=2m is even > 4.

Then, up to a multiplicative constant,

+o0
o® sinh s m ~o0
(03 TE0) = e [ s vt () 5.

Let us split

(64) /;OO: /r6+/6+°°.

The following estimate is obtained by resuming the proof of Theorem [.2.i.b in the
odd-dimensional case:

‘( k a)mﬁgo(s)‘<e*ms Vs>6.

sinh s s

Y
Since
+00 +o00 du
sinh s —-ms <
6 ds v/cosh s—cosh r ~ 0 v sinhu < +o0,

the contribution to (E3) of the second integral in (F4) is uniformly bounded. Thus we
are left with the contribution of the first integral, which is a purely local estimate.

Lemma C.1 Let m be an integer >2 and let A\>1, r<3.
(i) Assume that Ar<6. Then

6
_ sinh s 1 9 \m
9<)\’T> _/ ds v/cosh s — coshr (SiHhS 88) Cos As
r
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is O(N*""1=¢r=2) | for every e>0.
(ii) Assume that \r>6. Then

6
9:|:<)\’T):/ ds sinh s ( 1 Q)me:l:i)\s

Vcoshs —coshr \sinhs Os
has the following behavior :
OF(\, 1) = o A™2 (sinh )2 AT 4 O(AM—Lypm)
where ¢4 1s a nonzero complex constant.

Proof. We first prove (i). Recall that

. O(N2™) if As<6

10 As) = .

(smhs 83) (COS S) O()\msfm) if )\826,
1 le]

L 23" (cos As) = O(A*™~175717¢) in both cases. By combining this estimate

hence (
with

sinhs < s, and cosh s — coshr =< 5% — 12,

and by performing an elementary change of variables, we reach our conclusion:

6 +00
[0\, )| < )\les/ ds s (s2—r2)"z < N\2m-l-e 7“5/ ds s~¢ (32—1)_%.
r 1
<?|—roo

We next prove (ii). Recall that
( 1 B)m(eﬂ:Ms) - (i_i)\)meiiAs+0(>\mfls—m—1)

sinh s Os sinh s

The remainder’s contribution to #%(\,r) is estimated as above:

6 6
1

sinh s )\m—l S—m—l < )\m—l/ ds s—™ (82_742)—7 < )\m—l rom.
r

N

ds v/cosh s — cosh r

T

In order to handle the contribution of (%)mei“‘s to 0%(\,r), let us perform the
change of variables s=7(1+u), so that

6 §-1
/ ds :r/ du ,
T 0

and let us expand

s+r

L s—r .
2 sth sinh 5

(cosh s — cosh )2 (sinh s )™ e irs

NI

— oM pEidr (sinh%)fé (sinhr‘(l-i-%))*% (w)lfm U_% (1+2)_
2

i 7‘(1+%) r(14u)

(1 +u)17m e:ti)\ru )
2

/ \\ J/

-~

Alru) B(w)
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Notice that the expressions A(r,u) and B(u) can be expanded as follows:

(65) Afrou) = (S22 3T A (ru)’,
Z(:u)
(66) B(u) = u™2 + Z:j B]Quji for w small,
B
(67) B(u) = V2u™ + Z:j BXu™™ for u large.
Using these behaviors and integrating by parts, we can estimate
6_
/or 1du e Ay u) B(u) = - eFiATy A(r,u) B(u) :jl

§_1
- o= /0 du e A LLA(r u) B(u)}

by O(5=). The integrals

6_
/ldu e B(y)  and /T 1du eTAT B(u)
1
are estimated similarl;. In summary, we showed that
0+ (A, r) = (d4)™ A (sinhr)z " 2 ei“‘r/ldu eFAT YT L QAT
and we conclude by using the behavior of the elerzlentary integral

1 +o00
; ! 1o w1 g
/duei”‘”‘u 2 = \2r 2/ due*™u"2 + O(X1r ).
0 0

4

Vv
constant

O

From now on, the discussion of Subcase 3.b is similar to Subcase 3.a. On one hand, we

deduce from Lemma C.1.i that

6
1

/Td)\ XooA) AT (A2452) 27 e G(\,r) = O(r2=™).
1

On the other hand, by expanding

o T—a

)\—T()\2+52) 52 )\—0(1+§_§) 2 )\—m—%—ilm0+o(|g|)\—m—%) \V/)\ZQ

and 6*(\,r) according to Lemma C.1.ii, we have

2 +oo o
i [, O O T e 050
6

T

= co (It 1) (simh )3+ O(r5)
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where I and II. denote the integrals (B1]) and (£2), which are uniformly bounded and
whose sum is equal to

I'(—iImo)

2 +o0
e? / d)\ \~1-ilmo ei(t:l:r))\ )
6

As a conclusion, we obtain again
~ 1 n—1
00 5—m — 5=
jwiE(r)[ S rem™ S e

Remark C.2. The analysis above still holds in dimension n = 2, except for the first
estimate in Lemma C.1, which is replaced by

O(\,r) = O(Xlog2).

As a result,
jwie(r)] S [t]72 (1—1log|t]).

Remark C.3. In order to estimate the wave kernel for small time, we might have used
the Hadamard parametriz [[7, § 17.4] instead of spherical analysis.
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