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including the effect of core-mantle friction
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Aveiro, Portugal
bAstronomie et Systèmes Dynamiques, IMCCE-CNRS UMR8028, Observatoire de Paris,

UPMC, 77 Av. Denfert-Rochereau, 75014 Paris, France

Abstract

The rotation of Mercury is presently captured in a 3/2 spin-orbit reso-

nance with the orbital mean motion. The capture mechanism is well under-

stood as the result of tidal interactions with the Sun combined with plan-

etary perturbations (Goldreich and Peale, 1966; Correia and Laskar, 2004).

However, it is now almost certain that Mercury has a liquid core (Margot

et al., 2007) which should induce a contribution of viscous friction at the

core-mantle boundary to the spin evolution. According to Peale and Boss

(1977) this last effect greatly increases the chances of capture in all spin-

orbit resonances, being 100% for the 2/1 resonance, and thus preventing the

planet from evolving to the presently observed configuration. Here we show

that for a given resonance, as the chaotic evolution of Mercury’s orbit can

drive its eccentricity to very low values during the planet’s history, any pre-

vious capture can be destabilized whenever the eccentricity becomes lower

than a critical value. In our numerical integrations of 1000 orbits of Mercury
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over 4 Gyr, the spin ends 99.8% of the time captured in a spin-orbit reso-

nance, in particular in one of the following three configurations: 5/2 (22%),

2/1 (32%) and 3/2 (26%). Although the present 3/2 spin-orbit resonance is

not the most probable outcome, we also show that the capture probability

in this resonance can be increased up to 55% or 73%, if the eccentricity of

Mercury in the past has descended below the critical values 0.025 or 0.005,

respectively.

Key words: Mercury, spin dynamics, tides, core-mantle friction, resonance

1. Introduction

Mercury’s present rotation is locked in a 3/2 spin-orbit resonance, with

its spin axis nearly perpendicular to the orbital plane (Pettengill and Dyce,

1965). The stability of this rotation results from the solar torque on Mer-

cury’s quadrupolar moment of inertia, combined with an eccentric orbit: the

axis of minimum moment of inertia is always aligned with the direction to the

Sun when Mercury is at the perihelion of its orbit (Colombo, 1965; Goldre-

ich and Peale, 1966; Counselman and Shapiro, 1970). The initial rotation of

Mercury was presumably faster than today, but tidal dissipation along with

core-mantle friction brought the planet rotation to the present configuration,

where capture can occur. However, the exact mechanism on how this state

initially arose is not completely understood.

In their seminal work, Goldreich and Peale (1966) have shown that since

the tidal strength depends on the planet’s rotation rate, it creates an asym-

metry in the tidal potential that allows capture into spin-orbit resonances.

They also computed the capture probability into these resonances for a sin-
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gle crossing, and found that for the present eccentricity value of Mercury

(e = 0.206), and unless one uses an unrealistic tidal model with constant

torques (which cannot account for the observed damping of the planet’s li-

bration), the probability of capture into the present 3/2 spin-orbit resonance

is on the low side, at most about 7%, which remained somewhat unsatisfac-

tory.

Goldreich and Peale (1967) nevertheless pointed out that the probability

of capture could be greatly enhanced if a planet has a molten core. In 1974,

the discovery of an intrinsic magnetic field by the Mariner 10 spacecraft (Ness

et al., 1974), seemed to imply the existence of a conducting liquid core and

consequently an increment in the capture probability in the 3/2 resonance.

However, according to Goldreich and Peale (1967), this also increases the

capture probability in all the previous resonances. Peale and Boss (1977)

indeed remarked that only very specific values of the core viscosity allow to

avoid the 2/1 resonance and permit the capture in the 3/2 configuration.

More recently, Correia and Laskar (2004) (hereafter denoted by Paper I)

have shown that as the orbital eccentricity of Mercury is varying chaotically,

from near zero to more than 0.45, the capture probability is substantially

increased. Indeed, when the large eccentricity variation is factored into the

capture, the rotation rate of the planet can be accelerated, and the 3/2

resonance could have been crossed many times in the past. Performing a

statistical study of the past evolutions of Mercury’s orbit, over 1000 cases,

it was demonstrated that capture into the 3/2 spin-orbit resonant state is in

fact, and without the need of specific core-mantle effect, the most probable

final outcome of the planet’s evolution, occurring about 55.4% of the time.

3



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

In contrast, because the eccentricity can decrease to near zero, all resonances

except the 1/1 become unstable, allowing the planet to escape from reso-

nance. This mechanism suggests that in presence of core-mantle friction the

planet can escape to a previous capture in the 2/1 or higher order spin-orbit

resonances.

The present paper continues the work started in Paper I. In addition to

the effects of tides and planetary perturbations, we will consider here also

the core-mantle friction effect as described by Goldreich and Peale (1967),

since the presence of a liquid core inside Mercury is now confirmed by radar

observations (Margot et al., 2007). In the next section we give the averaged

equations of motion in a suitable form for simulations of the long-term varia-

tions of Mercury’s spin, including the resonant motion, viscous tidal effects,

core-mantle coupling and planetary perturbations. In section 3 we discuss the

consequences of each effect into the spin evolution and evaluate the capture

probabilities in resonance. Finally, in last section we perform some numerical

simulations to illustrate the different effects described in section 3.

2. Equations of motion

We will adopt here a model for Mercury which is an extension of the model

from Poincaré (1910) of a perfect incompressible and homogeneous liquid

core with moments of inertia Ac = Bc < Cc inside an homogeneous rigid

body with moments of inertia Am ≤ Bm < Cm, supported by the reference

frame (�i,�j,�k), fixed with respect to the planet’s figure. Tidal dissipation and

core-mantle friction drive the obliquity close to zero (Yoder, 1997; Correia

et al., 2003). Since we are only interested here in the study of the final
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stages of evolution (where capture in spin-orbit resonance may occur), we

will neglect the effect of the small obliquity variations on the equations of

motion. Moreover, since for a long-term study we are not interested in diurnal

nutations, we can average over fast rotation angles and merge the axis of

principal inertia and the axis of rotation (Boué and Laskar, 2006). Therefore,

the mantle rotation rate is simply given by ω = θ̇+ ϕ̇, where θ is the rotation

angle and ϕ the precession angle.

2.1. Precession torque

The gravitational potential V generated at a generic point of the space �r

is given by (e.g. Tisserand, 1891; Smart, 1953):

V(�r) = −
Gm

r
+

G(B − A)

r3
P2(�ur ·�j)

+
G(C − A)

r3
P2(�ur · �k) , (1)

where terms in (R/r)3 were neglected. G is the gravitational constant, m

the mass of Mercury, �ur = �r/r and P2(x) = (3x2 − 1)/2 is the Legendre

polynomial of degree two. When interacting with the Sun’s mass, m�, the

spin of Mercury will undergo important changes. The middle term in the

above potential will be responsible for a libration in the spin, while the last

term causes the spin axis �k to precess around �K, the normal to the orbit.

Since we are only interested in the study of the long term motion, we will

average the potential over the rotation angle θ and the mean anomaly M ,

after expanding the true anomaly v in series of the eccentricity e and mean

anomaly. However, when the rotation rate ω and the mean motion n = Ṁ
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are close to resonance (ω � pn, for a semi-integer1 value p), we must retain

the terms with argument (2θ − 2pM) in the expansion

cos(2θ − 2v)

r3
=

1

a3

+∞∑
p=−∞

H(p, e) cos(2θ − 2pM) , (2)

where a is the semi-major axis of the planet’s orbit and the function H(p, e)

is a power series in e (Tab. 1). The exact averaged contributions to the

spin are given in a suitable form for our study by expression (15) in Correia

(2006)2. For zero obliquity we have:

dω

dt
= − β

cm
H(p, e) sin 2(θ + ϕ − pM − �) , (3)

where � is the longitude of the perihelion, cm = Cm/C = 0.55 (Margot et al.,

2007), and

β =
3Gm�

2a3

B − A

C
�

3

2
n2

B − A

C
. (4)

The Mariner 10 flyby of Mercury provided information on the internal

structure of the planet, though subject to some uncertainty. For the gravity

field it has been measured J2 = (6.0±2.0)×10−5 and C22 = (1.0±0.5)×10−5

(Anderson et al., 1987). Modeling the interior structure of Mercury, it has

been estimated for the structure constant ξ = C/(mR2) � 0.3359 (Spohn

et al., 2001). Thus, for the moments of inertia we compute (B − A)/C =

4 C22/ξ � 1.2 × 10−4.

1We have retained the use of semi-integers for better comparison with previous results.
2There is a misprint in the sign of φ in Correia (2006).
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Table 1: Coefficients of H(p, e) to e7. The exact expression of these coefficients is given

by H(p, e) = 1
π

∫ π

0

(
a
r

)3
exp(i 2ν) exp(i 2pM) dM .

p H(p, e)

1/1 1 −
5

2
e2 +

13

16
e4 −

35

288
e6

3/2
7

2
e −

123

16
e3 +

489

128
e5 −

1763

2048
e7

2/1
17

2
e2 −

115

6
e4 +

601

48
e6

5/2
845

48
e3 −

32525

768
e5 +

208225

6144
e7

3/1
533

16
e4 −

13827

160
e6

7/2
228347

3840
e5 −

3071075

18432
e7

4/1
73369

720
e6

9/2
12144273

71680
e7
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2.2. Tidal torques

Tidal effects arise from differential and inelastic deformations of Mercury

due to the gravitational effect of the Sun. Their contributions to the spin

variations are based on a very general formulation of the tidal potential,

initiated by George H. Darwin (1880). The distortion of the planet gives rise

to a tidal potential,

Vg(�r, �r′) = −k2

Gm�

R

(
R

r

)3 (
R

r′

)3

P2 (�ur · �ur′) . (5)

where R is the average radius of the planet and �r′ the radial distance from

the planet’s center to the Sun. In general, imperfect elasticity will cause

the phase angle of Vg to lag behind the perturbation (Kaula, 1964), because

there is is a time delay Δt between the perturbation of the Sun and the

maximal deformation of Mercury. During that time, the planet rotates by

an angle ωΔt, while the Sun also changes its position. Assuming a constant

time delay allows us to linearize the tidal potential and simplify the tidal

equations (Mignard, 1979, 1980; Hut, 1981). For zero obliquity, the averaged

contributions to the spin are then given by:

dω

dt
= −K

cm

⎡
⎢⎣Ω(e)

ω

n
− N(e)

⎤
⎥⎦ , (6)

where

Ω(e) =
1 + 3e2 + 3e4/8

(1 − e2)9/2
, (7)

N(e) =
1 + 15e2/2 + 45e4/8 + 5e6/16

(1 − e2)6
, (8)
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K = n2 3 k2

ξ Q

(
m�

m

) (
R

a

)3

, (9)

and Q−1 = nΔt. This tidal model is particularly adapted to describe the

planets behavior in slow rotating regimes (ω ∼ n), which is the case of

Mercury during the spin-orbit resonance crossing. In the present work we

will adopt k2 = 0.4 and Q = 50, which yields K = 2.2 × 10−5 yr−2. This

choice is somewhat arbitrary, but based on the parameter values of the other

terrestrial planets (Goldreich and Soter, 1966).

2.3. Core-mantle friction effect

The Mariner 10 flyby of Mercury revealed the presence of an intrinsic

magnetic field, which is most likely due to motions in a conducting fluid core

(for a review see Ness, 1978). Subsequent observations made with Earth-

based radar provided strong evidence that the mantle of Mercury is decoupled

from a core that is at least partially molten (Margot et al., 2007).

If there is slippage between the liquid core and the mantle, a second

source of dissipation of rotational energy results from friction occurring at

the core-mantle boundary. Indeed, because of their different shapes and

densities, the core and the mantle do not have the same dynamical ellipticity

and the two parts tend to precess at different rates (Poincaré, 1910). This

tendency is more or less counteracted by different interactions produced at

their interface: the torque of non-radial inertial pressure forces of the mantle

over the core provoked by the non-spherical shape of the interface; the torque

of the viscous friction (or turbulent) between the core and the mantle; and

the torque of the electromagnetic friction, caused by the interaction between

electrical currents of the core and the bottom of the magnetized mantle. The

9
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two types of friction torques (viscous and electromagnetic) depend on the

differential rotation between the core and the mantle and can be expressed

by a single effective friction torque, Υ (Mathews and Guo, 2005; Deleplace

and Cardin, 2006):

Υ = Ccκ δ ; δ = ω − ωc , (10)

where κ is an effective coupling parameter, ωc the core’s rotation rate and

cc = Cc/C = 1−cm = 0.45 (Margot et al., 2007). According to Mathews and

Guo (2005) we may write κ � 2.62
√

νω/Rc, where Rc is the core radius and ν

is the effective kinematic viscosity of the core. Adopting Rc/R = 0.77± 0.04

(Spohn et al., 2001) and ν = 10−6m2s−1, we compute for the 3/2 resonance:

κ = 5 × 10−5 yr−1. The uncertainty over ν is very large, according to Lumb

and Aldridge (1991) it can cover about 13 orders of magnitude. As in former

studies on planetary evolution (Yoder, 1997; Correia and Laskar, 2001, 2003),

we used the same value as the best estimated so far for the Earth (Gans, 1972;

Poirier, 1988).

Another important consequence of core-mantle friction is to tilt the equa-

tor of the planet to the orbital plane, which results in a secular decrease of

the obliquity (Rochester, 1976; Correia, 2006), reinforcing the previous as-

sumption that the obliquity remains close to zero during the last evolutionary

stages.

Since the core and the mantle are decoupled, we need a differential equa-

tion for each rotation rate, the coupling equation being given by the friction

torque (Peale, 2005; Correia, 2006):

dω

dt
= −ccκ

cm
δ and

dωc

dt
= κ δ . (11)

10
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2.4. Planetary perturbations

When considering the perturbations of the other planets, the eccentricity

of Mercury is no longer constant, but undergoes strong chaotic variations

in time (Laskar, 1990, 1994, 2008). These variations can be modeled using

the averaging of the equations for the motion of the Solar System, that have

been compared to recent numerical integrations, with very good agreement

(Laskar et al., 2004a,b). These equations are obtained by averaging the

equations of motion over the fast angles that are the mean longitudes of the

planets. The averaging of the equation of motion is obtained by expanding

the perturbations of the Keplerian orbits in Fourier series of the angles, where

the coefficients themselves are expanded in series of the eccentricities and

inclinations. This averaging process was conducted in a very extensive way,

up to second order with respect to the masses, and through degree five in

eccentricity and inclination, leading to truncated secular equations of the

Solar System of the form

dw

dt
= i [Γw + Φ3(w, w̄) + Φ5(w, w̄)] , (12)

where w is the column vector (z1, ..., z8, ζ1, ..., ζ8), with zj = ej exp(i�j), ζj =

sin(Ij/2) exp(iΩj) and � and Ω, respectively the longitude of the perihelion

and node. The 16×16 matrix Γ is the linear Lagrange-Laplace system, while

Φ3(w, w̄) and Φ5(w, w̄) gather terms of degree 3 and 5 respectively.

The system of equations thus obtained contains some 150000 terms, but

its main frequencies are now the precession frequencies of the orbits of the

planets. The full system can thus be numerically integrated with a very large

step-size of 250 years. Contributions due to the secular perturbation of the

11
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Moon and general relativity are also included (for more details and references

see Laskar, 1990, 1996; Laskar et al., 2004a).

This secular system is then simplified and reduced to about 50000 terms,

after neglecting terms of very small value (Laskar, 1994). Finally, a small

correction of the terms appearing in Γ (Eq.12), after diagonalization, is per-

formed in order to adjust the linear frequencies, in a similar way as it was

done by Laskar (1990). The secular solutions are very close to the direct

numerical integration La2004 (Laskar et al., 2004a,b) over about 35 Myr, the

time over which the direct numerical solution itself is valid because of the

imperfections of the model. It is thus legitimate to investigate the diffusion

of the orbital motion of Mercury over long times using the secular equations.

Over several millions years, the eccentricity of Mercury presents signifi-

cant variations (Fig.1) that need to be taken into account in the resonance

capture process (Paper I).

3. Spin evolution and capture probabilities

The evolution of the spin for zero obliquity is completely described when

we put together the contributions from the different effects presented in sec-

tion 2: ⎧⎪⎪⎨
⎪⎪⎩

ω̇ = P + T − Υ/Cm ,

ω̇c = Υ/Cc ,

(13)

where P is the precession torques (Eq.3), T the tidal torque (Eq.6) and Υ the

friction torque (Eq.10). In order to better study the capture probabilities in

spin-orbit resonances, we will adopt a change of variables that is valid around

12
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each resonance p:

γ = θ + ϕ − pM − � , (14)

and thus,

γ̇ = ω − pn − �̇ and γ̈ = ω̇ − �̈ . (15)

In absence of planetary perturbations, for a Keplerian orbit, �̇ = 0 and thus

γ̈ = ω̇. Instead of the core rotation ωc we will also adopt the differential

rotation δ = ω−ωc as variable. The above system of equations (13) becomes

then: ⎧⎪⎪⎨
⎪⎪⎩

γ̈ = P(γ) + T(γ̇) − ccκmδ − �̈ ,

δ̇ = P(γ) + T(γ̇) − κmδ ,

(16)

where κm = κ/cm. In general, we like to express γ̈ as the sum of the precession

torque P(γ) and a global dissipative torque D(γ̇) such that

γ̈ = −βm sin 2γ + D(γ̇) , (17)

where

βm =
β

cm
H(p, e) (18)

and

D(γ̇) = −D0

⎛
⎜⎝V + μ

γ̇

n

⎞
⎟⎠ , (19)

D0, V and μ being “constant” quantities. Indeed, under this linearized form

we are able to estimate the capture probabilities using a simple expression

derived by Goldreich and Peale (1966):

Pcap = 2

[
1 +

π

2

n

Δω

V

μ

]−1

, (20)

where Δω is the maximal amplitude of libration in resonance, i.e., Δω =
√

2βm.

13
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3.1. Effect of tides

Let us consider first the simplified case where the spin of the planet is

only subject to the precession and tidal torques (Goldreich and Peale, 1966).

Thus, we may use expression (17) to express γ̈, where D(γ̇) is given by

expression (6):

D(γ̇) = T = −K

cm
Ω(e)

⎡
⎢⎣p − E(e) +

γ̇

n

⎤
⎥⎦ , (21)

with E(e) = N(e)/Ω(e). The limit solution of the rotation for a constant

value of the eccentricity is obtained when D(γ̇) = 0, that is, for γ̇/n =

E(e) − p ⇔ ω/n = E(e). If the planet encounters a spin-orbit resonance in

the way to the equilibrium position, capture may occur with a probability

computed from expression (20):

Pcap = 2
[
1 +

π

2

n

Δω
(p − E(e))

]−1

. (22)

Using the present value of the eccentricity of Mercury and cm = 1 we compute

for the p = 3/2 resonance a probability of capture of about 7%, which is

unsatisfactory given that this is the presently observed resonant state.

3.2. Effect of core-mantle friction

We now add the effect of core-mantle friction to the effects already con-

sidered in the previous section. In this case we must take into account the

rotation of the core, and the complete rotation rate evolution is given by

system (16) with �̈ = 0.

The general solution for the differential rotation in system (16) is given

by:

δ(t) = δ0 e−κmt + e−κmt
∫ t

t0
[P(γ) + T(γ̇)] eκmt′dt′ , (23)
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where δ0 is the initial value of δ(t) for t = t0. In section 2.3 we estimate for

the present rotation of Mercury 1/κm � 104 yr, which can be seen as the time

scale needed to damp the initial differential rotation δ0 to zero. Thus, for

t � 1/κm the evolution of the differential rotation is given only by the last

term is expression (23). It also means that for time intervals Δt � 1/κm, we

can write for t < t0 + Δt:

δ(t) � δ0 +
∫ t

t0
γ̈ dt′ , (24)

that is,

δ(t) � δ0 + γ̇ − γ̇0 = γ̇ − γ̇c0 , (25)

where γ̇c0 = γ̇0 − δ0 = ωc0 − pn, and ωc0 is the value of the core rotation for

t = t0. This approximation is very useful because we can express γ̈ by means

of expression (17) with

D(γ̇) = −K

cm
Ω(e)

⎡
⎢⎣p − E(e) +

γ̇

n

⎤
⎥⎦ −

ccκ

cm

(γ̇ − γ̇c0)

= −K

cm
Ω(e)

⎡
⎢⎣p − E(e) − χ

γ̇c0

n
+ (1 + χ)

γ̇

n

⎤
⎥⎦ , (26)

where χ = ccκn/[KΩ(e)]. It allows us easily to compute the capture proba-

bilities using expression (20) provided that we are able to estimate correctly

γ̇c0 just before the planet crosses the resonance:

Pcap = 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 +

π

2

n

Δω

p − E(e) − χ
γ̇c0

n

1 + χ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

. (27)
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According to expression (11) we have ω̇c = κ δ. Since κ � Δω, the core is

unable to follow the periodic variations in the mantle’s rotation rate. Thus,

only the secular variations on the mantle will be followed by the core and we

may write: ωc = ω − δ, where ω is the averaged rotation of the mantle and

δ � e−κmt
∫ t

t0
T eκmt′dt′ �

T

κm

. (28)

Just before crossing the pth spin-orbit resonance we have ω0 = pn + 2Δω/π,

and thus

γ̇c0 = ωc0 − pn = ω0 − δ − pn

=
2

π
Δω −

T

κm

� 2

π
Δω +

KΩ(e)

κ
[p − E(e)] . (29)

When using the present eccentricity of Mercury and the values of κ and

K estimated in previous sections, we compute χ = 19.5. Substituting this

into expression (27) we obtain a probability of capture of 100% in the 3/2

spin-orbit resonance. However, as noticed by Peale and Boss (1977), if we

compute the probability for the 2/1 resonance we also get 100%. Thus, either

the planet started its rotation below the 2/1 resonance, which is unlikely, or

there must be another mechanism to avoid capture in the 2/1 and higher

order resonances.

3.3. Effect of planetary perturbations

The orbital eccentricity of Mercury undergoes important secular pertur-

bations from the other planets (Fig.1) and its contribution needs to be taken

into account. The mean value of the eccentricity is ē = 0.198, slightly lower
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than the present value e � 0.206, but we also observe a wide range for the

eccentricity variations, from nearly zero to more than 0.45 (Paper I, Laskar,

2008). Even if some of these episodes do not last for a long time, they will

allow additional capture into and escape from spin-orbit resonances. More-

over, the capture probabilities are also modified for different eccentricities:

for the same resonance we can have zero or 100% of captures depending on

the eccentricity value (Fig.2). For all resonances, the capture probability

is 100% whenever the eccentricity is close to the equilibrium value for the

rotation rate, E(e) = N(e)/Ω(e) (Eq.21), but it tends to decrease as the

eccentricity moves away from this equilibrium value. If the eccentricity is

too high (or too low if the spin is increasing from lower rotation rates) some

resonances cannot be reached and the probability of capture suddenly drops

to zero (Fig.2).

For a non-constant eccentricity e(t), the limit solution of the rotation rate

when D(γ̇) = 0 (Eq.17) is no longer ω/n = E(e), but more generally:

ω(t) =
1

g(t)

∫ t

0

K

cm

[
N(e(τ)) − ccκ

K
δ(τ)

]
g(τ) dτ , (30)

where

g(t) = exp
(

K

cmn

∫ t

0
Ω(e(τ)) dτ

)
. (31)

The dissipation torques can thus drive the rotation rate several times across

the same spin-orbit resonance, increasing the chances of capture.

Another important consequence of a non-constant eccentricity is that all

resonances but the 1/1 may become unstable. Indeed, the amplitude of the

libration torque depends on the coefficient H(p, e) (Eq.3), which goes to zero

with the eccentricity, except for the 1/1 resonance (Tab.1). Whenever the
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Table 2: Critical eccentricity ec for the resonance p. If e < ec, the resonance p becomes

unstable, and the solution may escape the resonance (Paper I). The critical eccentricity

ec is obtained when βH(p, e) < K[Ω(e)p − N(e)].

p ec

5/1 0.211334

9/2 0.174269

4/1 0.135506

7/2 0.095959

3/1 0.057675

5/2 0.024877

2/1 0.004602

3/2 0.000026

1/1 −

amplitude of the libration restoration torque becomes smaller than the ampli-

tude of the dissipation torque, equilibrium in the spin-orbit resonance can no

longer be sustained and the resonance is destabilized. Critical eccentricities

for each resonance are listed in Table 2, obtained when the torques become

equivalent (Eqs.3,6):
Ω(e)p − N(e)

H(p, e)
=

β

K
. (32)

4. Numerical simulations

We will now use the dynamical equations established in section 2 to sim-

ulate the final evolution of Mercury’s spin by performing massive numerical
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integrations. The main goal is to illustrate the effects described in section 3,

in particular the probabilities of capture and escape from spin-orbit reso-

nances. Mercury geophysical models and parameters in use are those listed

in section 2. We recall here the most uncertain values: k2 = 0.4, Q = 50 and

ν = 10−6m2s−1.

4.1. Simulations without planetary perturbations

Before considering the effect of planetary perturbations we can test nu-

merically the theoretical estimates of the capture probability given by expres-

sions (22) and (27). Since capture in resonance is a statistical process we need

to perform many integrations with slightly different initial conditions. For

that purpose we ran 2000 simulations using a fixed eccentricity (e = 0.206),

initial rotation period of 2 days, zero obliquity and different initial libration

phase angles with step-size of π/1000 rad. Results are listed in Table 3.

We can see that there is a good agreement between the theoretical previsions

and the numerical estimation of the probabilities. As discussed in sections 3.1

and 3.2 the probability of capture when considering only the effect of tides

is very small (∼ 7% for the 3/2 resonance), while it becomes very important

when core-mantle friction is added (100% for the 3/2 resonance). They are

also in conformity with those obtained in the previous studies by Goldreich

and Peale (1967) and Peale and Boss (1977). As they all noticed, when the

effect from core-mantle friction is considered, the probabilities of capture are

greatly enhanced for all spin-orbit resonances. In particular, capture in the

2/1 resonance also becomes 100%, preventing a subsequent evolution to the

3/2 resonance.

19



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Table 3: Capture probabilities in several spin-orbit resonances (in percentage). In the left

panel (T only) we consider the effect of tides alone, while in the right panel (T + CMF)

both tides and core-mantle friction effects are taken into account. The first column (Pcap)

refers to the theoretical estimation given by expression (20), while the next column (num.)

refers to the estimation obtained running a numerical simulation with 2000 close initial

conditions, differing by π/1000 in the libration angle. Planetary perturbations are not

considered and we used a constant eccentricity e = 0.206.

T only T + CMF

p Pcap num. Pcap num.

(%) (%) (%) (%)

5/1 − − 1.6 0.3

9/2 − − 3.1 1.3

4/1 0.1 − 5.9 4.8

7/2 0.1 0.1 11.4 10.9

3/1 0.3 0.4 22.6 22.8

5/2 0.7 1.4 46.6 46.2

2/1 1.8 1.7 100.0 100.0

3/2 7.7 7.2 100.0 100.0
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4.2. Inclusion of planetary perturbations

When planetary perturbations are taken into account, the eccentricity

presents chaotic variations with many excursions to higher and lower values

than today (Laskar, 1990, 1994, 2008, Paper I). It is then impossible to

know its exact evolution at the time the planet first encountered the spin-

orbit resonances. A statistical study with many different orbital solutions

is the only possibility to get a global picture of the past evolution of the

spin of Mercury. In Paper I we performed such a study by integrating 1000

orbits over 4 Gyr in the past starting with very close initial conditions. This

statistical study was only made possible by the use of the averaged equations

for the motion of the Solar System (Laskar, 1990, 1994).

In figure 3 we show five examples of the eccentricity evolution through

the 4.0 Gyr. We choose some cases illustrative of the chaotic behavior, where

we can see that the eccentricity can be as small as zero, but it can also

reach values as high as 0.5. In some cases the eccentricity can remain within

[0.1, 0.3] throughout the evolution, while in other cases it can span the whole

interval [0, 0.5] (Laskar, 2008).

Owing to the chaotic evolution, the density function of the 1000 solu-

tions over 4 Gyr is a smooth function (Fig.4), well approximated by a Rice

probability distribution (Laskar, 2008). The eccentricity excursions to higher

values allow the planet to cross the 3/2 resonance several times, and thus

increase the probability of capture. This behavior becomes very important

if the evolution is driven by tidal friction alone. Even though the probability

of capture in a single crossing of the 3/2 spin-orbit resonance is only around

7%, multiple crossings increase it up to 55% (Paper I).
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4.3. Planetary perturbations with core-mantle friction

In presence of an efficient core-mantle friction the multiple crossings of

the 3/2 resonance are no longer needed, since the capture in this resonance

after a single crossing is already 100% (Fig.2). Nevertheless, eccentricity

excursions to lower values can destabilize the equilibrium in any spin-orbit

resonance different from the 1/1 (Tab.2). This effect was already present

when the core-mantle friction was not considered (Paper I), but with small

influence on the results, while here it becomes of capital importance. Indeed,

it may allow the evasion from previous captures in higher order resonances

than the 3/2 and permit subsequent evolution to the present observed spin

state.

In order to check this new scenario, we have performed a statistical study

of the past evolutions of Mercury’s orbit, with the integration of the same

1000 orbits over 4 Gyr in the past used in Paper I. We now additionally

include the effect of core-mantle friction as described by Goldreich and Peale

(1967), i.e., we will consider the full dynamics of the spin governed by Eq.(13).

Assuming an initial rotation period of Mercury of 10 h, we estimated that

the time needed to de-spin the planet to the slow rotations would be about

300 million years. We will then start our integrations already in the slow-

rotation regime, with a rotation period of 10 days (ω � 8.8n), zero obliquity

and a starting time of −4 Gyr, although these values are not critical. In

Table 4 we show the amount of captures for each resonance at the end of the

simulations (column “final”). We also list the resonances in which the spin

was first captured before being destabilized (column “1stcap.”) and we recall

the results obtained for a constant eccentricity (e = 0.206) and in Paper I,
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with a model without core-mantle friction.

After running 1000 trajectories we observe that the spin of Mercury

preferably chooses one of the three final configurations: 5/2, 2/1 or 3/2

(Tab.4). With 26% of captures, the present configuration no longer repre-

sents the most probable final outcome, as it was in absence of core-mantle

friction (Paper I). However, it is still among the most probable scenarios, the

alternatives receiving comparable amounts of captures (22% and 32% respec-

tively for the 5/2 and the 2/1 resonances). The 5/2 and the 2/1 spin-orbit

resonances benefit from the fact that the planet must cross them first. On

the other hand, the 3/2 resonance is more stable and the chances of capture

are higher when crossed.

Since the eccentricity of Mercury 4.0 Gyr ago can be around 0.4 (e.g.

Fig.3), at the moment of the first encounter with the spin-orbit resonances,

capture in resonances as high as the 6/1 can occur (Fig.2). Because the prob-

ability of capture is small and because there are not many orbital solutions

reaching such high values for the eccentricity, we only count about 10% of

captures in resonances above or equal to the 4/1 (Tab.4). Once captured,

these equilibria can be maintained as long as the eccentricity remains above

the respective critical values (Tab.2).

Contrary to the results predicted for a constant eccentricity (Tab.4), we

also registered a few trajectories directly captured in the 3/2 resonance just

after the first passage through the resonance area. When we used the present

value of the eccentricity (e = 0.206), the 3/2 resonance could not be at-

tained because for that value capture probability in the 2/1 resonance is

100% (Fig.2). However, for eccentricity values lower than about 0.19, the

23



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Table 4: Capture probabilities in several spin-orbit resonances (in percentage). We per-

formed a statistical study of the past evolutions of Mercury’s spin, with the integration

of 1000 orbits over 4Gyr, a initial rotation period of 10 days and zero obliquity. In the

“1stcap.” column we list the resonances in which the spin was first captured (before being

destabilized). In the “final” column we list the results after the full 4Gyr of simulations.

For comparison we also list the results obtained with a constant eccentricity e = 0.206

(“const.”) and the final results obtained in Paper I (“C&L04” ), with a model without

core-mantle friction.

number of captures

p const. 1stcap. final C&L04

(%) (%) (%) (%)

6/1 − 0.1 − −
11/2 − 0.4 − −
5/1 0.3 1.3 − −
9/2 1.3 2.7 − −
4/1 4.7 5.3 − −
7/2 10.3 8.7 4.7 −
3/1 19.0 15.5 11.6 −
5/2 29.8 26.5 22.1 −
2/1 34.6 31.2 31.6 3.6

3/2 − 8.1 25.9 55.4

1/1 − 0.2 3.9 2.2

none − − 0.2 38.3
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probability of capture in this resonance decreases, as well as for higher order

resonances. For instance, when the eccentricity is 0.09, capture in the 2/1

resonance drops to 50%. Thus, since the eccentricity of Mercury is varying,

it may happen that about 4.0 Gyr ago its value was much lower than today

and the spin managed to avoid all the spin-orbit resonances higher than the

3/2 and was directly captured in the present observed configuration. We

estimate nevertheless that the probability for this scenario to occur is very

low, only about 8% (Tab.4).

4.4. Critical eccentricities

Over 4.0 Gyr of evolution the eccentricity has many chances of experienc-

ing a period of very small values (e.g. Fig.3). Even when a period of low

eccentricity does not last for a long time, a single passage of the eccentricity

below a critical value (Tab.2) can be enough to destabilize the corresponding

spin-orbit resonance.

All orbital solutions were generated starting from initial conditions close

to the present values (see Laskar, 2008), and therefore converge to the same

final evolution. The eccentricity behavior is thus identical for the last 50-

60 Myr (Fig.1), before which the chaotic diffusion dominates (Fig.5). During

the last 50 Myr the eccentricity certainly reached values lower than 0.13,

thus the 4/1 and above spin-orbit resonances cannot represent a possible

final outcome for Mercury (e4/1 ≈ 0.136). For the 7/2 and lower order spin-

orbit resonances, capture until the present day is not forbidden by the last

50 Myr of Mercury’s evolution, but depends on the true orbital evolution

of the eccentricity (Fig.5). The higher is the critical eccentricity, the lower

is the probability of remaining trapped, because more orbital solutions will
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come below this value.

In figure 6 we plot the cumulative distribution of the minimal eccen-

tricities attained for each one of the 1000 orbital solutions that we used.

We also mark with straight lines the critical values of the eccentricity for

each spin-orbit resonance (Tab.2) and use dots to represent the amount of

captures obtained numerically for spin-orbit resonances that are still sta-

ble below each critical value of the eccentricity. Since a large amount of

the orbital solutions experience at least one episode with an eccentricity be-

low 0.05 (log10 e ≈ −1.3), about 84% of the final evolutions will end in the

5/2 spin-orbit resonance or lower (Tab.4). By comparing the eccentricity

instability thresholds for each spin-orbit resonance with the amount of cap-

tures obtained numerically below that resonance we see that there is a good

agreement, suggesting a strong correlation between the orbital evolution of

the eccentricity and the percentage of captures in each resonance. The rea-

son why there is not full agreement between the two is because spin-orbit

resonances below critical values of the eccentricity can also be attained by

trajectories that escaped capture in higher order resonances, that is, they

can be attained even if the eccentricity is never below the critical value for

that resonance (Fig.2).

When comparing the results after 4.0 Gyr with those after the first cap-

ture, we verify that the 5/2 resonance (and above) lose a significant amount

of previously captured solutions. The amount of orbits captured in the 2/1

resonance remains roughly the same, because the number of trajectories quit-

ting this resonance is more or less compensated by the incoming trajectories

from higher order resonances. The 3/2 is the real winner of this transition

26



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

process, as the amount of trajectories that end in this last configuration is

about 4 times larger than it was initially. An identical scenario was already

observed in Paper I, except that only a few captures occurred in spin-orbit

resonances higher than the 2/1 and they were all subsequently destabilized

(Tab.4).

As in Paper I, we also noticed about 4% of the trajectories captured in

the 1/1 spin-orbit resonance (Tab.4). Since the probability of capture in

the 3/2 spin-orbit resonance is almost 100% even for very low values of the

eccentricity (Fig.2), the major possibility of evolving into the 1/1 resonance

is by destabilizing the 3/2. This becomes a possibility if the eccentricity is

almost zero, that is, for e < 3 × 10−5 (Tab.2).

4.5. Different scenarios of evolution

The critical eccentricity needed to destabilize the 2/1 spin-orbit resonance

is e2/1 ≈ 0.0046 (Tab.2). Whenever the orbital eccentricity is below this

value, the spin will then evolve towards the 3/2 resonance or below (Fig.7).

However, this is not the only possibility of achieving this last configuration if

the planet was first captured in a higher-order resonance. Indeed, as discussed

for the 1st capture column (Tab.4), if the eccentricity is lower than 0.19 at

the time the planet crosses the 2/1 resonance (Fig.2), the chances of capture

are lower than 100%, opening some space for subsequent evolution to the

3/2 resonance. For instance, for a previous capture in the 5/2 resonance,

an eccentricity of e5/2 ≈ 0.025 will destabilize it and produce a capture

probability of only 14.4% in the 2/1 resonance, i.e., when the 5/2 resonance

is destabilized there is about 85% of chance of ending in the 3/2 present

configuration (Fig.7).
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In order to exemplify the multitude of possible evolutionary scenarios,

we performed another kind of experiment. Adopting a particular orbital

solution, which presents a gradual decrease in the eccentricity (Fig.3a), we

integrated close initial conditions for the spin. Since for this orbital solution

the eccentricity is high at the time of the first encounter, there is a great

chance of capturing the spin in a spin-orbit resonance with p > 5/2. In

figure 7 we plot the behavior of four trajectories, each one initially captured

in a different spin-orbit resonance, when the eccentricity approaches a zone

of very low values. As expected, the spin-orbit resonances are sequentially

abandoned as the eccentricity assumes small values. In particular, we observe

that the resonances are quit immediately after the eccentricity is below the

critical values listed in Table 2. After being destabilized, the spin can evolve

directly to the present 3/2 configuration, or can be trapped in an intermediate

spin-orbit resonance. In this example, the eccentricity become lower than

e2/1 ≈ 0.0046 around −1.79 Gyr and captures in the 2/1 resonance become

destabilized after that date.

We purposely plot one situation, where the spin does not end in the 3/2

resonance, however. In this case, at the moment the eccentricity becomes

lower than e2/1, the spin is still captured in the 5/2 resonance. This resonance

logically becomes destabilized and the rotation rate decreases. Nevertheless,

at the moment the spin encounters the 2/1 resonance the eccentricity is again

higher than e2/1, and therefore there is a chance of capture in this resonance,

preventing a subsequent evolution toward the 3/2 state (Fig.7).
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4.6. Constraints on the orbital evolution

We have seen in previous sections that there is an important correlation

between the minimal eccentricity attained by Mercury through its orbital

evolution and the probability of capture in a given resonance (Fig.6). The

lower is the minimal eccentricity, the higher is the probability of achieving

a low order spin-orbit resonance. In particular, each time the eccentricity

descends below a given critical value for a spin-orbit resonance (Tab.2), the

spin will evolve into a lower resonance.

Since we know the distribution of the minimal eccentricities (Fig.6), we

can estimate the probability of ending in a specific spin-orbit resonance given

the value of the minimal eccentricity of a considered orbit, Pcap/ec
. For that

purpose we eliminate all the trajectories for which the minimal eccentricity

is above the critical value (Tab.2) and then count the number of captures

in each resonance for the remaining orbital solutions. Results are listed in

Table 5. While for an arbitrary orbital solution the probability of capture

in the present 3/2 spin-orbit resonance is only 25.9%, this value rises to

55.1% if we assume that the eccentricity of Mercury was below e5/2 ≈ 0.025

at some time in the past, or even up to 73.2% if the eccentricity descends

below e2/1 ≈ 0.0046. Results for the critical eccentricity e4/1 ≈ 0.136 are

the same as the global results shown in Table 4, because the eccentricity of

Mercury was below that value in the most recent 50 Myr, where the chaotic

behavior is not significant (Fig.5). Notice also that there are always a few

captures left in resonances above the corresponding critical value. This can

be explained by the same effect described in the last paragraph of section 4.5

and illustrated in figure 7.
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Table 5: Capture probabilities in spin-orbit resonances (in percentage), when the eccen-

tricity descends below a given critical value (Tab.2).

p e3/2 e2/1 e5/2 e3/1 e7/2 e4/1

7/2 − − 1.2 2.6 3.8 4.7

3/1 − 2.0 4.2 7.2 10.7 11.6

5/2 − 3.2 5.2 16.0 20.7 22.1

2/1 3.1 5.4 23.9 30.5 32.6 31.6

3/2 25.0 73.2 55.1 37.2 27.7 25.9

1/1 68.8 15.4 9.7 6.1 4.2 3.9

none 3.1 0.7 0.5 0.3 0.2 0.2

Inversely, since we know that the rotation of Mercury is presently cap-

tured in the 3/2 spin-orbit resonance, we can estimate the probability for

the eccentricity to have descended during its past evolution below a specific

critical level, Pec
. Using conditional probabilities, we have then

Pec
=

Pcap/ec
× Porb

Pcap

, (33)

where Pcap/ec
is the probability of ending in a specific spin-orbit resonance

given the value of the minimal eccentricity (Tab.5), Porb the probability for

the eccentricity to reach that minimal eccentricity (Fig.6) and Pcap the global

capture probability in the specific spin-orbit resonance (Tab.4). Results for

the 3/2 spin-orbit resonance are given in Table 6. These probabilities for

the orbital evolution of the eccentricity are the same as if we select only the

evolutions that finished in the 3/2 spin-orbit resonance and then look at the

minimal eccentricity distribution. From the above analysis we conclude that
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Table 6: Probability for the eccentricity of Mercury to have descended below a specific

critical level (Pec
) given that its rotation is captured in the 3/2 spin-orbit resonance

today. Results for each critical eccentricity ec (Tab.2) are obtained from Eq.(33) with

Pcap = 25.9% (Tab.4).

P e3/2 e2/1 e5/2 e3/1 e7/2 e4/1

Pcap/ec
25.0 73.2 55.1 37.2 27.7 25.9

Porb 3.2 27.1 40.3 64.5 99.7 100.0

Pec
3.1 76.6 85.7 92.6 98.8 100.0

there is a strong probability that the eccentricity of Mercury reached very

low values; in particular there is about a 77% chance that it descended below

e2/1 ≈ 0.0046 (but only a 3% chance of going below e3/2 ≈ 0.00003).

5. Conclusions

Due to the increasing evidence of a molten core inside Mercury (Ness

et al., 1974; Margot et al., 2007), viscous friction at the core-mantle bound-

ary is expected and its consequences to the spin must be taken into account.

An important consequence is a considerable increase in the probability of

capture for all spin-orbit resonances; in particular, for the 2/1 and the 3/2 it

can reach 100% (Peale and Boss, 1977). Since it is believed that Mercury’s

initial rotation was much faster than today, a destabilization mechanism is

then required to allow the planet to escape from the 2/1 and higher order

resonances and subsequently evolve to the present observed 3/2 configura-

tion.
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With the consideration of the chaotic evolution of the eccentricity of Mer-

cury we show that such destabilization mechanism exists whenever the ec-

centricity becomes smaller than a critical value for each spin-orbit resonance

(Tab.2). This mechanism was already described in Paper I, but becomes of

capital importance when core-mantle friction is taken into account. There

are two main possibilities to evolve into the 3/2 configuration:

• The eccentricity becomes lower than the critical value for the 2/1 spin-

orbit resonance (e2/1 ≈ 0.005) and evolves into the 3/2.

• The eccentricity becomes lower than the critical value for a higher or-

der resonance than the 2/1, and then crosses this resonance with an

eccentricity lower than e < 0.19. This allows a non zero probability of

escaping the 2/1 resonance, and subsequent evolution into the 3/2.

The other mechanism of capturing in the 3/2 resonance described in Pa-

per I, consisted in a returning to the 3/2 spin-orbit resonance after an increase

in the eccentricity. This effect is not as important when we take into account

core-mantle friction, since the most part of the trajectories are captured in

resonance after a single passage.

After running 1000 orbital solutions, starting from 4 Gyr in the past until

they reached the present date, the spin of the planet was captured in a spin-

orbit resonance 99.8% of the time. The main resonances to be filled and the

respective probability were (Tab.4):

P5/2 = 22.1%, P2/1 = 31.6%, P3/2 = 25.9% . (34)
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Although in this case the present configuration no longer represents the most

probable final outcome, as it was in absence of core-mantle friction (Paper I),

it is still among the most probable scenarios.

Moreover, if we assume that at some time in the past, the eccentricity

of Mercury becomes lower than e5/2 ≈ 0.025 or e2/1 ≈ 0.005 respectively,

the probability of reaching the 3/2 spin-orbit resonance rises to 55% and

73% respectively (Table 5). Given that Mercury is presently trapped in the

3/2 configuration, we can also estimate that the eccentricity of Mercury has

known at least one period of very low eccentricity during its past evolution,

with about 86% and 77% of chances of being below e5/2 ≈ 0.025 and e2/1 ≈
0.005 respectively (Table 6).

The probability of capture in the 3/2 resonance can also be increased

if the orbital eccentricity experiences more periods near zero. This can be

achieved if we use direct integration of the Solar System instead of the av-

eraged equations, because the true eccentricity is expected to undergo some

additional small variations around the value obtained for the averaged equa-

tions (Laskar, 2008). Alternatively, the probability of capture in the 3/2 reso-

nance can still be increased if we are able to increase the critical eccentricities

that destabilize spin-orbit resonances (Tab.2). This can be achieved if the

tidal dissipation is stronger (k2 > 0.4 and/or Q < 50) or if C22 < 1.0 × 10−5

(Eq.32).

Lower values for the core effective viscosity, ν, will not change the critical

eccentricities, but will decrease the amount of captures for all spin-orbit

resonances. As a consequence, it becomes easier to escape from the capture

in spin-orbit resonances, and all those trajectories that also escape the 3/2
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resonance can be later trapped there when the eccentricity experiences a

period with e > 0.325 (Paper I). We then believe that the true scenario

for the evolution of the spin of Mercury may be somewhere between the

scenario described here, with an efficient core-mantle friction effect, and the

scenario described in Paper I, for a total absence of core-mantle friction. In

the future, different dissipative parameters and models could be tested as

well as the effect of the obliquity, that was supposed to be zero in the present

study.
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Figure 1: Evolution of Mercury’s eccentricity over 50 Myr in the past (Laskar et al.,

2004a,b).

Figure 2: Probability of capture in some spin-orbit resonances for different values of the

eccentricity, under the effect of tides and core-mantle friction (Eq.27). The dashed line

corresponds to a planet increasing its spin from slower rotation rates, while the solid

line corresponds to a planet de-spinning from faster rotation rates. For all resonances,

capture probability is 100% whenever the eccentricity is close to the equilibrium value for

the rotation rate, ω/n = E(e) (Eq.21). It suddenly decays to zero when the equilibrium

rotation rate falls outside the resonance width, i.e., the tidal evolution prevents the planet

from crossing the resonance.

Figure 3: Some examples of the possible variations of the eccentricity of Mercury through

the past 4.0Gyr. The eccentricity can be as small as zero, but it can also reach values

as high as 0.5. In some cases the eccentricity can remain within [0.1, 0.3] throughout the

evolution, while in other cases it can span the whole interval [0, 0.5]. All these solutions

converge to the known recent evolution of the planet’s orbit (Fig.5).

Figure 4: Probability density function of Mercury’s eccentricity (Paper I). Values are

computed over 4 Gyr for the numerical integration of the secular equations (Laskar et al.,

2004a,b; Laskar, 2008) for 1000 close initial conditions (LA04). The mean value of the

eccentricity is ē = 0.198.
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Figure 5: Some examples of the recent evolution of the eccentricity of Mercury. During

the last 50-60Myr all the orbits present the same evolution, before which the chaos effect

takes place. Horizontal lines correspond to the critical eccentricities that destabilize the

equilibrium in a given spin-orbit resonance (Tab.2). During the last 50Myr the eccentricity

was certainly below 0.13, thus the 4/1 resonance is not a possible final outcome for Mercury.

For some orbits the eccentricity is below 0.09 in the last 100Myr and the 7/2 resonance

was also destabilized. However, since this scenario is not true for all orbital solutions, we

may expect a few final evolutions captured in this last configuration (Tab.4).

Figure 6: Cumulative distribution of the minimal eccentricities attained for the 1000

orbital solutions that we used. Straight lines represent the critical values of the eccentricity

for each spin-orbit resonance (Tab.2), while dots represent the amount of captures obtained

numerically for spin-orbit resonances that are still stable below each critical value of the

eccentricity (Tab.4).
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Figure 7: Four possible final evolutions for the spin of Mercury. Adopting a particular

orbital solution, which presents a gradual decrease in the eccentricity (Fig.3a), we inte-

grate close initial conditions for the spin. We observe that spin-orbit resonances are quit

immediately after the eccentricity is below the critical values listed in Table 2. After be-

ing destabilized, the spin can evolve directly to the present 3/2 configuration, or can be

trapped in an intermediate spin-orbit resonance. We purposely left one situation where

the spin does not end in the 3/2 resonance. At the moment the eccentricity becomes

lower than e2/1 ≈ 0.0046, the spin is still captured in the 5/2 resonance. This resonance

is then destabilized, but when the spin encounters the 2/1 resonance the eccentricity is

already higher than e2/1. Thus, there is a chance of capture in this resonance, preventing

a subsequent evolution toward the 3/2 state.
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