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ABSTRACT

The Significance Analysis of Microarrays (SAM, Tusher et al., 2001) method is widely

used in analyzing gene expression data while controlling the FDR by using resampling-based

procedure in the microarray setting. One of the main components of the SAM procedure is

the adjustment of the test statistic. The introduction of the fudge factor to the test statistic

aims at deflating the large value of test statistics due to the small standard error of gene-

expression. Lin et al. (2008) pointed out that the fudge factor does not effectively improve

the power and the control of the FDR as compared to the SAM procedure without the fudge

factor in the presence of small variance genes. Motivated by the simulation results presented

in Lin et al. (2008), in this paper, we extend our study to compare several methods for

choosing the fudge factor in the modified t-type test statistics and use simulation studies to

investigate the power and the control of the FDR of the considered methods.

1. INTRODUCTION AND NOTATION

The Significance Analysis of Microarrays (SAM) is widely used in analyzing gene ex-

pression data while empirically controlling the FDR based on a resampling-based procedure.

One of the main components of the SAM procedure is the adjustment of the test statistic.

The introduction of the fudge factor to the test statistic aims at deflating the large value

1
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of test statistics due to the small standard error of gene-expression. However, the values of

the modified test statistic decrease simultaneously for all the genes, and in particular, the

fudge factor affects the truly differentially expressed genes with a small standard error. We

noticed that the fudge factor does not effectively improve the power and the control of the

FDR as compared to the SAM procedure without the fudge factor in the presence of the

small variance genes (Lin et al., 2008). To be specific, the part of the FDR (denoted as

the FDR1 related to the non-differentially expressed genes with small variances) is inflated,

while the proportion of the FDR (denoted as the FDR0 for the non-differentially expressed

genes with moderate and large variances) is controlled at the desired significance level.

In this paper, we extend our study to include several methods, which adjust the test

statistic in a similar way as the SAM procedure. We consider the penalized t-test statistic

(Wu, 2005), selection of the fudge factor by using receiver operating characteristics curve

(ROC, Broberg, 2003) and Emprical Bayes (EB, Efron and Tibshirani, 2002). We compare

the performance of these methods together with the original SAM procedure in terms of

power and the control of the FDR by using a simulation study.

The contents of the paper is organized as follows. In Section 2 we summarize the SAM

procedure and briefly discuss results of the case study and simulation studies presented by

Lin et al. (2008). Motivated by those results, in Section 3, we describe another three methods

for the selection of the fudge factor. In Section 4, we discuss the use of simulation data to

study these methods and compare the results in terms of the power and control of the FDR.

The paper ends with a discussion in Section 5.

2. SELECTION OF THE FUDGE FACTOR IN THE SAM

2.1 THE SETTING

We focus on finding differentially expressed genes by using microarray data from two

groups/conditions, namely the control and the treatment group. Let Xijk be the gene-

expression of ithe gene for array j in treatment group k (i = 1, ...m; j = 1, ...n; k = 0

(control), 1 (treatment)). Let zijk be an indicator variable which take the value of 1 if ex-

pression level of gene i in the microarray is obtained under the treatment and zero otherwise,

2
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i.e., 



zijk = 0 k = 0 control,

zijk = 1 k = 1 treatment.

The gene-specific linear model is given by

Xijk = β0i + β1izijk + εijk; εijk ∼ N(0, σ2
i ). (1)

Here, β1i is the effect of treatment on gene i, while β0i corresponds to the mean of the control

group for gene i. The difference between the two groups for gene i can be tested using the

two sample t-test

ti =
X̄i0 − X̄i1

si

√
1
n0

+ 1
n1

, (2)

where X̄i0 =
Σ

n0
j=1Xij0

n0
, X̄i1 =

Σ
n1
j=1Xij1

n1
, and n0 and n1 are the number of arrays in the control

and treatment group, respectively. The pooled variance estimator, si is defined as:

s2
i =

1

n0 + n1 − 2





n0∑

j=1

(Xij0 − X̄i0)
2 +

n1∑

j=1

(Xij1 − X̄i1)
2



 .

2.2 The SAM PROCEDURE AND THE FUDGE FACTOR

The SAM (Tusher et al., 2001, Storey and Tibshirani, 2001) is a testing procedure for

microarray analysis, which estimates the FDR by using permutations under the assumption

that all null hypotheses are true. The procedure consists of three components: (1) the

adjusted test statistic, (2) the approximation of the distribution of the test statistic based

on permutations, and (3) the control of the FDR.

The t-test statistic for each gene i is modified in the SAM procedure as follows:

tSAM
i =

X̄i1 − X̄i0

si + s0

=
∆i

si + s0

, (3)

The constant s0 in (3) is called the fudge factor. It is calculated as the percentile of

the gene-wise standard errors that minimizes the coefficient of variation (CV) of the median

absolute deviance (MAD) of the SAM test statistics using (3). This modification is used to

overcome bias for genes with expression difference ∆i close to zero, which have a large value

3
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of the test statistic due to a small sample variance. By using an inflated standard error of

the test statistics, the SAM addresses the problem of the dependence of the value of the test

statistic on the variance of expression levels for a particular gene.

The SAM is a resampling-based procedure and uses permutations to approximate the

null distribution of the test statistic. Thus, the choice of the test statistic does not have an

effect on the SAM procedure. This distribution-free property in the SAM procedure allows

to include in it any form of the test statistic. The permutation matrix T consists of element

tib which is the test statistic for the ith gene in the bth permutation (Ge et al., 2003; Lin et

al., 2008). The permutation-based raw p-values can be calculated as

Pi =
#(b : |tib| ≥ |ti|)

B
, (4)

where ti is the observed value of the test statistic for gene i. This is the the basis for the

permutation approach, which adjusts p-values obtained above by using the Benjamini and

Hochberg procedure for controlling the FDR (BH-FDR).

The control of the FDR is performed, once the permutation matrix T is obtained. The

SAM procedure requires the test statistics of each permutation to be sorted for all the

genes such that the first row of the sorted matrix T SAM is the minimum test statistic across

permutations and the last row is the maximum. The element t(i)b in T SAM is the ordered test

statistic in permutation b, i.e., t(1)b ≤ t(2)b ≤ . . . ≤ t(m)b. The expected values of the observed

test statistics are approximated by the means of the rows of T SAM , i.e., t̄(i) = 1
B

∑B
b=1 t(i)b.

To call a gene significant, the difference between the observed and expected values of

the test statistic needs to be larger than a certain cut-off value λ (Parmigiani et al., 2003).

For a grid of λ values, the corresponding number of significant genes can be listed; at the

same time, the number of false positives, arising from any permutation matrix T SAM , is

estimated. Under the null hypotheses, we expect that no differentially expressed genes are

present for each permutation. Consequently, the median or 90 percentile number of false

positives, corresponding to λ, can be obtained from the permutation matrix. In this way,

the FDR can be calculated for each value of λ and an acceptable value of λ can be chosen to

control the FDR at the desired level. Note that the SAM procedure estimates the proportion

4
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of true null hypotheses and obtain the FDR (π0E(V/R) = (m0/m)E(V/R), where m0 is the

number of non-differentially expressed genes and estimated from permutations), V is the

number of false positives, R is the number of discoveries, and π0 = m0/m is the proportion

of true null hypotheses.

In order to investigate the effect of the SAM fudge factor on the protection against genes

with small variance, we decompose the number of true null hypotheses (m0) into two types

(see Figure 1): m0
0 truly non-differentially expressed genes with a moderate to large variance

and m1
0 truly non-differentially expressed genes with a relatively small variance (i.e., ≤ 5%

percentile of variance in the data). Accordingly, the falsely rejected true hypotheses V are

divided into sets of V 0 and V 1 for these two types of genes, respectively. Consequently, the

FDR can be decomposed as FDR=FDR0+FDR1=E(V 0/R)+E(V 1/R), where R is the total

number of genes declared significant (Lin et al., 2008).

Figure 1: Decision in multiple testing (Benjamini and Hochberg 1995).

As mentioned above, a fudge factor s0 in the denominator of the test statistic is used to

adjust the test statistic. How the fudge factor is calculated is described in SAM users guide

and technical document (Chu et al., 2001).

2.3 RESULTS OF THE SIMULATION (PRESENTED IN LIN ET AL. 2008)

Lin et al. (2008) conducted the simulation study to investigate the performance of the

SAM procedure in terms of power and control for the FDR in the presence of small variance

genes. The simulation study was set up in the way mimicking the real life data, in which

the gene-specific variances and artificial treatment effects (assuming to be large enough after

5
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multiplicity adjustment) were used to generate gene expression levels under three treatment

groups and one control.

The fudge factor in the SAM procedure aims to protect against small variance genes to

result in false positives. However, the simulation study showed that by decomposing the FDR

into the FDR0 (the part of false positives among the truly differentially expressed genes) and

the FDR1 (the part of false positives caused by the non-differentially expressed genes but

with small variances), the FDR0 was controlled at the nominal level (say 0.05) in irrespective

of the proportion of small variance genes; while the FDR1 was not controlled but inflated

as the number of small variance genes increased. Figure 2 shows each compositions of the

FDR under two settings (no small variance genes and 10% small variance genes present in

the data).

Motivated by this results, we extend the simulation study and consider three more meth-

ods in selecting the fudge factor in the t-type test statistic and compare their performance

in terms of control of the FDR0, FDR1, and the power.

3. OTHER METHODS FOR SELECTING THE FUDGE FACTOR

In this section, we consider other methods for the selection of the fudge factor: the

penalized linear regression, the operating characteristic curve (ROC), and the empirical

Bayes.

3.1 PENALIZED LINEAR REGRESSION

Wu (2005) proposed the penalized linear regression as a method for the detection of

differentially expressed genes. The penalized t-test statistic can be written as

t∗i = sign(X̄i0 − X̄i1)
(|X̄i0 − X̄i1| − ϕ)+√

(1/n0 + 1/n1)s2
i + ϕ2/(n− 2)

, (5)

The shrinkage parameter ϕ is chosen to minimize the correlation between the penalized

t-test statistics in (5) and si for all genes. It is easy to note that ϕ is applied to both the

nominator and denominator and shrinks the absolute mean difference in the numerator by ϕ.

The denominator is shrunken by ϕ2/(n−2). Thus, the advantage of the penalized t-statistic

6
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Figure 2: a. FDR vs. power, b. FDR0 vs. power, c. FDR1 vs. power under the two settings.

Black line: setting 1 (m1
0=0); green line: setting 2 (m1

0=5100). The power and FDR were

obtained for a grid of 100 fudge factors. A and B represent the power and FDR by using the

fudge factor selected by the SAM (which minimizes the CV of the SAM test statistics), while

1 and 2 represent the power and FDR obtained by using the BH-FDR procedure.

is that it shrinks the absolute mean differences to zero, deflating large values of test statistics

due to the small standard error.

Wu (2005) argued that, for a given value of ϕ, the penalized t-test statistic has the sam

property as the SAM t-test statistic. Wu (2005) proposed to replace the SAM test statistic

with the penalized t-test statistic and to control the FDR by using the SAM procedure.

3.2 ROC METHOD

Broberg (2003) proposed a method to jointly optimize the number of genes that are falsely

declared positive and the number of genes that are falsely declared negative by optimizing

over a range of the FDR and fudge factor values. For this purpose, he utilized the receiver

7
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operating characteristic curve (ROC curve), which plots the false positive rate (FPR) against

the false negative rate (FNR). The FPR is defined as the number of false positives among

the significant genes divided by the total number of genes. Similarly, the FNR is defined as

the number of false negatives divided by the total number of genes.

For each combination of the FDR and of the fudge factor s0, the procedure calculates the

number of false positives and false negatives. The criterion to be used for the choice of the

fudge factor is to minimize C =
√

FPR2 + FNR2. Due to the large amount of calculations,

the optimization of C is performed over a lattice of (FDR, s0) values. Lovell et al. (1996)

and Genovese and Wasserman (2001) present other versions of the minimizing criterion. For

example, one of the criteria incorporates weight ω in order to express the relative importance

of the FPR compared to the FNR, what results in C =
√

ω2FPR2 + FNR2.

According to Storey (2001), the false positive probability estimator can be defined as

F̂PR = p̂0α, which represents the proportion of non-differentially expressed genes p̂0 multi-

plied by the probability α that such a gene produces a significant result. The estimator of

the false negative probability equals F̂NR = 1− p̂0(1− α)− p̂(α), where p̂(α) is the relative

frequency of genes that have a p-value less than α. By using the estimates F̂NR and F̂PR,

corresponding to the significance level α, we can obtained the fudge factor s0 that minimizes

C. Then, the SAM procedure is carried out with the corresponding value of s0.

3.3 THE EMPIRICAL BAYES APPROACH

Efron et al. (2001) and Efron and Tibshirani (2002) modeled the distribution of the

adjusted test statistics ti in (3), as a mixture of two components. One component corresponds

to the differentially expressed genes, and the other to the non-differentially expressed genes.

Denoting the density of the former by f1 and the latter by f0, the mixture density of the

test statistics is given by

f(t) = π0f0(t) + (1− π0)f1(t), (6)

where π0 is the prior probability that a gene is differentially expressed. Application of Bayes’

rule to (6) results in the posterior probability that a gene with test statistic t is differentially

8
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expressed, i.e.,

pi(t) = 1− π0
f0(t)

f(t)
. (7)

Following Efron et al. (2001) and Efron and Tibshirani (2002), a gene is called differentially

expressed if its posterior probability (7) is larger than or equal to 0.9. The FDR for the

resulting rejection region Γ = {t : pi(t) ≤ 0.9} is then estimated by using a resampling

approach as follows,

F̂DR(Γ) = π̂0
#{tib ∈ Γ}/B

max{#{ti ∈ Γ}, 1} ,

where B is total number of permutations.

Efron et al. (2001) suggested to specify the optimal choice of the fudge factor by running

the EB procedure for several values of s0, and by selecting the value of s0 that leads to the

largest number of differentially expressed genes.

4. SIMULATION STUDY

In this section we investigate the performance of the SAM procedure with variants of the

procedure resulting from using the fudge factor, obtained by using the penalized t-test (T),

the ROC (R), and the SAM procedure (S). Additionally, we consider the use of the EB (E)

and based on permutation p-values controlling the FDR by using the BH-FDR procedure

(B).

4.1 SIMULATION SETTING

We generate 10,000 genes on each array. In total, 100 data sets are generated with 16

arrays under two conditions (control and treatment) with eight arrays for each condition.

We assume that 10% of the 10,000 genes are truly differentially expressed. The mean gene-

expression for the two groups is defined as follows:

µik =





δik × σi i ≤ 1000 and k = 1,

0 otherwise.
(8)

It is assumed that δik ∼ U(2.8, 4.5), while σi is randomly sampled from the estimated stan-

dard error distribution observed in the case study analyzed by Lin et al. (2008). The means

9
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of treatment groups for genes with small variance are generated from normal distribution

N(0, 0.3) for the four treatment groups. We consider four settings, in which the number of

small variance genes is equal to zero, 500, 1000, and 2000. The variance of these genes is

chosen to be equal to 0.0036, which is the 5% percentile of the variances in the observed case

study data and is expected to be small to inflate the test statistics.

4.2 SIMULATION RESULTS

4.2.1 THE FPR VS. FNR

First, we study the relationship between the estimated mean FPR and FNR of the five

methods under the four settings across 100 simulation datasets, where the FPR and FNR

are defined in Section3.2. As we observe in Figure 3, the optimal results which minimizing

C =
√

FPR2 + FNR2 is obtained for the SAM procedure, except that in the first setting

(as with no small variance genes) the SAM and permutation approach show similar results.

As the proportion of small variance genes increases (i.e., m1
0 = 500, 1000, and 2000 genes

corresponding to 5%, 10%, and 20% of the total number of genes, respectively), the FPR

and FNR increase. The permutation approach yields a higher FPR as compared to the other

procedures, because the procedure does not adjust the test statistic to protect against the

small variance genes. On the other hand, the penalized t approach tends to yield a higher

FNR, because the penalized t-test statistic downplays the truly differentially expressed genes

as well as non-differentially expressed genes with small variance. In-between these methods,

coincidentally, the ROC and EB methods show similar results, but the difference between

them seems to increase as the number of the small variance genes increases.

4.2 THE FDR VS. POWER

To make a distinction between genes that are falsely declared differentially expressed due

to a small variance from the rest of truly non-differentially expressed genes, we decomposed

the FDR as FDR=FDR0+FDR1=E(V 0/R)+E(V 1/R), where V 0 is the number of truly non-

differentially expressed genes with moderate to big variances and V 1 is the number of truly

non-differentially expressed genes with small variances (≤ 0.0036 in our case). In what

10
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 FPR vs. FNR

Setting 1: none
Setting 2: 5%
Setting 3: 10%
Setting 4: 20%

B: BH
S: SAM
R: ROC
E: EB
T: penalized t

Figure 3: FPR vs. FNR using the five methods under the four settings. Black line: setting 1

(m1
0=0); red line: setting 2 (m1

0=500); green line: setting 3 (m1
0=1000); blue line: setting 4

(m1
0=2000). B: permutation p-values adjusted by the BH-FDR procedure, S: SAM, R: ROC,

E: EB, and T: penalized t.

follows, we investigate the control of the FDR (including FDR0 and FDR1) and power for

the considered methods.

From Figure 4a we can see that the (overall) FDR is not well controlled at the desired

level of 0.05 for all the five methods. The SAM procedure seems to yield the lowest FDR,

while the ROC and EB approaches yield a similar, high value of the FDR. More importantly,

taking SAM as the reference procedure, we can make two sets of comparisons: (1) between

the SAM, penalized t, and ROC methods that utilize the same approach to control the FDR,

11
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but differ in the choice of the fudge factor, and (2) between the SAM, EB, and permutation

approaches, which differ not only in the choice of the fudge factor, but also regarding the

approach used to control the FDR.

For the first set of results, as m1
0 increases, the FDR (Figure 4a) increases for the penalized

t (from 0.1, to 0.22 and to 0.52) and ROC methods (from 0.4, to 0.57, and to 0.7), and

the power increases for the penalized t approach (from 0.1, to 0.21, and to 0.4) and it is

maintained for the ROC approach (about 0.6). The SAM procedure behaves differently: it

maintains the FDR at around 0.2 at the price of losing the power (from 0.9, to 0.7, and

to 0.5). Using the decomposition of FDR into the FDR0 (shown in Figure 4b) and FDR1

(presented in Figure 4c), we observe different patterns for the FDR0 for the three methods.

For the small variance genes, the FDR0 is controlled at 0.05 for the SAM and ROC methods

under the four settings, but not for the penalized t, for which it increases as the number of

small variance genes increases. The penalized t-test statistic is modified by adding a constant

to both the denominator and numerator, which results in declaring more non-differentially

expressed genes with a moderate or large variance as significant. On the other hand, the

penalized t approach reduces the FDR1, in particular when 5% or 10% non-differentially

genes with small variance are present. However, it does not do so for a larger proportion of

such genes (i.e., 20%). In all, we can conclude that the SAM procedure is most successful

in controlling the overall FDR at the level about 0.2, as compared to other approaches, but

it does not control the FDR at the desired level of 0.05. The main component of the FDR

for the SAM and ROC approaches is the FDR1. The penalized t method has a tendency to

control the FDR1, but it loses the control of the FDR0. We also note that the variability of

the FDR and FDR0 for the penalized t approach is large, as shown in Figures 5a and 5b.

For the second set of methods (the SAM, EB, and permutation approach), from Figure 4a

we can observe that the FDR for the three methods is not controlled at the desired level of

0.05. The EB approach yields the largest FDR among the three methods and a constant

power (around 60%). The SAM approach shows a decreasing FDR (0.25, 0.24, and 0.18,

respectively) and decreasing power (90%, 70%, and 50%, respectively) as the proportion of

12
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non-differentially expressed genes with a small variance increases (from 5% to 10%, and to

20%). For the permutation approach, the FDR (0.35, 0.5, and 0.7) increases, but the power

is consistently close to 1. In Figure 4b, the FDR0 for the three methods is around 0.05.

Hence, the FDR1 shows the same pattern as the overall FDR.
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Figure 4: Panel a. FDR vs. power, panel b. FDR0 vs. power, panel c. FDR1 vs. power

under the four settings. Black line: setting 1 (m1
0=0); red line: setting 2 (m1

0=500); green

line: setting 3 (m1
0=1000); blue line: setting 4 (m1

0=2000). S: SAM, B: permutation p-values

adjusted BH-FDR, E: empirical Bayes, R: ROC, and T: penalized t approach.

Figure 5 shows the power of the five methods. We can conclude that the EB and ROC

methods yield not only a similar power, but also a similar FDR. Both methods produce rather

consistent values of the FDR and power regardless of the proportion of non-differentially

13
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expressed genes with small variance. The permutation approach performs slightly better

than the EB and ROC methods, yielding a lower FDR and a higher power. The worst

performance with respect to the power is observed for the penalized t approach. This method

tends to control the FDR1, but to lose control of the FDR0. It can be regarded as the best

method to choose the fudge factor for controlling the FDR, but at the cost of losing power.
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a. FDR
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Figure 5: Panel a. Boxplot of FDR, panel b. Boxplot of FDR0, panel c. Boxplot of FDR1,

panel d. Boxplot of power under the four settings. Black line: setting 1 (m1
0=0); red line:

setting 2 (m1
0=500); green line: setting 3 (m1

0=1000); blue line: setting 4 (m1
0=2000). S:

SAM, B: permutation p-values adjusted BH-FDR, E: empirical Bayes, R: ROC, and T:

penalized t approach.
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5. CONCLUSION AND DISCUSSION

The question of interest in this paper is the capability of the SAM procedure to control

the FDR for truly non-differentially expressed genes with a small variance. We have shown

in the simulation study for the SAM procedure (Tusher et al. 2001) that the overall FDR

cannot be controlled even when the proportion of truly non-differentially expressed genes

with a small variance is relatively small (i.e., 5% of the total number of genes in the array).

Moreover, we have shown that, when the FDR is decomposed into the FDR0 and FDR1,

there is no problem to control the FDR0 (regardless of the proportion of non-differentially

expressed genes with a small variance). However, the FDR1, associated with the small

variance genes, is not well controlled. When the proportion of non-differentially expressed

genes with a small variance increases, the SAM procedure with the fudge factor either loses

power or does not control the FDR at the desired level. Thus, the automatic selection of the

fudge factor does not guarantee the power and the control of the FDR in the SAM approach.

We have also investigated several other methods for selecting the fudge factor. We have

shown that none of these methods controls the FDR at the desired level. The SAM procedure

is most successful in controlling the FDR but at the price of losing power. The penalized

t approach shows poor performance in the control of both the FDR and power, with a

poor control over truly non-differentially expressed genes with a moderate or large variance.

Coincidentally, the EB and ROC approaches, which differ in the methods used to control

the FDR and to choose the fudge factor, yield similar and consistent results with respect to

the power and FDR, regardless of the proportion of non-differentially expressed genes with

a small variance.

Note that the proportion of non-differentially expressed genes with a small variance (m1
0)

is unknown in the case study. Mixture modeling approach (Delmar et al., 2003; Manda et al.,

2007) have been proposed to estimate this proportion. None of the methods considered in

the simulation study takes this proportion into consideration. The possibility of choosing the

fudge factor with the information of the proportion of small variance genes and of modifying

the test statistics for genes with different variances should be explored further. The aim of
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such an approach would be to achieve a good balance between the control of the FDR and

power.
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