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Abstract. In this work we present a method for the estimation of a
rank-one pattern living in two heterogeneous spaces, when observed
through a mixture in multiple observation sets. Using a well chosen
representation for an observed set of second order tensors (matrices),
a singular value decomposition of the set structure yields an accurate es-
timate under some widely acceptable conditions. The method performs
a completely algebraic estimation in both heterogeneous spaces without
the need for heuristic parameters. Contrary to existing methods, neither
independence in one of the spaces, nor joint decorrelation in both of the
heterogeneous spaces is required. In addition, because the method is not
variance based in the input space, it has the critical advantage of being
applicable with low signal-to-noise ratios. This makes this method an
excellent candidate ,e.g., for the direct estimation of the spatio-temporal
P300 pattern in passive exogenous brain computer interface paradigms.
For these applications it is often sufficient to consider quasi-decorrelation
in the temporal space only, while we do not want to impose a similar con-
straint in the spatial domain.

1 Introduction

Passive exogenous brain computer interface (BCI) paradigms, such as the P300
speller, require sound signal processing techniques to identify the typical cere-
bral responses measured as scalp potential differences. The difficulty of the signal
processing is mainly due to the low signal-to-noise ratio of the electroencephalo-
gram (EEG), i.e. the recording containing the temporally and spatially sampled
potential field at the scalp. Indeed, the P300 voltage as measured at the scalp
electrodes amounts to a few microvolts, while the ongoing spontaneous electroen-
cephalogram is dominated by oscillations extending over several tens of micro-
volts. Fortunately, signal processing techniques may use the phase-lock between
the stimulus onset and the P300 inflection (note that the P300 originates from a
positive inflection around 300ms post-stimulus). A straightforward way to esti-
mate the P300 waveform would thus be to mean out the unsynchronised ongoing
cerebral activity over a set of observations (trials) aligned to the stimuli onsets.
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However, plain averaging (taking the mean value over the trials) is biased by the
appearance of high amplitude artifacts such as eye blinks present in some of the
trials (outliers of the distribution over which the mean is taken), and this bias is
inversely proportional with the number of trials that are available. One could use
robust statistics to estimate the average waveform, or use the more commonly
weighted averaging techniques [1]. Weighted averaging techniques optimise the
ratio of the estimated signal energy with respect to that of the noise and ongoing
background EEG conditional on the availability of the covariance structures of
the signal part and the background/noise part. However, care should be taken
in the estimation of the weights, since generally the covariance structures of the
background EEG (together with that of the noise components) and that of the
component of interest can only be roughly estimated, resulting in an estimation
of inferior quality with respect to simple averaging [2,3].

It is worthy to note that the above methods make only use of the temporal
diversity (the temporal distribution of the samples over a time window), but none
does exploit the spatial diversity (the spatial distribution of the samples over
the various electrodes). In [4], the careful use of principal component analysis
with varimax rotation has been promoted. It has been noted that the variance
itself might not be the optimal criterion to obtain a P300 estimate and that
the correlation might be more appropriate. In addition, – and confirmed in [5]
– the varimax rotation seems to be preferable, since here, compact temporal
representations of the components are preferred over smeared out variances. The
varimax rotation is also closely related to the independent component analysis
(ICA) [6] (applied to event-related potentials in e.g. [7]). Despite the fact that the
compactness of the representation uses temporal information, rather than mere
spatial decorrelation based on the covariance structure, the methods still either
need a proper pre-selection of that trials/electrodes that are not contaminated by
artifacts [5] or need a posterior selection of the components [7]. This is because
some artifacts, such as blinks, have a similar compact temporal representation.

To avoid being biased by the artifact components in the estimation of the
P300 waveform, methods based on spatio-temporal models have been introduced,
e.g. [8,9]. Whilst [8] imposes a regular waveform comprising three free param-
eters (a waveform equivalent to the gamma distribution function with latency,
amplitude and form factor as free parameters), [9] derives an iteratively refined
waveform obtained through iterations of ICA and a selection procedure reminis-
cent to an expectation-maximisation. The estimation of the latency in [8] results
in an exhaustive search over all possible delays. Moreover, the energy function
used in the estimation of the latency needs to be sufficiently smoothened to
alleviate spurious minima (a consequence of the noise), which requires the in-
troduction of an extra, heuristically chosen parameter. In [9], the algorithm also
requires a heuristically chosen parameter setting, namely a lower threshold on
the correlation between the current estimate of the template and the individual
estimates. It should be mentioned that both proposed algorithms only have an
implicit coupling between the spatial and the temporal subspace and estimate



them in an alternating fashion. As a consequence, estimation errors in each of
the spaces carry over to the other space.

From the above, we may observe that the attention given in literature to
this field of research has increased considerably during the last decades. Despite
this interest in the topic, the authors are not aware of any attempt to explicitly
estimate the spatio-temporal signal model without either modelling the signal
of interest [8] or using a spatial estimation model with posterior calculation of
the corresponding temporal waveforms [10,11] or algorithms alternating between
spatial and temporal estimates [9,8]. In this contribution we present a method
based on a joint spatio-temporal estimation of the P300. Incorporating the spa-
tial distribution and the temporal waveform in a single, non-iterative algorithm
without heuristic parameter selection, we aim at a more robust estimator. In
addition, since no particular waveform will be imposed, nor a characteristic spa-
tial distribution, the proposed method can be easily adopted for solving similar
estimation problems in two coupled, heterogeneous spaces.

2 Methods

2.1 Notational Conventions

Upper case boldface (A) and lower case boldface (a) characters will respectively
denote matrices and column vectors. Scalars and constants will be denoted by
lower case light face (a) and upper case light face (A) characters, respectively.
The i-th column of A is thus ai and the jth entry of a, aj . An ensemble of
matrices A(k) will be denoted by the calligraphic upper case A = {A(k) | k =
1, 2, . . . ,K}. The symbol ⊗ denotes the tensor product (Kronecker product) and

the symbol (·)T will stand for the matrix transposition operator.

2.2 Model

We suppose to have K samples of a process X defined on two coupled heteroge-
neous spaces. To ease the presentation, we will from hereon consider that these
spaces are the spatial and the temporal dimensions typical of the P300, where
the temporal dimension is taken relative to the stimulus onset. The K samples
then simply represent the trials. The process realisations X(k) ∈ RM×N are ma-
trices, with entries xmn referred to their spatial index m, the arbitrarily chosen
electrode index, and their temporal index n relative with respect to the stimulus
onset1. Suppose the following generative model for X:

X =







σ1υν
T +

L∑

i=2

σiαi−1β
T
i−1 with probability p

L∑

i=1

σiµiζ
T
i with probability 1− p

, (1)

1 Although it is common to choose n monotonically increasing with respect to the
relative time after onset, this is not necessary for the algorithm to function well.
The only pre-requisite is that there is a bijective relation between the relative time
after onset and the temporal index.



which says that with probability p we observe the spatio-temporal structure uvT

up to some angular noise on u and v, yielding υνT . Eq. (1) is completely defined
by further fixing

υ ∼ PV MF (u, κ)
αi ∼ PV MF ([U

⊥]i, κ2)
µi ∼ PV MF (qi, κ2)

ν ∼ PV MF (v, κ)
βi ∼ PV MF ([V

⊥]i, κ2)
ζi ∼ PV MF (ri, κ2)

(2)

and for σi any (non-degenerate) distribution on the (positive) real numbers may
be chosen. For our convenience we have chosen the uniform distribution on (0, 1)
in the simulations. U⊥ ∈ RM×(L−1) and V⊥ ∈ RN×(L−1) are random vectors
constraint to form an orthogonal basis for the orthogonal complement of u and
v, respectively; qi and ri are L vectors from an orthogonal basis for RM and
RN , respectively. PV MF (µ, κ) stands for the Von Mises-Fischer probability dis-
tribution function with mean µ ∈ SN−1 and form parameter κ (in particular,
κ = 0 means a uniform distribution on the hypersphere SN−1 and κ → +∞
means an improper Dirac distribution at µ). Remark that we have only chosen
two different values for all κ’s (κ and κ2) to simplify the representation (and the
subsequent simulations), however, κ might differ for each of the vectors in the
model.

For the specific case of the P300 the above means we suppose that the spatio-
temporal pattern – up to some directional noise – is present with probability p
in our trials. We will detail this further in the next paragraph.

2.3 Representation of a Matrix

The samples, our trials, simply form a collection of observed matrices X =
{X(k)}Kk=1. These matrices can be represented by a multitude of equivalent forms,
the most straightforward being

X(k) =









x
(k)
11 x

(k)
12 . . . x

(k)
1N

x
(k)
21 x

(k)
22 . . . x

(k)
2N

...
...

. . .
...

x
(k)
M1 x

(k)
M2 . . . x

(k)
MN









∈ R
M×N .

In fact, for matrices, being second order tensors defined on two (possibly het-
erogeneous) spaces (space and time for the EEG), we have that each element
corresponds to a spatial position (the electrode index m) and a relative time
(temporal index n). If we take the respective canonical bases Es = {esm}Mm=1

and Et = {etn}Nn=1 for each of these spaces, the coefficients of X(k) with respect
to the (tensor product) basis

(
es1 ⊗ et1, e

s
2 ⊗ et1, . . . , e

s
M ⊗ et1, e

s
1 ⊗ et2, e

s
2 ⊗ et2, . . . , e

s
M ⊗ etN

)

are given as
(

x
(k)
11 , x

(k)
21 , . . . , x

(k)
M1, x

(k)
12 , x

(k)
22 , . . . , x

(k)
MN

)T

∈ RM·N .



From the theory of matrix algebra, each matrix can be represented on a
maximum of L = min(M,N) basis vectors (in the product space). A possible
reduced representation can be found through the singular value decomposition
of X(k) (where we have dropped the superscripts in what follows to augment
readability)

X = ΦΛΨT

from which we obtain that the coordinates of X in its specific basis

(φ1 ⊗ψ1,φ2 ⊗ψ2, . . .φL ⊗ψL,φ2 ⊗ψ1 . . .φM ⊗ψN )

are given by



λ1, λ2, . . . , λL, 0, 0, . . . 0
︸ ︷︷ ︸

M·N−L



. In other words, the matrix X(k) lies in

a L-dimensional subspace of RM·N . This representation will form the basis of the
spatio-temporal method that will be developed in the rest of this contribution.

2.4 Some Useful Properties of the Tensor Product Basis

The kronecker product is nowadays a widely used operation in the manipula-
tion of multi-way arrays and tensors and it is known to have some attractive
properties (see e.g. [12]), especially for our application.

Property 1 (Transposability of Orthogonality) If φm and φm′ are two or-

thogonal vectors in one of the two spaces, then the vectors φm⊗ψn and φm′ ⊗ψn

are orthogonal vectors in the product space.

It follows from the distributivity and the associativity of the tensor product
that 〈φm⊗ψn, φm′⊗ψn′〉 = 〈φm, φm′〉〈ψn, ψn′〉, or, the correlation in the product
space is the product of the correlations in the respective spaces. In other words,
to have a high correlation in product space, the correlation in both spaces should
be high.

Practically, we have that the P300 template should be a spatial as well as
a temporal representative and it clearly does not suffice to be a representative
in only a single one of these spaces. In addition, for activity other than the
evoked potential to be captured in a spatio-temporal representation, it should
correlate spatially as well as temporally over the different trials. In other words,
background activity may be spatially correlated as long as it is temporally un-
correlated and vice versa.

2.5 Angles Between Subspaces

From the representation of X(k) discussed in section 2.3, we may retain the basis
for the subspace on which X(k) is defined, rather than its coefficients. For two
matrices X(k) and X(k′) we could then try to find the best common represen-

tative. Putting Ξ(k) =
(

ξ
(k)
1 , ξ

(k)
2 , . . . ξ

(k)
L

)

and Ξ(k′) =
(

ξ
(k′)
1 , ξ

(k′)
2 , . . . ξ

(k′)
L

)



as some orthonormal subspace bases for X(k) and X(k′) respectively, we could
define the angle between subspaces, analogously as in [13], as

cos(θi) = max
ωi,ρi

ωT
i Ξ

(k)TΞ(k′)ρi, subject to
〈ωi,ωi′〉 = 0
〈ρi,ρi′〉 = 0

, ∀i′ < i .

The angle between the subspaces Ξ(k) and Ξ(k′) is defined to be θL. It can be
demonstrated that 0 ≤ cos(θi) ≤ 1 and the index i for which 1 = cos(θi) >
cos(θi + 1) determines the dimension of the common subspace.

However, the angle between subspaces does not easily extend to multiple
matrices if we do not restrict ourselves to pairwise comparisons. But we are
looking for a common subspace to all observations (i.e. the intersection of all
subspaces). Unfrotunately, it suffices that there exists a single observation that
does not comprise the subspace of interest to have the zero vector as the resulting
intersection. In other words, a single trial not containing a P300 response to the
stimulus would compromise the analysis.

2.6 Best Representative Subspace

To avoid the above drawback, we use the following trick:

1. Compose T =
(

Ξ(1),Ξ(2), . . . ,Ξ(k), . . .Ξ(K)
)

2. Calculate the major singular value λ1(T) of T and its corresponding left and
right eigenvectors ρ and ω

3. Calculate the best rank-one approximation to the vectorized matrix ρ

4. Calculate ω̃k =
∑kL

i=(k−1)L+1 ω
2
i

The best rank one approximation to ρ may be written as λ1(ρ) û⊗ v̂. Con-
cerning the vector ω̃, remark that its norm ‖ω̃‖1 = 1 and that the weights ω̃ℓ

thus form a partition of 1. In fact, λ1(T) may be seen as an approximation to
p in Eq. (1) and ω̃ℓ the relative probability that the ℓ-th observation adheres to
the upper equation of the model in Eq. (1).

3 Results

In this section we will display the results obtained on synthetic data only, due to
a lack of space. All data in the simulations have been generated in accordance
to the model in Eq. (1). We have taken u ∈ R3 and v ∈ R5, K = 25 and have
run 100 Monte Carlo realisations.

In the presentation of the results we have taken the mean over the different
values of κ2 since we have seen that its influence on the end results is less
significant than that of p or κ. The results of this study are given in Figure 1(a)
in terms of

√
ρuρv =

√

〈û,u〉〈v̂,v〉, i.e. the geometric mean of the correlations,
which is simply the square root of the inner product taken in the product space.
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Fig. 1. (a) The mean performance over 100 Monte Carlo runs of the algorithm
when varying κ and p in the model of Eq. (1). κ2 = 10−1, 100 . . . 104 with lower
values in κ2 resulting in a line closer to the x-axis. (b) 1000 samples from the
Von Mises-Fisher distribution on the sphere S2 for κ = 10 (the knee in Figure
(a)).

4 Discussion

From the Figures 1(a)&1(b), we observe that the performance degrades with an
increase in the corruption probability (1 − p). Also, we clearly have a similar
behaviour of the correlation as a function of κ. We observed also that for fixed
p and κ, augmenting the number of observations results in a better estimation
performance (results not shown), which supports the assumption that the used
statistics are consistent.

Since in practice the P300 does not correlate spatio-temporally with the
background activity and noise, the proposed methodology is promising in the
estimation of the P300 and related waveforms. Preliminary results on real data
(not shown here) confirm this assumption. The above assumption contrasts with
those of the principal component analysis of the observed matrices or that of the
best rank-one approximation to the three way array X composed by stacking
matrices X(k), since the latter algorithms are variance rather than occurrence
based. It is in this perspective that our method also resembles (kernel-based)
clustering methods. However, in the latter, each of the vectors in T is attributed
a cluster index, while the authors are not aware of any attempt to jointly estimate
the best joint rank-1 matrix representation for a clustering of the matrices.

Note that the spatio-temporal pattern that results from the method does
not need to occur in all observations, even not in one single observation. From
Figure 1(a), we observe that acceptable performance is already achieved for
κ & 10 and p > 0.4. Actually, it suffices that the chosen spatio-temporal pattern
is the closest to the majority of the subspaces spanned by the observations. This
is reminiscent to the largest singular value (0 ≤ cos(θ1) ≤ 1) that may be found



in the algorithm calculating angles between subspaces [13], an angle whose cosine
does not necessarily equal one.

5 Conclusion

The proposed method seems to be promising for estimating a pattern in a prod-
uct space of two heterogeneous spaces as is the case in the spatio-temporal P300
estimate. The method results in a direct spatio-temporal decomposition, rather
than a spatial decomposition with posterior temporal estimation as often wit-
nessed in literature. Moreover, instead of imposing independence, decorrelation,
orthogonality or sparsity in one or both of the heterogeneous spaces, the method
only relies on the re-occurrence of a spatio-temporal pattern in a subset of the
observations, a pattern that may be subjected to noise (partial re-occurence). In
addition, the algorithm has an algebraic solution without heuristic parameters
to choose.
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