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Bayesian multi-locus pattern selection and
computation through reversible jump MCMC

Christine Sinoquet

christine.sinoquet@univ-nantes.fr

Abstract

In the human genome, susceptibility to common diseases is likely to be determined by interactions between multiple
genetic variants. We propose an innovative Bayesian methodto tackle the challenging problem of multi-locus pattern
selection in the case of quantitative phenotypes. For the first time, in this domain, a whole Bayesian theoretical frame-
work has been defined to incorporate additional transcriptomic knowledge. Thus we fully integrate the relationships
between phenotypes, transcripts (messenger RNAs) and genotypes. Within this framework, the relationship between
the genetic variants and the quantitative phenotype is modeled through a multivariate linear model. The posterior
distribution on the parameter space can not be estimated through direct calculus. Therefore we design an algorithm
based on Markov Chain Monte Carlo (MCMC) methods. In our case, the number of putative transcripts involved in
the disease is unknown. Moreover, this dimension parameteris not fixed. To cope with trans-dimensional moves, our
sampler is designed as a reversible jump MCMC (RJMCMC). In this document, we establish the whole theoretical
background necessary to design this specific RJMCMC.





Introduction

In the hunt for genes affecting our health and wellbeing, association studies look for associations between
genetic features and phenotypes such as health / illness. Many common diseases in humans are suspected
to be caused by complexepistaticinteractions among multiple genes. In the literature, different accep-
tations are encountered for the termepistasis[4]. In this paper, epistasis is defined for a set of genetic
loci as the situation arising when not all loci, and possiblynone at all, have a main effect on the disease,
whereas the combination of the loci causes the disease. Marginal epistatic interactions have been iden-
tified for diseases such as coronary heart disease [21], breast cancer [24], Alzheimer’s disease [38] and
Crohn’s disease [30].

The last decade has witnessed an explosion in the number of research works aiming at tackling epis-
tasis identification. Amongst deterministic approaches, we mention SNPRuler, a branch and bound algo-
rithm devoted to the expansion of sets of SNPs in the binary phenotype case [33]. This method describes
the relationship between the epistatic SNPs and the phenotype through a predictive rule. A measurement
of rule relevance is deduced from theχ-square statistic. A rule is grown if the added SNP increasesthe
relevance. Specific properties of this measure, as well as the possibility to calculate an upper bound,
allow to traverse the space of predictive rules without exhaustive search. Central to software TEAM [36]
is the speeding up of contingency table (CT) computation through a true structure. This method restrains
to two-SNP epistasis and tests such as theχ-square test. Given the CTs of two single SNPs and the CT
for genotype relation between these two SNPs, only little effort is required to compute the two-locus CT.
The CT for genotype relation between the two SNPs is inferredfrom a minimum spanning tree built on
the SNPs. Therein, each edge represents the genotype difference between the two connected SNPs.

Supervised learning algorithms include standard regression methods as well as stepwise approaches.
Least square or maximal likelihood estimations are the rulefor quantitative (continuous) phenotypes. Lo-
gistic regression (or binomial regression) is devoted to binary phenotypes (affected/unaffected status). In
logistic regression, parameter estimation maximizes the likelihood and usually relies on Markov Chain
Monte Carlo (MCMC) sampling strategies for this purpose. Some approaches combine forward stepwise
procedure and logistic regression [16, 22]. Logic regression attempts to identify boolean combinations
of SNPs for the prediction of the affected/unaffected status of an observation. The logic expressions are
represented by logic trees. Permissible moves in the tree-growing process are alternating an operator
or a variable, pruning or growing a branch, and adding or removing variables. To find the best models,
stochastic algorithms are applied, such as simulated annealing [26] or MCMC [25]. As a matter of fact,
in the former work, simulated annealing is applied to different subsets of the data. Dealing with binary
phenotypes, Symbolic Discriminant Analysis (SDA) may be viewed as an extension of both linear and
logic regression approaches [18]. In SDA, the data dictates the size, shape and complexity ofa symbolic
function, discriminant for case/control status. The symbolic function combines mathematical functions
from a list provided by the user. Genetic programming is usedto optimize the discriminant power of the
models [17].

Non-parametric data mining strategies have been investigated. Besides standard forest-based ap-
proaches [3], random forests combine bagging with random selection of features (see MegaSNPHunter
[32], for example). Inbagging- or bootstrap aggregating - a few hundred to a few thousand classification
or decision trees are generated from as many bootstrap samples drawn from the available data. Multifac-
tor dimensionality reduction (MDR) applies an exhaustive search to pool genotypes from combinations of
SNPs [9]. Thus, data dimension is reduced to one, with two genotype pools accumulating either affected
or unaffected subjects. When the phenotype is continuous, pooling is achieved through a combinatorial
partition of the genotypes [35]. In the previous Combinatorial Partitioning Method (CPM), for each com-
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bination of SNPs, the partitions are exhaustively enumerated and tested for discriminating power. The
Restricted Partition Method (RPM) is a heuristic which guides the straightforward construction of the best
possible partition, per each combination of SNPs [6]. RPM implements ascending hierarchical clustering
for this purpose.

Probabilistic graphical models were also used to search forcausal SNP combinations. In an approach
based on Markov random field models [31], the graph structure connects cliques of (pairwise) dependent
SNPs with the phenotype node. An MCMC strategy samples over the space of possible graphs, with a
restriction on physical distance between any two markers ina clique. The MCMC strategy samples from
the posterior distribution of graphs conditional on the data. Only MCMC moves towards decomposable
graphs are allowed, to allow an easy computation of marginallikelihood. A novel framework, forests
of hierarchical latent class models, was introduced to handle high-dimensional data [19]. To learn the
model, an ascending hierarchical clustering first discovers cliques of dependent SNPs, subsume them
through additional (latent) variables if possible, then iterates the previous two steps on the latent variables
and remaining SNPs.

Bayesian approaches relying on MCMC strategies have been investigated to search the space of SNP
combinations. The BEAM [37] andepiMODE [29] programs implement a Bayesian marker partitioning
model to identify candidate combinations, together with MCMC computation of the posterior probability
that each candidate combination is associated with the disease. The BAMSE algorithm explores sets of
effects (SNPs and environmental factors) that increase therisk (binary phenotype) or the phenotypic value
(quantitative phenotype), for individuals who fulfill the criterion defined by the set [1].

Several reviews provide coverage of recent algorithm developments in the research domain around
epistasy (see for instance [11, 20, 12, 27, 15]. The subject is hot topic and advanced methods are con-
stantly proposed to attempt to tease associations out of datasets. For instance, some leads are incorporat-
ing data imputation to an association study (AS) process [10] or integrating gene expression data (GED)
[13]. In particular, there was still room for investigating a Bayesian method based on GED integration.
We propose a novel approach based on transcriptomic and genetic data integration, to tackle AS under the
multigenic hypothesis. The genetic data considered are Single Nucleotide Polymorphisms (SNPs) and we
only address continuous phenotypes in the present work. Downstream specific analyses, whose purpose
is relating phenotypes to transcripts and genetic markers to gene expression data (and thus to transcripts),
our procedure explores the search space consisting of SNP sets - or multi-locus patterns (MLPs) -. Such
MLPs are as many candidates for phenotype explanation. Crossing phenotype/GED associations and
GED/MLP associations into phenotype/GED/MLP associations is the final objective or our approach.
However, since we address multigenic etiology, any such MLPmay be covered by a set of transcripts - a
transcript pattern (TP) -, on the genome. Thus, we can replace the previous scheme phenotype/GED/MLP
with phenotype/TP/MLPs, where each transcript in the TP is co-located with one of the MLPs. Thus, we
avoid a fine-grained description of MLPs, and escape the expensive search in the space of MLPs. The
core idea of our proposal lies in that the SNP search space is connected to TP subspaces, which allows a
coarse-grained MLP description. As we do not constrain the number of transcripts potentially involved
in the disease etiology, we have to explore TP subspaces of various dimensions.

Besides, the linear regression model has often proven useful to describe the relationships between
SNPs and continuous phenotype. Indeed, regression-based tests are current tools offered by the soft-
ware suites dedicated to genome-wide association studies,such as the PLINK software toolbox ([23],
http://pngu.mgh.harvard.edu/ purcell/plink/), the Golden Helix SNP & variation suite (http://www.golden
helix.com), the snpMatrix R package [7] distributed as part of the BioCond uctor project (http://www.bioconductor.org).
Mixing three ingredients - Bayesian framework, transcriptomic / genetic data integration, linear model, -
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we have designed an innovative approach. Within this framework, the relationship between the genetic
variants and the quantitative phenotype is modeled througha multivariate linear model. Then, to only
focus on parts of the posterior distribution that are of interest on the large parameter space, we have con-
ceived an algorithm based on Markov Chain Monte Carlo (MCMC)methods. In our case, the number
of putative transcripts involved in the disease is unknown.Furthermore, this dimension parameter is not
fixed. Therefore, to cope with trans-dimensional moves in the MCMC, our sampler is designed as a re-
versible jump MCMC (RJMCMC).

Our contribution in this report is twofold. We describe a whole Bayesian theoretical framework meant
to integrate transcriptomic and genetic data for genetic association purpose. We describe the RJMCMC
designed to perform the Bayesian computation. In particular, we provide here the theoretical background
and derive the corresponding calculuses necessary to the implementation of our algorithm.

The first Section states the problem and gives the nomenclature necessary to describe the search
space, for our specific case. Section2 provides a gentle introduction to readers not familiar withMCMCs
and RJMCMCs. The third Section introduces our framework. Itfirst presents the moves allowed in
our MCMC approach. Then it shows how transcriptomic and genotypic data are integrated through a
multivariate linear model. This section ends with a sketch of the algorithm. The next section is devoted
to the derivation of the posterior parameter distribution.

1 Premiminaries

1.1 Statement of the problem

We considerτ quantitative phenotypes - or targets -. Our aim is to identify potentially causal epistatic
SNPs, in order to explain each target. Since we address multigenic etiology, we consider that any such
causal set of SNPs may be covered by asetof transcripts - a transcript pattern -, on the genome. The
problem we tackle arises downstream two series of studies: through a previous approach, relations be-
tween genetic markers and transcripts have been derived; besides, for any such transcript, associations
with MLPs have been investigated. A solution to our problem assigns a TP to each target and an MLP to
each transcript in the TP. This assignment has to best explain the determinism of the MLPs assigned to
each target, on this target. Noa priori is provided, regarding the sizes of TPs.

1.2 Notations and definitions

In the following, since we deal with transcripts that are co-located with SNPs, these transcripts will be
referred to as co-mRNAs. The search spaceS to be explored is a set of solutions each assigning a set of
active co-mRNAs to each target, together with an active MLP per each such active co-mRNA. A solution -
or a state of the RJMCMC - is described through its parameters, η. Most of the constituents ofη, together
with their domains of variation, are described in Table1), and illustrated by Figure1.

2 A short introduction to Markov Chain Monte Carlo methods and
reversible jump MCMCs

Here, we first provide a brief introduction to MCMCs. Then, wejustify the construction of RJMCMCs
and show how the theoretical framework is adapted to take into account trans-dimensional moves.

An ergodic (aperiodic and irreducible) Markov chain will converge towards a unique stationary dis-
tribution,π. Markov Chain Monte Carlo (MCMC) methods are a class of algorithms designed to sample
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T , | T |= τ set ofτ targets (or quantitative phenotypes)
Ci, | Ci |= qi,

∑

i∈T qi = q set of allqi possible co-mRNAs known to potentially exert an impact on targeti
Ci, | Ci |= si the set ofsi active co-mRNAs for targeti, in current JRMCMC state
k =

∑

i∈T si the number of active co-mRNAs over all targets
M j , |M j |= mj the set of all possible multi-locus patterns for co-mRNAj
Mi the set of all active multi-locus patterns for targeti

Mi = [uj1 , uj2 , · · · , uj
si

]
ziℓ =| Miℓ |=| ujℓ

| size of the multi-locus patternMiℓ of targeti, corresponding to active co-mRNAℓ

Table 1: Nomenclature for parameter space description

from a desired probability distribution: their principle consists in constructing a Markov chain that has the
desired distribution as its stationary distribution. Given an ergodic Markov chain, andp, the probabilities
of transition from state to state in search spaceS (transition kernel), the property of reversibility between
statesx andy holds:π(s) p(s′ | s) = π(s′) p(s | s′) (detailed balance equation). Though reversibility
is not necessary to guarantee convergence of the posterior to π, it is sufficient. Then, the key to MCMC
consists in expressing the transition kernelp(s′ | s) as the product of an arbitrary proposal distribution,
q, and an associated acceptance distribution,a: p(s′ | s) = q(s′ | s) a(s, s′). To explain the intuition
behind these concepts, suppose, without loss of generality, that for statess ands′, some given transition
kernelp verifiesπ(s) p(s′ | s) > π(s′) p(s | s′). Artificial coercion of the previous formula towards
reversibility is straightforward, introducing two termsa(s, s′), strictly lower than1, anda(s′, s), equal
to 1: π(s) q(s′ | s) a(s, s′) = π(s′) q(s | s′) a(s′, s). If inequality is reversed, thena(s′, s), strictly
greater than1, anda(s, s′), equal to1, will be used instead. Finally, acceptance probability is calculated

as:a(s, s′) = min
(

1, π(s′) q(s′,s)
π(s) q(s,s′)

)

. The arbitrary proposal distributionq and the acceptance probability

a are the two ingredients of the Metropolis-Hastings (MH) algorithm (see Algorithm1).

Algorithm 1 Metropolis-Hastings
1: initialize stateX0 arbitrarily; i← 0

2: repeat until convergence
3: propose next valueXi+1 = y from the proposal distributionq(. | Xi = x).
4: sample uniformlyu in interval[0, 1]
5: if (u ≤ a(x, y)) then Xi+1 ← y /* acceptance of proposed move */
6: elseXi+1 ← x /* rejection of proposed transition */
7: incr(i)
8: end repeat

When the search space writes asS =
{

(k, θ(k)), k ∈ K, θ(k)) ∈ Sk

}

, whereK is an enumerable set,
then the posterior distribution can be factorized asπ(θ(k), k) = π(θ(k) | k) π(k). To impose reversibility

for each pair(θ(k1)
1 ), θ

(k2)
2 ), the core idea is to supplement each of the corresponding sub-spacesSk1 and

Sk2 with adequate artificial spaces. Namely,θk1 andθk2 will be completed into(θk1 , u1) and(θk2 , u2),
respectively. Samplingu1 andu2 from adequate distributionsg1 andg2 will guarantee the existence of a
bijectionfk1,k2 between the augmented sub-spaces corresponding toSk1 andSk2 . Under this condition,
the acceptance probability now involves the product of fourterms:

a(θ
(k1)
1 , θ

(k2)
2 ) = min

{

1,
π(θ(k2), k2)

π(θ(k1), k1)

p(k1 | k2)

p(k2 | k1)

q(u2 | k2, θ
(k2))

q(u1 | k1, θ(k1))
Jfk1 ,k2

}

, (1)
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Figure 1: Illustration for definitions in Table1. τ = 2; left section of the Figure shows possible co-
mRNAs and multi-locus patterns:q = 5; C1 = {1, 2, 3}, C2 = {4, 5}; M1 = {1, 2}, M2 = {3, 4, 5},
M3 = {6}, M4 = {7, 8, 9}, M5 = {10, 11} - right section displays an MCMC state with its active
co-mRNAs and its active multi-locus patterns:k = 4; C1 = {2, 3}, C2 = {4, 5}; M1 = {3, 6},
M2 = {8, 11}; z1,3 = 3, z1,6 = 2, z2,8 = 2, z2,11 = 1. X1 to X8 denote random variables involved in
the models describing the relationships betweenY 1 andY 2 (random variables associated with targets1
and2, respectively).

wherep(k2 | k1) denotes the probability of the dimensionality switch andq(u1 | k1, θ
(k1)) refers to the

probability of transitionθ(k1) → θ(k2). In some cases, including ours, the JacobianJfk1 ,k2
is equal to

1. Therefore, in these cases, the acceptance probability maybe seen as the product of two terms: the

posterior ratio distribution (π(θ(k2),k2)

π(θ(k1),k1)
) and the sub-productp(k1|k2)

p(k2|k1)
q(u2|k2,θ(k2))

q(u1|k1,θ(k1))
, which is called the

proposal ratio. In this case, the role of all these ingredients is made explicit in the generic description of
an iteration of the reversible jump MCMC algorithm (RJMCMC)(see Algorithm2).

3 The RJMCMC framework

3.1 Description of the five moves

To exploreS, we allow five moves: addition of an active co-mRNA (A), dismissing of an active co-
mRNA (D), substitution for an active co-mRNA (C), substitution for an active MLP (M), modification of
the regression coefficients (R). Move A and move D respectively add and dismiss an entry in both lists
C andM. Move C updates an entry in both listsC andM. Move D only updates an entry in listM.
Figure2 starts from the MCMC state depicted in Figure1, to describe moves A, D, S and M. Clearly, the
MCMC will possibly traverse subsets of the search space characterized by different values of parameter

illustration_nomenclature.eps


10

Algorithm 2 Generic description of an iteration in the RJMCMC algorithm

1: current state isXi = θ(k1) in sub-spaceSk1

2: drawu1 from q(. | k1, θ
(k1))

3: calculateθ(k2) using bijectionfk1,k2 : (θ(k2), u2) = fk1,k2(θ
(k1), u1) /* θ(k2) is the value proposed

for next stateXi+1 */
4: sample uniformlyu in interval [0, 1] and apply lines5 and6 of Algorithm 1 with the acceptance

probability calculated in Equation1.

k, the number of active co-mRNAs over all targets. Thus, we have to deal with the trans-dimensional
case.

Figure 2: Moves of the MCMC

3.2 The underlying model linking phenotypes to causal multi-locus patternsvia
co-mRNA patterns

The data consist inτ quantitative phenotypes (or targets),(yi)i∈T and an array of genetic markersx.
These date describep individuals. Random variables are defined accordingly:Y i, defined overR, for
targeti, andX iℓt (categorical, defined on domain{0, 1, 2}, i ∈ T , 1 ≤ ℓ ≤ si, 1 ≤ t ≤ ziℓ; individuals
in rows, SNPs in columns). Our hypothesis is that of a multivariate linear model:

Y i = ai0 +
∑

1≤ℓ≤si,1≤t≤ziℓ aiℓtX iℓt + εi, with εi following a normal distribution (εi ∼ N (0, σi)).
In the previous formula,i denotes a target,ℓ an active co-mRNA of targeti, andt thetth SNP in the cur-

rent active MLP of active co-mRNAℓ. The predictorsX iℓ1 · · ·X iℓzMiℓ

correspond to the SNPs in active
MLPMiℓ. The (complete) putative causal MLP consists of MLPsMi1 Mi2 ...Misi

. For example, in
Figure1, the two current linear regression models respectively describe the relationship betweenY 1 and
X1 · · ·X5, and betweenY 2 andX6 · · ·X8.

We now introduce a convenient notation to refer to the matrixof regression coefficients associated
with ith target:

Notation 3.1 Regression coefficientsaXi

The predictor setX i associated with targeti has size
∑si

ℓ=1 ziℓ. The whole set of regression coefficients
is then:

ai = aXi = (ai0, (aiℓt)1≤t≤ziℓ) (2)

Thus, a state in our RJMCMC is fully described through parameterη = (k, s, C,M, z, X, a, σ).

3.3 Outline of the algorithm

The sketch of the method is depicted in Algorithm3.

moves_start.eps
arrow_move_a.eps
moves_after_a.eps
arrow_move_d.eps
moves_after_d.eps
arrow_move_s.eps
moves_after_s.eps
arrow_move_m.eps
moves_after_m.eps
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Algorithm 3 RJMCMC

INPUT:
x, a matrix describingp subjects (rows) with regard toe genetic markers (columns).
x

j

i is a categorical value (genotype code) (1 ≤ i ≤ p; 1 ≤ j ≤ e)
y, a matrix describingτ targets (rows), with regard to thep subjects (columns)
y

j

i is a quantitative continuous value
For each targeti, Mi is the set of mRNAs hypothesized to exert an influence on target i.
For each mRNAi, Ci is a set of multi-loci patterns co-localized with co-mRNAi.
A multi-loci pattern is a set of genetic markers.

OUTPUT:
For each targeti,Mi, the most frequent set of active multi-loci patterns encountered during stationary regime of

the RJMCMC.

1: Initialization: (k, s, C,M, z, X, a, σ)← (k0, s0, C0,M0, z0, X0, a0, σ0)
2:
3: do
4: sample u ∼ U[0,1] /* uniform draw in interval [0,1] */
5: switch
6: u < ak: proposeMoveA /* add-active-co-mRNA */
7: ak ≤ u < ak + dk: proposeMoveD /* Delete-active-co-mRNA */
8: ak + dk ≤ u < ak + dk + ck: proposeMoveC /* Substitute-active-co-mRNA */
9: ak + dk + ck ≤ u < ak + dk + ck + mk: proposeMoveM /* Substitute-active-multi-locus-pattern */

10: elsemoveR /* change of regression coefficients for all active multi-locus patterns */
11: /* associated with all active co-mRNAs */
12: end switch
13: until (convergence)

Moves A to M occur with respective probabilitiesak, dk, ck andmk, depending onk, the current
number of active co-mRNAs over all targets. Probabilitiesck andmk indirectly depend onk sinceak

anddk are evaluated as follows:

ak = c min(1,
pk̄(k + 1)

pk̄(k)
), dk = c min(1,

pk̄(k − 1)

pk̄(k)
), (3)

wherek is assumed to follow ana priori truncated Poisson distribution with meanλ, in the line of
multiple changepoint approaches involving reversible jump MCMC [8, 28]:

pk̄(k) ∝
λk

k!
1{k≤k̄}. (4)

Depending onc value adjustment and balance betweenck andmk, we can state than some moves are
more often proposed than others. Hyperparameterλ is updated at each iteration of the MCMC. Following
[2], λ is sampled as follows:

k ∼ N (
1

2
+ k + ε1, 1 + ε2), (5)

with εi << 1, (i = 1, 2).
Except for move R, the feasibility of a move is subject to the satisfaction of various constraints (see

Table2):
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move constraints
A ak̄ = 0, aq̄ = 0
D d0 = 0

Each target must appear in any proposed solution with at least one active co-
mRNA. Thus, the active co-mRNA proposed for dismissing mustbe checked
to be associated with a target currently showing a number of active co-mRNAs
strictly greater than1.

C The co-mRNA proposed for replacing an already active co-mRNA is necessar-
ily associated with a target checking the following constraint: the number of
possible co-mRNAs must be strictly greater than the number of current active
co-mRNAs.

M The active co-mRNA concerned by the replacement of its current active multi-
loci pattern must be checked to possess at least one more possible multi-loci
pattern.

Table 2: Constraints involved in the calculation of move probabilities. k̄: maximal value allowed fork;
q, maximal number of possible co-mRNAs, over all targets.

4 Space parameter posterior distribution

For all moves except move R, the acceptance probability mustfirst be evaluated, to further validate or
reject the move from current stateη to proposed stateη′. Andrieu and Doucet’s works pionnered the
theoretical construction of an RJMCMC based on a multivariate linear model [2]. In their founder ap-
proach, the parameter description includes, quite classically, a variance parameter, and more specifically,
regression coefficients. These authors have shown that in the evaluation of the acceptance probability, the
Jacobian term is equal to1.

In the expression

αη,η′ = min(1, rη,η′ )

= min(1, posterior distribution ratio× proposal ratio)

= min

(

1,
p(η

′

| y)

p(η | y)
× proposal ratio

)

,

(6)

we now focus on posterior distribution ratio (p(η
′
|y)

p(η|y) ), wherey represents the data, that is the pheno-
types, in our case. To evaluate the posterior distribution ratio, we have to derive an algebraical expression
for p(ζ | y).

Indeed, we will not deal withp(η
′
|y)

p(η|y) , but instead withp(ζ
′
|y)

p(ζ|y) . It is crucial to distinguish that in the
full description of the MCMC stateη:

η = (k, s, C,M, z, X, a, σ) = (ζ, a, σ),

parametersa andσ are not assigned a status identical to that of other parameters. Our guidelines,
the works of Andrieu and Doucet, have established that we areallowed to carry out the integration of the
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so-called ”nuisance parameters”a andσ in expressionp(η | y), to obtain an expression forp(ζ | y). Thus
we will consider a move proposal without previously generating parametersa (andσ, in the case of move
A) for the modified target. To be rigorous, we will now writeaζ,ζ′ andrζ,ζ′ instead ofaη,η′ andrη,η′ .

To reach our objective, calculatep(ζ | y), we will implement the six steps recapitulated in Table3.

(1) To render explicitp(η | y), use Bayes theorem and writep(η | y) ∝ p(y | η) p(η).
(2) evaluatep(η).
(3) evaluatep(y | η).
(4) substitute the expressions obtained in steps (2) and (3)for the corresponding terms inp(y |

η)× p(η) and obtain a first algebraic formula forp(y | η).
(5) transformp(y | η) into a formula more appropriate for integration.
(6) perform marginalization over the nuisance parametersa andσ, that is, eliminatea andσ from

p(η | y), through integration, to obtain the posterior distribution p(ζ | y).

Table 3: The six steps necessary to derive the parameter posterior distribution.

4.1 Step 1 - Use of Bayes formula to render explicit the posterior distribution

To render explicitp(η | y), we use Bayes theorem,p(η | y) p(y) = p(y | η) p(η), to write

p(η | y) ∝ p(y | η) p(η), (7)

that isposterior distribution = likelihood× prior.
The constantp(y) will be ignored sincerη,η′ deals with a ratio of posterior probabilities.

4.2 Step 2 - Analytical formulation of prior p(η)

p(η) = p(k, s, C,M, z, X, a, σ)

= p(k) p(C | k) p(s | k, C)
∏

i∈T

p(zi, X i, ai, σi,Mi | Ci) (8)

In Equality 8, the termp(s | k, C) is fully determined. We recall that the total numberk of co-
mRNAs (all targets considered) is assumed to follow ana priori Poisson distribution with meanλ (see
Expression4). Conditional on numberk, the vectorC of (active) co-mRNAs is drawn with the following
prior uniform distribution:

p(C | k) =
1

Ck
P

i∈T
qi

=
1

Ck
q

. (9)

As s is fully determined conditional onk andC, probabilityp(s | k, C) is equal to1.

We now concentrate on the evaluation of the term
∏

i∈T p(zi, X i, ai, σi,Mi | Ci):
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Y

i∈T

p(zi, Xi, ai, σi,Mi | Ci) (10)

=
Y

i∈T

si
Y

l=1

p(ziℓ, Xiℓ, aiℓ, σiℓ,Miℓ | Ciℓ)

=
Y

i∈T

si
Y

l=1

p(ziℓ, Xiℓ, aiℓ | σiℓ,Miℓ, Ciℓ) p(σiℓ)

=
Y

i∈T

si
Y

l=1

p(Xiℓ | Ciℓ) p(ziℓ | Xiℓ) p(aiℓ | ziℓ, Xiℓ, σiℓ) p(σiℓ). (11)

First right-hand termp(X iℓ | Ciℓ) follows a uniform distribution ( 1

mCiℓ ). Second right-hand term,

p(ziℓ | X iℓ) is equal to1 sinceX iℓ fully determinesziℓ (ziℓ =| X iℓ |). Expression10 is more conve-
niently written as:

Y

i∈T

p(zi, Xi, ai, σi,Mi | Ci) =
Y

i∈T

p(ai | zi, Xi, σi) p(σi)

0

@

Y

i∈T

si
Y

l=1

1

mCiℓ

1

A . (12)

Expression12 exhibits the two termsp(ai | zi, X i, σi) andp(σi). To propose priors forai andσi,
we rely on the specific scheme proposed by Andrieu and Doucet.In their precursor works on RJMCMCs
based on a multivariate linear model, the regression coefficients are assumed to follow a Gaussian distri-
bution, conditional on predictor setX i. Before we give the Gaussian distribution, we need the following
definitions:

Definition 4.1
Given X i, the whole set of predictors associated with targeti, DXi(x) is the matrix defined over

{0, 1, 2}, of dimensionp ×
(

(
∑si

ℓ=1 ziℓ) + 1
)

, wherep is the number of subjects observed. First

column is a vector of 1s while each cellDXi
(x)o,j+1 describesjthregressor of setX i, for subjecto. We

define matrixΣXi as: ΣXi
−1 = DT

Xi(x) DXi(x).

Definition 4.2

ΣXi = DT
Xi(x) DXi

(x). (13)

Under the zero-mean Gaussian assumption with covariance(σi)
2

ΣXi , we write:

p(ai | zi, X i, σi) =| 2π(σi)
2
ΣXi |−1/2 exp

(

−
aT

XiΣ
−1
XiaXi

2(σi)2

)

. (14)

Regarding scale parameterσi, asp(σi) andp(σi)2 are equal, the prior distribution of variable(σi)
2

is given instead.(σi)
2

is assumed to follow a conjugate inverse-Gamma law:

(σi)
2
∼ IG(υ0/2, γ0/2). (15)

Andrieu and Doucet recommend to choose(υ0/2, γ0/2) = (0, 0), to obtain Jeffrey’s uninformative
prior p((σi)2) ∝ 1

(σi)2 .

Thanks to equations8, 4, 9, 12, 15and14, expressionp(η) is now entirely explicit.
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4.3 Step 3 - Analytical formulation of likelihood p(y | η)

The likelihood is expressed as:

p(y | η) =
∏

i∈T

p(yi | η). (16)

Since a linear model is assumed (yi−DXi(x) aXi = εi), we now state that the noiseεi is zero-mean
Gaussian with variance(σi)2:

p(yi | η) =
1

(2π (σi)2)p/2
exp

[

−
(yi −DXi(x) aXi)T (yi −DXi(x) aXi)

2(σi)
2

]

. (17)

4.4 Step 4 - Temporary algebraic expression for posterior distribution p(η | y)

Combining the explicit derivations forp(η) (see step 2, Equality8) andp(y | η) (see step 3, Equalities
16 and17) in Equality7, we obtain a temporary algebraical expression of the joint posterior distribution
p(η | y):

p(η | y) ∝
λk

k!

1

Ck
q

0

@

Y

i∈T

si
Y

l=1

1

mCiℓ

1

A

Y

i∈T

| 2π(σi)
2
ΣXi |−1/2 exp

"

−
aT

XiΣ
−1
XiaXi

2(σi)2

#

γ0
2

υ0
2

Γ(υ0
2

)
((σi)2)

−
υ0
2

−1

exp

"

−

γ0
2

(σi)2

#

1

(2π (σi)2)p/2
exp

"

−
(yi DXi (x) aXi)T (yi DXi(x) aXi )

2(σi)2

#

. (18)

However, the obtained expression does not straightforwardly lend itself to integration with respect to
a andσ parameters.

4.5 Step 5 - Definite algebraic expression for posterior distribution p(η | y)

Before we perform the integration process, we need to transform Equality18 into a more appropriate
algebraic expression. The transformation process appliedby Adrieu and Doucet in their work on the
detection of noisy sinusoidal signals was not much detailed. However, three clues allowed us to derive
again the transformation process. The three clues consisted of three definitions, which were as many
starting points to guess the derivation. In our specific case, these definitions write:

P i = I −DXi(x) M i DT
Xi(x) (19)

M i =
δ2

δ2 + 1
(DT

Xi(x) DXi(x))
−1

(20)

di = M i DT
Xi(x) yi. (21)

Appendix1 reports the steps of the process providing the final expression to be marginalized:
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p(η | y) ∝
λk

k!

1

Ck
q

0

@

Y

i∈T

si
Y

l=1

1

mCiℓ

1

A

Y

i∈T

(

| 2π(σi)
2
ΣXi |−1/2 exp

"

−
(aXi − di)T (M i)

−1
(aXi − di)

2(σi)2

#

exp

"

−
γ0 + (yi)

T
Pyi

2(σi)2

#

(σi2)−
υ0
2

−1− p
2

)

.

(22)

4.6 Step 6 - Integration of the nuisance parameters

The expression obtained forp(η | y) through step5 is now convenient for elimination ofa andσ pa-
rameters. From the expression ofp(η | y), we will thus obtain an expression of the posterior distribution
p(ζ | y). In this case, the nuisance parameters can be eliminated on atheoretical basis, through integral
calculus. Note that the MCMC is not used for this purpose.

Appendix2 details the integration process. Finally, we obtain:

p(ζ | y) ∝
λk

k!

1

Ck
q





∏

i∈T

si

∏

l=1

1

mCiℓ





[

(γ0

2 )
υ0
2

Γ(υ0

2 )
Γ(

υ0 + p

2
)

]τ

1

(2π)
τp
2

∏

i∈T

P(target i),

with P(target i) =

(

γ0 + (yi)
T
P iyi

2

)−
υ0+p

2

. (23)

5 Calculation of acceptance probabilities

5.1 Addition of a co-mRNA (move A)

At line 4 in Algorithm 4, the drawn multi-loci pattern will determine the set of predictors to be added
to the current predictor set of some targeti∗, if move A is further accepted (see line7). In line 9, the
new co-mRNAℓ∗ is taken into account(k+ = k + 1; si∗+

= si∗ + 1; Ci∗+
= Ci∗ ⊕ ℓ∗; Mi∗+

=

Mi∗⊕m∗); zi∗ℓ∗+
=| Mi∗ℓ∗ |), where⊕ designates the appending operation andm∗ is the new multi-

locus pattern. The predictor setX i∗+
is computed asX i∗ augmented with the variables corresponding to

the SNPs ofm∗. The set of regression coefficientsai∗ is augmented accordingly, to yieldai∗+
.

The acceptance probability for move A is:
α(ζ, ζ+) = min(1, r(ζ, ζ+)), wherer(ζ, ζ+) (indeedrk,k+1(ζ, ζ+)) writes as:

r(ζ, ζ+) =
p(ζ+ | y)

p(ζ | y)

dk+1

ak

q(ζ | ζ+)

q(ζ+ | ζ)
. (24)

Following Equation23, the terms appearing inr(ζ, ζ+) are respectively evaluated as:

p(ζ+ | y) =
λk+1

(k + 1)!

1

Ck+1
q





∏

i∈τ

si

∏

ℓ=1

1

mCiℓ



 P(targeti, co-mRNAℓ∗, multi-loci patternm∗) (25)
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Algorithm 4 proposeMoveA

1: if (q − k > 0)
2: propose a new co-mRNAℓ∗ uniformly drawn in theq − k current non active co-mRNAs.
3: /* The drawn co-mRNA corresponds to a given targeti∗ */
4: propose a multi-loci patternm∗ uniformly drawn inM i∗ℓ∗

5: computeαζ,ζ+

6: sampleu ∼ U[0,1]

7: if (u ≤ αζ,ζ+ )

8: sampleσi∗+
andai∗+

9: modify the Markov chain state into(k + 1, s+, C+,M+, z+, X+, a+, σ+)
10: else
11: keep the chain in state(k, s, C,M, z, X, a, σ)
12: end if
13: end if

p(ζ | y) =
λk

k!

1

Ck
q





∏

i∈τ

si

∏

ℓ=1

1

mCiℓ



 P(target i). (26)

From Equalities25and26, we derive the posterior distribution ratio:

p(ζ+|y)
p(ζ|y) = λ

q−k
1

mi∗ℓ∗

P(targeti∗,transcriptℓ∗,multi-locus patternm∗)
P(target i*) .

The first term in the proposal ratio,dk+1

ak

q(ζ|ζ+)
q(ζ+|ζ) , simplifies in:

dk+1

ak
=

k + 1

λ
, (27)

whereas the second term is calculated as shown below.

Givenk − q, the total number of inactive co-mRNAs over all targets, we easily derive:

q(ζ+ | ζ) =
1

q − k
. (28)

However, the calculation ofq(ζ | ζ+) is not so straighforward; it involves that of termqd(ζ
+):

q(ζ | ζ+) =
1

qd(ζ+)
, (29)

referring to definition5.1.

Definition 5.1 For stateζ, qd(ζ) is the number of active co-mRNAs, over all targets showing a number
of active co-mRNAs strictly greater than1.

qd(ζ
+) is derived fromqd(ζ). Figure3 shows howqd decreases by one from stateζ+ to stateζ, on a

simple case. Nevertheless, another (unique) case has to be considered, as depicted in Figure4: therein,
the active co-mRNA of stateζ+, whose dismissing yields stateζ, is one of the two active co-mRNAs of
a target. This entails that the remaining active co-mRNA of this target can no more contribute toqd(ζ)
calculation. Thus, the following property holds:
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Property 5.1

qd(ζ
+) =

{

qd(ζ) + 2 if the co-mRNA is added to a target with only one active co-mRNA
qd(ζ) + 1 otherwise.

Figure 3: Increase ofqd between statesζ andζ+, in a simple case. See text, Definition5.1. A and B
denote targets.q: number of possible co-mRNAs over all targets;k: number of active co-mRNAs over
all targets;q = 7; k(ζ) = 3; k(ζ+) = 4; qd(ζ) = 2; qd(ζ

+) = 3.

From Equalities28and29, the second term in the proposal ratio writes as:

q(ζ | ζ+)

q(ζ+ | ζ)
=

q − k

qd(ζ+)
. (30)

Finally, in Equation24 we substitute the expressions respectively obtained in5.1, 27 and30, respec-
tively for posterior distribution ratio, first and second terms of proposal ratio. Therefore, the definite
formula derived forr(ζ, ζ+) is the following:

r(ζ, ζ+) =
k + 1

qd(ζ+)

1

miℓ∗

P(targeti∗, co-mRNAℓ∗, multi-locus patternm∗)
P(target i*)

. (31)

In move A, parametera has to be sampled. This sampling depends on parameterσ. Finally, both
parameters are sampled. From equation22, it can be easily derived that:

(σi)
2
| yiζ ∼ IG(

υ0 + p

2
,
γ0 + yiT P yi)

2
(32)

and

aXi | yi, ζ, σi ∼ N (M i DT
Xi yi, (σi)

2
M i). (33)

figure_qd_simple_case.eps
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Figure 4: Increase ofqd between statesζ andζ+, in the unique alternative of the case presented Figure3.
q = 7; k(ζ) = 2; k(ζ+) = 3; qd(ζ) = 0; qd(ζ

+) = 2.

5.2 Deletion of a co-mRNA (move D)

Quite symmetrically with respect to move A, denotingi∗ the target for which a co-mRNAℓ∗ is dismissed,
and using Equation31, we obtain:

r(ζ, ζ−) = rk,k−1(ζ, ζ−) =
`

rk−1,k(ζ−, ζ)
´−1

=
qd(ζ)

k
miℓ∗ P(target i)

P(targeti∗, co-mRNAℓ∗, multi-locus patternm∗)
, (34)

wherem∗ denotes the active multi-locus pattern associated with co-mRNA ℓ∗. The pseudo-code of this
move is depicted in Algorithm5.

Algorithm 5 proposeMoveD

1: if (qd(ζ) > 0)
2: propose a co-mRNAℓ∗ uniformly drawn amongst theqd(ζ) current active co-mRNAs.
3: /* The drawn co-mRNA corresponds to a given targeti∗ */
4: computeαζ,ζ−

5: sampleu ∼ U[0,1]

6: if (u ≤ αζ,ζ− )

7: sampleai∗−

8: modify the Markov chain state into(k − 1, s−, C−,M−, z−, X−, a−, σ)
9: else

10: keep the chain in state(k, s, C,M, z, X, a, σ)
11: end if

figure_qd_other_case.eps
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5.3 Substitution of a co-mRNA (Move C)

Move C implements the replacement of an active co-mRNAℓ with another active co-mRNAℓ∗, for
a given targeti∗. m is the active multi-locus pattern associated with replacedco-mRNA ℓ, while m∗
denotes the active multi-locus pattern associated with replacing co-mRNAℓ∗. Move C is typically a
Metropolis update, meaning that the termr(ζ, ζ∗), indeedrk(ζ, ζ∗), merely writes as follows:

r(ζ, ζ∗) =
p(ζ∗ | y)

p(ζ | y)

q(ζ | ζ∗)

q(ζ∗ | ζ)
. (35)

From Equation23, the posterior distribution ratio is easily derived in:

p(ζ∗ | y)

p(ζ | y)
=

miℓ

mi∗ℓ∗

P(targeti, co-mRNAℓ∗, multi-locus patternm∗)
P(targeti∗, co-mRNAℓ, multi-locus patternm)

. (36)

To evaluate the terms involved in the proposal ratio (q(ζ|ζ∗)
q(ζ∗|ζ) ), we need define a new term,qc:

Definition 5.2 For stateζ, qc(ζ) is the number of active co-mRNAs, over all targets showing a number
of possible co-mRNAs strictly greater than their number of active co-mRNAs.
In other terms, each such targett is characterized byqt − st > 0.

This definition entails the following property:

Property 5.2 Since each target must always present at least one active co-mRNA in any state, move C
only concerns a targett possessing at least two possible co-mRNAs(qt > 1).

To calculateq(ζ∗ | ζ), we first have to uniformly draw the replaced active co-mRNA amongst the
qc(ζ) co-mRNAs allowed. Now knowing the targeti∗ which is subject to the replacement of one of its
active co-mRNAs (ℓ), we uniformly draw the replacing active co-mRNA amongstqi∗(ζ) − si∗(ζ) valid
candidates. Therefore, the denominator of the proposal ratio (q(ζ∗ | ζ)) writes as:

q(ζ∗ | ζ) =
1

qc(ζ)

1

qi∗(ζ) − si∗(ζ)
. (37)

Similarly, the numerator of the proposal ratio expresses as:

q(ζ | ζ∗) =
1

qc(ζ∗)

1

qi∗(ζ∗)− si∗(ζ∗)
. (38)

The strong constraint implied by Property5.2 indicates that there are not many cases to be studied to
establish the straightforward relationship betweenqc(ζ) andqc(ζ

∗):

Property 5.3 qc(ζ
∗) = qc(ζ).

Figure5 allows a quick understanding of Property5.3.
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Figure 5: Relationship betweenqc(ζ
) andqc(ζ

∗), for statesζ andζ∗, corresponding to move C, unique
possible case. See text, Definition5.2 and Property5.2. A, B, C and D denote targets.q: number of
possible co-mRNAs over all targets;k: number of active co-mRNAs over all targets;q = 10; k(ζ) =
k(ζ∗) = 7; qc(ζ) = qc(ζ

∗) = 3.

Besides, in the case of move C,si∗(ζ∗) andsi∗(ζ) are equal. Together with Property5.3, this equality
entails that:

q(ζ | ζ∗)

q(ζ∗ | ζ)
= 1. (39)

Therefore, using Equation36, r(ζ, ζ∗) is merely computed as:

r(ζ, ζ∗) =
p(ζ∗ | y)

p(ζ | y)
. (40)

The scheme of this move is depicted in Algorithm6. At line 2, the replaced co-mRNA is determined
(ℓ). ℓ determines a targeti. Conditional on targeti, a replacing co-mRNA is drawn at line4. Conditional
on the target and the replacing co-mRNA, a multi-locus pattern is drawn at random (m∗). If the move
is accepted (see line8), the set of predictors corresponding to this multi-locus pattern will be added
to the current predictor set of targeti. The set of predictors corresponding to the replaced co-mRNA
will be dismissed from targeti’s predictors. In line10, the co-mRNA substitution fromℓ into ℓ∗ is

figure_qc_unique_case.eps
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acknowledged:Ci∗ = Ci ⊖ ℓ ⊕ ℓ∗; Mi∗ =Mi ⊖m⊕m∗); ziℓ∗∗ =| Miℓ∗ |). Operation⊖ performs
the deletion operation on a vector.m is the multi-locus pattern associated with replaced co-mRNA ℓ,
whereasm∗ refers to the multi-locus pattern connected to the replacing co-mRNA. The predictor setX i∗

is computed asX i dismissed of the variables corresponding to the SNPs inm, and further augmented
with the variables corresponding to the SNPs inm∗. The set of regression coefficientsai is accordingly
updated intoai∗.

Algorithm 6 proposeMoveC

1: if (qc(ζ) > 0)
2: propose a replaced co-mRNAℓ uniformly drawn in theqc(ζ) current active co-mRNAs
3: /* The drawn co-mRNA corresponds to a given targeti */
4: propose a replacing co-mRNAiℓ∗ uniformy drawn in theqi − si non active co-mRNAs of targeti
5: propose a multi-locus pattern uniformly uniformly drawn inM iℓ∗

6: computeαζ,ζ
′

7: sampleu ∼ U[0,1]

8: if (u ≤ αζ,ζ
′ )

9: sampleaiℓ∗

10: modify the Markov chain state into(k, s, C∗,M∗, z∗, X∗, a∗, σ∗)
11: else
12: keep the chain in state(k, s, C,M, z, X, a, σ)
13: end if
14: end if

5.4 Substitution of a multi-locus pattern

Again a Metropolis update, move M replaces the active multi-locus patternm associated with an active
co-mRNAℓ of, say, targeti. The co-mRNAℓ remains active while the MCMC evolves from stateζ to
stateζ∗. The only difference between both states lies in that multi-locus patternm∗ now replacesm.

The termr(ζ, ζ∗) is defined as in Equation36. Therein, sincemiℓ andmiℓ∗ are obviously equal
(ℓ∗ = ℓ), the posterior distribution ratio now simplifies to:

p(ζ∗ | y)

p(ζ | y)
=
P(targeti, co-mRNAℓ, multi-locus patternm∗)
P(targeti, co-mRNAℓ, multi-locus patternm)

. (41)

The calculation of proposal ratio (q(ζ|ζ∗)
q(ζ∗|ζ) ) requires a new definition:

Definition 5.3 For stateζ, qm(ζ) is the number of active co-mRNAs, over all targets showing a number
of possible multi-locus patterns strictly greater than1.
In other terms, each such co-mRNAr, associated with, say, targett, is characterized bymtr > 1.

Given this new definition, the denominator of the proposal ratio straighforwardly writes as:

q(ζ∗ | ζ) =
1

qm(ζ)

1

miℓ(ζ) − 1
. (42)

The first term in Equation42 coerces the choice of the active multi-locus pattern to be replaced: a
uniform draw amongst theqm(ζ) co-mRNAs allowed ensures the satisfaction of the required constraint.
Now knowing that active co-mRNAℓ associated with targeti is concerned by move M, the replacing
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co-mRNA is uniformly drawn amongst themiℓ − 1 valid candidates. Indeed, Definition5.3guarantees
thatm is not the unique multi-locus pattern possible for co-mRNAℓ.

It is obvious thatqm(ζ∗) andqm(ζ) are equal. Therefore, the proposal ratio simplifies to1 and as for
move C,r(ζ, ζ∗) is expressed as in Equation40. This time,r(ζ, ζ∗) will be computed using Equation41.
This move is described in Algorithm7.

At line 2, as in move C, an active co-mRNA is drawn at random amongst theqm(ζ) co-mRNAs
allowed. Then, at line4, conditional on targeti and active co-mRNAℓ∗, a multi-locus pattern is uniformly
drawn. If this latter candidate, saym∗ is accepted (see line7), the set of predictors described by this
multi-locus pattern will replace the current contributionof active co-mRNAℓ∗, in the predictor set of
targeti. Line 9 akcnowledges this multi-locus pattern substitution: the predictor setX i∗ is computed as
X i dismissed of the variables corresponding tom, subsequently augmented with the variables associated
with the replacing multi-locus pattern,m∗. The set of regression coefficientsai is updated accordingly.

Algorithm 7 Substitute-multi-locus-pattern

1: if (qm(ζ) > 0)
2: propose co-mRNAi ∗ ℓ uniformly drawn in theqm(ζ) current active co-mRNAs
3: /* The drawn co-mRNA corresponds to a given targeti∗ */

4: propose a replacing multi-loci patterni ∗ ℓ ∗ m∗ uniformy drawn in the(mC
i∗ℓ∗

− 1) non active multi-loci
patterns of active co-mRNAi ∗ ℓ∗

5: computeαζ,ζ
′

6: sampleu ∼ U[0,1]

7: if (u ≤ αζ,ζ
′ )

8: sampleai∗ℓ∗

9: modify the Markov chain state into(k, s, C
′

,M
′

, z
′

, X
′

, a
′

, σ
′

)
10: else
11: keep the chain in state(k, s, C,M, z, X, a, σ)
12: end if
13: end if

5.5 Modification of the regression coefficients (Move R)

The last move proposed is the modification of the regression coefficients. It is simultaneously performed
for all targets.

The reversible jump MCMC presented here can be viewed as implementing three levels. The first
level (moves A and D) entails a variation of parameterk. As an MH update of the Markov chain (k
unchanged), move C still lies in the scope of first level sinceit entails a substitution for co-mRNAs.
Again an MH update, move M introduces the second level of our RJMCMC: this finer level only deals
with multi-locus patterns. Third level restrains to the change of regression coefficients. When dealing
with multivariate linear models, only two-step RJMCMCs hadbeen proposed before [2, 14]. In this
latter case, the updating of the linear model is fine-grainedand the addition or dismissing of a (single)
predictor is performed in the second (inner) level. In contrast, our approach modifies the structure of the
linear model in the two upper levels. In the third level, for every targeti in turn, move R updatesσi and
the whole set of regression coefficientsaXi , relying on the two distributions given in43 and44. These
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distributions are derived from Equation22.

(σi)
2
| yi, ζ ∼ IG(

υ0 + p

2
,
γ0 + yiT P yi

2
) (43)

aXi | yi, ζ, σi ∼ N (M i DXi
T yi, (σi)

2
M i). (44)

Algorithm 8 describes move R.

Algorithm 8 moveR

1: for each targeti
2: updateσi

3: updateai

4: end for
5: end for
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Appendix 1 - Transformation of the algebraic expression of the pos-
terior distribution

Given the three matrices

P i = I − DXi(x) M i DXi(x)T , M i = (DXi (x)T DXi(x))
−1

, di = M i DXi(x)T yi,

the transformation of
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requires that the following equality be true:

aT
XiΣ

−1aXi + (yi − DXi(x)aXi )T (yi − DXi(x) aXi) = (aXi − di)T (M i)−1(aXi − di) + yiT
P i yi. (45)

In the sequel, for lisibility, we will drop the indexes:

aT Σ−1a + (y − Da)T (y − Da) = (a − d)T M−1(a − d) + yT P y.

We now derive the equality:

(a − d)T M−1 (a − d) + yT P y

=(a − M DT y)T DT D (a − M DT y) + yT P y

=(aT − yT D MT )DT D (a − M DT y) + yT (I − D (DT D)−1 DT ) y

=aT DT D a − aT DT D M DT y − yT D MT DT D a + yT D MT DT D M DT y + yT y − yT D (DT D)−1 DT y

=aT DT D a − aT DT D (DT D)−1 DT y − yT D ((DT D)−1)T DT D a + yT D ((DT D)−1)T DT D (DT D)−1 DT y + yT y − yT D (DT D

=aT DT D a − aT DT y − yT D ((DT D)T )−1 DT D a + yT D ((DT D)T )−1 DT D (DT D)−1 DT y + yT y − yT D (DT D)−1 DT y

=aT DT D a − aT DT y − yT D (DT D)−1 DT D a + yT D (DT D)−1 DT D (DT D)−1 DT y + yT y − yT D (DT D)−1 DT y

=aT DT D a − aT DT y − yT D a + yT D (DT D)−1 DT y + yT y − yT D (DT D)−1 DT y

=aT DT D a − aT DT y − yT D a + yT y.

We recall that in Section4.2, we definedΣXi :
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ΣXi = DT
Xi(x) DXi

(x).

More, concisely, this writes:Σ = DT D.
Thus, we derive

(a − d)T M−1 (a − d) + yT P y

=aT Σ−1 a + aT DT D a − aT DT y − yT D a + yT y

=aT Σ−1 a + (aT DT − yT ) D a + (yT − aT DT ) y

=aT Σ−1 a + (y − Da)T (y − Da)2.
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Appendix 2 - Marginalization over nuisance parametersa and σ

In formula22od Section4.5, we identify two expressions related to two well-known probability density
functions: that of a multidimensional normal distribution(for parameterai) and that of an inverse gamma
distribution (for parameter(σi)

2
). Therefore, marginalization over the nuisance parameters is straight-

forward, through integral calculus. The probability density function of the multidimensional distribution
of parameters (di, (σi)2M i) appears. Integrating on parameterai provides1.

The inverse gamma distribution of parameters (α,β) is:

IG(α, β) =
βα

Γ(α)
z−α−1 exp(

β

z
).

In formula22, we recognisez−α−1 exp(β
z ),

wherez = (σi)2, α = υ0+p
2 , β = γ0+yiT

P i yi

2 . Integratingz−α−1 exp(β
z ) on the domain of

variation ofz yields Γ(α)
βα ,

in our case: Γ(
υ0+p

2 )
„

γ0+(yi)T Pi yi

2

«
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2

.
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Abstract

In the human genome, susceptibility to common diseases is likely to be determined by interactions between multiple
genetic variants. We propose an innovative Bayesian methodto tackle the challenging problem of multi-locus pattern
selection in the case of quantitative phenotypes. For the first time, in this domain, a whole Bayesian theoretical frame-
work has been defined to incorporate additional transcriptomic knowledge. Thus we fully integrate the relationships
between phenotypes, transcripts (messenger RNAs) and genotypes. Within this framework, the relationship between
the genetic variants and the quantitative phenotype is modeled through a multivariate linear model. The posterior
distribution on the parameter space can not be estimated through direct calculus. Therefore we design an algorithm
based on Markov Chain Monte Carlo (MCMC) methods. In our case, the number of putative transcripts involved in
the disease is unknown. Moreover, this dimension parameteris not fixed. To cope with trans-dimensional moves, our
sampler is designed as a reversible jump MCMC (RJMCMC). In this document, we establish the whole theoretical
background necessary to design this specific RJMCMC.
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