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Bayesian multi-locus pattern selection and
computation through reversible jump MCMC

Christine Sinoquet

christine.sinoquet@univ-nantes.fr

Abstract

In the human genome, susceptibility to common diseasekgly lio be determined by interactions between multiple
genetic variants. We propose an innovative Bayesian methiaatkle the challenging problem of multi-locus pattern
selection in the case of quantitative phenotypes. For thtifine, in this domain, a whole Bayesian theoretical frame-
work has been defined to incorporate additional transarit&nowledge. Thus we fully integrate the relationships
between phenotypes, transcripts (messenger RNAs) andygeso Within this framework, the relationship between
the genetic variants and the quantitative phenotype is faddérough a multivariate linear model. The posterior
distribution on the parameter space can not be estimatedghrdirect calculus. Therefore we design an algorithm
based on Markov Chain Monte Carlo (MCMC) methods. In our csenumber of putative transcripts involved in
the disease is unknown. Moreover, this dimension parariseter fixed. To cope with trans-dimensional moves, our
sampler is designed as a reversible jump MCMC (RIMCMC). im document, we establish the whole theoretical
background necessary to design this specific RIMCMC.






Introduction

In the hunt for genes affecting our health and wellbeingyeission studies look for associations between
genetic features and phenotypes such as health / illnessy 8éanmon diseases in humans are suspected
to be caused by complepistaticinteractions among multiple genes. In the literature gdéht accep-
tations are encountered for the teapistasig4]. In this paper, epistasis is defined for a set of genetic
loci as the situation arising when not all loci, and possiidyie at all, have a main effect on the disease,
whereas the combination of the loci causes the disease.ihdhepistatic interactions have been iden-
tified for diseases such as coronary heart diseze fjreast cancerd], Alzheimer’s disease3g] and
Crohn’s disease3[).

The last decade has witnessed an explosion in the numbeseasdneh works aiming at tackling epis-
tasis identification. Amongst deterministic approachespvention SNPRuler, a branch and bound algo-
rithm devoted to the expansion of sets of SNPs in the binaepptype case3f3]. This method describes
the relationship between the epistatic SNPs and the pheattyough a predictive rule. A measurement
of rule relevance is deduced from tlyesquare statistic. A rule is grown if the added SNP incre#ses
relevance. Specific properties of this measure, as well apdssibility to calculate an upper bound,
allow to traverse the space of predictive rules without estige search. Central to software TEABH
is the speeding up of contingency table (CT) computatioough a true structure. This method restrains
to two-SNP epistasis and tests such asytsgjuare test. Given the CTs of two single SNPs and the CT
for genotype relation between these two SNPs, only litflerefs required to compute the two-locus CT.
The CT for genotype relation between the two SNPs is infefi@th a minimum spanning tree built on
the SNPs. Therein, each edge represents the genotypedifiebetween the two connected SNPs.

Supervised learning algorithms include standard regrassiethods as well as stepwise approaches.
Least square or maximal likelihood estimations are thefarlguantitative (continuous) phenotypes. Lo-
gistic regression (or binomial regression) is devoted t@ahji phenotypes (affected/unaffected status). In
logistic regression, parameter estimation maximizesiiteditiood and usually relies on Markov Chain
Monte Carlo (MCMC) sampling strategies for this purposen8@pproaches combine forward stepwise
procedure and logistic regressidlt] 22]. Logic regression attempts to identify boolean combiadi
of SNPs for the prediction of the affected/unaffected statian observation. The logic expressions are
represented by logic trees. Permissible moves in the treeHgg process are alternating an operator
or a variable, pruning or growing a branch, and adding or réngpvariables. To find the best models,
stochastic algorithms are applied, such as simulated #ngg¢a6] or MCMC [25]. As a matter of fact,
in the former work, simulated annealing is applied to défersubsets of the data. Dealing with binary
phenotypes, Symbolic Discriminant Analysis (SDA) may bewed as an extension of both linear and
logic regression approacheld]. In SDA, the data dictates the size, shape and complexidysyimbolic
function, discriminant for case/control status. The syhabfoinction combines mathematical functions
from a list provided by the user. Genetic programming is useaptimize the discriminant power of the
models [L7].

Non-parametric data mining strategies have been investigaBesides standard forest-based ap-
proaches3], random forests combine bagging with random selectioreafures (see MegaSNPHunter
[32], for example). Irbagging- or bootstrap aggregating - a few hundred to a few thousassification
or decision trees are generated from as many bootstrap saaawn from the available data. Multifac-
tor dimensionality reduction (MDR) applies an exhaustearsh to pool genotypes from combinations of
SNPs P]. Thus, data dimension is reduced to one, with two genotyimspaccumulating either affected
or unaffected subjects. When the phenotype is continuamainy is achieved through a combinatorial
partition of the genotypes8p)]. In the previous Combinatorial Partitioning Method (CR Xty each com-



bination of SNPs, the partitions are exhaustively enureerand tested for discriminating power. The
Restricted Partition Method (RPM) is a heuristic which gsithe straightforward construction of the best
possible partition, per each combination of SNEJs RPM implements ascending hierarchical clustering
for this purpose.

Probabilistic graphical models were also used to searcteiosal SNP combinations. In an approach
based on Markov random field modeBl], the graph structure connects cliques of (pairwise) ddpenh
SNPs with the phenotype node. An MCMC strategy samples tniespace of possible graphs, with a
restriction on physical distance between any two markeasdique. The MCMC strategy samples from
the posterior distribution of graphs conditional on thead@nly MCMC moves towards decomposable
graphs are allowed, to allow an easy computation of mardilkelihood. A novel framework, forests
of hierarchical latent class models, was introduced to lahijh-dimensional datalp]. To learn the
model, an ascending hierarchical clustering first discowligues of dependent SNPs, subsume them
through additional (latent) variables if possible, themates the previous two steps on the latent variables
and remaining SNPs.

Bayesian approaches relying on MCMC strategies have bgeastigated to search the space of SNP
combinations. The BEAMJ7] andepiMODE [29] programs implement a Bayesian marker partitioning
model to identify candidate combinations, together withIC computation of the posterior probability
that each candidate combination is associated with thaskseThe BAMSE algorithm explores sets of
effects (SNPs and environmental factors) that increasegsk ébinary phenotype) or the phenotypic value
(quantitative phenotype), for individuals who fulfill thaterion defined by the sed].

Several reviews provide coverage of recent algorithm dgraknts in the research domain around
epistasy (see for instanc&l] 20, 12, 27, 15]. The subject is hot topic and advanced methods are con-
stantly proposed to attempt to tease associations out aelgt For instance, some leads are incorporat-
ing data imputation to an association study (AS) proc&égsdr integrating gene expression data (GED)
[13. In particular, there was still room for investigating aygaian method based on GED integration.
We propose a hovel approach based on transcriptomic antigdat integration, to tackle AS under the
multigenic hypothesis. The genetic data considered agdeShtucleotide Polymorphisms (SNPs) and we
only address continuous phenotypes in the present work.nBimeam specific analyses, whose purpose
is relating phenotypes to transcripts and genetic markegsihe expression data (and thus to transcripts),
our procedure explores the search space consisting of SKP@emulti-locus patterns (MLPS) -. Such
MLPs are as many candidates for phenotype explanation. sibgpghenotype/GED associations and
GED/MLP associations into phenotype/GED/MLP associatisnthe final objective or our approach.
However, since we address multigenic etiology, any such Miay be covered by a set of transcripts - a
transcript pattern (TP) -, on the genome. Thus, we can replhecprevious scheme phenotype/GED/MLP
with phenotype/TP/MLPs, where each transcript in the TRitocated with one of the MLPs. Thus, we
avoid a fine-grained description of MLPs, and escape theresiye search in the space of MLPs. The
core idea of our proposal lies in that the SNP search spaamizected to TP subspaces, which allows a
coarse-grained MLP description. As we do not constrain tivalyver of transcripts potentially involved
in the disease etiology, we have to explore TP subspacesiotigadimensions.

Besides, the linear regression model has often proven luseflescribe the relationships between
SNPs and continuous phenotype. Indeed, regression-bestsdatre current tools offered by the soft-
ware suites dedicated to genome-wide association stusliel, as the PLINK software toolbox2g],
http://pngu.mgh.harvard.edu/ purcell/plink/), the GaidHelix SNP & variation suite (http://www.golden
helix.com), the snpMatrix R packagd fistributed as part of the BioCond uctor project (httpultm.bioconductor.org).
Mixing three ingredients - Bayesian framework, transanipic / genetic data integration, linear model, -



we have designed an innovative approach. Within this fraonkevthe relationship between the genetic
variants and the quantitative phenotype is modeled thr@ugtultivariate linear model. Then, to only
focus on parts of the posterior distribution that are ofr@seon the large parameter space, we have con-
ceived an algorithm based on Markov Chain Monte Carlo (MCM@Yhods. In our case, the number
of putative transcripts involved in the disease is unknokurthermore, this dimension parameter is not
fixed. Therefore, to cope with trans-dimensional moves @MICMC, our sampler is designed as a re-
versible jump MCMC (RIMCMC).

Our contribution in this report is twofold. We describe a \hBayesian theoretical framework meant
to integrate transcriptomic and genetic data for geneso@ation purpose. We describe the RIMCMC
designed to perform the Bayesian computation. In particule provide here the theoretical background
and derive the corresponding calculuses necessary to filerimrentation of our algorithm.

The first Section states the problem and gives the nomenelatcessary to describe the search
space, for our specific case. Sectivprovides a gentle introduction to readers not familiar Wt8MCs
and RJIMCMCs. The third Section introduces our frameworkfirét presents the moves allowed in
our MCMC approach. Then it shows how transcriptomic and ggoio data are integrated through a
multivariate linear model. This section ends with a skettthe algorithm. The next section is devoted
to the derivation of the posterior parameter distribution.

1 Premiminaries

1.1 Statement of the problem

We considerr quantitative phenotypes - or targets -. Our aim is to idgmgiftentially causal epistatic
SNPs, in order to explain each target. Since we addressgeniti etiology, we consider that any such
causal set of SNPs may be covered bsetof transcripts - a transcript pattern -, on the genome. The
problem we tackle arises downstream two series of studigeugh a previous approach, relations be-
tween genetic markers and transcripts have been derivettidse for any such transcript, associations
with MLPs have been investigated. A solution to our problesigns a TP to each target and an MLP to
each transcript in the TP. This assignment has to best exihlaideterminism of the MLPs assigned to
each target, on this target. Ngpriori is provided, regarding the sizes of TPs.

1.2 Notations and definitions

In the following, since we deal with transcripts that arelaccated with SNPs, these transcripts will be
referred to as co-mRNAs. The search spéde be explored is a set of solutions each assigning a set of
active co-mRNAs to each target, together with an active M&Pgach such active co-mRNA. A solution -
or a state of the RIMCMC - is described through its paramejebdost of the constituents of, together
with their domains of variation, are described in Tabjeand illustrated by Figuré.

2 A shortintroduction to Markov Chain Monte Carlo methods and
reversible jump MCMCs

Here, we first provide a brief introduction to MCMCs. Then, justify the construction of RIMCMCs
and show how the theoretical framework is adapted to takediotount trans-dimensional moves.

An ergodic (aperiodic and irreducible) Markov chain willles@rge towards a unique stationary dis-
tribution, . Markov Chain Monte Carlo (MCMC) methods are a class of athors designed to sample



7,17 |=71 set ofr targets (or quantitative phenotypes)
CH | CM|=¢" Y ,e7 4" = q | setofallg’ possible co-mRNAs known to potentially exert an impact ages;
Ci|Cl|= s the set ofs’ active co-mRNAs for target in current JRMCMC state
k=375 the number of active co-mRNAs over all targets
M3, | M7 |=m/ the set of all possible multi-locus patterns for co-mRNA
M the set of all active multi-locus patterns for target
M = h@dvuj2""vujﬂ]
21 =| M |=| uj, | size of the multi-locus patternv ™ of targeti, corresponding to active co-mRNA

Table 1: Nomenclature for parameter space description

from a desired probability distribution: their principlertsists in constructing a Markov chain that has the
desired distribution as its stationary distribution. Givan ergodic Markov chain, ang the probabilities

of transition from state to state in search spadgransition kernel), the property of reversibility betwee
statesr andy holds: 7 (s) p(s/ | s) = w(s!) p(s | st) (detailed balance equation). Though reversibility
is not necessary to guarantee convergence of the posterioittis sufficient. Then, the key to MCMC
consists in expressing the transition kerpgl’ | s) as the product of an arbitrary proposal distribution,
g, and an associated acceptance distributiom(s | s) = q(s! | s) a(s, s’). To explain the intuition
behind these concepts, suppose, without loss of genetalityfor states ands/, some given transition
kernelp verifiesw(s) p(st | s) > w(s7) p(s | /). Artificial coercion of the previous formula towards
reversibility is straightforward, introducing two termss, s/), strictly lower thanl, anda(s, s), equal

to 1: m(s) q(st | s) a(s,s!) = w(st) q(s | st) a(st,s). If inequality is reversed, thea(s, s), strictly
greater tharl, anda(s, s/), equal tol, will be used instead. Finally, acceptance probabilityakalated

as:a(s, s!) = min (1, %) The arbitrary proposal distributionand the acceptance probability

a are the two ingredients of the Metropolis-Hastings (MH)aaithm (see Algorithm).

Algorithm 1 Metropolis-Hastings
1: initialize stateX arbitrarily;i < 0

2: repeat until convergence

3 propose next valug&’; 1 = y from the proposal distributioq(. | X; = x).
4. sample uniformly in interval[0, 1]

5. if (u < a(z,y)) then X, 1; — y [* acceptance of proposed move */

6 elseX; 1 < x /* rejection of proposed transition */

7. aner(i)

8: end repeat

When the search space writes@s- {(k,0)), k € K,0)) € S, }, whereK is an enumerable set,
then the posterior distribution can be factorizedr&&*), k) = 7(6%*) | k) 7 (k). To impose reversibility
for each pair(egkl)), 95’“2)), the core idea is to supplement each of the correspondingzatess;, and
Sk, with adequate artificial spaces. Namél§: and¢*2 will be completed intq 0%, u;) and (6*2, us),
respectively. Sampling; andus from adequate distributiong andg- will guarantee the existence of a
bijection f, x, between the augmented sub-spaces correspondifig andSy,. Under this condition,
the acceptance probability now involves the product of teuns:

i i (k2) (k2)
a (6 gy — mm{l, m(042) ko) p(k1 | ko) gqlus | k2, 0%)) fkl,r@}’ (1)

w00, k) plka | k1) q(ur | by, 00)
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Figure 1: lllustration for definitions in Tablé. = = 2; left section of the Figure shows possible co-
mRNAs and multi-locus patterng:= 5; C' = {1, 2, 3},C? = {4, 5}; M! = {1, 2}, M? = {3, 4, 5},
M3 = {6}, M* = {7, 8, 9}, M® = {10, 11} - right section displays an MCMC state with its active
co-mRNAs and its active multi-locus patterns:= 4; C! = {2, 3}, C? = {4, 5}; M! = {3, 6},
M? = {8, 11}; 213 = 3,216 = 2,228 =2, 221 = 1. X; to X5 denote random variables involved in
the models describing the relationships betw®&érandY 2 (random variables associated with targets
and2, respectively).

wherep(k, | k1) denotes the probability of the dimensionality switch aiid, | k1, 6%1)) refers to the
probability of transitiord*1) — §(52)  In some cases, including ours, the Jacolyign . is equal to
1. Therefore, in these cases, the acceptance probabilityomagen as the product of two terms: the

i i0 distribution 702 k2) (F1lk2) q(uz|ks,02)) ich i
posterior ratio dlstrlbutlon—:(M) and the sub-produd;(k;‘kf) q(u?|k?,9(kl>)’ which is called the

proposal ratio. In this case, the role of all these ingrediemmmade explicit in the generic description of
an iteration of the reversible jump MCMC algorithm (RIMCMGge Algorithm2).

3 The RIMCMC framework

3.1 Description of the five moves

To exploreS, we allow five moves: addition of an active co-mRNA (A), dissing of an active co-
mRNA (D), substitution for an active co-mRNA (C), substidut for an active MLP (M), modification of
the regression coefficients (R). Move A and move D respdgtagd and dismiss an entry in both lists
C and M. Move C updates an entry in both ligfsand M. Move D only updates an entry in lis1.
Figure2 starts from the MCMC state depicted in Figurgo describe moves A, D, S and M. Clearly, the
MCMC will possibly traverse subsets of the search spaceacterized by different values of parameter
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Algorithm 2 Generic description of an iteration in the RIMCMC algorithm

1: current state is¢; = 1) in sub-space;,

2: drawu; fromg(. | kp, 0%))

3: calculated®2) using bijectionfy, x,: (0%2),uz) = fi, 1, (0% uy) /* 6(2) is the value proposed
for next stateX,; ; */

sample uniformlyu in interval [0, 1] and apply liness and6 of Algorithm 1 with the acceptance
probability calculated in Equatiah

&

k, the number of active co-mRNAs over all targets. Thus, weshavdeal with the trans-dimensional
case.

3 3
6 3 3
6 2 6 6
move A move D 2 move S move M
— — — 2 —
1 1 (Om ‘g @0 @0

8 11

Figure 2: Moves of the MCMC

3.2 The underlying model linking phenotypes to causal multiocus patternsvia
co-mRNA patterns

The data consist i quantitative phenotypes (or target§)?);c7 and an array of genetic markers
These date descrieindividuals. Random variables are defined accordindly; defined oveiR, for
targeti, and X" (categorical, defined on domaf0, 1,2},i € 7,1 < ¢ < s*,1 < t < z%; individuals
in rows, SNPs in columns). Our hypothesis is that of a muiiata linear model:

V' =a" + 3 e gipapanie P X % with €7 following a normal distributiond’ ~ A(0, o).
In the previous formula, denotes a target,an active co-mRNA of target andt thet* SNP in the cur-
rent active MLP of active co-mRNA The predictorsY#: - - -X“ZMM correspond to the SNPs in active
MLP M. The (complete) putative causal MLP consists of MUPIE! M?2 ... M*". For example, in
Figurel, the two current linear regression models respectivelgrif@sthe relationship betweén' and
X --- X5, and betweery? and Xy - - - Xs.

We now introduce a convenient notation to refer to the maifiregression coefficients associated
with " target:

Notation 3.1 Regression coefficients;:

The predictor sef* associated with targethas sizezz‘;1 2**. The whole set of regression coefficients
is then:

a' =axi = (a°, (") <1< ) 2

Thus, a state in our RIMCMC is fully described through pateme= (k, s,C, M, z, X, a, o).

3.3 Outline of the algorithm
The sketch of the method is depicted in AlgoritlBm

5
6
2

1
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Algorithm 3 RIMCMC

INPUT:
x, @ matrix describing subjects (rows) with regard togenetic markers (columns).
xj is a categorical value (genotype code)(: < p;1 < j <e)
y, a matrix describing- targets (rows), with regard to thesubjects (columns)
y! is a quantitative continuous value
For each target, M is the set of MRNAs hypothesized to exert an influence ontarge
For each mRNA, C' is a set of multi-loci patterns co-localized with co-mRNA
A multi-loci pattern is a set of genetic markers.

OUTPUT:
For each target, M’, the most frequent set of active multi-loci patterns enterad during stationary regime of
the RIMCMC.

Initialization: (k, s,C, M, z, X, a, o) < (ko, s0,Co, Mo, 20, X0, a0, 00)

1:

2:

3: do
4: sample u ~ Upp 1) I* uniform draw in interval [0,1] */

5. switch

6 u < ak: proposeMoveA /* add-active-co-mRNA */

7 ar <u < ag+ dg: proposeMoveD /* Delete-active-co-mRNA */

8 ar +dr < u < ap +di + ck: proposeMoveC /* Substitute-active-co-mRNA */
9 ar +dg + cx < u < ar + di + cx + my: proposeMoveM /* Substitute-active-multi-locus-paittért
10: elsemoveR /* change of regression coefficients for all activetiflatus patterns */

11: [* associated with all active co-mRNAs */

12: end switch

13: until (convergence)

Moves A to M occur with respective probabilities, dx, ¢, andmg, depending ork, the current
number of active co-mRNAs over all targets. Probabiliigandm, indirectly depend ork sinceay,
andd,, are evaluated as follows:

pe(k+1) pe(k—1)
pi(k) pi(k)

wherek is assumed to follow am priori truncated Poisson distribution with meanin the line of
multiple changepoint approaches involving reversiblegitCMC [8, 29]:

ar = ¢min(l, ), dr, = ¢cmin(l, ), 3)

)\k
pr(k) o T1 Lik<h)- (4)
Depending ore value adjustment and balance betwegandm,, we can state than some moves are

more often proposed than others. Hyperparametgupdated at each iteration of the MCMC. Following
[2], A\ is sampled as follows:

1
kNN(§+k+€1,1+€2)v )

withe; << 1, (i = 1,2).
Except for move R, the feasibility of a move is subject to thtsfaction of various constraints (see
Table2):
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move constraints

A ag = 0, g = 0

D do=0
Each target must appear in any proposed solution with at ¢esesactive co-
MRNA. Thus, the active co-mRNA proposed for dismissing naesthecked
to be associated with a target currently showing a numbertafeaco-mRNAS
strictly greater than.

C The co-mRNA proposed for replacing an already active co-mRNecessar-
ily associated with a target checking the following coristrathe number of
possible co-mRNAs must be strictly greater than the numbeuent active
co-mRNAs.

M The active co-mRNA concerned by the replacement of its ataetive multi-
loci pattern must be checked to possess at least one moriblpassilti-loci
pattern.

Table 2: Constraints involved in the calculation of movelatoilities. k: maximal value allowed fok;
¢, maximal number of possible co-mRNAs, over all targets.

4 Space parameter posterior distribution

For all moves except move R, the acceptance probability firgstoe evaluated, to further validate or
reject the move from current stateto proposed state’. Andrieu and Doucet’s works pionnered the
theoretical construction of an RIMCMC based on a multivari;ear model2]. In their founder ap-
proach, the parameter description includes, quite clabgia variance parameter, and more specifically,
regression coefficients. These authors have shown that evéiluation of the acceptance probability, the
Jacobian term is equal to

In the expression

any = min(l, ryy)
= min(1, posterior distribution ratiox proposal ratig
= min|1, P |y) x proposal ratio| ,
p(n|y)
(6)
we now focus on posterior distribution rati p( g))), wherey represents the data, that is the pheno-

types, in our case. To evaluate the posterior distributtio ywe have to derive an algebraical expression
forp(¢ | y).

Indeed, we will not deal Witl”%, but instead With%. It is crucial to distinguish that in the
full description of the MCMC state:

n= (]C,S,C,M,Z,X,G,O') = (gaaao’)a

parameters ando are not assigned a status identical to that of other parasae@ur guidelines,
the works of Andrieu and Doucet, have established that walkowed to carry out the integration of the
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so-called "nuisance parametersando in expressiom(n | y), to obtain an expression fpf¢ | y). Thus
we will consider a move proposal without previously geniegaparameters (ando, in the case of move
A) for the modified target. To be rigorous, we will now wriig - andr¢ ¢ instead ofa,, ,,, andr,, .

To reach our objective, calculapé¢ | v), we will implement the six steps recapitulated in TaBle

(1) Torender explicip(n | y), use Bayes theorem and writé | y) = p(y | n) p(n).

(2) evaluaten(n).

(3) evaluate(y | n).

(4) substitute the expressions obtained in steps (2) anfb3)e corresponding terms p(y |
1) X p(n) and obtain a first algebraic formula fpty | 7).

(5) transformp(y | n) into a formula more appropriate for integration.

(6) perform marginalization over the nuisance parametersdo, that is, eliminate ando from
p(n | v), through integration, to obtain the posterior distribotid¢ | v).

Table 3: The six steps necessary to derive the parameterjmostistribution.

4.1 Step 1 - Use of Bayes formula to render explicit the postar distribution

To render explicip(n | y), we use Bayes theorem(n | v) p(y) = p(y | n) p(n), to write

p(n | y) ocply [ 1) p(n), (1)

that isposterior distribution = likelihoodx prior.
The constanp(y) will be ignored since-, ,, deals with a ratio of posterior probabilities.

4.2 Step 2 - Analytical formulation of prior p(n)

p(ka S,C, M7 Z,X, a/a U)
= pk)p(C | k) p(s|k.C) [[ (=", X' a', 0", M| CF) ®)

€T

p(n)

In Equality 8, the termp(s | k,C) is fully determined. We recall that the total numbeof co-
MRNAs (all targets considered) is assumed to follovagriori Poisson distribution with meah (see
Expressio). Conditional on numbek, the vectolC of (active) co-mRNAs is drawn with the following
prior uniform distribution:

1 1
p<c|k>:c’€7:0_’c' (9)
que”r qt q

As s is fully determined conditional oh andC, probabilityp(s | k,C) is equal tol.

We now concentrate on the evaluation of the t§fm. - p(z*, X, a’, 0", M | C?):
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[[pG X a0t M| C) (10)
€T

S'L
— H Hp(ZiZ,XM,aM,O'M,MiZ ‘ Cz()

€T =1

S'L
_ H Hp(zw,XM,aM I O'M,MM,CZZ) p(O'M)
€T =1

= [T I[Tp(x™ e p" | X¥) p(a™ | 2%, X, 0™) p(a™). (1)
€T =1
First right-hand termp(X* | C**) follows a uniform distribution {--). Second right-hand term,
p(z* | X*) is equal tol since X* fully determines:** (z* =| X* |). Expressiorl0is more conve-
niently written as:

H p(ziinvaivo'ivMi | cl) = H p(ai | ziin70—i)p(0—i) (H H %) . (12)
ieT i€eT ieTi=1 ™

Expressiorl2 exhibits the two termg(a® | 2, X* ¢*) andp(c?). To propose priors fou’ andc?,
we rely on the specific scheme proposed by Andrieu and Dolrc#teir precursor works on RIMCMCs
based on a multivariate linear model, the regression cigifie are assumed to follow a Gaussian distri-
bution, conditional on predictor séf’. Before we give the Gaussian distribution, we need theiolg
definitions:

Definition 4.1
Given X, the whole set of predictors associated with targetD y:(x) is the matrix defined over

{0, 1, 2}, of dimensiorp x ((Zj;l 2) + 1), wherep is the number of subjects observed. First
column is a vector of 1s while each céll, (), ;11 describesj*regressor of seX?, for subjecto. We
define matrixS x: as: Xy: ' = DL, (z) Dyi(z).
Definition 4.2

Yxi = D%.(x) Dx, (z). (13)

Under the zero-mean Gaussian assumption with covar(aﬁ'¢2eEXi, we write:

S . aTiE_la i
p(a*] 2", X" 0") =| 2#(01)22)@ |71/2 exp <—X2T)§)2X . (14)
Regarding scale parametet, asp(o?) andp(c*)? are equal, the prior distribution of varial:(lei)2
is given instead(ai)2 is assumed to follow a conjugate inverse-Gamma law:

(0')° ~ TG(vo/2,70/2). (15)

Andrieu and Doucet recommend to chodsg/2, v0/2) = (0,0), to obtain Jeffrey’s uninformative
prior p((0")?) < i3z
Thanks to equationg, 4, 9, 12, 15and14, expressiom(n) is now entirely explicit.
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4.3 Step 3 - Analytical formulation of likelihood p(y | 1)
The likelihood is expressed as:
ply ) =] p@' ). (16)
€T
Since a linear modelis assumed ¢ Dx:(x) ax: = £;), we now state that the noisgis zero-mean

Gaussian with variancer*)?:

(v' — Dxi(x) axi)" (y' — Dxi(x) ax:)
2(0%)?

exp |— (17)

1
plyi | n) = W

4.4 Step 4 - Temporary algebraic expression for posterior ditribution p(n | y)

Combining the explicit derivations fqi(n) (see step 2, Equali8y andp(y | n) (see step 3, Equalities
16and17) in Equality 7, we obtain a temporary algebraical expression of the jabsterior distribution

p(nly):

mC

AR 1 S
p(n|y) <1 ok IIII —=
q i€T 1=1

IT 1 27(e")*Sxi 1712 exp
€T

'Y?U 1 iDXi($) (IX-L)T (y* Dxi(z) axi)

(y
P {_ (Ji)2:| (2r (o0 )2)p2 P {_ 2(0)2 ' (18)

However, the obtained expression does not straightfotywéedd itself to integration with respect to
a ando parameters.

4.5 Step 5 - Definite algebraic expression for posterior digbution p(n | y)

Before we perform the integration process, we need to toamsEquality18 into a more appropriate
algebraic expression. The transformation process appleddrieu and Doucet in their work on the
detection of noisy sinusoidal signals was not much detailéolvever, three clues allowed us to derive
again the transformation process. The three clues codsitthree definitions, which were as many
starting points to guess the derivation. In our specific cthase definitions write:

i 52 T -1
M' = s (DX Dxico) (20)
d'= M’ Dxi(p y'- (21)

Appendix1 reports the steps of the process providing the final expressibe marginalized:
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p(n|y) OC—,C—k(HH >

€T 1=1

0+ (yi)TPyi} (o8P -1-3 }

i iy—1 R
I {%(Uifzm 12 exp {(axidF(M_) (axi d’}exp ),

2
ieT 2(e?)

4.6 Step 6 - Integration of the nuisance parameters

The expression obtained fpfn | y) through ste is now convenient for elimination af ando pa-
rameters. From the expressiomudf | v), we will thus obtain an expression of the posterior distiiu
p(C | y)- In this case, the nuisance parameters can be eliminatedh@oeetical basis, through integral
calculus. Note that the MCMC is not used for this purpose.

Appendix2 details the integration process. Finally, we obtain:

T

pCly) x == ] H () r(otr) L ] Pttarget i,
k' Ck €T I=1 F(%O) 2 (2m) > ieT
with P(target i) = <M) . (23)

5 Calculation of acceptance probabilities

5.1 Addition of a co-mRNA (move A)

At line 4 in Algorithm 4, the drawn multi-loci pattern will determine the set of potors to be added
to the current predictor set of some targetif move A is further accepted (see lirg. In line 9, the
new co-mRNA/x is taken into accountkt = k + 1; s*7 = si* + 1; C*7 = C™* @ lx; M*T =
M™ & mx); P =| M |), whered designates the appending operation andis the new multi-
locus pattern. The predictor sE* T is computed as{** augmented with the variables corresponding to
the SNPs ofnx. The set of regression coefficients is augmented accordingly, to yiedxﬁl*+.

The acceptance probability for move A is:
a(¢,¢T) = min(1,r(¢, 1)), wherer(¢, ¢*) (indeedr r+1 (¢, ¢T)) writes as:

p(C* 1Y) digr q(C1¢H)
pCly)  ar a(CT[Q)

r(¢,¢T) = (24)

Following Equatior23, the terms appearing if(¢, (™) are respectively evaluated as:

>\k+1
p(Ct | y) = (k—i— i Ck+1 (H H ) (targeti, co-mRNA¢x, multi-loci patternms«) (25)
€T I= 1
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Algorithm 4 proposeMoveA

1 if (g — k> 0)

2: propose a hew co-mRNA« uniformly drawn in the; — k current non active co-mRNAs.
3:  [* The drawn co-mRNA corresponds to a given target/

4: propose a multi-loci patterm uniformly drawn inA/*¢*

5. computeo, -+

6: sampleu ~ Uy,

700 (u < ag o)

8. samplec™ " anda™ "

9:  modify the Markov chain state int@ + 1,s7,Ct, M*, 2% X T o™, 0™)
10: else
11:  keep the chain in statg;, s,C, M, z, X, a, o)
12: end if
13: end if

AP .
Py =5 Ck 11 H mm P(target ). (26)

ieT (=1

From Equalitie®5and26, we derive the posterior distribution ratio:

p(CTly) _ X 1 P(targetix,transcriptfx multi-locus patterrm*)
p(Cly) — gq—k mixtx P (target i*)
The first term in the proposal rati ’“*1 4 ?fm- simplifies in:
d k+1
LAY (27)
(477 A
whereas the second term is calculated as shown below.
Givenk — g, the total number of inactive co-mRNAs over all targets, \asily derive:
a1 = —. (28)
q—k
However, the calculation af(¢ | ¢T) is not so straighforward; it involves that of tegp(¢):
€leh = — (29)
q = )
qa(¢t)

referring to definitiorb.1

Definition 5.1 For state(, ¢4(¢) is the number of active co-mRNAs, over all targets showingralrer
of active co-mRNAs strictly greater than

qa(¢ ™) is derived fromg,(¢). Figure3 shows howy, decreases by one from stdte to state¢, on a
simple case. Nevertheless, another (unique) case has unbilered, as depicted in Figutetherein,
the active co-mRNA of staté™, whose dismissing yields stafeis one of the two active co-mRNAs of
a target. This entails that the remaining active co-mRNAhéd target can no more contribute ¢g(¢)
calculation. Thus, the following property holds:
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Property 5.1

(¢t) = q4(¢) +2 ifthe co-mRNA is added to a target with only one active co-mRN
1 " | qu(¢) +1 otherwise.

state €& state &+

2 2

legend co-mRNAs associated with a target

active co-mRNA for target having
at least two active co-mRNAs

active unique co-mRNA of target

inactive co-mRNA

S
0O®

Figure 3: Increase af; between state§ and¢™, in a simple case. See text, Definitiéril. A and B
denote targetsq: number of possible co-mRNAs over all targets;number of active co-mRNAs over

all targetsy = 7, k(¢) = 3; k(¢1) = 4; qa(¢) = 2; qu(¢H) = 3.

From Equalitie28 and29, the second term in the proposal ratio writes as:

+ —k
q(<+|C ) _ 4 L (30)
a(Ct1¢)  qa(h)
Finally, in Equatior24 we substitute the expressions respectively obtain&dlir?7 and30, respec-
tively for posterior distribution ratio, first and secondntes of proposal ratio. Therefore, the definite

formula derived for-(¢, ¢*) is the following:

r(C,CF) = k+1 1 P(targetix, co-mRNACx, multi-locus patterrm*)-
’ qa(¢t) mit P(target i*)
In move A, parametesi has to be sampled. This sampling depends on parametEimally, both
parameters are sampled. From equafignt can be easily derived that:

(31)

vo+p Yo +Y Pyi) (32)

(0)" | y'¢ ~ IG(=5 -, s

and

i i i i _iN2 ari
axi |y, ¢, 0" ~ N(M D§iy,(0) M?). (33)
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state & state &+

legend co-mRNAs associated with a target

O06®© 0O00®

(=)
SO ®

active co-mRNA for target having
at least two active co-mRNAs

active unique co-mRNA of target

inactive co-mRNA

S
0O®

Figure 4: Increase af; between statesand¢™, in the unique alternative of the case presented Figure
q=Tk(C) =2 k(CT) =3, qa(C) = 0; qa(¢T) = 2.

5.2 Deletion of a co-mRNA (move D)

Quite symmetrically with respect to move A, denotirghe target for which a co-mRNA« is dismissed,
and using EquatioB1, we obtain:

r(6CT) = rep—1(6,¢T) = (re—1x(C7,0) 7 = a(Q) ies P(target i)

k P(targetix, co-mRNA¢x, multi-locus patternmsx)’

wheremsx denotes the active multi-locus pattern associated witmBINA /x. The pseudo-code of this
move is depicted in Algorithrb.

34

Algorithm 5 proposeMoveD

if (q(¢) > 0)
propose a co-mRNA* uniformly drawn amongst the;(¢) current active co-mRNAs.
/* The drawn co-mRNA corresponds to a given target/
computex, .-
sampleu ~ Ujg, 1
if (u<oge-)
samplea™ ™
modify the Markov chain state intgc — 1,s~,C", M~ ,27,X " ,a",0)
else
keep the chain in statg:, s,C, M, z, X, a,0)
: end if

©oON TR ONR

=
= Q



figure_qd_other_case.eps

20

5.3 Substitution of a co-mRNA (Move C)

Move C implements the replacement of an active co-mRN&ith another active co-mRNAx, for

a given targetx. m is the active multi-locus pattern associated with replac@a@nRNA ¢, while mx

denotes the active multi-locus pattern associated withacépy co-mRNA/x. Move C is typically a
Metropolis update, meaning that the terd, ¢*), indeedrs (¢, ¢*), merely writes as follows:

e P y) qlC ] )
"GO =0Ty e 10 (35)

From Equatior?3, the posterior distribution ratio is easily derived in:

p(¢*|y)  m' P(targeti,co-mRNA, multi-locus patternms) (36)
p(C|y)  mixtx P(targetix, co-mRNA/, multi-locus patternm)

To evaluate the terms involved in the proposal raf | Cg) we need define a new termg,

Definition 5.2 For state(, ¢.(¢) is the number of active co-mRNAs, over all targets showingraber
of possible co-mRNAs strictly greater than their numberative co-mRNASs.
In other terms, each such targeis characterized by’ — s’ > 0.

This definition entails the following property:

Property 5.2 Since each target must always present at least one activeRNA in any state, move C
only concerns a targetpossessing at least two possible co-mRNAs> 1).

To calculateg(¢* | ¢), we first have to uniformly draw the replaced active co-mRN#oagst the
q.(¢) co-mRNAs allowed. Now knowing the targét which is subject to the replacement of one of its
active co-mRNAs (), we uniformly draw the replacing active co-mRNA among$(¢) — s**(¢) valid
candidates. Therefore, the denominator of the proposalEL* | ¢)) writes as:

N S
1(WClO=T0 Fo -0 (37

Similarly, the numerator of the proposal ratio expresses as

(38)

o1 1
Y O R ()

The strong constraint implied by PropeBy? indicates that there are not many cases to be studied to
establish the straightforward relationship betwegig) andq.(¢*):

Property 5.3 ¢.(C*) = ¢.(¢).

Figure5 allows a quick understanding of PropeB3.
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©—o
O,
(DK—® ( )<:;
O,

Iegend co-mRNAs associated with a target

‘ active co-mRNA of target whose
possible co-mRNAs are not all active

active co-mRNA of target whose
possible co-mRNAs are all active

O inactive co-mRNA

Figure 5: Relationship betweepn(¢) andq.(¢*), for states; and(*, corresponding to move C, unique
possible case. See text, Definitidr? and Propertys.2 A, B, C and D denote targets: number of
possible co-mRNAs over all targetg; number of active co-mRNAs over all targets;= 10; k(¢) =

k(C*) =T, QC(C) = Q(:(C*) =3.

Besides, in the case of move €} (¢*) ands®*(¢) are equal. Together with Propey, this equality
entails that:

aClc) | )

q(¢* 1 ¢)

Therefore, using Equatid®, (¢, ¢*) is merely computed as:

o _ P y)
(¢, ¢7) 21y (40)
The scheme of this move is depicted in AlgoritBmAt line 2, the replaced co-mRNA is determined
(0). £ determines a target Conditional on target, a replacing co-mRNA is drawn at linke Conditional
on the target and the replacing co-mRNA, a multi-locus patie drawn at randomnfx). If the move
is accepted (see ling), the set of predictors corresponding to this multi-locastgrn will be added
to the current predictor set of target The set of predictors corresponding to the replaced co-MRN
will be dismissed from targets predictors. In linel0, the co-mRNA substitution frond into /x is
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acknowledgedC’™ = C' © £ @ lx; M = M? & m @ mx); 2" =| M** |). Operation performs
the deletion operation on a vectam is the multi-locus pattern associated with replaced co-iRN
whereasnx refers to the multi-locus pattern connected to the reptac;smRNA. The predictor set*”

is computed asy? dismissed of the variables corresponding to the SNPs,imnd further augmented
with the variables corresponding to the SNPsir. The set of regression coefficientsis accordingly
updated intar*".

Algorithm 6 proposeMoveC

1: if (g:(¢) > 0)

2: propose a replaced co-mRNAuniformly drawn in theg.(¢) current active co-mRNAs

3:  [*The drawn co-mRNA corresponds to a given targst - ’

4: propose areplacing co-mRN&« uniformy drawn in the;* — s* non active co-mRNAs of target
5. propose a multi-locus pattern uniformly uniformly drawnfif‘*
6:

7

8

9

computea, ./
sampleu ~ Uy, 1
if (u <o)
. samplea™”
10: modify the Markov chain state int@, s,C*, M*, 2", X* a*, ")
11: else
12: keep the chain in statg, s,C, M, z, X, a, o)
13: endif
14: end if

5.4 Substitution of a multi-locus pattern

Again a Metropolis update, move M replaces the active nlattiss patternn associated with an active
co-mRNA/ of, say, target. The co-mRNA/ remains active while the MCMC evolves from stgtéo
state(*. The only difference between both states lies in that mMattits patternn* now replacesn.

The termr(¢, ¢*) is defined as in EquatioB6. Therein, sincen’ andm®* are obviously equal
(¢x = £), the posterior distribution ratio now simplifies to:

p(C* |y)  P(targeti,co-mRNA/, multi-locus patterm ) (41)
p(C|y)  P(targeti,co-mRNA, multi-locus patternn)

The calculation of proposal rati s 'ﬁcg) requires a new definition:

Definition 5.3 For state(, ¢.,(¢) is the number of active co-mRNAs, over all targets showingralyer
of possible multi-locus patterns strictly greater than
In other terms, each such co-mRNAassociated with, say, targétis characterized by’ > 1.

Given this new definition, the denominator of the propostidrstraighforwardly writes as:

1 1
q(¢* [ Q) = 4 :
CIO= 0 mro -1
The first term in Equatiod?2 coerces the choice of the active multi-locus pattern to péaoed: a

uniform draw amongst the,, (¢) co-mRNAs allowed ensures the satisfaction of the requicediraint.
Now knowing that active co-mRNA associated with targetis concerned by move M, the replacing

(42)
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co-mRNA is uniformly drawn amongst the** — 1 valid candidates. Indeed, Definitidn3 guarantees
thatm is not the unique multi-locus pattern possible for co-mRNA

It is obvious thay,, (¢*) andq,,(¢) are equal. Therefore, the proposal ratio simplifies &md as for
move C,r(¢, ¢*) is expressed as in Equatidf. This time,r({, ¢*) will be computed using Equatioti.
This move is described in Algorithin

At line 2, as in move C, an active co-mRNA is drawn at random amongsi,tf{€¢) co-mRNAs
allowed. Then, atling, conditional on targetand active co-mRNAx, a multi-locus pattern is uniformly
drawn. If this latter candidate, say« is accepted (see ling), the set of predictors described by this
multi-locus pattern will replace the current contributiohactive co-mRNA/x, in the predictor set of
targeti. Line 9 akcnowledges this multi-locus pattern substitution: thefctor setX " is computed as
X' dismissed of the variables correspondingtpsubsequently augmented with the variables associated
with the replacing multi-locus pattern+. The set of regression coefficientsis updated accordingly.

Algorithm 7 Substitute-multi-locus-pattern

12 if (gm(¢) > 0)
2: propose co-mRNA « £ uniformly drawn in theg,, (¢) current active co-mRNAs
3:  /* The drawn co-mRNA corresponds to a given target/
4:  propose a replacing multi-loci pattefr ¢ x mx uniformy drawn in the(mcl*“ — 1) non active multi-loci
patterns of active co-mRNAx ¢x
5. computec, ./
6:  sampleu ~ Upo, 1
7 if (u<a )
8:  samplea™**
9:  modify the Markov chain state intg, s, C,, M,, z,, X', a/,al)
10: else
11:  keep the chain in statg;, s,C, M, z, X, a, o)
12: endif
13: end if

5.5 Modification of the regression coefficients (Move R)

The last move proposed is the modification of the regressiefficients. It is simultaneously performed
for all targets.

The reversible jump MCMC presented here can be viewed asimgiting three levels. The first
level (moves A and D) entails a variation of paraméterAs an MH update of the Markov chair (
unchanged), move C still lies in the scope of first level siitaentails a substitution for co-mRNAs.
Again an MH update, move M introduces the second level of GIMBMC: this finer level only deals
with multi-locus patterns. Third level restrains to the e of regression coefficients. When dealing
with multivariate linear models, only two-step RIMCMCs Haskn proposed befor@,[14]. In this
latter case, the updating of the linear model is fine-graamedithe addition or dismissing of a (single)
predictor is performed in the second (inner) level. In casttrour approach modifies the structure of the
linear model in the two upper levels. In the third level, feegy target in turn, move R updates’ and
the whole set of regression coefficientg:, relying on the two distributions given #i3 and44. These



24

distributions are derived from Equati@2.

T .
N2 vy + +y" Py
(@) |y, ¢ ~ TG(=5 2 =) (43)
i i i i iN2 i
aXi|yaC7U NN(M DXZTya(O—) M) (44)

Algorithm 8 describes move R.

Algorithm 8 moveR

aprwbne

. for each target
updates®
updatea’

end for
end for
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Appendix 1 - Transformation of the algebraic expression of the pos-
terior distribution

Given the three matrices

Pl =1-Dyi(x) M Dxi(2)", M'=(Dxi(2)" Dxi(2)”", d' = M Dyi ()" o,

the transformation of

=t (111 )

€7 =1

. T E_la i l’UTU . _Xo _
2m (o ’y o |72 ex Ixi X X 2 o))" 2 !
I t2r(e") "2 | p{ e }F(U_QU)« ?)
exp | — 770 1 ex _(yi Dyi(z) axi)" (y* Dxi(x) axi)
P12 Gr ez 2(07)? '

into

€7 1=1

€T

p(n|v) ocg;k (HH c“f)

(axs = d)T (M) (ax: - d"ﬂ exp
2(01)2

s (y")TPyi} ( i2)11201g}
2(0)? 7 '

requires that the following equality be true:
aﬁizflaxi + (' = Dxi(@)axi)" (y' — Dxi(x) axi) = (axi —d)T (M) Hay: —d') + yiT Pyt (45)

In the sequel, for lisibility, we will drop the indexes:

a’s7Ya+ (y — Da)T(y — Da) = (a — )" M~ (a—d) +yT Py.

We now derive the equality:

(a—d)" M~ (a—d)+y" Py
=(a—MDT )T DT D(a—M DT y)+4yT Py
=T —yT DMT)DT D (a— M DT y) +yT (I - D (DT D)1 DT)y
=T DT Da—a™ DT DM DT y—4yT DMT DT Da+yT DMT DT DM DT y+4yT y—4T D(DTD)" DT y
="' DT Da—-a" DT D(DTD)Y ' DT y -4y D(DT D)™ HYI' DT Da+yT D (DT D)) DT D (DT D) DT y+yT y—yT D(DTL
=aT' DT Da—-a" DT y—y" D(DT D)"Y ' DT Da+yT D((DTD)) ! DT D(DTD) ' DT y+4yT y—oyT D(DTD)"1 DTy
=T DT Da-a" DTy—yT DT D) DT Da+yT DT D) DT D DT D) DT y+yTy—yT D(DTD)"L DTy
=T DT Da-a" DT y—yT Da+y" D (DT D) ' DT y+4yTy—yT D(DT D)1 DTy
=" DT Da—a" DT y—yT" Da+yT y.

We recall that in Sectiod.2, we defined® y::
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Yx: = D%i(x) Dx, ().

More, concisely, this writest. = DT D.
Thus, we derive

(@a—d)" M7 (a—d)+y" Py
:aT271a+aTDTDafaTDTyfyTDaerTy
=TS va+ (@ DT —yTYDa+ (' —aT DTy
=T 27 a+ (y— Da)T (y — Da)m.
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Appendix 2 - Marginalization over nuisance parameterse and o

In formula22 od Sectiord.5, we identify two expressions related to two well-known @bty density
functions: that of a multidimensional normal distributidor parametet’) and that of an inverse gamma
distribution (for paramete(rai)Q). Therefore, marginalization over the nuisance pararaasestraight-
forward, through integral calculus. The probability déy&iinction of the multidimensional distribution
of parametersd’, (¢*)2M*) appears. Integrating on parametéprovidesi.

The inverse gamma distribution of parametergj is:

60‘ —a—1

TG(e18) = iy =" el

gl

In formula22, we recognise ! exp(£),
. z iT pi i
wherez = (0%)%, @ = 2, 3 = 20t Py - ntegratingz=*~! exp(£) on the domain of
variation ofz yields Fﬁ(i) ,
r(o)
vo+p *

(’m+(yi)T pi yi> 2
3

in our case:
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