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ABSTRACT

Response surface methodology is widely used for developing, improving and optimizing

processes in various fields. In this paper we present a method for constructing four-level

design matrices in order to explore and optimize response surfaces where the predictor vari-

ables are each at four equally spaced levels, by utilizing a genetic algorithm. The produced

designs achieve both properties of near-rotatability and estimation efficiency.

1. INTRODUCTION

Response surface methodology is used in experiments in which the main interests are to

determine the relationship between the response and the settings of a group of experimental

factors and to find the combination of the factor levels that gives the best expected response.

Response surfaces can also provide information about the rate of change of the response

variable and indicate the interactions between the treatment factors. This class of designed

experiments has a wide range of applications in industrial and chemical engineering, agricul-

tural experiments and biotechnological processes (Box and Draper, 1987, Edmondson, 1991,

Gilmour, 2004, Gilmour, 2006, Khuri and Cornell, 1996, Myers and Montgomery, 2002).
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In this paper we mainly focus on the construction of four-level response surface designs.

In such designs the design matrix columns are constituted of combinations of four distinct

symbols and correspond to the treatment factors, each at four equally spaced quantitative

levels. Any combination of the levels of all factors under consideration is called a treatment

combination. Let X = [x1, x2, . . . , xk] be the design matrix of the experiment in which, each

row represents the n treatment combinations and each column gives the sequence of factor

levels. For each factor, all level values are of equal interest and each experimental result

should have equal influence. Thus we consider designs with the equal occurrence property,

where all columns consist of n/4 elements equal to 1, n/4 elements equal to -1, n/4 elements

equal to 1/3, n/4 elements equal to −1/3, when n is multiple of four. The designs with the

equal occurrence property are called balanced designs. Although four-level factors appear

often in experimental problems, a minor work has be done in this area of response surface

designs (Edmondson, 1991, Gilmour, 2004, Gupta and Dey, 1975).

The paper is organized as follows. In Section 2. the concepts and the measures of

rotatability and efficiency of response surface designs are defined. The introduced method

for the construction of four-level response surface designs is presented in Section 3., while

the obtained results and an application are illustrated in Section 4.

2. MODEL AND DESIGN CRITERIA

Suppose we want to test the effects of k predictor variables, coded to x1, x2, . . . , xk, on a

response variable y subject to random error. Generally the first attempt is to approximate

the shape of the response surface by fitting a first-order model to the response,

y = β0 +
k∑

j=1

βjxj + ε, (1)

where β0, βj, j = 1, . . . , k are unknown parameters and ε is a random error term. When the

first-order model appears inadequate to describe the true relationship between the response

and the predictor variables due to the existence of surface curvature, it is upgraded to a

second-order model

2
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y = β0 +
k∑

j=1

βjxj +
k∑

j=1

βjjx
2
j +

k∑
i=1

k∑
j=1︸ ︷︷ ︸

i<j

βijxixj + ε, (2)

where β0, βj, j = 1, . . . , k, βij, i = 1, . . . , k, j = 1, . . . , k, are unknown parameters and ε is

a random error term.

Two of the most important characteristics that a response surface design should possess

is rotatability and efficiency.

The concept of rotatability was introduced by Box and Hunter (1957). A k-dimensional

design is called rotatable if the variance of the response estimated by the fitted polynomial

at the point (x1, ..., xk), Var[Ŷ (x)], is a function only of ρ2 =
∑k

i=1 x
2
i . Such a design insures

that the estimated response has a constant variance at all points that are equidistant from

the design center. One of the desirable features of rotatability is that the quality of the

prediction, as measured by the magnitude of Var[Ŷ (x)], is invariant to any rotation of the

coordinate axes in the space of the input variables. In cases where exact rotatability is

unattainable, it is important to measure how rotatable a design is. Khuri (1988), Draper

and Guttman (1988), and Draper and Pukelsheim (1990) proposed measures to test the near

rotatability of a design. In this framework we use the rotatability measure Q∗ provided by

Draper and Pukelsheim (1990) and given by the equation

Q∗ =
||Ā−V0||2

||A−V0||2
=
tr(Ā−V0)2

tr(A−V0)2
, (3)

where Ā is the rotatable component of the moment matrix A = n−1X′X and V0 consists of

a one in the (1, 1) position and zeros elsewhere. It is Q∗ 6 1 and equality stands when the

design is rotatable. For more details see Draper and Pukelsheim (1990).

Beyond testing the near rotatability of the designs in order to compare them, it is also

needed to have an estimation efficiency measure for the same purpose. Box and Draper

(1971) discussed as a measure of design efficiency the choice of a design on the basis of

3
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maximizing the determinant of the information matrix. In this paper we adopt the following

D criterion for determining the overall efficiency for estimating the set of the effects

|W′W|1/k, (4)

where W = [x0/||x0||, x1/||x1||, . . . , xk/||xk||], x0 stands for the vector with all elements equal

to 1, and xi is the coefficient vector of the i-th effect, i = 1, . . . , k. Since the columns of W

are standardized, the D criterion achieves its maximum value, which equals to 1, if and only

if the xi are orthogonal to each other. More details can be found in Wang and Wu (1995).

3. BUILDING RESPONSE SURFACE DESIGNS BY MEANS OF GENETIC ALGO-

RITHMS

Genetic algorithms form a powerful metaheuristic that mimicks processes from the The-

ory of Evolution to establish search algorithms by defining algorithmic analogues of biological

concepts such as reproduction, crossover and mutation. Genetic Algorithms were introduced

by John Holland (1975) aiming to design an artificial system having properties similar to

natural systems. In this paper, we assume some basic familiarity with Genetic Algorithm

concepts. The concepts necessary for a description of the Genetic Algorithm (GA) can be

found in Goldberg (1989), in Stefanie Forrest’s article (1993) and in the Handbook of Genetic

Algorithms edited by Davis (1991).

GAs are attractive because of their robustness and flexibility in terms of a computer

implementation and, mathematically, they do not require a differentiable objective function

thereby reducing the chance of reporting local optima. Some earlier attempts utilizing a

GA in the construction of response surface designs has been given by Drain et al. (2004).

However, this approach, while promising, lacked of an efficient coding of the chromosomes

i.e. the number of the experimental runs forming the design. In particular, the authors

proposed utilizing and constructing the whole design; thus restricting the GA to evolve in

finding optimal response surface designs in several cases. A successful reduction in terms

of computational complexity of an efficient representation of the candidate design, has been

4
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proposed in Koukouvinos et al. (2007), Koukouvinos et al. (2008) and Koukouvinos et

al. (2009) in a similar field of computational design theory with strong connection to sta-

tistical applications. In these applications, the authors integrated as a core ingredient of

the GA the use of sequential juxtaposition of suitable generators, either forming circulant

matrices (Koukouvinos et al., 2007) or block circulant matrices (Koukouvinos et. al., 2008,

Koukouvinos et al., 2009).

In the present paper, the respective generators considered in the case of response surface

designs are the n/4 column vectors which in the process form block circulant matrices of

order q, when constructing an n × q response surface design. However, in all previous

constructions the generators, more precisely the genes forming a generator, consisted of

binary variables since a two-level design was under development. In the case of response

surface designs, the genes constitute of four possible values representing the four levels of

the designs. A suitable encoding to binary variables was needed since the genetic operators

behave better in binary arithmetic (Goldberg, 1989). The answer to this vital question found

in the field of Combinatorics and Computer Science in terms of representing a 2-bit Gray

Code, GC = {00, 01, 11, 10}. For more details, on Gray Codes we refer the interested reader

to Carla (1997). More precisely, we mapped each level of the design to a codeword of the

2-bit Gray Code, i.e. {−1,−1/3, 1/3, 1} → {00, 01, 11, 10}, thus transforming the problem

on its binary equivalent which allowed us to carry on with the next stages of utilizing a GA.

We defined the basic genetic operation, crossover, that splits a pair of binary integers at

a random position and combines the head of one with the tail of the other and vice versa.

Additional operations, such as inverting a section of the binary representation (inversion)

or randomly changing the state (0 or 1) of individual bits (mutation), also transform the

population. Before each such cycle (generation), population members are selected on the

basis of their fitness (the value of the objective function for that solution) to be the “parents”

of the new generation. Last, but not least, the crucial choice of the objective function subject

to be optimized arise naturally from the theoretical framework of rotatable designs. Thus, a

design was considered optimal or near-optimal when a rotatable, respectively near-rotatable,

5

Page 6 of 13

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

response surface design was found.

4. RESULTS AND APPLICATIONS

4.1. THE RESULTS

In this section we present the results of the construction method for four-level response

surface designs described previously. In Table 1, k stands for the number of the experimental

factors and n for the number of the performed runs, while in the next two columns the

achieved values for the Q∗ and the D criterion are listed.

k n Q∗ D k n Q∗ D k n Q∗ D

2 8 0.959854 0.688198 4 64 0.984979 0.752422 6 80 0.964286 0.729376

2 12 0.987357 0.720681 4 68 0.978612 0.752464 6 84 0.966084 0.731742

2 16 0.989625 0.730767 4 72 0.987028 0.755138 6 88 0.958951 0.737689

2 20 0.983030 0.728812 4 76 0.974130 0.757333 7 40 0.904364 0.477906

2 24 0.989625 0.730767 4 80 0.984413 0.758021 7 44 0.925751 0.547346

2 28 0.988432 0.729770 5 24 0.921252 0.560310 7 48 0.912101 0.567746

2 32 0.989625 0.730767 5 28 0.931478 0.624055 7 52 0.912179 0.600130

2 36 0.987580 0.730165 5 32 0.921772 0.637922 7 56 0.926475 0.618743

2 40 0.989625 0.730767 5 36 0.941109 0.664694 7 60 0.928214 0.641472

2 44 0.988255 0.730364 5 40 0.949874 0.687925 7 64 0.944080 0.653896

3 12 0.957796 0.672742 5 44 0.956078 0.701092 7 68 0.931776 0.662358

3 16 0.974468 0.723329 5 48 0.961182 0.709732 7 72 0.941300 0.673442

3 20 0.974757 0.725922 5 52 0.959283 0.722619 7 76 0.949344 0.679945

3 24 0.978582 0.735271 5 56 0.959163 0.721522 7 80 0.949483 0.692045

3 28 0.980806 0.741253 5 60 0.964248 0.727228 7 84 0.944670 0.700672

3 32 0.982045 0.740266 5 64 0.971776 0.738562 7 88 0.933912 0.704588

3 36 0.984743 0.744575 5 68 0.968770 0.739369 7 92 0.952219 0.713946

3 40 0.985867 0.745508 5 72 0.974636 0.742555 8 48 0.886695 0.438586

3 44 0.981693 0.743881 5 76 0.965921 0.745443 8 52 0.892769 0.491582

3 48 0.989398 0.746684 5 80 0.972586 0.753905 8 56 0.908462 0.518264

4 16 0.901968 0.565480 6 32 0.909902 0.525207 8 60 0.907114 0.557043

4 20 0.942385 0.655520 6 36 0.911722 0.563752 8 64 0.918131 0.574709

4 24 0.936037 0.682163 6 40 0.927589 0.608824 8 68 0.924789 0.611768

4 28 0.962690 0.700950 6 44 0.941761 0.628792 8 72 0.931797 0.612020

4 32 0.970536 0.716913 6 48 0.939694 0.646278 8 76 0.925060 0.631981

4 36 0.972616 0.722305 6 52 0.936277 0.667183 8 80 0.919916 0.643375

4 40 0.970273 0.734296 6 56 0.938638 0.678255 8 84 0.933816 0.655232

4 44 0.961606 0.735100 6 60 0.954363 0.690468 8 88 0.934001 0.667397

4 48 0.984123 0.741785 6 64 0.955500 0.705109 8 92 0.942649 0.671583

4 52 0.979102 0.750763 6 68 0.950524 0.712883 8 96 0.944903 0.683993

4 56 0.977446 0.745832 6 72 0.952703 0.715155 8 100 0.945041 0.689233

4 60 0.967011 0.748081 6 76 0.950139 0.724041

Table 1: Results for the constructed four-level response surface designs.

From the above results we note that the Q∗ values fluctuate between 88.67% and 98.96%

and the arithmetical mean equals to 95.30%, while the maximum and the minimum values

6
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of the D-criterion are 75.80% and 43.86%, respectively, with the arithmetical mean equal to

68.18%. Also, Koshal’s designs (Box and Draper, 2007, Koshal, 1933) are occasionally of use

in response surface work. A polynomial of degree d in k variables contains p = (k + d)!/(d!k!)

coefficients. An example of a design that contains exactly this number of runs for the case

d = 2 was given in Koshal (1933). Koshal ’s design is extended to any order d and to

any number of predictor variables k. However, for the third-order Koshal design in 3 four-

level predictor variables with 20 runs, given in page 504 of Box and Draper (2007), we

calculate the corresponding values of Q∗ and D-criterion, which are equal to 0.3150 and

0.2613, respectively.

In Edmondson (1991) response surface designs with four-level factors were constructed,

using classical methods of construction based on fractional replications and pseudo factorial

and it was shown that fractionation and confounding can be used to obtain flexible families

of designs that are convenient to use and have useful blocking systems. Response surface

designs with some four-level factors were also constructed from two-level factorial and frac-

tional factorial designs through pseudo-factors, in Gilmour (2004). The designs appeared

in the above papers, although they do not include many factors, have useful properties. In

Gupta and Ney (1975) second order rotatable designs with factors each at four levels were

constructed via balanced incomplete block designs. Although these designs are rotatable,

they demand a large number of runs in order to be constructed.

The approach to construct response surface designs by means of optimization is of current

interest. Our efforts were concentrated on the two criteria, Q∗ and D via a metaheuristic

search, because high values of them ensure that the designs are near-rotatable and efficient for

estimating the set of the effects The flexibility of genetic algorithms allows different objective

functions to be optimized. Therefore, if another criterion was under consideration our genetic

algorithm could be applied in a similar manner. According to this, with the appropriate

objective function, our algorithm could be used for the construction of orthogonally blocked

four-level second order designs and this could be the basis of future work.

As a conclusion, our construction method manages to generate near-rotatable and ef-

7
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ficient four-level response surface designs for 2 ≤ k ≤ 8 factors, with a small number of

required runs. The tables with the designs that we achieved to construct, as well as their

corresponding values to the above optimality criteria are given in Prof. C. Koukouvinos web

site, http://www.math.ntua.gr/vckoukouv/.

4.2. AN ILLUSTRATIVE EXAMPLE

Suppose that an experimenter wants to test how three experimental factors, each at four

levels, influence the response vector y, and has also the goal to optimize the response. In

order to fit a second-order model to the data, a response surface design with three factors

A, B, C and 20 runs, constructed as described in the previous section, could be used. The

corresponding design matrix is

X =



1 1/3 1/3 −1/3 1/9 1/9 −1/9 1/9 −1/9 1/9

1 1 1 −1 1 1 −1 1 −1 1

1 −1/3 −1 1 1/9 1/3 −1/3 1 −1 1

1 1 1/3 1/3 1 1/3 1/3 1/9 1/9 1/9

1 1/3 1 1 1/9 1/3 1/3 1 1 1

1 1 1/3 −1 1 1/3 −1 1/9 −1/3 1

1 1 −1/3 1 1 −1/3 1 1/9 −1/3 1

1 1/3 1 1/3 1/9 1/3 1/9 1 1/3 1/9

1 −1 1/3 1 1 −1/3 −1 1/9 1/3 1

1 1 −1 −1/3 1 −1 −1/3 1 1/3 1/9

1 −1 1 −1 1 −1 1 1 −1 1

1 −1/3 1 −1/3 1/9 −1/3 1/9 1 −1/3 1/9

1 −1 −1 −1/3 1 1 1/3 1 1/3 1/9

1 1/3 −1 1/3 1/9 −1/3 1/9 1 −1/3 1/9

1 1/3 −1 −1 1/9 −1/3 −1/3 1 1 1

1 −1/3 −1/3 1/3 1/9 1/9 −1/9 1/9 −1/9 1/9

1 −1 1/3 1/3 1 −1/3 −1/3 1/9 1/9 1/9

1 −1/3 −1/3 −1 1/9 1/9 1/3 1/9 1/3 1

1 −1/3 −1/3 1 1/9 1/9 −1/3 1/9 −1/3 1

1 −1 −1/3 −1/3 1 1/3 1/3 1/9 1/9 1/9



= [x0, x1, x2, x3, x
2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3],

where the first column stands for the general mean.

In order to test our results we use simulated data obtained from the second-order model,

in a similar form to model given by Equation 2.,

y = 0.5 + 3x1 + 4x2 + 3x2
1 + 3x1x2 + 3x2

2 + ε,

8
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where ε ∼ N20(020, I20) (i.e., ε is i.i.d. to a multivariate normal distribution with mean vector

zero and with a variance matrix the identity matrix). A response y, obtained by using the

above simulated model, is

y = [2.6451, 14.2977, 0.8196, 8.6477, 10.1604, 9.4004, 4.5216, 8.8291, 0.2194, 2.1256,

3.3141, 4.7776, 3.9725,−0.1110,−1.3841,−0.8745, 0.0382,−2.1826,−1.0944, 1.4534]T.

Proceeding to an analysis of variance, the factors A, B, the interaction AB, the quadratic

terms A2 and B2 result important at significance level α = 1%. The estimated coefficients

are

β̂ = [−0.244506, 2.84293, 3.35841, 0.440448, 3.45366, 3.66831, 0.41685, 3.2417, 0.0107227,−0.10579]T.

So, the final estimated model is

ŷ = 2.84293x1 + 3.35841x2 + 3.45366x2
1 + 3.66831x1x2 + 3.2417x2

2,

and we see that it provides a very good approximation of the original simulated true model.

Also, it occurs that the combination of the factors levels that maximizes the response y

is x1 = 1, x2 = 1, x3 = 0.0232 and its maximum value is ymax = 16.3406.

In a similar way, if we consider as the design matrix the Koshal’s design with three factors

and 20 runs,

9
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XKoshal =



1 0 0 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0

1 0 1 0 0 0 0 1 0 0

1 0 0 1 0 0 0 0 0 1

1 2 0 0 4 0 0 0 0 0

1 0 2 0 0 0 0 4 0 0

1 0 0 2 0 0 0 0 0 4

1 1 1 0 1 1 0 1 0 0

1 1 0 1 1 0 1 0 0 1

1 0 1 1 0 0 0 1 1 1

1 3 0 0 9 0 0 0 0 0

1 0 3 0 0 0 0 9 0 0

1 0 0 3 0 0 0 0 0 9

1 1 2 0 1 2 0 4 0 0

1 2 1 0 4 2 0 1 0 0

1 1 0 2 1 0 2 0 0 4

1 2 0 1 4 0 2 0 0 1

1 0 1 2 0 0 0 1 2 4

1 0 2 1 0 0 0 4 2 1

1 1 1 1 1 1 1 1 1 1



= [x0, x1, x2, x3, x
2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3],

we generate the data according to the simulated model

y = 0.5 + 3x1 + 4x2 + 3x2
1 + 3x1x2 + 3x2

2 + ε,

with ε ∼ N20(020, I20).

A response y, obtained by using the above simulated model, is

y = [−1.1656, 6.6253, 7.7877,−0.6465, 19.6909, 21.6892, 0.4624, 16.8273, 6.6746, 7.3133,

37.2258, 38.9117, 2.6832, 32.3636, 31.6139, 7.5668, 18.5593, 7.4044, 19.6677, 16.7944]T.

The analysis of variance results that the factors A, B, the interactions AB, BC, the quadratic

terms A2 and B2 are important at significance level α = 1%. The estimation coefficients are

given by the following vector

β̂ = [−1.18661, 5.36746, 6.93253, 0.0523455, 2.47141, 1.57721, 0.470387, 2.15853,−1.02406, 0.407094]T,
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and the final estimated model is

ŷ = 5.36746x1 + 6.93253x2 + 2.47141x2
1 + 1.57721x1x2 + 2.15853x2

2 − 1.02406x2x3.

In order to maximize the response, the combination of the factors levels should be x1 =

3, x2 = 2.9553, x3 = 0, with ymax = 90.4809.

From the above results, we note that in the first case, we manage to identify exactly

the true active effects, while in the second case the interaction BC is overestimated and

incorrectly declared active.
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