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SCHRÖDINGER EQUATIONS

ON DAMEK-RICCI SPACES

JEAN-PHILIPPE ANKER, VITTORIA PIERFELICE, AND MARIA VALLARINO

Abstract. In this paper we consider the Laplace-Beltrami operator ∆ on Damek-Ricci
spaces and derive pointwise estimates for the kernel of eτ∆, when τ ∈ C∗ with Re τ ≥ 0.
When τ ∈ iR∗, we obtain in particular pointwise estimates of the Schrödinger kernel
associated with ∆. We then prove Strichartz estimates for the Schrödinger equation,
for a family of admissible pairs which is larger than in the Euclidean case. This extends
the results obtained by Anker and Pierfelice [4] on real hyperbolic spaces. As a further
application, we study the dispersive properties of the Schrödinger equation associated
with a distinguished Laplacian on Damek-Ricci spaces, showing that in this case the
standard L

1 → L
∞ estimate fails while suitable weighted Strichartz estimates hold.

1. Introduction

The study of the dispersive properties of many evolution equations of mathematical
physics, including the Schrödinger and heat equation on R

n, is of fundamental impor-
tance. Indeed, dispersive estimates represent the main tool in the study of several linear
and nonlinear problems. We recall some standard facts. Consider the homogeneous
Cauchy problem for the linear Schrödinger equation on Rn, n ≥ 1,

(1)

{

i ∂tu(t, x) + ∆u(t, x) = 0

u(0, x) = f(x),

whose solution can be represented as

u(t, x) = eit∆f(x) =
1

(4πit)
n
2

∫

Rn

e−i
|x−y|2

4t f(y)dy ∀t 6= 0 .

By the explicit representation of the kernel of eit∆ one easily obtains the dispersive
estimate

‖eit∆‖L1(Rn)→L∞(Rn) . |t|−n
2 ∀t 6= 0 .

It is sufficient to get rid of i in the kernel to obtain a corresponding representation for
the heat kernel of et∆, and hence a similar dispersive estimate

‖et∆‖L1(Rn)→L∞(Rn) . t−
n
2 ∀t > 0 .

Date: October 11, 2010.
2000 Mathematics Subject Classification. 35Q55, 43A85 ; 22E30, 35J10, 35K08, 43A90, 58D25.
Key words and phrases. Damek-Ricci spaces, Schrödinger equation, heat kernel estimate, dispersive

estimate, Strichartz estimate.
This work was mostly carried out while the third author was a CNRS postdoc at the Fédération

Denis Poisson Orléans-Tours.
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It is well known that, starting from the dispersive estimates, it is possible to deduce other
space-time estimates which are called Strichartz estimates. The first such estimate was
obtained by Strichartz himself in a special case; then Ginibre and Velo [27] obtained the
complete range of estimates with the exclusion of some critical cases, the endpoint cases,
which were finally proved by Keel and Tao [34]. We recall that the modern theory of
local and global well posedness for semilinear Schrödinger equations is based essentially
on these estimates.
In view of the important applications to nonlinear problems, many attempts have

been made to study the dispersive properties for the corresponding equations on various
Riemannian manifolds (see e.g. [4, 6, 7, 10, 11, 28, 32, 40, 41] among the others).
More precisely, dispersive and Strichartz estimates for the Schrödinger equation on

real hyperbolic spaces Hn, which are manifolds with constant negative curvature, have
been stated by Banica, Anker and Pierfelice, Ionescu and Staffilani ([4, 6, 7, 32, 40, 41]).
Here we are interested in extending these results to the more general context of Damek-

Ricci spaces, also known as harmonic NA groups ([2, 9, 15, 16, 22, 23, 24, 25, 42]).
As Riemannian manifolds, these solvable Lie groups include all symmetric spaces of
noncompact type and rank one, but most of them are not symmetric, thus providing
counterexemples to the Lichnerowicz conjecture [24].
We briefly recall the definition of the spaces. Let n = v ⊕ z be an Heisenberg-type

algebra and let N be the connected and simply connected Lie group associated to n (see
Section 2 for the details). Let S be the one-dimensional extension of N obtained by
making A = R+ act on N by homogeneous dilations. We denote by Q the homogeneous
dimension of N and by n the dimension of S. Let H denote a vector in a acting on n

with eigenvalues 1/2 and (possibly) 1; we extend the inner product on n to the algebra
s = n⊕ a, by requiring n and a to be orthogonal and H to be a unit vector. We denote
by d the left invariant distance on S associated with the Riemannian metric on S which
agrees with the inner product on s at the identity. The Riemannian manifold (S, d) is
usually referred to as Damek-Ricci space.
Note that S is nonunimodular in general; denote by λ and ρ the left and right Haar

measures on S, respectively. It is well known that the spaces (S, d, λ) and (S, d, ρ) are
of exponential growth. In particular, the two following Laplacians on S have been the
object of investigation :

(i) The Laplace-Beltrami operator ∆S associated with the Riemannian metric d.
The operator −∆S is left invariant, it is essentially selfadjoint on L2(S, λ) and its
spectrum is the half line [Q2/4,∞).

(ii) The left invariant Laplacian L =
∑n−1

i=0 X2
i , where X0, ...Xn−1 are left invariant

vector fields such that at the identity X0 = H , {X1, . . . , Xmv
} is an orthonormal

basis of v and {Xmv+1, . . . , Xn−1} is an orthonormal basis of z. The operator −L
is essentially selfadjoint on L2(S, ρ) and its spectrum is [0,∞).

Considerable effort has been produced to study the so-called Lp–functional calculus for
the operators −∆S and −L. It turned out that if p 6= 2, then −∆S possesses a Lp

holomorphic functional calculus [12], whereas −L admits a Lp functional calculus of

Mihlin-Hörmander type [5, 18]. This interesting dichotomy between the two operators
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motivated many authors to study both of them in the context of real hyperbolic spaces,
in noncompact symmetric spaces of rank one or, more generally, in Damek-Ricci spaces
and in noncompact symmetric spaces of arbitrary rank [1, 3, 5, 19, 20, 21, 29, 30, 31, 38,
39, 43].
In this paper we study the dispersive properties of the Schrödinger equations on S

associated with both the Laplacians ∆S and L.
To this end, in Section 3 we start by proving pointwise estimates of the kernel of

the more general operator eτ∆S , for τ ∈ C∗ with Re τ ≥ 0. These can be thought as
estimates of the heat kernel of the Laplacian ∆S in complex time and are obtained using
the inversion formula for the Abel transform. Similar results were proved in [26, 37] on
real hyperbolic spaces.
In the special case when Re τ = 0 this gives pointwise estimates of the Schrödinger

kernel of eit∆S , for t ∈ R∗. These imply the following dispersive estimates:

‖eit∆S‖Lq̃′(S,λ)→Lq(S,λ) .

{

|t|−max{ 1
2
− 1

q
, 1
2
− 1

q̃
}n if 0 < |t| < 1

|t|− 3
2 if |t| ≥ 1 ,

for all q, q̃ ∈ (2,∞]. As a consequence, we deduce that the solution u of the nonhomo-
geneous Cauchy problem

(2)

{

i ∂tu(t, x) + ∆Su(t, x) = F (t, x)

u(0, x) = f(x) , x ∈ S,

satisfies the following Strichartz estimates

(3) ‖u‖Lp(R;Lq(S,λ)) . ‖f‖L2(S,λ) + ‖F‖Lp̃′(R;Lq̃′ (S,λ)) ,

for all couples (1
p
, 1
q
) and (1

p̃
, 1
q̃
) which lie in the admissible triangle

Tn =
{(1

p
,
1

q

)

∈
(

0,
1

2

]

×
(

0,
1

2

)

:
2

p
+

n

q
≥ n

2

}

∪
{(

0,
1

2

)}

.

Note that the set Tn of admissible pairs for S is much wider that the admissible interval
In for R

n which is just the lower edge of the triangle. This phenomenon was already
observed by Anker and Pierfelice for real hyperbolic spaces [4] and here is generalized to
Damek-Ricci spaces.

As an application of the estimates (3), we study the dispersive properties of the
Schrödinger equation associated with L:

(4)

{

i ∂tu(t, x) + Lu(t, x) = F (t, x)

u(0, x) = f(x) , x ∈ S .

In this case we prove that there is no dispersive L1 −L∞ estimate for the solution of the
homogeneous Cauchy problem. Beside this, we are able to show that the solution of the
nonhomogeneous Cauchy problem (4) satisfies suitable weighted Strichartz estimates for
couples (1

p
, 1
q
) and (1

p̃
, 1
q̃
) in the admissible triangle Tn. More precisely, we obtain this

result as an application of the Strichartz estimates proved for the equation associated
with ∆S using a special relationship between the two Laplacians (see (10)).
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Note that, in the particular case of real hyperbolic spaces, D. Müller and C. Thiele
found a similar lack of the dispersive effect for the wave equation associated with L and
they suggested that Strichartz estimates shall not hold in that case [38, Remark 7.2].

2. Damek-Ricci spaces

In this section we recall the definition of H-type groups, describe their Damek-Ricci
extensions, and recall the main results of spherical analysis on these spaces. For the
details see [2, 5, 15, 16, 22, 23, 24, 25].

Let n be a Lie algebra equipped with an inner product 〈·, ·〉 and denote by | · | the
corresponding norm. Let v and z be complementary orthogonal subspaces of n such that
[n, z] = {0} and [n, n] ⊆ z. According to Kaplan [33], the algebra n is of H-type if for
every Z in z of unit length the map JZ : v → v, defined by

〈JZX, Y 〉 = 〈Z, [X, Y ]〉 ∀X, Y ∈ v ,

is orthogonal. The connected and simply connected Lie group N associated to n is called
an H-type group. We identify N with its Lie algebra n via the exponential map

v× z → N

(X,Z) 7→ exp(X + Z) .

The product law in N is

(X,Z)(X ′, Z ′) =
(

X +X ′, Z + Z ′ +
1

2
[X,X ′]

)

∀X, X ′ ∈ v ∀Z, Z ′ ∈ z .

The groupN is a two-step nilpotent group, hence unimodular, with Haar measure dX dZ.
We define the following dilations on N :

δa(X,Z) = (a1/2X, aZ) ∀(X,Z) ∈ N ∀a ∈ R
+ .

Set Q = (m + 2k)/2, where m and k denote the dimensions of v and z, respectively.
The number Q is called the homogeneous dimension of N .
Let S be the one-dimensional extension of N obtained by making A = R+ act on N

by homogeneous dilations. We shall denote by n the dimension m+ k + 1 of S. Let H
denote a vector in a acting on n with eigenvalues 1/2 and (possibly) 1; we extend the
inner product on n to the algebra s = n⊕ a, by requiring n and a to be orthogonal and
H to be a unit vector. The map

v× z× R
+ → S

(X,Z, a) 7→ exp(X + Z) exp(log aH)

gives global coordinates on S. The product in S is given by the rule

(X,Z, a)(X ′, Z ′, a′) =
(

X + a1/2X ′, Z + aZ ′ +
1

2
a1/2[X,X ′], a a′

)

for all (X,Z, a), (X ′, Z ′, a′) ∈ S. The group S is nonunimodular: the right and left Haar
measures on S are given by

dρ(X,Z, a) = a−1 dX dZ da and dλ(X,Z, a) = a−(Q+1) dX dZ da .
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Then the modular function is δ(X,Z, a) = a−Q. For p ∈ [1,∞) we denote by Lp(S, λ)
and Lp(S, ρ) the spaces of all measurable functions f such that

∫

S
|f |p dλ < ∞ and

∫

S
|f |p dρ < ∞, respectively.
We equip S with the left invariant Riemannian metric which agrees with the inner

product on s at the identity. From [2, formula (2.18)], for all (X,Z, a) in S,

(5) cosh2

(

r(X,Z, a)

2

)

=

(

a1/2 + a−1/2

2
+

1

8
a−1/2|X|2

)2

+
1

4
a−1|Z|2 ,

where r(X,Z, a) denotes the distance of the point (X,Z, a) from the identity.
We denote by ∆S the Laplace-Beltrami operator associated with this Remannian struc-

ture on S.
A radial function on S is a function that depends only on the distance from the identity.

If f is radial, then by [2, formula (1.16)],
∫

S

f dλ =

∫ ∞

0

f(r)A(r) dr ,

where

(6) A(r) = 2m+k sinhm+k
(r

2

)

coshk
(r

2

)

∀r ∈ R
+ .

A radial function φ is spherical if it is an eigenfunction of ∆S and φ(e) = 1. For s in C,
let φs be the spherical function with eigenvalue −

(

s2 + Q2/4
)

, as in [2, formula (2.6)].
The spherical Fourier transform Hf of an integrable radial function f on S is defined by
the formula

Hf(s) =

∫

S

φs f dλ .

For “nice” radial functions f on S, an inversion formula and a Plancherel formula hold:

f(x) = cS

∫ ∞

0

Hf(s)φs(x) |c(s)|−2 ds ∀x ∈ S ,

and
∫

S

|f |2 dλ = cS

∫ ∞

0

|Hf(s)|2 |c(s)|−2 ds ,

where the constant cS depends only on m and k, and c denotes the Harish-Chandra
function.
Let A denote the Abel transform and let F denote the Fourier transform on the real

line, defined by

Fg(s) =

∫ +∞

−∞

g(r) e−isr dr ,

for each integrable function g on R. It is well known that H = F ◦ A, hence H−1 =
A−1 ◦ F−1. For later use, we recall the inversion formula for the Abel transform [2,
formula (2.24)]. We define the differential operators D1 and D2 on the real line by

(7) D1 = − 1

sinh r

∂

∂r
, D2 = − 1

sinh(r/2)

∂

∂r
.
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If k is even, then

(8) A−1f(r) = aeS D
k/2
1 Dm/2

2 f(r) ,

where aeS = 2−(3m+k)/2π−(m+k)/2, while if k is odd, then

(9) A−1f(r) = aoS

∫ ∞

r

D(k+1)/2
1 Dm/2

2 f(s) dν(s) ,

where aoS = 2−(3m+k)/2π−n/2 and dν(s) = (cosh s− cosh r)−1/2 sinh s ds.

Let L =
∑n−1

i=0 X2
i be the left invariant Laplacian defined in the Introduction. There

is a special relationship between L and ∆S. Indeed, denote by ∆Q the shifted operator
∆S +Q2/4; then by [5, Proposition 2],

(10) δ−1/2(−L) δ1/2f = −∆Qf

for all smooth compactly supported radial functions f on S. The spectra of −∆Q on
L2(S, λ) and−L on L2(S, ρ) are both [0,+∞). Let E∆Q

and EL be the spectral resolution
of the identity for which

−∆Q =

∫ +∞

0

s dE∆Q
(s) and − L =

∫ +∞

0

s dEL(s) .

For each bounded measurable function m on R+ the operators m(−∆Q) and m(−L),
spectrally defined by

m(−∆Q) =

∫ +∞

0

m(s) dE∆Q
(s) and m(−L) =

∫ +∞

0

m(s) dEL(s) ,

are bounded on L2(S, λ) and L2(S, ρ) respectively. By (10) and the spectral theorem,

(11) δ−1/2m(−L) δ1/2f = m(−∆Q)f ,

for smooth compactly supported radial functions f on S. Let km(−L) and km(−∆Q) denote
the convolution kernels of m(−L) and m(−∆Q) respectively; then

m(−∆Q)f = f ∗ km(−∆Q) and m(−L)f = f ∗ km(−L) ∀f ∈ C∞
c (S) ,

where ∗ denotes the convolution on S, defined by

f ∗ g(x) =
∫

S

f(xy) g(y−1) dλ(y) =

∫

S

f(xy−1) g(y) dρ(y) ,

for all functions f, g in Cc(S) and x in S. Given a bounded measurable function m on
R+ the kernel km(−∆Q) is radial and

(12) km(−L) = δ1/2 km(−∆Q) .

Moreover, the spherical transform Hkm(−∆Q) of km(−∆Q) is given by

(13) Hkm(−∆Q)(s) = m(s2) ∀s ∈ R
+ .

For a proof of formula (13) see [2, 5].
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3. Pointwise kernel estimates

We consider the general operator eτ∆S , where τ = |τ | eiθ ∈ C\{0} and denote by hτ its
convolution kernel. Our aim is to find pointwise estimates of this kernel when Re τ ≥ 0.
Notice that if τ ∈ R+, then hτ corresponds to the heat kernel and if τ = it ∈ iR \ {0},
then it corresponds to the Schrödinger kernel on Damek-Ricci spaces.
Notice that, for any τ ∈ C \ {0} with Re τ ≥ 0, we have eτ∆S = mτ (−∆Q), where

mτ (v) = e−
Q2τ
4

−τv. Then by (13), the spherical Fourier transform of hτ is

Hhτ (s) = mτ (s
2) = e−

Q2τ
4 e−τs2 ,

and by applying the inverse Abel transform (8) and (9), we obtain the following formula
for the kernel hτ :

(14) hτ (r) =

{

C (|τ |eiθ)− 1
2 e−

Q2τ
4 Dk/2

1 Dm/2
2

(

e−
r2

4τ

)

if k even ,

C (|τ |eiθ)− 1
2 e−

Q2τ
4

∫∞

r
D(k+1)/2

1 Dm/2
2

(

e−
s2

4τ

)

dν(s) if k odd ,

where D1 = − 1
sinh r

∂
∂r

and D2 = − 1
sinh(r/2)

∂
∂r
. We now prove a pointwise estimate of the

kernel hτ .

Proposition 3.1. There exists a positive constant C such that, for every τ ∈ C∗ with

Re τ ≥ 0 and for any r ∈ R+ , we have

(15) |hτ (r)| ≤
{

C |τ |−n/2 (1 + r)
n−1
2 e−

Q

2
r e−

1
4
Re {Q2τ+ r2

τ
} if |τ |≤1+r ,

C |τ |−3/2 (1 + r) e−
Q

2
r e−

1
4
Re {Q2τ+ r2

τ
} if |τ |>1+r .

Proof. We shall resume in part the analysis carried out in [2, Section 5] for the heat
kernel, in [4, Proposition 3.1] and [26, 37] in the case of real hyperbolic spaces. Following
the same ideas of [2, Corollary 5.21] by induction we can prove that for any p, q ∈ N

such that p+ q ≥ 1

(16) Dq
1 Dp

2

(

e−
r2

4τ

)

= e−
r2

4τ

p+q
∑

j=1

τ−j aj(r) ,

where aj are finite linear combinations of products fp1,q1, ..., fpj,qj with p1 + ... + pj =
p, q1 + ...+ qj = q and

fp,q(r) ≍ (1 + r) e−(p/2+q)r.

Thus aj(r) = O
(

(1 + r)j e−
(p+2q)

2
r
)

.
We first consider the case when k is even. By (14) and (16) we obtain that

|hτ (r)| . |τ |−1/2 e−
1
4
Re {Q2τ+ r2

τ
}

(k+m)/2
∑

j=1

|τ |−j (1 + r)j e−
(m+2k)

4
r

. |τ |−1/2 e−
1
4
Re {Q2τ+ r2

τ
} e−

Q

2
r
[1 + r

|τ | +
(1 + r

|τ |
)(n−1)/2]

.

This easily implies the desired estimate in this case.
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Let now consider the case when k is odd. By (14) and (16) we obtain

|hτ (r)| .
(k+1+m)/2

∑

j=1

|τ |−j |τ |−1/2

∫ ∞

r

ds
sinh s√

cosh s− cosh r
(1 + s)j×

× e−
m+2(k+1)

4
s e−

1
4
Re {Q2τ+ s2

τ
} .

Here and throughout the proof, we make repeated use of the following elementary esti-
mates :

(17) sinh s ≍ s

1 + s
es ,

and

(18) cosh s− cosh r = 2 sinh
s− r

2
sinh

s+ r

2
≍ s− r

1 + s− r

s

1 + s
es

or

(19) cosh s− cosh r ≍
{

s2−r2

1+ r
er if r≤s≤r+1 ,

es if s≥r+1 .

By (17) and (18) we get

(20)
|hτ (r)| . |τ |−1/2 e−

1
4
Re {Q2τ}

∫ ∞

r

ds

√

1 + s− r

s− r

√

1 + s

s
e−s/2 s

1 + s
es×

×
[1 + s

|τ | +
(1 + s

|τ |
)n/2]

e−
Q

2
s e−

s
2 e−

1
4
Re { s2

τ
}.

After performing the change of variables s=r+u, we obtain

|hτ (r)| . |τ |−1/2 e−
1
4
Re {Q2τ}

∫ ∞

0

du

√

1 + u

u

√

r + u

1 + r + u
e−

Q

2
(u+r) e−

1
4
Re {u2+r2+2ur

τ
}.

Using the following inequalities
√
r + u√

1 + r + u
≤ 1 , 1+r+u ≤ (1+r) (1+u) ,

we obtain

(21) | hτ (r) | . |τ |− 1
2 e−

Q

2
r e−

1
4
Re {Q2τ+ r2

τ
}
{1 + r

|τ | +
(1 + r

|τ |
)

n
2
}

.

This allows us to obtain the desired estimate when |τ |>1+r .
If |τ | ≤ 1+r , in order to prove the estimate (15), we need to reduce the power n

2
to

n−1
2

. For this purpose, inside (14), let us rewrite

D(k+1)/2
1 Dm/2

2 (e− s2

4τ ) = P (τ, s) +R(τ, s) ,

obtaining

(22) hτ (r) = C (|τ |eiθ)− 1
2 e−

Q2τ
4

∫ +∞

r

ds
sinh s√

cosh s − cosh r
[P (τ, s) +R(τ, s)] ,



SCHRÖDINGER EQUATIONS ON DAMEK-RICCI SPACES 9

where

P (τ, s) = C τ−
(k+1+m)

2
+1 s

(k+1+m)
2

−1
(

− 1

sinh s

)(k+1)/2 (

− 1

sinh s/2

)m/2 ∂

∂s

(

e− s2

4τ

)

and R(τ, s) =
∑(k+1+m)/2−1

j=1 τ−jaj(s) e
− s2

4τ . Arguing as above, we can estimate the second

term in the (22) as

(23)

∣

∣

∣
|τ |− 1

2 e−
Q2τ
4

∫ ∞

r

ds
sinh s√

cosh s − cosh r
R(τ, s)

∣

∣

∣

. |τ |−1/2 e−
1
4
Re{Q2τ} e−

Q

2
r
(1 + r

|τ |
)n/2−1

e−
1
4
Re r2

τ .

Hence, it remains to consider the integral

I(τ, r) =

∫ +∞

r

ds
sinh s√

cosh s − cosh r
P (τ, s) ,

when |τ | ≤ 1 + r . Let us write

I(τ, r) = I1(τ, r) + I2(τ, r) ,

according to the following splitting

∫ +∞

r

=

∫

√
r2+|τ |

r

+

∫ +∞

√
r2+|τ |

.

To treat the first integral I1, we differentiate
∂
∂s

(

e−
s2

4τ

)

= − s
2τ

e−
s2

4τ and use the estimates
(17), (19) together with the fact that s is in [ r, r + 1 ] obtaining

|I1(τ, r)| . |τ |−n
2 (1 + r)

n−1
2 e−

Q

2
r e−

1
4
Re{ r2

τ
}

∫

√
r2+|τ |

r

ds
s√

s2 − r2

= |τ |−n
2
+ 1

2 (1 + r)
n−1
2 e−

Q
2
r e−

1
4
Re{ r2

τ
} .

By integrating by parts in the integral I2, we get

I2(τ, r) = g(τ, r) + J(τ, r) ,

where

g(τ, r)

= τ−
n
2
+1 sinh s√

cosh s − cosh r
s

n
2
−1
(

− 1

sinh s

)(k+1)/2 (

− 1

sinh s/2

)m/2
(

e−
s2

4τ

)

∣

∣

∣

s=+∞

s=
√

r2+|τ |

and

J(τ, r) = −τ−
n
2
+1

∫ +∞

√
r2+|τ |

ds e− s2

4τ ×

× ∂

∂s

[ sinh s√
cosh s − cosh r

s
n
2
−1
(

− 1

sinh s

)(k+1)/2 (

− 1

sinh s/2

)m/2 ]

.
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We first estimate the boundary term g(τ, r), in the following way

|g(τ, r)| . |τ |−n
2
+1 (1 +

√

r2 + |τ |)n
2
−1 e−

Q

2
r e−

1
4
Re{ r2

τ
}

. |τ |−n
2
+ 1

2 (1 + r)
n−1
2 e−

Q

2
r e−

1
4
Re{ r2

τ
} ∀|τ | ≤ 1 + r.

Then to estimate the integral term J we write it

J(τ, r) = J1(τ, r) + J2(τ, r) ,

according to
∫ +∞

√
r2+|τ |

=

∫ r+1

√
r2+|τ |

+

∫ +∞

r+1

.

By computing the derivative which appears inside the first integral J1 and using the
elementary estimate s coth s− 1

sinh s
≍ s e−s, we obtain

|J1(τ, r)| . |τ |−n
2
+1

∫ r+1

√
r2+|τ |

ds (1 + s)n/2−2 s e−
Q

2
s e−

1
4
Re{ s2

τ
}
{

e−
r
2 e

s
2

( 1 + r

s2 − r2

)1/2

+ e−
3
2
r e

3
2
s
( 1 + r

s2 − r2

)3/2}

. |τ |−n
2
+1 e−

1
4
Re{ r2

τ
} (1 + r)

n−3
2 e−

Q
2
r

∫ r+1

√
r2+|τ |

ds
{ s√

s2 − r2
+ (1 + r)

s

(s2 − r2)3/2

}

. |τ |−n
2
+ 1

2 e−
1
4
Re{ r2

τ
} e−

Q

2
r (1 + r)

n−1
2 ∀|τ | ≤ 1 + r .

We can estimate the second integral J2 as above, changing variable s = r+u and getting

|J2(τ, r)| . |τ |−n
2
+1

∫ ∞

r+1

ds (1 + s)n/2−2 s e−
Q

2
s e−

1
4
Re{ s2

τ
}

. |τ |−n
2
+1 e−

1
4
Re{ r2

τ
}

∫ ∞

1

du (1 + r + u)n/2−2 (u+ r) e−
Q

2
(u+r)

. |τ |−n
2
+1 e−

1
4
Re{ r2

τ
} (1 + r)n/2−1 e−

Q

2
r

. |τ |−n
2
+ 1

2 e−
1
4
Re{ r2

τ
} (1 + r)

n−1
2 e−

Q
2
r ∀|τ | ≤ 1 + r .

We have, thus, proved that

I(τ, r) = O
(

|τ |−n
2
+ 1

2 (1 + r)
n−1
2 e−

Q

2
r e−

1
4
Re{ r2

τ
}
)

.

Then, the first term in (22) is estimated by

(24)
∣

∣|τ |− 1
2 e−

Q2

4
τ I(τ, r)

∣

∣ . |τ |−n
2 (1 + r)

n−1
2 e−

Q

2
r e−

1
4
Re{ r2

τ
} ,

which, combined with (23), allows to conclude the proof. �

Remark 3.2. Notice that, in the case when τ ∈ R+ estimates from below for the heat

kernel hτ were proved in [26, Theorem 3.1] for real hyperbolic spaces and [2, Theorem
5.9] for Damek-Ricci spaces. In Lemma 5.1, we shall prove an estimate from below for

the kernel hτ when τ ∈ iR \ {0} in a suitable region of the space.
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As a consequence of the previous pointwise bounds of the kernel hτ , we can estimate
its norm in the weak Lorentz spaces.

Corollary 3.3. Let 2<q<∞ and 1≤α≤∞ . Then there exists a positive constant C
such that the following kernel estimate holds

(25) ‖hτ‖Lq,α(S,λ) ≤
{

C |τ |−n/2 e−
Q2

4
Reτ if 0< |τ |≤1 ,

C |τ |−3/2 e−
Q2

4
Reτ if |τ |>1 .

Proof. It suffices to argue as in [4, Lemma 3.2]. We recall that the Lorentz spaces
Lq,α(S, λ) are the spaces of functions f such that :
if 1 ≤ α < ∞, then

‖f‖Lq,α(S,λ) =
[

∫ +∞

0

ds

s
{s1/qf ∗(s)}α

]1/α

=
[

∫ +∞

0

dr
V ′(r)

V (r)
{V (r)1/qf(r)}α

]1/α

< ∞,

or, if α = ∞, then

‖f‖Lq,∞(S,λ) = sup
s>0

s1/qf ∗(s) = sup
r>0

V (r)1/qf(r) < ∞,

where the decreasing function f ∗ is the rearrangement of f .
Notice that, if f is a radial decreasing function, then f ∗ = f ◦ V −1, where

V (r) = C

∫ r

0

ds sinhm+k(s/2) coshk(s/2)

≍
{

rn as r → 0

eQr as r → +∞.

Replacing f by hτ and using the kernel estimate (15), we conclude the proof. �

4. Schrödinger equation on Damek-Ricci spaces

Consider the homogeneous Cauchy problem for the linear Schrödinger equation asso-
ciated with the Laplace-Beltrami operator on a Damek-Ricci space S

(26)

{

i ∂tu(t, x) + ∆Su(t, x) = 0

u(0, x) = f(x) , x ∈ S ,

whose solution is given by

u(t, x) = eit∆Sf(x) = f ∗st(x) ,
where we denote by st the kernel hit for any t ∈ R\{0}. Our aim is to study the dispersive
properties of eit∆S , and to do so we follow the strategy used in [4], where the authors
applied the Kunze-Stein phenomenon. Notice that, for general functions on Damek-Ricci
spaces, this phenomenon is known to be false [13, 17, 35, 36]. To solve this difficulty, we
define suitable spaces of radial functions on S which have a “nice” convolution property.
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Definition 4.1. For s in [2,∞), we define As as the space of all radial function κ on S
such that

∫ ∞

0

d |rκ(r)|s/2 φ0(r)A(r) < ∞ ,

where A(r) is the radial density of the left measure, introduced in (6). Given κ in As,

set

‖κ‖As
=

(

∫ ∞

0

dr |κ(r)|s/2 φ0(r)A(r)
)2/s

.

For s = ∞ we denote by A∞ the space of L∞(S, λ) radial functions on S and by ‖·‖A∞

the L∞-norm.

We observe thatAs may be identified with the weighted space Ls/2
(

(0,∞), φ0(r)A(r) dr
)

.

Theorem 4.2. For any q ∈ [2,∞] we have that

Lq′(S, λ) ∗ Aq ⊂ Lq(S, λ).

More precisely, there exists a constant Cq such that for every function f in Lq′(S, λ) and
κ in Aq

‖f ∗ κ‖Lq(S,λ) ≤ Cq ‖κ‖Aq
‖f‖Lq′(S,λ).

Proof. The case when q = 2 follows by [2, Theorem (3.3)]. When q = ∞, taking f in
L1(S, λ) and κ in A∞, we have that for every x in S

|f ∗ κ(x)| ≤
∫

S

|f(y)| |κ(y−1x)| dλ(y) ≤ ‖k‖∞ ‖f‖L1(S,λ) = ‖k‖AL∞ ‖f‖L1(S,λ).

By interpolating between the case q = 2 and q = ∞ we obtain that

(27) [L2(S, λ), L1(S, λ)]θ ∗ [A2,A∞]θ ⊂ [L2(S, λ), L∞(S, λ)]θ = Lq(S, λ)

where 1/q = (1−θ)/2, with θ ∈ (0, 1) (see [8, Theorem 5.1.1]). Moreover, by [8, Theorem
5.1.1]

[L2(S, λ), L1(S, λ)]θ = Lq′(S, λ)

and

[L1
(

(0,∞), φ0A dr
)

, L∞
(

(0,∞), φ0A dr
)

]θ = Lq/2
(

(0,∞), φ0A dr
)

.

We then have [A2,A∞]θ = Aq, which combined with (27) implies the theorem. �

Let us turn to Lq → Lq̃′ dispersive properties of the propagator e it∆S on S.

Theorem 4.3. Let 2<q, q̃≤∞ . Then there exists a positive constant C such that, for

all t ∈ R \ {0}, the following dispersive estimates hold

‖ e it∆S ‖Lq̃′(S,λ)→Lq(S,λ) ≤
{

C |t|−max{ 1
2
− 1

q
, 1
2
− 1

q̃
}n

if 0< |t|≤1 ,

C |t|− 3
2 if |t|>1 .
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Proof. For 0 < |t| ≤ 1, by applying Corollary 3.3, we obtain










‖ e it∆S ‖L1(S,λ)→Lq(S,λ) = ‖st‖Lq(S,λ) ≤ C |t|−n
2 ∀ q>2 ,

‖ e it∆S ‖Lq′(S,λ)→L∞(S,λ)= ‖st‖Lq(S,λ) ≤ C |t|−n
2 ∀ q>2 ,

‖ e it∆S ‖L2(S,λ)→L2(S,λ) = 1 .

By interpolating the previous estimates, we deduce the desired result.
When |t| > 1, we apply Corollary 3.3 and Theorem 4.2 obtaining

(28)











‖ e it∆S ‖L1(S,λ)→Lq(S,λ) = ‖st‖Lq(S,λ) ≤ C |t|− 3
2 ∀ q>2 ,

‖ e it∆S ‖Lq′ (S,λ)→L∞(S,λ)= ‖st‖Lq(S,λ) ≤ C |t|− 3
2 ∀ q>2 ,

‖ e it∆S ‖Lq′ (S,λ)→Lq(S,λ)≤ Cq ‖st‖Aq
∀ q>2 .

For any 2 < q ≤ ∞, we have to estimate the Aq-norm of the kernel st. To do so, we use
Proposition 3.1, formula (6) and the following inequality (see [5, Lemma 1])

φ0(r) ≤ C (1 + r) e−
Q

2
r ,

from which we deduce that st lies in the space Aq and

‖st‖Aq
. |t|−3/2 ∀|t| > 1 .

Using the previous estimate in (28) and applying interpolation, we conclude the proof
when |t| is large.

�

Finally, by combining dispersive estimates (proved in Theorem 4.3) with the classical
TT ∗ method in the same way of [4, Theorem 3.6], we deduce the Strichartz estimates
for a large family of admissible pairs.

Theorem 4.4. Consider the Cauchy Problem for the linear Schrödinger equation
{

i∂tu(t, x) + ∆Su(t, x) = F (t, x)

u(0, x) = f(x), x ∈ S.

If (1
p
, 1
q
) and (1

p̃
, 1
q̃
) lie in the admissible triangle

(29) Tn =
{(1

p
,
1

q

)

∈
(

0,
1

2

]

×
(

0,
1

2

)

:
2

p
+

n

q
≥ n

2

}

∪
{(

0,
1

2

)}

,

then the solution

u(t, x) = eit∆Sf(x) +

∫ t

0

ds ei(t−s)∆SF (s, x)

satisfies the following Strichartz estimates

‖u‖Lp(R;Lq(S,λ)) . ‖f‖L2(S,λ) + ‖F‖Lp̃′(R;Lq̃′ (S,λ)) .

Remark 4.5. The applications to well-posedness and scattering theory for the NLS ob-

tained in [4, Section 4, 5] on real hyperbolic spaces, can be easily generalized to all Damek-

Ricci spaces. We omit the details.
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5. An application: the Schrödinger equation associated with L
We now consider the homogeneous Cauchy problem for the linear Schrödinger equation

on a Damek-Ricci space S associated with the distinguished Laplacian L
{

i∂tu(t, x) + Lu(t, x) = 0

u(0, x) = f(x), x ∈ S,

whose solution is given by

u(t, x) = f ∗ σt(x) ,

where σt is the convolution kernel of the operator eitL.
It is interesting to observe that L1−L∞ dispersive estimate for the Schrödinger equa-

tion associated with the Laplacian L does not hold. To show this fact, we first prove
that the kernel σt is not in L∞. More precisely, we estimate from below the kernel st
and we use the relationship (12) between kernels of multipliers of −∆S and −L,

(30) σt = δ1/2 ei
Q2t
4 st,

where δ is the modular function on S.

Lemma 5.1. For every t in R \ {0} there exist positive constants K and c, with c > 1,
such that

|st(r)| ≥ K |t|−n/2 r
n−1
2 e−

Q

2
r ∀r > 1 + c|t|.

Proof. We suppose for simplicity t > 0. We first consider the case when k is even. By
the expression (14) of the kernel and the expansion (16), we obtain

(31)

st(r) = C t−1/2 ei
Q2t
4 ei

r2

4t

(k+m)/2−1
∑

j=1

t−j aj(r)

+ C t−1/2 t−(k+m)/2+1 r(k+m)/2−1
(

− 1

sinh r

)k/2−1 (

− 1

sinh(r/2)

)m/2

D1(e
i r

2

4t )

+ C t−1/2 t−(k+m)/2+1 r(k+m)/2−1
(

− 1

sinh r

)k/2 (

− 1

sinh(r/2)

)m/2−1

D2(e
i r

2

4t )

= A(t, r) +B(t, r) ,

where A(t, r) corresponds to the sum and B(t, r) comes from the last two summands.
By computing the derivatives which appear in the term B(t, r), we obtain

B(t, r) = C t−1/2 t−(n−1)/2
(ir

2

)(n−1)/2 (

− 1

sinh r

)k/2 (

− 1

sinh(r/2)

)m/2

ei
r2

4t .

As in the proof of Proposition 3.1, we see that

(32) A(t, r) = O(t−n/2+1 r(n−1)/2−1 e−
Q

2
r) ∀r > 1 + t ,

and there exists a positive constant C such that

(33) |B(t, r)| ≥ C t−n/2 r(n−1)/2 e−
Q

2
r ∀r > 1 + t .
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By (32) and (33), we deduce that there exists a sufficently large constant c and a positive

constant K such that |st(r)| ≥ K t−n/2 r(n−1)/2 e−
Q

2
r, ∀r > 1 + c t, as required.

Suppose now that k is odd. As before, by (14) and (16), we can write

(34) st(r) = Ã(t, r) + B̃(t, r) ,

where Ã(t, r) = C t−1/2
∑(k+1+m)/2−1

j=1

∫∞

r
t−j aj(s) e

i s
2

4t dν(s) and

(35)

B̃(t, r) = C t−1/2 t−n/2+1

∫ ∞

r

sn/2−1
( 1

sinh s

)(k+1)/2 ( 1

sinh(s/2)

)m/2 ∂

∂s

(

ei
s2

4t

)

dν(s) .

As in the proof of Proposition 3.1, we see that

(36) Ã(t, r) = O(t−(n−1)/2 rn/2−1 e−
Q
2
r) .

Since

dν(s) =
sinh s√

cosh s− cosh r
= sinh s

(

2 sinh
s+ r

2
sinh

s− r

2

)−1/2

,

the main term B̃(t, r) can be written as

B̃(t, r) = C t−(n+1)/2 ei
r2

4t

∫ ∞

r

ds s
(

sinh
s+ r

2
sinh

s− r

2

)−1/2( s

sinh s

)(k−1)/2

×

×
( s

sinh s/2

)m/2

ei
s2−r2

4t

= C t−(n+1)/2 ei
r2

4t

∫ ∞

r

ds s fr(s) e
i s

2−r2

4t ,

where fr(s) =
(

sinh s+r
2

sinh s−r
2

)−1/2(
s

sinh s

)(k−1)/2 (
s

sinh s/2

)m/2

. By changing variables

u = s2−r2

4t
the integral transforms into

B̃(t, r) = C t−
n−1
2 e

ir2

4t

∫ +∞

0

du e iu fr(s(u)).

Hence

|B̃(t, r)| ≥ |C| t−n−1
2 Im

{

∫ +∞

0

du eiu fr(s(u))
}

,

which can be split up in the following sum

|C| t−n−1
2

+∞
∑

j=0

∫ (2j+1)π

2jπ

du sin u
{

fr(s(u))− fr(s(u+ π))
}

,

which, since u 7−→ fr(s(u)) is a positive decreasing function, is estimated from below by

|C| t−n−1
2

∫ π

0

du sin u
{

fr(s(u))− fr(s(u+ π))
}

.
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To estimate the last integral we write

fr(s(u))− fr(s(u+ π)) =

∫ π

0

dv {−f ′
r(s(u+v)} s′(u+v) .

Notice that s(u) =
√
4tu+ r2, so that s′(u) = 2t

s(u)
. We now compute the derivative of

−fr obtaining
(37)

−f ′
r(s) =

1

4

(

sinh
s+ r

2
sinh

s− r

2

)− 3
2
sinh s

( s

sinh s

)(k−1)/2 ( s

sinh s/2

)m/2

+
(

sinh
s+ r

2
sinh

s− r

2

)− 1
2
[k − 1

2

( s

sinh s

)(k−3)/2 s coth s− 1

sinh s

( s

sinh s/2

)m/2

+
( s

sinh s

)(k−1)/2 m

2

( s

sinh s/2

)m/2−1 s
2
coth( s

2
)− 1

sinh s
2

]

.

We now use in (37) the elementary estimates

sinh s ≍ es, sinh(s/2) ≍ es/2, s coth s− 1 ≍ s,

and

sinh
s+ r

2
sinh

s− r

2
≍ s2 − r2

s
es ,

to obtain

−f ′
r(s) ≍ (s2 − r2)−1/2 s

n−1
2 e−

Q

2
s
[

(s2 − r2)−1 s + 2
]

.

By replacing s = s(u+ v) =
√

4t(u+ v) + r2, we get

(38) −f ′
r

(

s(u+v)
)

≍
(

4t(u+v)
)−1/2

s(u+v)
n−1
2 e−

Q

2
s(u+v)

[(

4t(u+v)
)−1

s(u+v)+2
]

.

Observe that, in the integral defining B̃(t, r), we have 1 ≤ r ≤ s and

s = r

√

1+ 4 (u+v)
t

r2
.

Since 0 < u+ v < 2π and r > 1 + t, we deduce

s(u+ v) . r
[

1 +
4(u+ v) t

r2

2

]

. r + 2(u+ v)
t

r
. r + 4 π .

From (38) and the previous estimates, we get

(39)

− f ′
r(s(u+v)) s′(u+v) ≍

(

4t(u+ v)
)−1/2

r
n−1
2 e−

Q

2
r
[(

4t(u+ v)
)−1

r + 2
] 2t

r

≍
(

4t(u+ v)
)−1/2

r
n−1
2 e−

Q

2
r
[(

2(u+ v)
)−1

+
4t

r

]

≍ (u+v)−
3
2 t−

1
2 r

n−1
2 e−

Q

2
r ∀r > 1 + t .

Hence

fr(s(u))− fr(s(u+ π)) ≍ u− 1
2 t−

1
2 r

n−1
2 e−

Q

2
r,
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so that we obtain

(40) |B̃(t, r)| ≥ |C| t−n−1
2

∫ π

0

du sin u
{

fr(s(u))− fr(s(u+ π))
}

≥ C t−
n
2 r

n−1
2 e−

Q

2
r.

By (36) and (40), we see that there exists a sufficiently large constant c and a positive

constant K such that |st(r)| ≥ K t−
n
2 r

n−1
2 e−

Q

2
r for all r > 1 + ct, as required. �

Proposition 5.2. For every t in R \ {0}, the following hold:

(i) the kernel σt does not lie in L∞(S, ρ);
(ii) the operator eitL is not bounded from L1(S, ρ) to L∞(S, ρ).

Proof. Since σt = δ1/2 ei
Q2t
4 st, from Lemma 5.1 we deduce that there exist constants

c > 1 and K > 0 for which

|σt(x)| ≥ K |t|−n/2 δ1/2(x) r(x)
n−1
2 e−

Q

2
r(x) ∀r(x) > 1 + c|t| .

Let Ωt be the following region:

Ωt = {x = (X,Z, a) ∈ v× z× R
+ : r(x) > 1 + c|t|, a < 1, |(X,Z)| < 1}.

By formula (5), for any point (X,Z, a) in Ωt, we have

er(X,Z,a) ≍ a−1 and r(X,Z, a) ≍ log(a−1).

Hence for any point (X,Z, a) in Ωt

|σt(X,Z, a)| ≥ C a−Q/2 |t|−n/2 [log(a−1)]
n−1
2 aQ/2 ≥ C |t|−n/2 [log(a−1)]

n−1
2 .

This shows that σt is not in L∞(S, ρ) and proves (i).
Let now φn be a sequence of approximations of the identity, i.e. functions in C∞

c (S)
supported in the ball centred at the identity of radius 1/n such that ‖φn‖L1(S, ρ) = 1,
0 ≤ φn ≤ 1. Suppose that the operator eitL is bounded from L1(S, ρ) to L∞(S, ρ). Then
there exists a constant M such that ‖φn ∗ σt‖L∞(S,ρ) ≤ M . Since φn ∗ σt converges to
σt almost everywhere we deduce that |σt| ≤ M almost everywhere which contradicts (i).
Thus the operator eitL is not bounded from L1(S, ρ) to L∞(S, ρ). �

Even if the L1−L∞ dispersive estimate does not hold, we shall prove suitable weighted
Strichartz estimates for the Schrödinger equation associated with the Laplacian L. We
shall deduce them from the Strichartz estimates which hold for the Schrödinger equation
associated with the Laplace-Beltrami operator. To do so, for any q ∈ [2,∞) we introduce
the weight function δq defined by

(41) δq = δ1−q/2 = δq
(

1
q
− 1

2

)

.

The weights δq are involved in a simple relationship between the Lq norms of functions
computed with respect to the right and left Haar measures.

Lemma 5.3. For any q ∈ [2,∞), the following hold:

(i) ‖δ−1/2f‖Lq(S,λ) = ‖f‖Lq(S,δqρ) for every f in Lq(S, δqρ);

(ii) ‖f‖Lq(S,λ) = ‖δ1/2f‖Lq(S,δqρ) for every f in Lq(S, λ).



18 JEAN-PHILIPPE ANKER, VITTORIA PIERFELICE, AND MARIA VALLARINO

Proof. Take f in Lq(S, δqρ). We have that

(42)

‖δ−1/2f‖qLq(S,λ) =

∫

δ−q/2 |f |q dλ

=

∫

δ−q/2 |f |q δ dρ

=

∫

δq(1/q−1/2) |f |q dρ

= ‖f‖qLq(S,δqρ)
.

This proves (i). The statement (ii) follows directly from (i). �

Theorem 5.4. Consider the Cauchy Problem for the linear Schrödinger equation
{

i∂tu(t, x) + Lu(t, x) = F (t, x)

u(0, x) = f(x), x ∈ S.

For all
(

1
p
, 1
q

)

and
(

1
p̃
, 1
q̃

)

in the admissible triangle Tn, the solution

(43) u(t, x) = eitLf(x) +

∫ t

0

ds ei(t−s)LF (s, x),

satisfies the following weighted Strichartz estimates

‖u‖Lp(R;Lq(S,δq ρ)) . ‖f‖L2(S,ρ) + ‖F‖Lp̃′(R;Lq̃′ (S,δq̃′ ρ))
.

Proof. By (30), we deduce that

(44) u(t, x) = ei
Q2t
4 f ∗ (δ1/2 st)(x) +

∫ t

0

ds ei
Q2(t−s)

4

[

F ∗ (δ1/2 s(t−s))
]

(s, x).

It is easy to see that for any functions h, g on S

(45) h ∗ (δ1/2g) = δ1/2
[(

δ−1/2h
)

∗ g
]

.

Applying (45) in (44), we obtain

(46) e−iQ
2t
4 δ−1/2 u(t, x) =

(

δ−1/2f
)

∗ st(x) +
∫ t

0

ds e−iQ
2s
4

[

δ−1/2F ∗ s(t−s)

]

(s, x) .

Suppose now that
(

1
p
, 1
q
) and

(

1
p̃
, 1
q̃

)

lie in the admissible triangle Tn introduced in (29).

By Lemma 5.3 and Theorem 4.4, we get

(47)

‖u‖Lp(R;Lq(S,δq ρ)) = ‖δ−1/2u‖Lp(R;Lq(S,λ))

. ‖δ−1/2f‖L2(S,λ) + ‖δ−1/2F‖Lp̃′(R;Lq̃′ (S,λ))

= ‖f‖L2(S,ρ) + ‖F‖Lp̃′(R;Lq̃′(S,δq̃′ ρ))
,

as required. �
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