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New fault tolerant control strategy for nonlinear systems with multiple

model approach

Dalil Ichalal, Benoı̂t Marx, Didier Maquin and José Ragot

Abstract— This paper addresses a new methodology to con-
struct a fault tolerant control (FTC) in order to compensate
actuator faults in nonlinear systems. This approach is based on
the representation of the nonlinear model with a multiple model
under Takagi-Sugeno’s form. The proposed control requires
a simultaneous estimation of the system states and of the
occurring actuator faults. The performance of the control
depends on the quality of the estimations, indeed, it is important
to estimate accurately and rapidly the states and the faults. This
task is then performed with an Adaptive Fast State and Fault
Observer (AFSFO). The stability conditions are established with
Lyapunov theory and expressed in linear matrix inequality
formulation to ease the design of the FTC. Furthermore,
relaxed stability conditions are given with the use of the Polya’s
theorem.

Index Terms— Nonlinear systems, Takagi-Sugeno model (T-
S), linear matrix inequality (LMI), Polya’s theorem, Lyapunov
theory, input-to-state stability (ISS), fault tolerant control
(FTC)

I. INTRODUCTION

Since several years, the problem of fault tolerance has

been treated from many points of view. Two classes can then

be considered: passive control and active control. The first

class may be viewed as a robust control. It requires the a

priori knowledge of the possible faults which may affect the

system. The control is then designed in order to compensate

them. The interest of this approach is the fact that no on

line information is needed and the structure of the control

law remains unchanged. The principal idea of this kind of

control is based on the consideration of all possible faults

as uncertainties which are taken into account for the design

of the tolerant control by using different techniques like

H∞ [15], [13]. Generally, the structure of the uncertainties

(faults) are not taken into account in order to lead to a convex

optimization problem. Furthermore, the class of considered

faults is limited, it becomes then risky to use only the passive

fault tolerant control (see [11] for more details).

The second class concerns active fault tolerant control

which is more interesting due to its possibility to take

into account a large class of faults, because of its variable

structure which may change in the presence of faults. The

knowledge of some informations about these last are required

and are obtained from a Fault Detection and Diagnosis

(FDD) block. Different ideas are developed in the literature,

for example, a Control Law Re-scheduling [9], [7], [17]. This
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approach requires a very robust Fault Detection and Isola-

tion (FDI) block which constitutes its major disadvantage.

Indeed, a false alarm or a non detected fault can lead to

degraded performance or even to instability. Other smooth

fault tolerant control laws are proposed in [5] for Takagi-

Sugeno systems and in [14] for LPV systems.

Many efforts are dedicated to the problem of designing

an active fault tolerant control of nonlinear systems, among

them, the use of Takagi-Sugeno representation that com-

bines simplicity and accuracy of nonlinear behaviors, it is

introduced initially in [18]. The idea is to consider a set of

linear sub-systems. An interpolation of all these sub-models

with nonlinear functions satisfying the convex sum property

allows to obtain the global behavior of the system described

in a large operating range. Some works can be mentioned

in the FTC field for nonlinear systems. For example, in

[4], the authors took into account actuator faults for non-

linear descriptor systems with Lipschitz nonlinearities. In

[9], a method which requires only the fault isolation was

proposed for T-S systems. It was based on a bank of observer

based controllers. A switching mechanism is then designed

depending on the obtained residuals. More recently, in [5],

the FTC strategy with trajectory tracking and proportional-

integral observer (PIO), is developed for the T-S systems with

weighting functions depending on the state of the system

which is not accessible for measure.

II. TAKAGI-SUGENO STRUCTURE FOR MODELING

The T-S modeling allows to represent the behavior of

nonlinear systems by the interpolation of a set of linear sub-

models. Each sub-model contributes to the global behavior of

the nonlinear system through a weighting function µi(ξ(t)).
The T-S structure is given by







ẋ(t) =
r
∑

i=1

µi(ξ(t))(Aix(t) + Biu(t))

y(t) = Cx(t)
(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

nu is the input

vector, y(t) ∈ R
ny represents the output vector. Ai ∈ R

n×n,

Bi ∈ R
n×nu and C ∈ R

ny×n are known matrices. The

functions µi(ξ(t)) are the weighting functions depending on

the variable ξ(t) which is accessible for measure (as the

input or the output of the system). These functions verify

the following properties






r
∑

i=1

µi(ξ(t)) = 1

0 ≤ µi(ξ(t)) ≤ 1 ∀i ∈ {1, 2, ..., r}
(2)



Obtaining a T-S model (1) can be performed from different

methods such as linearization around some operating points

and using adequate weighting functions. It can also be

obtained by black-box approaches which allow to identify

the parameters of the model from input-output data. Finally,

a T-S model can be obtained from the well-known nonlinear

sector transformations [19], [12]. This transformation allows

to obtain an exact T-S representation of nonlinear model with

no information loss on a compact set of the state space.

Thanks to the convex sum property of the weighing

functions (2), it is possible to generalize some tools devel-

oped in the linear domain to the nonlinear systems. This

representation (1) is very interesting in the sense that it

simplifies the stability studies of nonlinear systems and

the design of control laws and observers. In [19], [6], the

stability and stabilization tools are inspired from the study

of linear systems. In [1], [10], the authors worked on the

problem of state estimation and diagnosis of T-S fuzzy

systems. The proposed approaches in these last papers rely

on the generalization of the classical observers (Luenberger

Observer [8] and Unknown Input Observer (UIO) [3]) to the

nonlinear systems. Recently in [16], a new approach, derived

from the Polya’s theorem, leads to asymptotic necessary and

sufficient stability conditions.

In the remaining of the paper, the two following lemmas

are used.

Lemma 1: Consider two matrices X and Y with appro-

priate dimensions and G a positive definite matrix. The

following property is verified

XT Y + Y T X ≤ XT GX + Y T G−1Y G > 0 (3)

Lemma 2: (Congruence) Consider two matrices P and Q,

if P is positive definite and if Q is a full column rank matrix,

then the matrix QPQT is positive definite.

λmax(M) represents the maximum singular value of the

matrix M .

III. PROBLEM STATEMENT

Under actuator faults, the system (1) can be re-written in

the following form







ẋ(t) =
r
∑

i=1

µi(ξ(t)) (Aix(t) + Bi (u(t) + f(t)))

y(t) = Cx(t)
(4)

where f(t) is an actuator fault. Faults can affect a system

in several different ways. They can be represented by an

additive or a multiplicative external signal. In this case, they

affect the performances of the system but its stability is not

affected. It can be pointed out that if the fault depends on

the system state, it can change the structure of the model

and cause its unstability. For instance, malfunctions of the

actuator can be represented by a faulty control input defined

by uf (t) = (Inu
− γ)u(t) which can be easily re-written in

the form of an external additive signal: (u(t) + f(t)) where

f(t) = −γu(t) and γ = diag (γ1, γ2, · · · γnu
) , 0 ≤ γi ≤ 1

(i = 1, ..., nu) where






γi = 1 ⇒ total failure of the ith actuator

γi = 0 ⇒ the ith actuator is healthy

γi ∈
]

0 1
[

⇒ loss of effectiveness of the ith actuator

For example if γ2 = 0.4, there is a 40% loss of effectiveness

of the second actuator. Note that such multiplicative faults

can cause the system instability.

Assumption 1: In this paper, it is assumed that

• A1. the faults are assumed to have norm bounded first

time derivative
∥

∥

∥ḟ(t)
∥

∥

∥ ≤ f1max, 0 ≤ f1max < ∞ (5)

• A2. rank(CBi) = nu

• A3. Total actuator failures are not considered, i.e. γi ∈
[0 1[

In this paper, a new actuator fault tolerant control is

proposed. Using a fast adaptive observer proposed in [20]

and extended here to nonlinear T-S systems, the state and

the fault affecting the system are estimated rapidly. The

use of such an observer is motivated by the fact that if a

fault occurs, it is important to detect it quickly and with a

good accuracy in order to take it into account and preserve

the system performances. With the use of Lyapunov theory,

sufficient conditions are obtained for asymptotic stability in

the constant fault case and for input-to-state stability (ISS)

in the case of time varying faults. The LMI formulation

is used for representing the obtained stability conditions in

an adequate form for existing LMI solvers. Finally, relaxed

stability conditions are obtained with the use of Polya’s

theorem [16].

IV. FAULT TOLERANT CONTROL FOR NONLINEAR

SYSTEMS

An adaptive observer estimating the state and the faults of

the system (4) is given by



























˙̂x(t) =
r
∑

i=1

µi(ξ(t))(Aix̂(t) + Bi(u(t) + f̂(t)) + Liey(t))

ŷ(t) = Cx̂(t)
˙̂
f(t) = Γ

r
∑

i=1

µi(ξ(t))Fi(ėy(t) + σey(t))

ey(t) = y(t) − ŷ(t)
(6)

and the proposed active fault tolerant control takes the form

u(t) = −

r
∑

i=1

µi(ξ(t))Kix̂(t) − f̂(t) (7)

The objective is to determine the parameters Li, Γ, Fi,

Ki and σ such that the state of the system converges

asymptotically to zero if the fault f(t) is constant or to

a small ball around the origin in the case where f(t) is

time varying with norm bounded first time derivative. The

expression describing the dynamic of the fault f(t) given in

(6) depends on both the output error and the derivative of

the output error.



Let us consider the fault and state estimation errors

ex(t) = x(t)− x̂(t) and ef (t) = f(t)− f̂(t). The dynamics

of the state estimation error and the closed-loop system with

the control (7) obey to the differential equations

ėx(t) =

r
∑

i=1

µi(ξ(t)) (Φiex(t) + Bief (t)) (8)

ẋ(t) =

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t)) (Ξijx(t) + Bief + BiKjex)

(9)

where Φi = Ai − LiC and Ξij = Ai − BiKj .

Theorem 1: Under the assumptions 1, given positive

scalars σ and β, if there exists symmetric and positive

definite matrices X ∈ R
n×n, P2 ∈ R

n×n, G ∈ R
nf×nf

(with nf = nu) and matrices Mi ∈ R
nu×n and Ni ∈ R

n×ny

and a positive scalar η solution to the optimization problem

min η s.t. (10)

(

ηI BT
i P2 − FiC

(

BT
i P2 − FiC

)T
ηI

)

> 0 (11)

Qij =













Sij BiMj Bi 0 0
∗ −2βX 0 βI 0
∗ ∗ −2βI 0 βI

∗ ∗ ∗ Ωj Rij

∗ ∗ ∗ ∗ Ψij













< 0 (12)

Sij = XAT
i + XAi − BiMi − MT

i BT
i (13)

Ωj = AT
i P2 + P2Ai − NiC − CT NT

i (14)

Rij = −
1

σ
(AT

j P2 − CT NT
j )Bi (15)

Ψij = −
1

σ

(

BT
i P2Bj + BT

j P2Bi

)

+
1

σ
G (16)

then the state of the system x(t), the state estimation error

and the fault estimation error ef (t) are bounded. Further-

more, if f1max = 0, these variables converge asymptotically

to zero. The gains of the observer and the fault tolerant

control are given by Fi, Li = P−1

2
Ni and Ki = MiX

−1.

Proof: In order to prove both the stability of the

closed-loop system and the convergence of the state and fault

estimation errors, the proof is based on a Lyapunov function

depending on x(t), ex(t) and ef (t) defined by

V (t) = xT (t)P1x(t) + eT
x (t)P2ex(t) +

1

σ
ef (t)Γ−1ef (t)

(17)

According to the equations (8) and (9), the time derivative

of V (t) is given by

V̇ (t) =

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))(x
T (t)Πijx(t)

+ eT
x (t)Ωiex(t) + 2xT (t)P1BiKjex(t)

+ 2xT (t)P1Bief (t) + 2eT
x (t)P2Bief (t)

+
2

σ
eT
f (t)Γ−1ėf (t)) (18)

where Πij = ΞT
ijP1 + P1Ξij and Ωi = ΦT

i P2 + P2Φi.

Knowing that ėf (t) = ḟ(t) −
˙̂
f(t) and given the expression

of f̂(t) in (6), one obtains

V̇ (t) =

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))(x
T (t)Πijx(t)

+ eT
x (t)Ωiex(t) + 2xT (t)P1BiKjex(t)

+ 2xT (t)P1Bief (t) + 2eT
x (t)P2Bief (t)

−
2

σ
eT
f (t)Fi(ėy(t) + σey(t)) +

2

σ
eT
f (t)Γ−1ḟ(t))

(19)

Using the differential equation (8) generating ex(t), the

following is obtained

V̇ (t) =
r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))(x
T (t)Πijx(t)

+ eT
x (t)Ωiex(t) + 2xT (t)P1BiKjex(t)

+ 2xT (t)P1Bief (t) + 2eT
x (t)P2Bief (t)

−
2

σ
eT
f (t)FiCΦjex(t) −

2

σ
eT
f (t)FiCBjef (t)

− 2eT
f (t)FiCex(t) +

2

σ
eT
f (t)Γ−1ḟ(t)) (20)

Using Lemma 1 and assumption A1, we deduce that

2
1

σ
eT
f (t)Γ−1ḟ(t)

≤
1

σ
eT
f (t)Gef +

1

σ
ḟT (t)Γ−1G−1Γ−1ḟ(t)

≤
1

σ
eT
f (t)Gef +

1

σ
f2

1 max
λmax

(

Γ−1G−1Γ−1
)

(21)

and using assumption A2, it is possible to obtain Fi and P2

such that BT
i P2 = FiC holds. The time derivative of the

Lyapunov function (20) is bounded as follows

V̇ (t) ≤ x̃T (t)

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))∆ij x̃(t) + δ (22)

where x̃T (t) = (xT (t) eT
x (t) eT

f (t))T , δ =
1

σ
f2

1 max
λmax

(

Γ−1G−1Γ−1
)

and

∆ij =





Πij P1BiKj P1Bi

∗ Ωi − 1

σ
ΦT

j P2Bi

∗ ∗ Ψij



 (23)

If the following equation holds

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))∆ij < 0 (24)

it is established that

V̇ (t) < −ε ‖x̃(t)‖
2

+ δ (25)

where ε is defined by

ε = λmin



−

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))∆ij



 (26)



It follows that V̇ (t) < 0 if ε ‖x̃(t)‖
2

> δ, and according to

Lyapunov stability theory the state x(t), the state estimation

error ex(t) and the fault estimation error ef (t) converge to

a small ball of convergence around the origin. This ball is

smaller as the constant δ converges to zero.

In order to achieve the proof, it remains to establish some

LMI conditions to ensure that (24) and BT
i P2 = FiC holds.

The latter is first considered.

As pointed out in [20], it is difficult to solve simul-

taneously, the inequality
r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))∆ij < 0

with the equality constraint BT
i P2 = FiC. A technique for

reducing this difficulty is to formulate the equality constraint

as an optimization problem [2]

min η s.t.

(

ηI BT
i P2 − FiC

(

BT
i P2 − FiC

)T
ηI

)

> 0

(27)

For the sake of simplicity, the following notations will be

used

Yξ =

r
∑

i=1

µi(ξ(t))Yi, Yξξ =

r
∑

i=1

r
∑

i=1

µi(ξ(t))µj(ξ(t))Yij (28)

where Yi and Yij are given matrices. Using this representa-

tion, the inequality (24) becomes

∆ξξ =

(

Πξξ Θξξ

ΘT
ξξ Λξξ

)

< 0 (29)

where

Θij =
(

P1BiKj P1Bi

)

(30)

Λij =

(

Ωi − 1

σ
ΦT

j P2Bi

− 1

σ

(

ΦT
j P2Bi

)T
Ψij

)

(31)

Consider a matrix X defined as follows

X =

(

P−1

1
0

0 X1

)

, X1 =

(

P−1

1
0

0 I

)

(32)

Using Lemma 2, post and pre-multiplying the inequality (29)

by X , it follows that (29) is equivalent to the following

inequality
(

P−1

1
ΠξξP

−1

1
P−1

1
ΘξξX1

X1Θ
T
ξξP

−1

1
X1ΛξξX1

)

< 0 (33)

Since the following inequality holds

(

X1 + βΛ−1

ξξ

)T

Λξξ

(

X1 + βΛ−1

ξξ

)

≤ 0

⇔ X1ΛξξX1 ≤ −β
(

X1 + XT
1

)

− β2Λ−1

ξξ (34)

and with a Schur complement, it follows that the inequality

(33) holds if (35), displayed below, is satisfied




P−1

1
ΠξξP

−1

1
P−1

1
ΘξξX1 0

ΘT
ξξP

−1

1
X1 −2βX1 βI

0 βI Λξξ



 < 0 (35)

Using the notations (28) and the definitions of the matrices

Πξξ, Θξξ and Ωξξ given in the equalities (30) and (31),

and with the changes of variables X = P−1

1
, Mi = KiX ,

Ni = P2Li it is easy to obtain the inequalities given in

the theorem 1. Finally, the inequality (25) is satisfied, if the

optimization problem given by (10) under LMI constraints

(12) has a solution, which ends the proof.

Remark 1: Note that if the fault f(t) is constant, then

f1max = 0 and δ = 0, consequently the asymptotic stability

is achieved, since V̇ (t) < 0 for every x̃(t).
Remark 2: After solving the optimization problem given

in the theorem 1, the input-to-state stability condition given

in (25) is satisfied. Thus, in the case of time varying faults

with bounded first time derivative, the state x(t), the state

estimation error ex(t) and the fault estimation error ef (t)
converge to an origin centered ball defined by the terms

δ and ε. Choosing a high value for the parameter Γ will

minimize δ without changing ε (that does not depend on

Γ) and consequently will minimize the radius of the ball

in which x̃ converges. It thus improve the accuracy of the

estimation.

Remark 3: The objective of fault tolerant control is to

compensate the faults, so it is important to estimate them as

soon as possible with a good accuracy. The adaptive observer

studied in this paper can be considered as an improvement

of the classical PI observer, in the sense that convergence

of the state and fault estimations is proved (in an origine

centered ball) even in non constant fault case, whereas the

assumption of constant fault is needed to prove the estimation

error convergence when using a PI observer.

V. CONSERVATISM REDUCTION WITH POLYA’S THEOREM

In the previous section, the proposed result may be

conservative in the sense that common Lyapunov matrices

were sought to satisfy r2 LMIs. Recently, a new interesting

method to reduce the conservativeness of the matrix summa-

tions inequality has been proposed with the use of Polya’s

theorem [16].

Let us consider the inequality (36)

∆ξξ =

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))∆ij < 0 (36)

where ∆ij is defined in equation (23). Knowing that
(

r
∑

i=1

µi(ξ(t))

)p

=
r
∑

i=1

µi(ξ(t)) = 1 where p is a positive

integer, the inequality (36) is equivalent to
(

r
∑

i=1

µi(ξ(t))

)p r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))∆ij < 0 (37)

1) example: In order to better assimilate this approach, let

us consider this example where r = 2 (two sub-models), then

the stability is ensured if inequality (36) holds. Classically,

the negativity of (36) is ensured if all the terms ∆ij are

negative for i, j = 1, 2. However, using Polya’s theorem, the

negativity of the inequality (36) is equivalent to the negativity

of (37). Choosing p = 1 we obtain three summations, and

the inequality (37) is equivalent to

2
∑

i1=1

2
∑

i2=1

2
∑

i3=1

µi1µi2µi3∆i1i2 < 0 (38)



Consequently, the negativity of (36) is ensured if

∆11 < 0, ∆22 < 0 (39)

∆11 + ∆12 + ∆21 < 0 (40)

∆22 + ∆21 + ∆12 < 0 (41)

By comparison to the classical result where all inequalities

∆ij < 0 for all i, j = 1, 2 are needed, this new approach only

requires the negativity of the terms ∆ij and the negativity

of the terms ∆ij for i 6= j is no longer needed.

As explained in [16], the negativity of (36) is guaranteed if

inequality (37) is verified with a given parameter p. Increas-

ing p provides less conservative stability conditions and if

p → +∞ asymptotic necessary and sufficient conditions for

the negativity of (36) are obtained. The authors proposed

also an algorithm to compute finite values of p which gives

necessary and sufficient conditions with a given accuracy.

The reader can refer to the paper [16] for more details on

Polya’s theorem based relaxation approach.

In order to reduce the conservatism introduced to ensure

(1), the Polya’s theorem is applied directly on the inequality

(35), with the changes of variables X = P−1

1
, Mi = KiX ,

Ni = P2Li, for a suitable values of p. Note that the obtained

conditions are only sufficient for guaranteeing the negativity

of (25). Theorem 2 is obtained by applying the Polya’s

approach to theorem 1 and by setting p = 3.

Theorem 2: (p = 3) Under the assumptions 1, given pos-

itive scalars σ and β, if there exists symmetric and positive

definite matrices X ∈ R
n×n, P2 ∈ R

n×n, G ∈ R
nf×nf

(with nf = nu) and matrices Mi ∈ R
nu×n and Ni ∈ R

n×ny

and a positive scalar η solution to the optimization problem

min η s.t. (42)
(

ηI BT
i P2 − FiC

(

BT
i P2 − FiC

)T
ηI

)

> 0 (43)

Qii < 0, i = 1, ..., r

3Qii + Qij + Qji < 0, i, j = 1, ..., r, i 6= j

3Qii + Qjj + 3Qij + 3Qji < 0, i, j = 1, ..., r, i 6= j

6Qii + 3Qij + 3Qik + 3Qji + 3Qki + Qjk + Qkj < 0

i, j, k = 1, ..., r, i < j < k

3Qii + 3Qjj + 6Qij + 6Qji + 3Qik + 3Qki

+3Qjk + 3Qkj < 0,

i, j, k = 1, ..., r, i < j < k

where Qij is defined in (12). Then the state of the system

x(t), the state estimation error ex(t) and the fault estimation

error ef (t) are bounded. The gains of the observer and the

fault tolerant control are given by Fi, Li = P−1

2
Ni and

Ki = MiX
−1.

VI. SIMULATION EXAMPLE

To illustrate the performances of the proposed approach,

let us consider the system (4) defined by the matrices

A1 =

(

0 1
17.2941 0

)

, A2 =

(

0 1
3.5361 0

)

,

B1 =

(

0
−17.65

)

, B2 =

(

0
−17.63

)

, C = I2

The weighting functions are given by µ1(x(t)) = 1 −
2

π
|x1(t)| and µ2(x(t)) = 1 − µ1(x(t)). Let us consider the

fault f(t) defined as follows

f(t) =















0 t ≤ 20
1.4 sin(t) + 21 20 ≤ t ≤ 50

7.5 sin(2t) + 7.5 50 ≤ t ≤ 70
−0.88u(t) 70 ≤ t ≤ 100

(44)

For t ≥ 70 s, the fault f(t) describes a loss of effectiveness

of the actuator, which satisfies assumption A3. The first

simulation is obtained by synthesizing a classical controller,

without taking into account the faults, in the form u(t) =

−
r
∑

i=1

µi(ξ(t))Kix(t) by using an approach proposed in [19].

For example, the gains Ki can be obtained by Ki = MiP
−1

where P and Mi are solution of the LMIs

PAT
i + PAi − BiMj − MT

j BT
i < 0, i, j = 1, 2 (45)

With this control law, as shown in the figure 1, the states

of the system converge to zero in fault free case, but in

the faulty case the system performances are degraded from

t = 20 s to t = 70 s and the system becomes unstable for

t ≥ 70 s. The proposed fault tolerant control is designed by

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

t(s)

x
1
(t)

x
2
(t)

Fig. 1. System states with classical control

solving the optimization problem of theorem 1. For that, the

parameter values σ = 0.8, Γ = 44 and β = 10 are chosen.

The obtained gains of the observer and the controller are

L1 =

(

0.52 1.22
17.24 0.27

)

, L2 =

(

0.52 1.21
3.48 0.26

)

F1 =
(

3.63 −43.14
)

, F2 =
(

3.62 −43.09
)

K1 =
(

161.81 −66.04
)

, K2 =
(

156.06 −65.28
)

The figure 2 illustrates the results of the proposed control law

obtained after solving the optimization problem of theorem

1. One can note that, with the fault f(t) defined in (44), the

performances are better than those of the classical control and

the system remains stable for t ≥ 70 (figure 2 (top)). The

observer rapidly and accurately estimates the fault as shown

in the figure 2 (bottom). In this example, the classical control

cannot preserve the stability of the system when γ ≥ 0.88
however (based on simulations not displayed here due to

space limitation it can be claimed that) the proposed FTC

strategy can tolerate faults until γ = 0.97.
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Fig. 2. Fault tolerant control : states of the system (top) - fault and its
estimation (bottom)

In addition, this approach provides a rapid and accurate

estimation of occurred actuator faults with the adaptive

observer (figure 2 (bottom)) which constitutes a FDI block

for diagnosis. If f(t) = 7.5sin(2t), its derivative over the

time is bounded by 15, then in this simulation example, the

term δ = 1

σ
f2

1maxλmax(Γ−1G−1Γ−1) = 0.0288, and the

term ε can be minimized by an appropriate choice of Γ to

reduce the radius of the ball in which converge the estimation

errors and then obtain a more accurate fault estimation.

VII. CONCLUSIONS AND FUTURE WORKS

This paper is dedicated to the study of a new actuator fault

tolerant control for nonlinear systems in Takagi-Sugeno’s

form. The active fault tolerant control requires the simul-

taneous estimations of the state and faults, obtained by the

proposed adaptive observer. This observer is able to estimate

time varying faults with a good accuracy simultaneously with

the estimation of the state. Furthermore, it gives the estima-

tions rapidly which is important to preserve the performances

of the system. The stability analysis is done with Lyapunov

theory and ISS (Input-to-State Stability) is proved in the case

of time varying faults, and asymptotic stability in the case

of constant faults. Sufficient stability conditions are given

in terms of LMI. In order to reduce the conservatism of

the given conditions, Polya’s theorem is used which allows

to derive relaxed conditions for FTC design for nonlinear

systems. Future works will concern the FTC of systems

affected by both sensor and actuator fault and/or uncertainties

and/or perturbations. It will also be interesting to study the

case when a set of actuators is completely out of order, in

this situation the dimensions of the matrices Bi and of the

control vector u(t) are decreased.
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