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SMOOTH TYPE II BLOW UP SOLUTIONS TO THE FOUR DIMENSIONAL

ENERGY CRITICAL WAVE EQUATION

MATTHIEU HILLAIRET AND PIERRE RAPHAËL

Abstract. We exhibit C∞ type II blow up solutions to the focusing energy critical wave equation
in dimension N = 4. These solutions admit near blow up time a decomposiiton

u(t, x) =
1

λ
N−2

2 (t)
(Q+ ε(t))(

x

λ(t)
) with ‖ε(t), ∂tε(t)‖Ḣ1×L2 ≪ 1

where Q is the extremizing profile of the Sobolev embedding Ḣ1 → L2∗ , and a blow up speed

λ(t) = (T − t)e−
√

|log(T−t)|(1+o(1)) as t → T.

1. Introduction

1.1. Setting of the problem. We deal in this paper with the energy critical focusing wave equation
{
∂ttu−∆u− f(u) = 0 with f(t) = t

N+2
N−2 ,

(u, ∂tu)|t=0 = (u0, u1), (t, x) ∈ R× R
N .

(1.1)

in dimension
N = 4.

This is a special case of the nonlinear wave equation

∂ttu−∆u− f(u) = 0 (1.2)

which since the pioneering works by Jörgens [10] has attracted a considerable amount of works.

For the energy critical nonlinearity f(u) = ±t
N+2
N−2 , the Cauchy problem is locally well posed in

the energy space Ḣ1 × L2 and the solution propagates regularity, see for example Sogge [35] and
references therein. Recall that in this case, (1.2) admits a conserved energy

E(u(t)) = E(u0, u1) =
1

2

∫
(∂tu)

2 +
1

2

∫
|∇u|2 ∓ N − 2

2N

∫
u

2N
N−2

which is left invariant by the scaling symmetry of the flow:

uλ(t, x) =
1

λ
N−2

2

u(
t

λ
,
x

λ2
).

Global existence in the defocusing case was proved by Struwe [38] for radial data and Grillakis [9]
for general data. For focusing nonlinearities, a sharp threshold criterion of global existence and
scattering or finite time blow up is obtained by Kenig and Merle [14] based on the solitonic solution
to (1.1):

Q(r) =

(
1

1 + r2

N(N−2)

)N−2
2

(1.3)

which is the extremizing profile of the Sobolev embedding Ḣ1 → L2∗ . Indeed, for initial data (u0, u1)
such that E(u0, u1) < E(Q, 0), those with ‖∇u0‖L2 < ‖∇Q‖L2 have global solutions and scatter,
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2 M. HILLAIRET AND P. RAPHAËL

while those with ‖∇u0‖L2 > ‖∇Q‖L2 lead to finite time blow up.
Note that like in the works by Levine [20], see also Strauss [37], and as is standard in a nonlinear
dispersive setting, blow up is derived through obstructive convexity arguments, see also Karageorgis
and Strauss [11] for refined statements near the soliton Q. However, this approach gives very little
insight into the description of the blow up mechanism and the description of the flow even just near
the ground state soliton Q is still only at its beginning.

1.2. On the energy critical wave map problem. There is an important litterature devoted to
the construction of blow up solutions for nonlinear wave equations, see e.g. Alinhac [1], and Merle
and Zaag [28], [29] for the study of the ODE type of blow up for subcritical nonlinearities. For energy
critical problems like (1.1), recent important progress has been made through the study of the two
dimensional energy critical corotational wave map to the 2-sphere:

∂ttu− ∂rru− ∂ru

r
− k2 sin 2u

2r2
= 0, (1.4)

where k ∈ N
∗ is the homotopy number. The ground state is given there by

Q(r) = 2 tan−1(rk).

After the pioneering works by Christodoulou, Tahvildar-Zadeh [4], Shatah and Tahvildar-Zadeh [36]
and Struwe [39] and their detailed study of the concentration of energy scenario, the first explicit
description of singularity formation for the k = 1 case is derived by Krieger, Schlag and Tataru [17]
who construct finite energy finite time blow up solutions of the form

u(t, x) = (Q+ ε)(t,
x

λ(t)
) with ‖ε(t), ∂tε(t)‖Ḣ1×L2 ≪ 1 (1.5)

with a blow up speed given by

λ(t) = (T − t)ν , ∀ ν > 3

2
,

see also [19]. The spectacular feature of this result is to exhibit arbitrarily slow blow up regimes
further and further from self similarity which would correspond to the –forbidden, see [39]– self
similar law

λ(t) ∼ T − t. (1.6)

Numerics suggest [3] that this blow up scenario is non generic and corresponds to finite codimensional
manifolds. After the pioneering works [34] for large homotopy number k ≥ 4, Raphaël and Rodnianski
[31] give a complete description of a stable blow up dynamics which originates from smooth data
and for all homotopy number k ≥ 1. The blow up speed obeys in this regime a universal law which

depends in an essential way on the rate of convergence of the ground state Q to its asymptotic value

π −Q ∼ 1

rk
as r → ∞,

and indeed the stable blow up regime corresponds to a decomposition (1.5) with the blow up speed

λ(t) ∼





ck
T−t

|log(T−t)|
1

2k−2
for k ≥ 2,

(T − t)e−
√

|log(T−t)| for k = 1.
(1.7)

Note that this work draws an important analogy with another critical problem, the L2 critical
nonlinear Schrödinger equation, where a similar universality of the stable singularity formation near
the ground state is proved by Merle and Raphaël in the series of papers [23], [24], [30], [25], [26],
[27].
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1.3. Statement of the result. For the power nonlinearity energy critical problem (1.1), there has
been recent progress towards the understanding of the flow near the solitary wave Q. In [15], Krieger
and Schlag construct in dimension N = 3 a codimension one manifold of initial data near Q which
yield global solutions asymptotically converging to the soliton manifold. The strategy developed
by Krieger, Schlag, Tataru in [17] for the wave map problem has been adapted in [18] to show in
dimension N = 3 the existence of finite energy finite time blow up solutions of the form

u(t, x) =
1

λ
N−2

2 (t)
(Q+ ε)(t,

x

λ(t)
) with ‖ε(t), ∂tε(t)‖Ḣ1×L2 ≪ 1

and with a blow up speed given by

λ(t) = (T − t)ν , ∀ ν > 3

2
. (1.8)

The quantization of the energy at blow up for small type II blow up solutions in dimension N ∈ {3, 5}
is proved in [6], [7] in the radial and non radial cases. In particular, for radial data, if T < +∞ and

sup
t∈[0,T ]

[
|∇u(t)|2L2 + ∂tu|2L2

]
≤ |∇Q|2L2 + α∗, α∗ ≪ 1,

then there exists a dilation parameter λ(t) → 0 as t→ T and asympotic profiles (u∗, v∗) ∈ H1 × L2

such that (
u(t, x)− 1

λ
N−2

2 (t)
Q(

x

λ(t)
), ∂tu(t)

)
→ (u∗, v∗) in Ḣ1 × L2 as t→ T,

see [27] for related classification results for the L2 critical (NLS).
These works however leave open the question of the existence of smooth type II blow up solutions.
We claim that such smooth type II blow up solutions can be constructed in dimension N = 4 as the
formal analogue of the singular dynamics exhibited by Raphaël and Rodnianski [31] for the wave
map problem in the least homotopy number class k = 1. The following theorem is the main result
of this paper:

Theorem 1.1 (Existence of smooth type II blow up solutions in dimension N = 4). Let N = 4.
Then for all α∗ > 0, there exist C∞ initial data (u0, u1) with

E(u0, u1) < E(Q, 0) + α∗

such that the corresponding solution to the energy critical focusing wave equation (1.1) blows up in

finite time T = T (u0, u1) < +∞ in a type II regime according to the following dynamics: there exist

(u∗, v∗) ∈ Ḣ1 × L2 such that
(
u(t, x)− 1

λ
N−2

2 (t)
Q(

x

λ(t)
), ∂tu(t)

)
→ (u∗, v∗) in Ḣ1 × L2 as t→ T (1.9)

with a blow up speed given by

λ(t) = (T − t)e−
√

|log(T−t)|(1+o(1)) as t→ T. (1.10)

Comments on the result

1. On the smoothness of the initial data: An important feature of Theorem 1.1 is to exhibit a
new blow up speed which is valid for C∞ solutions. Indeed, while the Krieger, Schlag, Tataru [18]
approach provides a continuum of blow up speeds, the exact regularity of the obtained solutions is
not known, which is an unpleasant consequence of their construction scheme. In fact, it is expected
that C∞ initial data should lead to quantize blow up rates hence breaking the continuum of blow up
speeds (1.8), we refer to [2] for a related discussion in the context of the energy critical harmonic
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heat flow. Hence we expect the blow up rate (1.10) to correspond to the minimal type II blow up
speed of smooth solutions with small super critical energy. Such a general lower bound on blow up
rate in the spirit of the one obtained by Merle and Raphael for the L2 critical NLS [30], [26] is an
open problem. The construction of excited blow up solutions with other speeds and C∞ regularity
also remains to be done. This problematic is related to the understanding of the structure of the
flow near Q which is still at its beginning.

2. On the codimension one manifold: The proof of Theorem 1.1 involves a detailed description of
the set of initial data leading to the type II blow up with speed (1.10). Indeed, given a small enough
parameter b0 > 0 and a suitable deformation Qb of the soliton with

Qb0 → Q as b0 → 0

in some strong sense, we show that for any smooth and radially symmetric excess of energy

‖η0, η1‖H2×H1 .
b20

|log(b0)|
,

we can find d+(b0, η0, η1) ∈ R such that the solution to (1.1) with initial data

u0 = Qb0 + η0 + d+ψ, u1 = b0

(
N − 2

2
Qb0 + y · ∇Qb0

)
+ η1

blows up in finite time in the regime described by Theorem 1.1. Here ψ is the bound state of
the linearized operator close to Q and generates the unstable mode, we refer to Definition 3.4 and
Proposition 3.5 for precise statements. Hence the set of blow up solutions we construct live on a
codimension one manifold in the radial class in some weak sense. Following [15], [16], the proof that
this set is indeed a codimension one manifold relies on proving some Lipschitz regularity of the map
(b0, η0, η1) → d+(b0, η0, η1), and in particular some local uniqueness to begin with. The analysis in
[16] shows that this may be a delicate step in some cases. Our solution is constructed using a soft
continuous topological argument of Brouwer type coupled with suitable monotonicity properties in
the spirit of Cote, Marte and Merle [5], and in other related settings, see e.g. Martel [21], Raphaël
and Szeftel [32], this strategy has proved to be quite powerful to eventually achieve strong unique-
ness results. This interesting question in our setting will require additional efforts and needs to be
adressed separately in details.

3. Extension to higher dimensions: We focus onto the case of dimension N = 4 for the sake of
simplicity, and our main objective is to provide a robust framework to construct C∞ type II blow up
solutions. However, following the heurisitic developed in [31], the blow up speed (1.10) corresponds
to the k = 1 case in (1.7), and we similarly conjecture in dimension N ≥ 5 the existence type II
finite type blow up solutions close to Q with blow up speed

λ(t) ∼ cN
T − t

|log(T − t)|
1

N−4

.

Note from (1.3) that the higher the dimension, the fastest the decay of the ground state Q, and
this should avoid some difficulties which occur only in low dimension like in [31] for large homotopy
number k ≥ 4. We expect the strategy developed in this paper to carry over to the case N = 5, 6,
but the extension to large dimension will be confronted in particular to the difficulty of the lack
of smoothness of the nonlinearity. Let us also insist onto the fact that the case N = 4 is in many
ways the more delicate one in terms of the strong coupling of the main part of the solution and
the outgoing tail due to the slow decay of Q, which results in the somewhat pathological blow up
speed (1.10). This comment becomes even more dramatic in dimension N = 3 where we expect
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our analyis to be applicable to construct C∞ type II blow up solutions, but this seems to require a
slightly different approach.

1.4. Strategy of the proof. Let us briefly summarize the strategy of the proof of Theorem 1.1.

step 1 Approximate self similar solution.

Let D,Λ denote the differential operators (1.18). Exact self similar solutions to (1.1) of the form

u(t, x) =
1

λ
N−2

2 (t)
Qb

(
x

λ(t)

)
with b = −λt

where Qb satisfies the self similar equation

∆Qb − b2DΛQb +Q3
b = 0 (1.11)

are known to develop a singularity on the light cone y = T−t
λ(t) = 1

b leading to an unbounded Dirichlet

energy ‖∇Qb‖L2 = +∞, see Kavian, Weissler [12]. We therefore assume 0 < b ≪ 1 and consider a
one term expansion approximation

Qb = Q+ b2T1

which injected into (1.11) yields at the order b2:

HT1 = −DΛQ. (1.12)

Here H is the linearized operator close to Q given by

H = −∆− N + 2

N − 2
Q

4
N−2 . (1.13)

The spectral structure of H is well knwon in connection to the fact that Q is an extremizer of the
Sobolev embedding Ḣ1 → L2∗ , and in the radial sector, H admits one non positive eigenvalue with
well localized eigenvector ψ:

Hψ = −ζψ, ζ > 0, (1.14)

and a resonance at the boundary of the continuum spectrum generated by the scaling invariance of
(1.1):

H(ΛQ) = 0, ΛQ(r) ∼ C

rN−2
as r → +∞. (1.15)

In order to solve (1.12), we first remove the leading order growth in the exact solution T1 = 1
4 |y|2Q

which is consequence of the flux computation:

(DΛQ,ΛQ) =
1

2
lim

y→+∞
y4|ΛQ|2 > 0 (1.16)

due to the slow decay of Q in dimension N = 4 from (1.3). For this, we solve

HT1 = −DΛQ+ cbΛQ1y≤ 1
b

with cb =
(DΛQ,ΛQ)∫
y≤ 1

b

|ΛQ|2 ∼ 1

2|logb| as b→ 0.

The purpose of this construction is to yield after a suitable localization process an o(b2) approximate
solution to the self similar equation (1.11) which dominant term near and past the light cone is still
given by Q itself in the sense that:

b2|T1| ≪ Q for y ≥ 1

b
.
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This identifies Q as the leading order radiation term1.

step 2 Bootstrap estimates.

We now roughly consider initial data of the form

u0 = Qb0 + d+ψ + η0, u1 = b0ΛQb0 + η1, with |d+|+ ‖η0, η1‖H2×H1 ≪ b20, (1.17)

and introduce a modulated decomposition of the flow

u(t, x) =
1

λ
N−2

2 (t)
(Qb(t) + ε)

(
t,

x

λ(t)

)
, b(t) = −λt.

Here we face the major difference between the power nonlinearity wave equation (1.1) and the critical
wave map problem (1.4) which is the presense of a negative eigenvalue in the first case (1.14) for the
linearized operator H close to Q. This induces an instability in the modulation equations for b, λ
which is absent in the wave map case, leading to stable blow up dynamics. However, we claim that
the ODE type instability generated by (1.14) is the only instability mechanism.
The situation is conceptually similar to the one studied in [5] where multisolitary wave solutions
are constructed in the supercritical regime despite the presence of exponentially growing modes for
the linearized operator which are absent in the subcritical regime. We adapt a similar scheme of
proof which does not rely on a fixed point argument to solve the problem from infinity in time2, but
by directly following the flow for any initial data of the form (1.17). This reduces the full problem
to a one dimensional dynamical system for which a classical clever continuity argument yields the
existence of d+(b0, η0, η1) such that the unstable mode is extinct, see section 5.
The key is hence to control the flow under the a priori control of the unstable mode, and here
we adapt the technology developed in [31] which relies on monotonicity properties of the linearized
Hamiltonian at the H2 level of regularity. However, the analysis in [31] heavily relies on the existence
of a decomposition of the Hamiltonian

H = A∗A, A = −∂y + V (y)

which is central in the proof of the main monotonicity property and is lost in our setting. This forces
us to revisit the approach in several ways, and to rely in particular on fine algebraic properties of
the flow3 near Q and coercitivity properties of suitable quadratic forms in the spirit of [22], [23], see
Lemma 4.7, which remarkably turn out to be almost explicit thanks to the formula (1.3). We are
eventually able to find d+(b0, η0, η1) for which to leading order

bs ∼ −cbb2 ∼ − b2

2|logb| , b = −λt,
ds

dt
=

1

λ
, |d+|+ ‖∂yyε‖L2 ≪ b2

which reintegration in time yields finite time blow up in the regime described by Theorem 1.1.

1.5. Notations. We define the differential operators:

Λf =
N − 2

2
f + y · ∇f (Ḣ1 scaling), Df =

N

2
f + y · ∇f (L2 scaling). (1.18)

Denoting

(f, g) =

∫
fg =

∫ +∞

0
f(r)g(r)rN−1dr

1see [31] for a further discussion on this issue and the role played by the non vanishing Pohozaev integration (1.16)
2after renormalization of the time
3see in particular (4.23), (4.38)
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the L2(RN ) radial inner product, we observe the integration by parts formula:

(Df, g) = −(f,Dg), (Λf, g) + (Λg, f) = −2(f, g). (1.19)

Given f and λ > 0, we shall denote:

fλ(t, r) =
1

λ
N−2

2

f
(
t,
r

λ

)
,

and the space rescaled variable will always be denoted by

y =
r

λ
.

We let χ be a smooth positive radial cut off function χ(r) = 1 for r ≤ 1 and χ(r) = 0 for r ≥ 2. For
a given parameter B > 0, we let

χB(r) = χ
( r
B

)
. (1.20)

Given b > 0, we set

B0 =
2

b
, B1 =

|logb|
b

. (1.21)

To clarify the exposition we use the notation a . b when there exists a constant C with no relevant
dependency on (a, b) such that a ≤ Cb. In particular, we do not allow constants C to depend on the
parameter M except in Appendix A.

Aknowledegments: The authors would like to thank Igor Rodnianski for stimulating discussions
about this work. P.R is supported by the French ANR Jeune Chercheur SWAP.

2. Computation of the modified self-similar profile

This section is devoted to the construction of an approximate self-similar solution Qb which de-
scribes the dominant part of the blow up profile inside the backward light cone from the singular
point (0, T ) and displays a slow decay at infinity which is eventually responsible for the modifications
to the blow up speed with respect to the self similar law. The key to this construction is the fact
that the structure of the linearized operator H close to Q is completely explicit in the radial sector
thanks to the explicit formulas at hand for the elements of the kernel.

We introduce the direction
Φ = DΛQ (2.1)

which displays the cancellation

|Φ(y)| . 1

1 + y4
(2.2)

and the crucial nondegeneracy which follows from the Pohozaev integration by parts formula:

(Φ,ΛQ) = lim
y→+∞

(
1

2
y4|ΛQ|2

)
= 32 > 0. (2.3)

Proposition 2.1 (Approximate self-similar solution). Let M denote a large enough constant. Then

there exists b∗(M) > 0 small enough such that for all 0 < b < b∗(M), there exists a smooth radially

symmetric profile T1 satisfying the orthogonality condition

(T1, χMΦ) = 0 (2.4)

such that

PB1 = Q+ χB1b
2T1 (2.5)

is an approximate self similar solution in the following sense. Let

ΨB1 = −∆PB1 + b2DΛPB1 − f(PB1), (2.6)
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then for all k ≥ 0, 0 ≤ y ≤ 1
b2
,

∣∣∣∣
dkT1
dyk

(y)

∣∣∣∣ .
1

1 + yk

[
1 + |log(by)|

|logb| 1
2≤y≤

B0
2

+
1

b2y2|logb|1y≥B0
2

+
log(M) + |log(1 + y)|

1 + y2

]
, (2.7)

∣∣∣∣
dk

dyk
∂PB1

∂b

∣∣∣∣ .
b1y≤2B1

1 + yk

[
1 + |log(by)|

|logb| 1
2≤y≤

B0
2

+
1

b2y2|logb|1y≥B0
2

+
log(M) + |log(1 + y)|

1 + y2

]
, (2.8)

and, for all k ≥ 0, y ≥ 0,
∣∣∣∣
dk

dyk
(ΨB1 − cbb

2χB0
4

ΛQ)

∣∣∣∣

.
b4

1 + yk

[
1 + |log(by)|

|logb| 1
2≤y≤

B0
2

+
1

b2y2|logb|12B1≥y≥
B0
2

+
log(M) + |log(1 + y)|

1 + y2
1y≤2B1

]

+
b2

(1 + y4+k)
1y≥B1/2,

(2.9)

for some constant

cb =
1

2|logb|

(
1 +O

(
1

|logb|

))
. (2.10)

Proof of Proposition 2.1

Step 1 Inversion of H.

The first green function of H is given from scaling invariance by

ΛQ(y) =
N − 2

2
(
1 + y2

N(N−2)

)N
2

(
1− y2

N(N − 2)

)
, (2.11)

which admits the following asymptotics:

∀ k ≥ 0,
dk(ΛQ)

dyk
(y) =

{
O(1) as y → 0,

O(y−(N−2+k)) as y → ∞ (2.12)

Let now

Γ(y) = −ΛQ(y)

∫ y

1

ds

sN−1(ΛQ)2(s)
,

be another (singular at the origin4) element of the kernel ofH which can be found from the Wronskian
relation:

Γ′ΛQ− Γ(ΛQ)′ =
−1

yN−1
.

From this we easily find the asymptotics of Γ(k) for any integer k:

dkΓ

dyk
(y) =

{
O(y−(N−2+k)) as y → 0
O(y−k) as y → ∞.

(2.13)

A smooth solution to Hw = F is given by:

w(y) = Γ(y)

∫ y

0
F (s)ΛQ(s)sN−1ds− ΛQ(y)

∫ y

0
F (s)Γ(s)sN−1ds. (2.14)

4Note that Γ must be smooth at y =
√

N(N − 2) where ΛQ vanishes from the radial ODE HΓ = 0
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We now look for a solution to the self similar equation in the form Q+ b2T1. This yields:

Ψb = −∆Qb + b2DΛQb − f(Qb) (2.15)

= b2(HT1 +DΛQ) + b4DΛT1 −
[
f(Q+ b2T1)− f(Q)− b2f ′(Q)T1

]
.

Step 2 Computation of T1.

Thanks to the anomalous decay (2.2), we chose T1 solution to
{

HT1 = F = −DΛQ+ cbχB0
4

ΛQ,

(T1, χMΦ) = 0,
(2.16)

with cb chosen such that:

(F,ΛQ) = 0 (2.17)

i.e. from Pohozaev integration by parts formula, see (1.21) and (2.3) ,

cb =
(DΛQ,ΛQ)

(χB0
4

ΛQ,ΛQ)
=

1

2

limy→+∞ y4|ΛQ(y)|2∫
χB0

4

|ΛQ|2

=
1

2|logb|

(
1 +O

(
1

|logb|

))
as b→ 0.

This yields (2.10). Following (2.14), we first consider

T̃1(y) = Γ(y)

∫ y

0
F (s)ΛQ(s)s3ds− ΛQ(y)

∫ y

0
F (s)Γ(s)s3ds (2.18)

The smoothness of T̃1 at the origin follows from (2.18) together with elliptic regularity from (2.16).

We now examine the behavior of T̃1 at large y.
We first observe that, from the orthogonality (2.17):

T̃1(y) = −
[
Γ(y)

∫ +∞

y
F (s)ΛQ(s)s3ds+ ΛQ(y)

∫ y

0
F (s)Γ(s)s3ds

]

Hence, from the degeneracy |DΛQ| = O(y−4), this yields that, for B0
2 ≤ y ≤ 1

b2
:

|T̃1(y)| .

∫ +∞

y

s3

(1 + s4)(1 + s2)
ds+

1

y2

[∫ y

0

1 + s3

1 + s4
ds+ |cb|

∫ B0

0

s3

1 + s2
ds

]

.
|log(1 + y)|

1 + y2
+

1

b2y2|logb| . (2.19)

similarly, for 1 ≤ y ≤ B0
2 ,

|T̃1(y)| =

∣∣∣∣Γ(y)
∫ +∞

y
F (s)ΛQ(s)s3ds+ ΛQ(y)

∫ y

0
F (s)Γ(s)s3ds

∣∣∣∣

.

∫ +∞

y

s3

(1 + s4)(1 + s2)
ds+ |cb|

∫ B0

y

s3

(1 + s2)2
ds

+
1

1 + y2

[∫ y

0

s3

1 + s4
ds+ |cb|

∫ y

0

s3

1 + s2
ds

]

.
1 + |log(by)|

|logb| +
|log(1 + y)|

1 + y2
. (2.20)
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We now choose thanks to (2.3):

T1(y) = T̃1(y)− cΛQ with c =
(T̃1, χMΦ)

(χMΦ,ΛQ)

so that the orthogonality condition (2.4) is fulfilled. We note that so that the bounds (2.19) and (2.20)
ensure that c remains bounded by log(M) uniformly in M and b, provided b is chosen sufficiently
small w.r.t. M.

This yields (2.7) for k = 0, the other cases follow similarly.

Step 4 Estimate on ΨB1 and ∂bΨB1

We now cut off the slow decaying tail T1 according to (2.5) and estimate the corresponding error
to self similarity ΨB1 given by (2.6).

We compute:

ΨB1 = b2χB1(HT1 +DΛQ)

+ b2
[
−2χ′

B1
T ′
1 − T1∆χB1 + (1− χB1)DΛQ+ b2DΛ(χB1T1)

]

−
[
f(Q+ b2χB1T1)− f(Q)− χB1f

′(Q)T1
]
.

Outside the support of χB1 we have thus ΨB1 = b2DΛQ. On the other hand, in dimension N = 4,
we have the Taylor expansion :

f(Q+ b2χB1T1)− f(Q)− χB1f
′(Q)T1 = b4χ2

B1
T 2
1 (y)

∫ 1

0
(1− τ)(Q(y) + τb2χB1T1(y))dτ.

We thus estimate from (2.7), (2.15), (2.16) and the degeneracy (2.2) for y ≤ 2B1 :

∣∣∣ΨB1 − b2cbχB0
4

ΛQ
∣∣∣ . b21y≥B1/2

(
T ′
1

1 + y
+

T1
1 + y2

+
1

1 + y4

)

+ b4|DΛ(χB1T1)|+ b4|T 2
1 (y)|

∫ 1

0
(1− τ)|Q(y) + τb2T1(y)|dτ.

(2.7) now yields (2.9) for k = 0. Further derivatives are estimated similarly thanks to the smoothness
of the nonlinearity. We emphasize here that, given B > 0 large, we have 1/(1+y) . 1/B . 1/(1+y)
on the support of χ′

B, so that differentiating χB acts as a multiplication by 1/(1 + y). Furthermore,
there holds 1/B1 = o(b) so that we can always dominate 1/(1 + y) by b on the support of χ′

B1
.

Finally, we compute ∂bPB1 from (2.5).
To this end, we note that ∂bcb = O(1/b|log(b)|2) when b → 0 so that the source term for T1 in

(2.16) satisfies

∂bF =

[
O

(
1

b|logb|

)
χB0/4 +O

(
1

b|logb|

)
ρB0/4

]
ΛQ

where ρ(z) = zχ′(z) ∈ C∞
c (0,∞) and we keep the convention for function dilation. Hence, the same

arguments as for T1 enable to show that ∂bT̃1 and then ∂bT1 satisfy the estimates:
∣∣∣∣
dk∂bT1
dyk

(y)

∣∣∣∣ .
1

b(1 + yk)

[
1 + |log(by)|

|logb| 1
2≤y≤

B0
2

+
1

b2y2|logb|1y≥B0
2

+
1 + |log(1 + y)|

1 + y2

]
. (2.21)

Finally, we compute from (2.5)

∂bPB1 = 2bχB1T1 + b2∂blog(B1)ρB1T1 + b2χB1∂bT1. (2.22)

This decomposition together with (2.7) and the previous computation yield (2.8).
This concludes the proof of Proposition 2.1.
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3. Description of the trapped regime

We display in this section the regime which leads to the blow up dynamics described by Theorem
1.1.

3.1. Modulation of solutions to (1.1). Let us start with describing the set of solutions among
which the finite time blow up scenario described by Theorem 1.1 is likely to arise. We recall from
(1.14) that ψ denotes the bound state of H with eigenvalue −ζ < 0. The following lemma is a
standard consequence of the implicit function theorem and the smoothness of the flow, see Appendix
A.

Lemma 3.1 (Modulation theory). Let M be a sufficiently large constant to be chosen later and

0 < b0 < b∗0(M) small enough. Let (η0, η1, d+) satisfying the smallness condition:

|d+|+ ‖η0,∇η0, η1 + b0(1− χB1(b0))ΛQ,∇η1‖Ḣ1×Ḣ1×L2×L2 .
b20

|logb0|
, (3.1)

then, there exists a time T0 such that the unique solution u ∈ C2([0, T0];L
2(RN ))∩C([0, T0];H2(RN ))

to (1.1) with initial data :

u0 = PB1(b0) + η0 + d+ψ, u1 = b0ΛPB1(b0) + η1, (3.2)

admits on [0, T0] a unique decomposition

u(t) = (PB1(b(t)) + ε(t))λ(t) (3.3)

with

1. λ ∈ C2([0, T0],R
∗
+) with

∀ t ∈ [0, T0], (ε(t), χMΦ) = 0 and b(t) = −λt; (3.4)

2. there holds the smallness:

‖∇ε(t)‖L2 . b0|logb0| |b(t)− b0|+ |λ(t)− 1|+ ‖∇2ε(t)‖L2 .
b20

|logb0|
∀ t ∈ [0, T0]. (3.5)

Remark 3.2. Recall that the slow decay of Q and the choice of PB1 induces an unbounded tail of
PB1 in the energy norm, and more specifically ‖ΛQ‖L2 = +∞, hence the need for the compensation
in the norm for the time derivative in (3.1).

3.2. Decomposition of the flow and modulation equations. Considering initial data satisfying
the assumption of the above lemma, we now write the evolution equation induced by (1.1) in terms
of the decomposition (3.3). Let

u(t, r) =
1

[λ(t)]
N
2
−1

(
PB1(b(t)) + ε

)
(t,

r

λ(t)
) =

(
PB1(b(t))

)
λ(t)

+ w(t, r) (3.6)

where b = −λt. Let us derive the equations for w and ε. Let

s(t) =

∫ t

0

dτ

λ(τ)
(3.7)

be the rescaled time. We shall make an intensive use of the following rescaling formulas:

u(t, r) =
1

λN/2−1
v(s, y), y =

r

λ
,
ds

dt
=

1

λ
, (3.8)

∂tu =
1

λ
(∂sv + bΛv)λ , (3.9)

∂ttu =
1

λ2
[
∂2sv + b(∂sv + 2Λ∂sv) + b2DΛv + bsΛv

]
λ
. (3.10)
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In particular, we derive from (1.1) the equation for ε:

∂2sε+HB1ε = −ΨB1 − bsΛPB1 − b(∂sPB1 + 2Λ∂sPB1)− ∂2sPB1

− b(∂sε+ 2Λ∂sε)− bsΛε+N(ε) (3.11)

where, implicitly, B1 = B1(b(t)) and HB1 is the linear operator associated to the profile PB1

HB1ε = −∆ε+ b2DΛε− f ′(PB1)ε, (3.12)

and the nonlinearity:
N(ε) = f(PB1 + ε)− f(PB1)− f ′(PB1)ε. (3.13)

Alternatively, the equation for w takes the form:

∂2tw + H̃B1w = −
[
∂2t (PB1)λ −∆(PB1)λ − f((PB1)λ)

]
+Nλ(w)

with
H̃B1w = −∆w − f ′((PB1)λ)w, (3.14)

Nλ(w) = f((PB1)λ + w)− f((PB1)λ)− f ′((PB1)λ)w. (3.15)

We then expand using (3.9), (3.10):

∂2t (PB1)λ −∆(PB1)λ − f((PB1)λ) =
1

λ2
[∂ssPB1 + b(∂sPB1 + 2Λ∂sPB1) + bsΛPB1 +ΨB]λ

=
1

λ2
[bΛ∂sPB1 + bsΛPB1 +ΨB]λ + ∂t

[
1

λ
(∂sPB1)λ

]

and rewrite the equation for w:

∂2tw + H̃B1w = − 1

λ2
[bΛ∂sPB1 + bsΛPB1 +ΨB]λ − ∂t

[
1

λ
(∂sPB1)λ

]
+Nλ(w). (3.16)

For most of our arguments we prefer to view the linear operator HB1 acting on w in (3.16) as a
perturbation of the linear operator Hλ associated to Qλ. Then

∂2tw +Hλw = FB1 (3.17)

= − 1

λ2
[bΛ∂sPB1 + bsΛPB1 +ΨB1 ]λ − ∂t

[
1

λ
(∂sPB1)λ

]

−
[
f ′(Qλ)− f ′((PB1)λ)

]
w +Nλ(w)

with
Hλw = −∆w + f ′(Qλ)w. (3.18)

3.3. The set of bootstrap estimates. At first, we fix some notations. We introduce the energy
E(t) associated to the Hamiltonian Hλ:

E(t) = λ2
∫ [

(Hλ∂tw, ∂tw) + (Hλw)
2
]
. (3.19)

Given ζ ∈ (0,∞) the unstable eigenvalue, we set:

V+ =

∣∣∣∣
1√
ζ

V− =

∣∣∣∣
1

−
√
ζ

(3.20)

and, we introduce the decomposition of the unstable direction∣∣∣∣
(ε, ψ)
(∂sε, ψ)

= ã+(s)V+ + ã−(s)V− (3.21)

Let us denote:

κ+(s) = ã+(s) +
bs

2
√
ζ
(∂bPB1 , ψ), κ−(s) = ã−(s)−

bs

2
√
ζ
(∂bPB1 , ψ). (3.22)
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We note that the vectors V+, V− given by (3.20) yield an eingenbasis of
(

0 1
ζ 0

)

and hence correspond respectively to the unstable and stable mode of the two dimensional dynamical
system

dY

ds
=

(
0 1
ζ 0

)
Y

which to first order in b is verified by the projection onto the unstable mode (ε, ψ), see (4.57). The
deformation term bs(∂bPB1 , ψ) in (3.22) is present to handle some possible time oscillations induced
by the ∂2sPB1 term in the RHS of (3.11) which cannot be estimated in absolute value but will be
proved to be lower order.

With these conventions, we may now paramaterize the set of initial data described by Lemma
3.1 by a+ = κ+(0), and then reformulate the initial smallness properties in terms of suitable initial
bounds for ε, see Appendix A for the proof which is standard.

Lemma 3.3 (Inital parametrization of the unstable mode and initial bounds). Let M and b0 be

given as in Lemma 3.1 and denote by C(M) a sufficiently large constant. Then, given (η0, η1, a+)
satisfying

|a+|+ ‖η0,∇η0, η1 + b0(1− χB1(b0))ΛQ,∇η1‖Ḣ1×Ḣ1×L2×L2 ≤ b20
|logb0|

, (3.23)

there exists a unique d+ with |d+| . b20/|log(b0)| and T0 > 0 such that the unique decomposition

u(t) = (PB1(b(t)) + ε)λ(t) = (PB1(b(t)))λ(t) + w(t),

of the unique smooth solution u to (1.1) on [0, T0] with initial data (3.2) satisfies the initialization

κ+(0) = a+, (3.24)

and the following smallness condition on [0, T0] :

• Smallness and positivity of b:
0 < b(t) < 5b0; (3.25)

• Pointwise bound on bs:

|bs(t)|2 ≤ C(M)
[b(t)]4

|logb(t)|2 ; (3.26)

• Smallness of the energy norm:

‖(∇w(t), ∂tw(t) +
b(t)

λ(t)
((1− χB1(b(t)))ΛQ))λ(t)‖L2×L2 ≤

√
b0; (3.27)

• Global Ḣ2 bound:

|E(t)| ≤ C(M)
[b(t)]4

|logb(t)|2 ; (3.28)

• A priori bound on the stable mode:

|κ−(t)| ≤ (C(M))
1
8

[b(t)]2

|logb(t)| . (3.29)

• A priori bound of the unstable mode:

|κ+(t)| ≤ 2
[b(t)]2

|logb(t)| . (3.30)

We may now describe the bootstrap regime as follows:
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Definition 3.4 (Exit time). Let K(M) denote some large enough constant.

Given a+ ∈ [− b20
|logb0|

,
b20

|logb0|
], we let T (a+) be the life time of the solution to (1.1) with initial data

(3.2), and T1(a+) > 0 be the supremum of T ∈ (0, T (a+)) such that for all t ∈ [0, T ], the following

estimates hold:

• Smallness and positivity of b:
0 < b(t) < 5b0; (3.31)

• Pointwise bound on bs:

|bs|2 ≤ K(M)
[b(t)]4

|logb(t)|2 ; (3.32)

• Smallness of the energy norm:

‖(∇w(t), ∂tw(t) +
b(t)

λ(t)
((1− χB1(b(t)))ΛQ))λ(t)‖L2×L2 ≤

√
b0; (3.33)

• Global Ḣ2 bound:

|E(t)| ≤ K(M)
[b(t)]4

|logb(t)|2 ; (3.34)

• A priori bound on the stable and unstable modes:

|κ+(t)| ≤ 2
[b(t)]2

|logb(t)| , |κ−(t)| ≤ (K(M))
1
8

[b(t)]2

|logb(t)| . (3.35)

The existence of blow up solutions in the regime described by Theorem 1.1 now follows from the
following:

Proposition 3.5. There exists a+ ∈
[
− b20

|logb0|
,

b20
|logb0|

]
such that

T1(a+) = T (a+)

and then corresponding solution to (1.1) blows up in finite time in the regime described by Theorem

1.1.

The proof of Proposition 3.5 relies on a monotonicity argument on the energy E which is the core
of the analysis, see Proposition 4.6, and the strictly outgoing behavior of the unstable mode induced
by the non trivial eigenvalue −ζ < 0 of H, see Lemma 4.10. The fact that the regime described by
the bootstrap bounds (3.31), (3.32), (3.33), (3.34), (3.35) corresponds to a finite blow up solution
with a specific blow up speed will then follow from the modulation equations and the sharp derivation
of the blow speed as in [31].

4. Improved bounds

This section is devoted to the derivation of the main dynamical properties of the flow in the
bootstrap regime described by Definition 3.4. The three main steps are first the derivation of a
monotonicity property on E which allows us to improve the bounds (3.31), (3.32), (3.33), (3.34) in
[0, T1(a+)], second the derivation of the dynamics of the eigenmode and the outgoing behavior of the
unstable direction, and eventually the derivation of the sharp law for the parameter b which allows
to bootstrap its smallness (3.31) and will eventually allow us to derive the sharp blow up speed.

Remark 4.1. All along the proof, we will introduce various constants C(M), δ(M) > 0 which do

not depend on the bootstrap constant K(M). An important feature of all these constants is that, up
to a smaller choice of b∗(M) or a larger choice of K(M), we assume that any product of the form
C(M) f(b) where limb→0 f(b) = 0 or any ratio δ(M)/K(M) is small in the trapped regime. This will
be used implicitly in this section.
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4.1. Coercitivity of E. Let us start with showing that the linearized energy E yields a control of
suitable weighted norms of (w, ε) in the regime t ∈ [0, T1(a+)].

Lemma 4.2 (Coercitivity of E). There exists M0 ≥ 1 such that for all M ≥ M0, there exists5

δ(M) > 0 and C(M) <∞ such that in the interval [0, T1(a+)), there holds:

E ≥ 1

2
λ2
∫

(Hλw)
2 + δ(M)λ2

[∫
(∇∂tw)2 +

∫
(∂rw)

2

r2

]
− C(M)[K(M)]

1
4

b4

|logb|2 . (4.1)

Proof of Lemma 4.2.

This is a consequence of the explicit distribution of the negative eigenvalues of H and the a priori
bound on the unstable mode (3.35). Indeed, let t ∈ [0, T1(a+)), then first observe from (3.21), (3.22),
(3.35) that

|(ε, ψ)|2 + |(∂sε, ψ)|2 . |κ+|2 + |κ−|2 + |bs|2(∂bPB1 , ψ)
2

. [K(M)]
1
4

b4

|logb|2 + C(M)b2|bs|2 . [K(M)]
1
4

b4

|logb|2 (4.2)

where we used the estimates of Proposition 2.1 and the well localization of ψ. This yields

1

λ4
(w,ψλ)

2 +
1

λ2
(∂tw,ψλ)

2 = (ε, ψ)2 + (∂sε+ bΛε, ψ)2

. [K(M)]
1
4

b4

|logb|2 + b2
[∫

ε2

y4(1 + |log(y)|)2 +

∫ |∇ε|2
y2

]
(4.3)

and similarly using the orthogonality condition (3.4):

1

λ4
(w, (χMΦ)λ)

2 +
1

λ2
(∂tw, (χMΦ)λ)

2 = (bΛε, χMΦ)2

. b2MC

[∫
ε2

y4(1 + |log(y)|)2 +

∫ |∇ε|2
y2

]
. (4.4)

Moreover, applying Lemma C.3 yields:

λ2
∫

|Hλw|2 =

∫
|Hε|2

≥ δ(M)

[∫ |∇ε|2
y2

+
ε2

y4(1 + |log(y)|)2
]

Introducing the rescaled version (C.13) of Lemma C.3, we then conclude:

E ≥ 1

2

∫
λ2(Hλw)

2 + δ1(M)

[
λ2
∫

(∇∂tw)2 +
∫ |∇ε|2

y2
+

∫
ε2

y4(1 + |log(y)|)2
]

− b2MC

[∫
ε2

y4(1 + |log(y)|)2 +

∫ |∇ε|2
y2

]
− C(M)[K(M)]

1
4

b4

|logb|2

≥ 1

2

∫
λ2(Hλw)

2 + δ(M)λ2
[∫

(∇∂tw)2 +
∫

(∂rw)
2

r2

]
− C(M)[K(M)]

1
4

b4

|logb|2
where we used the Hardy bound (C.3), and (4.1) is proved. This concludes the proof of Lemma 4.2.

Remark 4.3. Note that (4.1) together with the Hardy estimate (C.1), the coercitivity estimate
(C.9) and (4.4) yield the following weighted bound on ε which will be extensively used in the paper:
let

η(s, y) = λ
N−2

2
+1∂tw(t, λy) = ∂sε(s, y) + bΛε(s, y), (4.5)

5recall remark 4.1
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then:

∫
ε2

y4(1 + |logy|2) +
∫
η2

y2
+

∫ |∇ε|2
y2

+

∫
|∇η|2 . c(M)

[
|E|+ [K(M)]

1
4

b4

|logb|2
]
, (4.6)

. c(M)|E|+
√
K(M)

b4

|logb|2 . (4.7)

4.2. First bound on bs. We now derive a crude bound on bs which appears as an order one forcing
term in the RHS of the equation for ε (3.11). This bound is a simple consequence of the construction
of the profile Qb and the choice of the orthogonality condition (3.4).

Lemma 4.4 (Rough pointwise bound on bs). There holds the rough pointwise bound6:
(
bs +

(ε,HΦ)

(ΛQ,Φ)

)2

.
1

M
|E|+

√
K(M)

b4

|logb|2 . (4.8)

Remark 4.5. This is in contrast with [31] where the bs term could be treated as degenerate with
respect to ε thanks to a specific choice of orthogonality conditions and the factorization of the
operator H in the wave map case. This difficulty in our case will be treated using a specific algebra
generated by our choice of orthogonality condition (3.4) which gives the right sign to the leading
order terms involving bs in the energy identity (4.6), see (4.24), (4.38).

Proof of Lemma 4.4.

Let us recall that the equation for ε in rescaled variables is given by (3.11), (3.12), (3.13). Observe
also that from (1.19), the adjoint of HB with respect to the L2(RN ) inner product is given by:

H∗
B1

= HB1 + 2b2D. (4.9)

To compute bs we take the scalar product of (3.11) with χMΦ. Using the orthogonality relations

(∂ms ε, χMΦ) = (∂ms (PB1 −Q), χMΦ) = 0, ∀ m ≥ 0

we integrate by parts to get the algebraic identity:

bs [(ΛPB1 , χMΦ) + 2b(Λ∂bPB1 , χMΦ) + (Λε, χMΦ)]

= −(ΨB1 , χMΦ)− (ε,H∗
B1

(χMΦ)) + 2b(∂sε,Λ(χMΦ)) + (N(ε), χMΦ). (4.10)

We first derive from the estimates of Proposition 2.1:

(ΨB1 , χMΦ)2 .
b4

|logb|2 . (4.11)

Similarly, using (4.6) yields:

(∂sε,Λ(χMΦ))2 . C(M)

[
c(M)|E|+

√
K(M)

b4

|logb|2
]

(4.12)

and

(ε,H∗
B1

(χMΦ)) = (ε,HΦ)− (Hε, (1− χM )Φ) +O

(
MCb2

√
c(M)|E|+

√
K(M)

b4

|logb|2

)
.

We then use the improved decay (2.2) and (4.7) to estimate:

(Hε, (1− χM )Φ)2 .

(∫

y≥M

|Hε|
1 + yN

)2

.
|E|
M

+
√
K(M)

b4

|logb|2

6recall remark 4.1
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Thus:
∣∣(ε,H∗

B1
(χMΦ))− (ε,HΦ)

∣∣2 . 1

M
|E|+

√
K(M)

b4

|logb|2 . (4.13)

similarly,

(ΛPB1 , χMΦ) + 2b(Λ∂bPB1 , χMΦ) + (Λε, χMΦ)

= (ΛQ,Φ) +O

(
b

log(b)
+MC

√
|E|+

√
K(M) b4

|logb|2

)

= (ΛQ,Φ) +O

(
b

log(b)

) (4.14)

where we have used that in the trapped regime E ≤ K(M)b4/[log(b)]2. Finally, on the support of χM
and for b < b∗0(M) small enough, the term Q dominates in Qb = Q+ b2T1. Hence, for the nonlinear
term, we have from Sobolev and (4.7):

|(N(ε), χMΦ)| .

∫ (
ε2

1 + y6
+

ε3

1 + y4

)
.

∫ |ε|2
(1 + y5)

[1 + ‖yε‖L∞ ]

. C(M)

[
E +

√
K(M)

b4

|logb|2
]
.

Injecting this together with (4.11), (4.12), (4.13), (4.14) into (4.10) yields (4.8)7 and concludes the
proof of Lemma 4.4.

4.3. Global Ḣ2 bound. We derive in the section a monotonicity statement for the energy E which
provides a global Ḣ2 estimate for the solution. The monotonicity statement involves suitable re-
pulsivity properties of the rescaled Hamiltonian Hλ in the focusing regime under the orthogonality
condition (3.11) and the a priori control of the unstable mode (3.35), which themselves rely on the
positivity of an explicit quadratic form, see Lemma 4.7.

Proposition 4.6 (H2 control of the radiation). In the trapped regime, there exists a function F
satisfying

F .
E
M

+
√
K(M)

b4

|logb|2 (4.15)

and such that, for some 0 < α < 1 close enough to 1, there holds:

d

dt

{ E + F
λ2(1−α)

}
≤ b

λ3−2α

[√
K(M)

b4

|logb|2
]
. (4.16)

Proof of Proposition 4.6

step 1 Energy identity.

Let

Ṽ (t, r) =
N + 2

N − 2
Q

4
N−2

λ (r) =
1

λ2
V
( r
λ

)
, V (y) =

N + 2

N − 2
Q

4
N−2 (y).

We first have the following algebraic energy identity which follows by integrating by parts from
(3.17):

1

2

d

dt

{∫
(∂trw)

2 −
∫
Ṽ (∂tw)

2 +

∫
(Hλw)

2

}
= −

∫
∂tṼ

[
(∂tw)

2

2
+ wHλw

]
+

∫
∂twHλFB1 . (4.17)

7recall remark 4.1
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We now use the w equation and integration by parts to compute:

−
∫
∂tṼ wHλw = −

∫
∂tṼ w(FB1 − ∂ttw) (4.18)

=
d

dt

{∫
∂tṼ w∂tw

}
−
∫
∂tṼ wFB1 −

∫
∂tṼ (∂tw)

2 −
∫
∂ttṼ w∂tw (4.19)

We next pick 0 < α < 1 close enough to 1 and combine the above identities to get:

1

2λ2α
d

dt

{
λ2α

[∫
(∂trw)

2 −
∫
Ṽ (∂tw)

2 +

∫
(Hλw)

2 − 2

∫
∂tṼ w∂tw

]}

= −R1 +R2 +
2αb

λ

∫
∂tṼ w∂tw −

∫
∂ttṼ w∂tw (4.20)

where R1 collects the quadratic terms:

R1 =
αb

λ

[∫
(∂trw)

2 −
∫
Ṽ (∂tw)

2 +

∫
(Hλw)

2

]
+

3

2

∫
∂tṼ (∂tw)

2 − bs
λ2

∫
∂tṼ (ΛQ)λw

=
b

λ3

[
α

∫
(∂yη)

2 − α

∫
V η2 + α

∫
(Hε)2 +

3

2

∫
(2V + y · ∇V )η2

− bs

∫
ε(2V + y · ∇V )ΛQ

]
(4.21)

and R2 collects the nonlinear higher order terms:

R2 =

∫
∂twHλFB1 −

∫
∂tṼ w

[
FB1 +

bs
λ2

(ΛQ)λ

]
(4.22)

step 2 Derivation of the quadratic terms and treatment of the bs term.
Let us now obtain a suitable lower bound for the quadratic term R1. The main enemy is the bs
term which is order one in ε and will be treated using a specific algebra generated by the choice of
orthogonality condition (3.4).

Observe from H(ΛQ) = 0 that (ΛQ/λ)λ(y) = (1/λ)
N
2 (ΛQ)(y/λ) satisfies:

−∆(ΛQ/λ)λ(y)− (1/λ)2V (y/λ)(ΛQ/λ)λ(y) = 0.

Differentiating this relation at λ = 1 yields:

HΦ = H(DΛQ) = (2V + y · ∇V )ΛQ.

We inject this into the modulation equation (4.8) to get:

−bs
∫
ε(2V + y · ∇V )ΛQ = b2s(Φ,ΛQ) + |bs|O

( |E|
M

+
√
K(M)

b4

|logb|2
) 1

2

. (4.23)

We thus conclude using the sign
(Φ,ΛQ) > 0

and (4.21), (4.8) that:

R1 ≥
b

λ3

[
α

∫
(∂yη)

2 +

∫
[(3− α)V +

3

2
y · ∇V ]η2 + α

∫
(Hε)2 + c1(bs)

2

+ O

( |E|
M

+
√
K(M)

b4

|logb|2
)]

(4.24)

for some universal constant c1 > 0 independent of M .
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step 3 Coercitivity of the quadratic form.
We now claim the following coercitivity property of the quadratic form in η appearing in the RHS
of (4.24) in the limit case α = 1, see Appendix B:

Lemma 4.7 (Coercitivity of the quadratic form). There exists a universal constant c0 > 0 such that

for all η ∈ Ḣ1
rad, there holds:
∫

(∂yη)
2 +

∫ [
2V +

3

2
y · ∇V

]
η2 ≥ c0

∫
(∂yη)

2 − 1

c0

[
(η, ψ)2 + (η,Φ)2

]
.

From a simple continuity argument, there exists 0 < α∗ < 1 such that given 0 < α∗ < α ≤ 1, for
all η ∈ Ḣ1

rad, there holds:

α

∫
(∂yη)

2 +

∫ [
(3− α)V +

3

2
y · ∇V

]
η2 ≥ c0

2

∫
(∂yη)

2 − 2

c0

[
(η, ψ)2 + (η,Φ)2

]
.

We now pick once and forall such an α < 1 and control the negative directions.
Using (4.3) and (4.7), it yields:

(η, ψ)2 . b|E|+
√
K(M)

b4

|logb|2
Similarly, we compute (η,Φ) = (η, χMΦ) + (η, (1− χM )Φ) for which (4.4) and (4.7) yield

(η, χMΦ)2 . b|E|+
√
K(M)

b4

|logb|2
and we have, applying (C.1):

(η, (1− χM )Φ)2 ≤ ‖yη‖2L∞

[∫

y≥M/2

|Φ|
y

]2
.

1

M

∫
|∂yη|2

This together with (4.24) yields the lower bound on quadratic terms:

R1 ≥
b

λ3

[
c1((bs)

2 + |E|) +O

(√
K(M)

b4

|logb|2
)]

(4.25)

for some universal constant c1 > 0. Indeed, a straightforward integration by parts in (3.19) yields:

E .

∫
|∂yη|2 +

∫
|Hε|2.

step 4 Control of lower order quadratic terms.

The lower order quadratic terms in (4.20) are controlled similarly:
∣∣∣∣
∫
∂tṼ w∂tw

∣∣∣∣ .
b

λ2

[∫
ε2

1 + y6
+

∫
η2

y2

]
.

1

λ2

(
bC(M)|E|+

√
K(M)

b4

|logb|2
)
,

.
1

λ2

( |E|
M

+
√
K(M)

b4

|logb|2)
)
, (4.26)

and, with the help of (3.32),

∣∣∣∣
∫
∂ttṼ w∂tw

∣∣∣∣ .

(
b2

λ3
+

|bs|
λ3

)[∫
ε2

1 + y6
+

∫
η2

y2

]
,

.
b

λ3

(
bC(M)|E|+

√
K(M)

b4

|logb|2)
)
.
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Remark 4.8. We note here that (4.26) is sufficient for the proof of our theorem. Indeed, the es-

timated term
∫
∂tṼ w∂tw has been integrated by parts with respect to time, so that it becomes a

part of F . Furthermore, we note that to compute (4.16), we multiply F by λ2α. Consequently, the

commutator bα/λ
∫
∂tṼ w∂tw appears on the right-hand side. However, (4.26) yields that, in the

trapped regime, this supplementary term is controlled by b/λ3
√
K(M)b4/|logb|2. Similar arguments

will be repeated implicitly below for the terms which require an integration by parts with respect to
time.

step 5 Rewriting of the nonlinear R2 terms.

It remains to control the nonlinear R2 terms in (4.20) given by (4.22). According to (3.17), this
term contains bss type of terms which cannot be estimated in absolute value and require a further
integration by parts in time. Let

FB1 = F1 − ∂tF2 with F2 =
1

λ
(∂sPB1)λ (4.27)

and rewrite:

R2 =

∫
∂twHλF1 −

∫
∂tṼ w

[
F1 +

bs
λ2

(ΛQ)λ

]
−
∫
∂twHλ∂tF2 +

∫
∂tṼ w∂tF2

We now integrate by parts in time to treat the F2 term:

−
∫
∂twHλ∂tF2 +

∫
∂tṼ w∂tF2

= − d

dt

{∫
∂twHλF2 −

∫
∂tṼ wF2

}
−
∫

(∂ttṼ w + 2∂tṼ ∂tw)F2 +

∫
∂ttwHλF2.

The last term is rewritten using (3.17) and integration by parts:
∫
∂ttwHλF2 =

∫
[F1 − ∂tF2 −Hλw]HλF2

= −1

2

d

dt

{∫
|∇F2|2 −

∫
Ṽ F 2

2

}
− 1

2

∫
∂tṼ F

2
2 +

∫
[F1 −Hλw]HλF2.

eventually arrive at a manageable expression for R2:

R2 = − d

dt

{∫
∂twHλF2 −

∫
∂tṼ wF2 +

1

2

∫
|∇F2|2 −

1

2

∫
Ṽ F 2

2

}
(4.28)

−
∫
∂tṼ w

[
F1 +

bs
λ2

(ΛQ)λ

]
+

∫
∂twHλF1 −

∫
(∂ttṼ w + 2∂tṼ ∂tw)F2

− 1

2

∫
∂tṼ F

2
2 +

∫
[F1 −Hλw]HλF2.

We now aim at estimating all the terms in the RHS of (4.28). According to (3.17), we split F1 into
four terms:

F1 +
bs
λ2

(ΛQ)λ = − 1

λ2
[ΨB1 + F1,1 + F1,2 +N(ε)]λ (4.29)

with

F1,1 = bΛ∂sPB1 + bs(ΛPB1 − ΛQ), F1,2 =
[
f ′(Q)− f ′(PB1)

]
ε. (4.30)

step 6 F1 terms.
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The F1 terms are the leading order terms.
ΨB1 terms: We first extract from (2.9) the rough bound:

|ΨB1 | .
b2

|logb|(1 + y2)
+ C(M)b41y≤2B1 (4.31)

which yields:
∫

1 + |logy|2
1 + y4

|ΨB1 |2 .
b4

|logb|2

and thus from (4.7):
∣∣∣∣
∫
∂tṼ w

1

λ2
(ΨB1)λ

∣∣∣∣ .
b

λ3

∫ |ε||ΨB1 |
(1 + y4)

.
b

λ3
b2

|logb|C(M)

√
|E|+

√
K(M)

b4

|logb|2

.
b

λ3

√
K(M)

b4

|logb|2 .

Next, we use the fundamental cancellation H(ΛQ) = 0 and (2.9) to estimate:

|HΨB1 | .
b4

1 + y2

[
1 + |log(by)|

|logb| 12≤y≤2B0 +
1

b2y2|logb|1B0
2
≤y≤2B1

+
log(M) + |log(1 + y)|

1 + y2
1y≤2B1

]

+
b2

(1 + y4)|logb|1y≥B1/2,

and thus ∫
(1 + y2)|H(ΨB1)|2 .

b6

|logb|2 . (4.32)

Hence:

∣∣∣∣
∫
∂twHλ(

1

λ2
(ΨB1)λ)

∣∣∣∣ .
b

λ3
‖η/y‖L2

[∫
1

b2
(1 + y)2|H(ΨB1)|2

] 1
2

.
b

λ3

√
K(M)

b4

|logb|2 .

F1,1 terms: From (2.7), (2.8), there holds :

|F1,1| . |bs|b2
[
1 + |log(by)|

|logb| 1
2≤y≤

B0
2

+
1

b2y2|logb|1B0
2
≤y≤2B1

+
log(M) + |logy|

1 + y2

]

and, recalling that differentiation w.r.t. y acts as a multiplication by 1/(1 + y) :

|HF1,1| . C(M)
|bs|b2
1 + y2

[
1 + |log(by)|

|logb| 1
2≤y≤

B0
2

+
1

b2y2|logb|1B0
2
≤y≤2B1

+
log(M) + |logy|

1 + y2

]

from which
∫
(1 + y2)|H(F1,1)|2 . |bs|2

b2

|logb|2 ,
∫

(1 + |logy|2)
(1 + y4)

|F1,1|2 . |bs|2b2. (4.33)
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Hence similar arguments as with the ΨB1 terms yield:

∣∣∣∣
∫
∂tṼ wF1,1

∣∣∣∣ .
b

λ3
b|bs|C(M)

√
|E|+

√
K(M)

b4

|logb|2

.
b

λ3

√
K(M)

b4

|logb|2 ,

and

∣∣∣∣
∫
∂twHλF1,1

∣∣∣∣ .
C(M)b

λ3
|bs|
|logb|

√
|E|+

√
K(M)

b4

|logb|2 .
b

λ3

[ |bs|2
|logb| +

E
|logb| +

√
K(M)

b4

|logb|2
]

.
b

λ3

√
K(M)

b4

|logb|2 .

F1,2 terms: The explicit expansion of the cubic nonlinearity and the bound (2.7) yield:

|F1,2| .
C(M)b2

1 + y2
|ε|, |∇F1,2| .

C(M)b2

1 + y3
|ε|+ C(M)b2

1 + y2
|∇ε| (4.34)

from which:

1

λ2

∣∣∣∣
∫
∂tṼ w(F1,2)λ

∣∣∣∣ .
C(M)b3

λ3

∫
ε2

1 + y6
.

b

λ3

(
b|E|+

√
K(M)

b4

|logb|2
)
,

and, after integration by parts of the laplacian term:

1

λ2

∣∣∣∣
∫
∂twHλ(F1,2)λ

∣∣∣∣ .
C(M)

λ3

[∫ |η|
1 + y4

b2

1 + y2
|ε|+

∫
|∇η|

(
b2

1 + y3
|ε|+ b2

1 + y2
|∇ε|

)]

.
b

λ3

[ |E|
M

+
√
K(M)

b4

|logb|2
]
.

Nonlinear term N(ε): We expand the nonlinearity:

N(ε) = 3PB1ε
2 + ε3.

This yields using (3.27), (C.1) the rough bound:

|N(ε)| . ε2

1 + y
.

In what follows, we will use the following bound on η which follows from (4.6), (C.1):

|yη|L∞ . |∇η|L2 .

(
c(M)|E|+

√
K(M)

b4

|logb|2
) 1

2

.

We then estimate:∣∣∣∣
1

λ2

∫
∂tṼ w(N(ε))λ

∣∣∣∣ .
b

λ3

∫ |ε|3
1 + y5

.
b

λ3
|∇ε|L2

(
c(M)|E|+

√
K(M)

b4

|logb|2
)

.
b

λ3

√
K(M)

b4

|logb|2

for b0 < b∗(M) small enough. We split the second term:
∫
∂twHλ

(
(N(ε))λ
λ2

)
=

∫
∇∂tw · ∇

(
(N(ε))λ
λ2

)
−
∫
Ṽ ∂tw

(
(N(ε))λ
λ2

)
. (4.35)
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The second term is estimated in brute force:
∣∣∣∣
∫
Ṽ ∂tw

(
(N(ε))λ
λ2

)∣∣∣∣ .
1

λ3

∫ |η||ε|2
1 + y5

.
1

λ3
|yη|L∞

∫ |ε|2
1 + y6

.
1

λ3

(
c(M)|E|+

√
K(M)

b4

|logb|2
) 3

2

.
b

λ3
b4

|logb|2 .

The first term in (4.35) is split into two parts:

∫
∇∂tw · ∇

(
(N(ε))λ
λ2

)
=

∫
∇∂tw ·

[
∇(w3) + 3(PB1)λ∇(w2)

]
+

3

λ3

∫
ε2∇η · ∇PB1 .

The last term is integrated by parts in space and then estimated in brute force:
∣∣∣∣
3

λ3

∫
ε2∇η · ∇PB1

∣∣∣∣ =
3

λ3

∣∣∣∣
∫
η
[
ε2∆PB1 + 2ε∇PB1 · ∇ε

]∣∣∣∣

.
1

λ3

∫
|η|
[

ε2

1 + y4
+

|ε||∇ε|
1 + y3

]
.

1

λ3
|yη|L∞

[∫
ε2

1 + y5
+

∫ |∇ε|2
y2

]

.
1

λ3

(
c(M)|E|+

√
K(M)

b4

|logb|2
) 3

2

.
b

λ3
b4

|logb|2 .

The first term is the most delicate one and requires first a time integration by parts:

∫
∇∂tw ·

[
∇(w3) + 3(PB1)λ∇(w2)

]
=

d

dt

{∫
|∇w|2

[
3

2
w2 + 3(PB1)λw

]}

− 3

∫
w∂tw|∇w|2 − 3

∫
|∇w|2 [w∂t(PB1)λ + (PB1)λ∂tw] .

We may now estimate all terms in brute force:

∣∣∣∣
∫

|∇w|2
[
3

2
w2 + 3(PB1)λw

]∣∣∣∣ .
1

λ2
[|yε|L∞ + |yPB1 |L∞ ]|yε|L∞

∫ |∇ε|2
y2

.
1

λ2
b4

|logb|2 ,

∣∣∣∣
∫
w∂tw|∇w|2

∣∣∣∣ .
1

λ2
|yε|L∞ |yη|L∞

∫ |∇ε|2
y2

.

(
c(M)|E|+

√
K(M)

b4

|logb|2
) 3

2

.
b

λ3
b4

|logb|2 ,

∣∣∣∣
∫

|∇w|2w∂t(PB1)λ

∣∣∣∣ .
|yw|L∞

λ3

∫ |∇w|2
y

[
b

1 + y2
+ C(M)b|bs|1y≤B1

]

.
b

λ3
|∇ε|L2

(
1 + C(M)|bs|

|logb|
b

)∫ |∇ε|2
y2

.
b

λ3
b4

|logb|2
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where we used the rough bound extracted from (2.8): |∂bPB1 | . C(M)b1y≤B1 , and finally:

∣∣∣∣
∫

|∇w|2(PB1)λ∂tw

∣∣∣∣ .
1

λ3
|yη|L∞

∫ |∇ε|2
1 + y3

.

(
C(M)E +

√
K(M)

b4

|logb|2
) 3

2

.
b

λ3
b4

|logb|2 ,

for b0 < b∗(M) small enough. The above chain of estimates together with remark 4.8 closes the
control of the nonlinear term N(ε).

step 9 F2 terms.

We estimate from (2.8):
∫ ∣∣∣∣

∂bPB1

(1 + y)

∣∣∣∣
2

+

∫
|∇∂bPB1 |2 .

1

|logb|2 ,
∫

1

1 + y3
|∂bPB1 |2 .

b

|logb|2 (4.36)

and hence: ∣∣∣∣
∫
∂twHλF2

∣∣∣∣ .
|bs|
λ2

[∫ |η||∂bPB1 |
(1 + y4)

+

∫
|∇η||∇∂bPB1 |

]

.
1

λ2
|bs|
|logb|

√
c(M)|E|+

√
K(M)

b4

|logb|2

.
1

λ2

[ |E|
M

+
√
K(M)

b4

|logb|2
]
,

∣∣∣∣
∫
∂tṼ wF2

∣∣∣∣ .
|bs|b
λ2

∫ |∂bPB1 ||ε|
(1 + y4)

.
|bs|b

λ2|logb|

[
c(M)|E|+

√
K(M)

b4

|logb|2
] 1

2

.
1

λ2

[ |E|
M

+
√
K(M)

b4

|logb|2
]
,

∫
|∇F2|2 +

∣∣∣∣
∫
V F 2

2

∣∣∣∣ .
|bs|2
λ2

[∫ |∂bPB1 |2
(1 + y4)

+

∫
|∇∂bPB1 |2

]

.
1

λ2
(bs)

2

|logb|2 .
1

λ2
b4

|logb|2 .

similarly:
∣∣∣∣
∫
(∂ttṼ w + 2∂tṼ ∂tw)F2

∣∣∣∣+
∣∣∣∣
∫
∂tṼ F

2
2

∣∣∣∣ .
|bs|
λ3

[∫
((|bs|+ b2)|ε|+ b|η|)|∂bPB1 |

(1 + y4)
+ |bs|b

∫ |∂bPB1 |2
1 + y4

]

.
|bs|
λ3

[
(|bs|+ b)

|logb|

√
c(M)|E|+

√
K(M)

b4

|logb|2 +
b2

|logb|2 |bs|
]

.
b

λ3

[ |E|
M

+
√
K(M)

b4

|logb|2
]
.

Eventually, (4.32), (4.33) ensure:
∫
(1 + y2)|H(ΨB1 + F1,1)|2 .

[
b6

|logb|2 +
b2|bs|2
|logb|2

]
.

b6

|logb|2
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which together with (4.36) yields:
∣∣∣∣
∫

1

λ2
(ΨB1 + F1,1)λHλF2

∣∣∣∣ .
1

λ3
b3|bs|
|logb|2 .

b

λ3
b4

|logb|2 .

We similarly estimate from (4.34) and after integration by parts:
∣∣∣∣
∫

1

λ2
(F1,2)λHλF2

∣∣∣∣ .
|bs|
λ3

[∫
b2|ε||∂bPB1 |

1 + y6
+

∫
|∇∂bPB1 |

(
b2|ε|
1 + y3

+
b2|∇ε|
1 + y2

)]

. C(M)
b4

λ3|logb|

(∫
ε2

1 + y6
+

∫ |∇ε|2
1 + y4

) 1
2

.
b

λ3
b4

|logb|2 .

For the nonlinear term, we extract from (2.8) the rough bound

|H(∂bPB1)| . [C(M) + log(b)]
b

1 + y2
1y≤B1 ,

which together with (C.1) ensures:
∣∣∣∣
∫

1

λ2
(N(ε))λHλF2

∣∣∣∣ .
[C(M) + log(b)]

λ3
|bs|
∫

b

1 + y2
ε2

1 + y
1y≤B1

. C(M)
|bs||logb|4

λ3

∫
ε2

(1 + y4)|logy|2

.
b

λ3

√
b

(
c(M)|E|+

√
K(M)

b4

|logb|2
)

.
b

λ3
b4

|logb|2 .

step 10 The remaining F2 term has the right sign.

It remains to estimate the term

−
∫
HλwHλF2

in the RHS of (4.28). Let us stress onto the fact that this term is a priori no better O( 1
λ3
E) due to

the bs contribution and the bound (4.8), recall remark 4.5.
We now claim that the main contribution has the right sign again.

Indeed, we first compute from the T1 equation (2.16):

HT1 = −Φ+ cbχB0
4

ΛQ, H∂bT1 = O

(
1

b|logb|
1
2≤y≤

B0
2

(1 + y2)

)
(4.37)

We then apply the decomposition (2.22):

H(∂bPB1) = H
(
2bT1 + 2b(χB1 − 1)T1 + b2∂blog(B1)ρB1T1 + b2χB1∂bT1

)
= −2bΦ+ Σ

and estimate using (2.8), (2.21), (4.37):

|Σ| . b

1 + y2

[
1

|logb|12≤y≤B0
2

+
1

b2y2|logb|1B0
2
≤y

]
.

In particular,
∫

Σ2 .
b2

|logb|
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and thus using the modulation equation (4.8) :

−
∫
HλwHλF2 = − bs

λ3

∫
(Hε)H(∂bPB1) = − bs

λ3

∫
Hε (−2bΦ+ Σ)

= 2
b

λ3
bs(ε,HΦ) +

b

λ3
O

(
|bs|√
|logb|

√
|E|+

√
K(M)

b4

|logb|2

)

= 2
b

λ3

[
− (ε,HΦ)

(ΛQ,Φ)
+O

(√
|E|
M

+
√
K(M)

b4

|logb|2

)]
(ε,HΦ) +

b

λ3
O

(
b4

|logb|2
)

= − 2b

λ3
(ε,HΦ)2

(ΛQ,Φ)
+O

( |E|
M

+
√
K(M)

b4

|logb|2
)
+

b

λ3
O

(
b4

|logb|2
)

(4.38)

≤ O

( |E|
M

+
√
K(M)

b4

|logb|2
)
. (4.39)

The recollection of all above estimates yields (4.16) and concludes the proof of Proposition 4.6.

4.4. Improved bound. We now claim that the a priori bound on the unstable direction (3.35)
coupled with the monotonicity property of Proposition 4.6 imply the following improved bounds:

Lemma 4.9 (Improved bounds under the a priori control (3.35)). There holds in [0, T1(a+)]:

‖(∇w(t), ∂tw(t) +
b(t)

λ(t)
((1− χB1(b(t)))ΛQ))λ(t)‖L2×L2 . b0|logb0|, (4.40)

b4(t)

|logb(t)|2λ2(1−α)(t) ≥ b4(0)

|logb(0)|2λ2(1−α)(0) , (4.41)

|bs|2 ≤
K(M)

2

b4

|logb|2 , (4.42)

|E(t)| ≤ K(M)

2

b4

(logb)2
. (4.43)

Proof of Lemma 4.9

step 1 Energy bound.

The energy bound (4.40) is a consequence of the conservation of the energy. Indeed, the conser-
vation of the energy and the initial bounds of Lemma 3.1 ensure

E(u, ∂tu) = E(u0, u1) = E(Q) +O(b0
√
|logb0|),

(see Appendix 3.1) and thus:

E(Q) +O(b0|logb0|) (4.44)

=
1

2

∫
[∂t(PB1)λ + ∂tw]

2 +
1

2

∫
|∇(PB1)λ +∇w|2 − 1

4

∫
[(PB1)λ + w]4 .

We lower bound the first term by expanding,

∂t(PB1)λ + ∂tw = ∂tw +
b

λ
((1− χB1)ΛQ)λ +

b

λ
(χB1ΛQ)λ +

b3

λ
(Λ[χB1T1])λ +

bs
λ
(∂bPB1)λ

= ∂tw +
b

λ
((1− χB1)ΛQ)λ +Σ,
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with ∫
Σ2 . b20|logb0|,

where we used the bootstrap bounds (3.31), (3.32). Finally :
∫

[∂t(PB1)λ + ∂tw]
2 ≥ 1

2

∫ [
b

λ
((1− χB1)ΛQ)λ + ∂tw

]2
−O(b20|logb0|). (4.45)

We then expand the second term:

1

2

∫
[∇(PB1)λ +∇w]2 − 1

4

∫
[(PB1)λ + w]4 =

1

2

∫
[∇PB1 +∇ε]2 − 1

4

∫
[PB1 + ε]4

=
1

2

∫
|∇PB1 |2 −

1

4

∫
|PB1 |4 − (ε,∆PB1 + P 3

B1
) +

1

2

(∫
|∇ε|2 − 3

∫
P 2
B1
ε2
)

− 1

4

(
4PB1ε

3 + ε4
)

From the construction of PB1 ,

1

2

∫
|∇PB1 |2 −

1

4

∫
|PB1 |4 = E(Q) +O(b2|logb|). (4.46)

The linear term is treated using (2.9), the improved decay (2.2) and (4.31):
∣∣(ε,∆PB1 + P 3

B1
)
∣∣ =

∣∣(ε, b2DΛPB1 −ΨB1)
∣∣

. ‖ε/y‖L2‖y(b2DΛPB1 −ΨB1)‖L2 . b|∇ε|L2 (4.47)

We now rewrite the quadratic term as a small deformation of H and use the coercivity bound (C.8)
to ensure: ∫

|∇ε|2 − 3

∫
P 2
B1
ε2 ≥ c0

∫
|∇ε|2 +Def, (4.48)

with

Def := 3

∫
(Q2 − P 2

B1
)ε2 − (ε, ψ)2

c0
.

Collecting (2.7) and (C.1), on the one hand, and (4.2) on the other hand, we compute:
∣∣∣∣
∫

(Q2 − P 2
B1

)ε2
∣∣∣∣ ≤ ‖y2(Q2 − P 2

B1
)‖L∞‖∇ε‖2L2 . b‖∇ε‖2L2 , |(ε, ψ)|2 . b2|logb|. (4.49)

The nonlinear term is easily estimated from Sobolev:
∫ ∣∣(3PB1 + ε)ε3

∣∣ ≤ ‖yPB1‖L∞‖yε‖L∞‖∇ε‖2L2 .
√
b0‖∇ε‖2L2 (4.50)

Injecting (4.45), (4.47), (4.46), (4.49), (4.48), (4.50) into (4.44) yields (4.40).

step 2 Lower bound on b.

We now turn to the proof of (4.41). First observe from the bootstrap estimate (3.32) that

|bs| ≤
√
K(M)

b2

|logb| ≤
1− α

10
b2 (4.51)

This implies:

d

ds

(
b4

(logb)2λ2(1−α)

)
=

4b3

λ2(1−α)(logb)2

[
bs

(
1− 1

2logb

)
+

1− α

2
b2
]
> 0
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and (4.41) follows.

step 3 Improved Ḣ2 bound.

We now turn to the proof of (4.43). We integrate (4.16) in time and conclude from (4.1), (4.15):

|E(t)| .

(
λ(t)

λ(0)

)2(1−α)

|E(0)| (4.52)

+ (K(M))
1
2

[
b4(t)

|logb(t)|2 + [λ(t)]2(1−α)
∫ t

0

b(τ)

[λ(τ)]3−2α

b4(τ)

|logb(τ)|2dτ
]

We then derive from (4.51):
∫ t

0

b(τ)

[λ(τ)]3−2α

b4(τ)

|logb(τ)|2dτ = −
∫ t

0

λt
λ3−2α

b4

|logb|2dτ

≤ 1

2(1− α)

b4(t)

λ2(1−α)(t)|logb(t)|2 − 1

2(1− α)

∫ t

0

bs
λ3−2α

b3

|logb|2
[
1− 2

|logb|2
]

.
b4(t)

λ2(1−α)(t)|logb(t)|2 +
√
K(M)

∫ t

0

b(τ)

[λ(τ)]3−2α

b4(τ)

|logb(τ)|2
1

|logb(τ)|dτ

and hence the bound:

λ2(1−α)(t)

∫ t

0

b(τ)

[λ(τ)]3−2α

b4(τ)

|logb(τ)|2dτ .
b4(t)

|logb(t)|2 .

Injecting this into (4.52) and using the initial bound (A.12),(A.17) and the monotonicity (4.41)
yields:

E(t) .

(
λ(t)

λ(0)

)2(1−α) b4(0)

|logb(0)|2 + (K(M))
1
2

b4(t)

|logb(t)|2

.
√
K(M)

b4(t)

|logb(t)|2 (4.53)

and (4.43) follows. (4.42) now follows from (4.4) and (4.53).
This concludes the proof of Lemma 4.9.

4.5. Dynamic of the unstable mode. We now focus onto the dynamic of the unstable mode. We
recall the decomposition

Y (t) =

∣∣∣∣
(ε, ψ)
(∂sε, ψ)

= ã+(t)V+ + ã−(t)V−, (4.54)

and the variables given by (3.22):

κ+(s) = ã+(s) +
bs

2
√
ζ
(∂bPB1 , ψ), κ−(s) = ã−(s)−

bs

2
√
ζ
(∂bPB1 , ψ).

Lemma 4.10 (Control of the unstable mode). There holds: for all t ∈ [0, T1(a+)],

|κ−(t)| ≤
1

2
(K(M))

1
8

b2

|logb| (4.55)

and κ+ is strictly outgoing: ∣∣∣∣
dκ+
ds

−
√
ζκ+

∣∣∣∣ ≤
√
b
b2

|logb| . (4.56)
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Proof of Lemma 4.10

We compute the equation satisfied by the unstable direction (ε, ψ) by taking the inner product of
(3.11) with the well localized direction ψ to get:

d2

ds2
(ε, ψ)− ζ(ε, ψ) = E(ε)− (∂2sPB1 , ψ) (4.57)

with

E(ε) = −(ΨB1 , ψ)− bs(ΛPB1 , ψ)− b(∂sPB1 + 2Λ∂sPB1 , ψ)− b(∂sε+ 2Λ∂sε, ψ)

− bs(Λε, ψ) + (N(ε), ψ) + b2(Λε,Dψ) + ((f ′(PB1)− f ′(Q))ε, ψ). (4.58)

Simple algbebraic manipulations using (4.54), (3.22) and the initial condition yield the equivalent
system:

d

ds
κ+ =

√
ζκ+(s) +

E+(s)

2
√
ζ
,

d

ds
κ− = −

√
ζκ−(s)−

E−(s)

2
√
ζ
κ−(0) (4.59)

with

E+(s) = E(s)− bs
2
(∂bPB1 , ψ) E−(s) = E(s) +

bs
2
(∂bPB1 , ψ) (4.60)

We now have from the explicit formula (4.58), (4.60), the exponential localization of ψ, the orthog-
onality

(ψ,ΛQ) = 0,

the estimates of Proposition 2.1 and the bootstrap estimate (3.32) the bound:

1√
ζ
|E±| . |b|(|bs|+

√
|E|+

√
K(M)

b2

|logb|) ≤
√
b
b2

|logb| , (4.61)

which together with (4.59) yields (4.56). Let then

G = κ2−
|logb|2
b4

,

then from (4.59), (4.61), (3.32), we estimate:

dG
ds

= 2κ−
dκ−
ds

|logb|2
b4

+ κ2−bs

[
−4|logb|2

b5
+

2logb

b5

]

= 2
|logb|2
b4

[
κ−

(
−
√
ζκ− − E−√

ζ

)]
+ κ2−

|logb|2
b4

O

( |bs|
b

)

≤ −
√
ζ

2

|logb|2
b4

κ2− +
|logb|2
b4

κ−
√
b
b2

|logb| . −
√
ζ

2
G + 1.

We integrate this in time

G(s) ≤ G(0)e−
√
ζ

2
s +

∫ s

0
e−

√
ζ

2
(s−σ)dσ . 1

where we used the initial inequality (A.18) yielding that G(0) . 1. This concludes the proof of (4.55)
and of Lemma 4.10.
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4.6. Derivation of the sharp law for b. We now turn to the derivation of the sharp law for b
which will yield the required monotonicity statement on b to close the smallness bootstrap estimate
(3.31), and will eventually lead to the derivation of the sharp blow up speed (1.10).

Lemma 4.11 (Sharp derivation of the b law). Let

P̃B0 = χB0
4

Q, (4.62)

G(b) = b|ΛP̃B0 |2L2 +

∫ b

0
b̃(∂bP̃B0 ,ΛP̃B0)db̃, (4.63)

I(s) = (∂sε,ΛP̃B0) + b(ε+ 2Λε,ΛP̃B0) + bs(∂bP̃B0 ,ΛP̃B0)− bs

(
∂b(PB1 − P̃B0),ΛP̃B0)

)
, (4.64)

then there holds:

G(b) = 64b|logb|+O(b), |I| . K(M)b, (4.65)
∣∣∣∣
d

ds
{G(b) + I(s)}+ 32b2

∣∣∣∣ . K(M)
b2√
|logb|

. (4.66)

Remark 4.12. Observe that (4.65), (4.66) essentially yield a pointwise differential equation

bs ∼ − b2

2|logb|
which will allow us to derive the sharp scaling law via the relationship −λs

λ = b.

Proof of Lemma 4.11

The proof is inspired by the one in [31]. We multiply (3.11) with ΛP̃B0 and compute:

(bsΛPB1 + b(∂sPB1 + 2Λ∂sPB1) + ∂2sPB1 ,ΛP̃B0) = −(ΨB1 ,ΛP̃B0)− (HB1ε,ΛP̃B0)

−
(
∂2sε+ b(∂sε+ 2Λ∂sε) + bsΛε,ΛP̃B0

)
+ (N(ε),ΛP̃B0)

We further rewrite this as follows:

(bsΛP̃B0 + b(∂sP̃B0 + 2Λ∂sP̃B0) + ∂2s P̃B0 ,ΛP̃B0) = −(ΨB1 ,ΛP̃B0)

− (bsΛ(PB1 − P̃B0) + b(∂s(PB1 − P̃B0) + 2Λ∂s(PB1 − P̃B0)) + ∂2s (PB1 − P̃B0),ΛP̃B0)

− (HB1ε,ΛP̃B0)−
(
∂2sε+ b(∂sε+ 2Λ∂sε) + bsΛε,ΛP̃B0

)
+ (N(ε),ΛP̃B0). (4.67)

We now estimate all terms in the above identity.

step 1 b terms.

An integration by parts in time allows us to rewrite the left-hand side of (4.67) as follows:

(bsΛP̃B0+b(∂sP̃B0+2Λ∂sP̃B0)+∂
2
s P̃B0 ,ΛP̃B0) =

d

ds

[
G(b) + bs(∂bP̃B0 ,ΛP̃B0)

]
+|bs|2|∂bP̃B0 |2L2 (4.68)

with G given by (4.63). Observe from (3.32) the bound

|bs|2|∂bP̃B0 |2L2 .
|bs|2
b2

. (K(M))2
b2

|logb|2 .
b2√
|logb|

.
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We now turn to the key step in the derivation of the sharp b law which corresponds to the following
outgoing flux computation8:

(ΨB1 ,ΛP̃B0) = 32b2
(
1 +O

(
1

|logb|

))
as b→ 0. (4.69)

Indeed, we first estimate from (2.9):

∣∣∣(ΨB1 − cbb
2χB0

4

ΛQ,ΛP̃B0)
∣∣∣ . b4

∫

y≤
B0
2

[
1 + |log(by)|
|logb|(1 + y2)

+
1 + |log(1 + y)|

(1 + y2)2

]

.
b2

|logb| .

The remainder term is computed from (2.10) and the explicit formula for Q (1.3):

(cbb
2χB0

4

ΛQ,ΛP̃B0) =
b2

2|logb|

(
1 +O

(
1

|logb|

))[∫

y≤ 1
2b

(ΛQ)2 +O(1)

]

= 32b2
(
1 +O

(
1

|logb|

))
,

and (4.69) follows.
We now estimate the lower order terms in b which correspond to the second line of (4.67). One term
is reintegrated by parts in time:

−(∂2s (PB1 − P̃B0),ΛP̃B0) = − d

ds

{
bs(∂b(PB1 − P̃B0),ΛP̃B0)

}
+ b2s(∂b(PB1 − P̃B0), ∂bΛP̃B0).

The remaining terms are estimated in brute force using (2.8) and (3.32) which yield:
∣∣∣(bsΛ(PB1 − P̃B0) + b(∂s(PB1 − P̃B0) + 2Λ∂s(PB1 − P̃B0))),ΛP̃B0)

∣∣∣

+ b2s

∣∣∣(∂b(PB1 − P̃B0), ∂bΛP̃B0)
∣∣∣ . |bs|+

|bs|2
b2

. K(M)
b2

|logb| .

step 2 ε terms .

We are left with estimating the third line on the RHS of (4.67). We first treat the linear term
from (4.1), (4.7), (3.34):

∣∣∣(HB1ε,ΛP̃B0)
∣∣∣ . |(Hε,ΛP̃B0)|+

∫
|ε||P 2

B1
−Q2||ΛP̃B0 |+ b2

∣∣∣(DΛε,ΛP̃B0)
∣∣∣ (4.70)

On the one hand, (4.7) together with bootstrap estimates yield:

∫
|ε||P 2

B1
−Q2||ΛP̃B0 | . b2

∫

y≤B0

|ε|
(1 + y2)2

≤ b
3
2

(∫ |ε|2
(1 + y)5

) 1
2

.
b2

|log(b)|

8see again [31] for more details about the flux computation statemement and its connection to the Pohozaev inte-
gration by parts formula
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On the other hand, after integration by parts, we repeat the same arguments and apply (C.4). This
yield:

b2
∣∣∣(DΛε,ΛP̃B0)

∣∣∣ ≤ b2
∫

y≤B0

|ε|
(1 + y4)

+ b2
∫

B0/4≤y≤B0/2

|ε|
(1 + y2)

+ b2
∫

y≤B0

|∇ε| y

1 + y2

. b
3
2

(∫ |ε|2
(1 + y5)

) 1
2

+

(∫

B0/4≤y≤B0/2

|ε|2
(1 + y4)

) 1
2

+

(∫

y≤B0

|∇ε|2
1 + y2

) 1
2

.
√
|log(b)|

(
c(M)|E|+

√
K(M)

b4

|logb|2
) 1

2

.
√
K(M)

b2√
|log(b)|

.

Finally:

|(Hε,ΛP̃B0)| . |Hε|L2

√
|logb|+

√
K(M)

b2√
log(b)

.
√

|logb|
√

|E|+
√
K(M)

b4

|logb|2 .
√
K(M)

b2√
|logb|

We further integrate by parts in time to obtain:
(
∂2sε+ b(∂sε+ 2Λ∂sε) + bsΛε,ΛP̃B0

)
=

d

ds

[
(∂sε,ΛP̃B0) + b(ε+ 2Λε,ΛP̃B0)

]

− bs

[
(∂sε+ bΛε,Λ∂bP̃B0) + (ε,Φb)

]

with

Φb = −ΛP̃B0 − Λ2P̃B0 − bΛ∂bP̃B0 − bΛ2∂bP̃B0 .

We thus estimate from (4.1), (4.5), (4.7), (3.32), (3.34):

|bs|
∣∣∣(∂sε+ bΛε,Λ∂bP̃B0) + (ε,Φb)

∣∣∣ . |bs|
[∫

B0
4
≤y≤B0

|η|
y

+

∫

y≤B0

|ε|
1 + y2

]

.
|bs||logb|

b2
C(M)

√
|E|+

√
K(M)

b4

|logb|2 . K(M)
b2√
|logb|

The non linear term is estimated as previously. Indeed, we have:
∣∣∣(N(ε),ΛP̃B0)

∣∣∣ .

∫
(|PB1 |+ |ε|)ε2|ΛP̃B0 |

.
1

b2
‖y(|PB1 |+ |ε|)‖L∞‖(1 + y2)ΛP̃B0‖L∞

∫ B0

0

|ε|2
y(1 + y4)

.
C(M)

b2

[
E +K(M)

b4

|logb|2
]
. K(M)

b2√
|logb|

.

step 5 Control of G(b) and I.

Injecting the estimates of step 1 and step 2 into (4.67) yields (4.66). It remains to prove (4.65).
The estimate for G(b) is a straightforward consequence of the choice (4.62) and the explicit formula
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(1.3). It remains to control I. We integrate by parts in space in (4.64) to rewrite:

I(s) = (∂sε+ bΛε,ΛP̃B0)− b(ε,ΛP̃B0 + Λ2P̃B0) + bs(∂bP̃B0 ,ΛP̃B0)− bs

(
∂b(PB1 − P̃B0),ΛP̃B0)

)
.

The b terms are estimated as in step 1:

|bs|
∣∣∣(∂bP̃B0 ,ΛP̃B0)− (∂b(PB1 − P̃B0),ΛP̃B0)

∣∣∣ .
|bs|
b

. b.

The linear term is estimated using (4.1), (4.5), (4.7), (3.32), (3.34):
∣∣∣(∂sε+ bΛε,ΛP̃B0)− b(ε,ΛP̃B0 + Λ2P̃B0)

∣∣∣ .
∫

y≤B0

|η|
y2

+ b

∫

y≤B0

|ε|
y2

.
1

b

(∫ |η|2
y2

) 1
2

+
|logb|
b2

(∫

y≤B0

|ε|2
y4(1 + |logy|2)

) 1
2

. K(M)b

and (4.65) is proved.

This concludes the proof of Lemma 4.11.

5. Sharp description of the singularity formation

We are now in position to conclude the proof of Proposition 3.5 and Theorem 1.1 as a simple
consequence of the a priori bounds obtained in the previous section.The proof relies on a topologi-
cal argument which closes the bootstrap argument, and then the sharp description of the blow up
dynamic is a consequence of the a prori bounds obtained on the solution and in particular the mod-
ulation equation (4.66).

Proof of Proposition 3.5

We argue by contradiction and assume that for all a+ ∈
[
− b20

|logb0|
,

b20
|logb0|

]
,

T1(a+) < T (a+).

In view of the Definition 4.9 of the bootstrap regime and the improved bounds of Lemma 4.9 and
Lemma 4.10, a simple continuity argument ensures that T1(a+) is attained at the first time t where

|κ+(t)| =
|b(t)|2

2|log(b(t))| . (5.1)

The fundamental fact now is the outgoing behaviour (4.56) which together with (5.1) ensures
∣∣∣∣
dκ+
dt

(T1(a+))

∣∣∣∣ > 0.

Thus from standard argument9, the map
[
− b20

|logb0|
,

b20
|logb0|

]
→ R∗+

a+ 7→ T1(a+)
is continuous.

We may thus consider the continuous map:

Φ : [− b20
|logb0|

,
b20

|logb0|
] → R

a+ → κ+(T1(a+))
2|logb(T1(a+))|
b2(T1(a+))

9see [5, Lemma 6] for a complete exposition
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On the one hand, (5.1) implies:

Φ

([
− b20
|logb0|

,
b20

|logb0|

])
⊂ {−1, 1}.

On the other hand, the outgoing behavior (4.56) together with the initialization κ+(0) = a+ ensures:

Φ

(
− b20
|logb0|

)
= −1, Φ

(
b20

|logb0|

)
= 1

and a contradiction follows.10This concludes the proof of Proposition 3.5.

Proof of Theorem 1.1

step 1 Finite time blow up and derivation of the blow up speed.

Let from Proposition 3.5 an initial data with T1(a+) = T (a+). We first claim that u blows up in
finite time

T = T (a+) < +∞. (5.2)

Indeed, from (4.41),

λ2(1−α) . b3 and thus λ
2
3 . λ

2(1−α)
3 . b = −λt.

Integrating this differential inequation yields

t . λ
1
3 (0)− λ

1
3 (t) . 1

and (5.2) follows. The (Ḣ1∩Ḣ2)×(L2∩Ḣ1) bounds (3.33), (3.34) on (ε, ∂tε) and hence on (u, ∂tu) in
the bootstrap regime and standard H2 local well posedness theory ensure that blow up corresponds
to

λ(t) → 0 as t→ T (a+).

We now derive the blow up speed by reintegrating the ODE (4.66) and briefly sketch the proof which
follows as in [31].
First recall the standard scaling lower bound

λ(t) ≤ C(u0)(T − t)

which implies that the rescaled time is global:

s(t) =

∫ t

0

dτ

λ(τ)
→ +∞ as t→ T.

Let

J = G+ I
so that from (4.65):

J = 64b|logb|
(
1 +O

(
1

|logb|

))
ie b =

J
64|logJ |

(
1 +O

(
1√

|logJ |

))
(5.3)

and J satisfies from (4.66) the ODE:

Js +
J 2

128|logJ |2

(
1 +O

(
1√

|logJ |

))
= 0.

10This topological argument is of course the one dimensional version of Brouwer’s fixed point argument used in [5].
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We multiply the above by |logJ |2

J 2 , integrate in time and obtain to leading order:

J =
128(logs)2

s

(
1 +O

(
1√
|logs|

))
ie − λs

λ
= b =

2logs

s

(
1 +O

(
1√
|logs|

))
.

where we used (5.3). Integrating this once more in time yields:

−logλ = (logs)2

(
1 +O

(
1√
|logs|

))

and thus

b = −λt = exp

(
−
√

|logλ|
(
1 +O

(
1

|logλ| 14

)))
.

Integrating this from t to T where λ(T ) = 0 yields the asymptotic

λ(t) = (T − t)exp

(
−
√
|logλ(t)|

(
1 +O

(
1

|logλ(t)| 14

)))

which yields (1.10).

step 2 Energy quantization.

It remains to prove (1.9) which can be derived exactly as in [31], this is left to the reader.
This concludes the proof of Theorem 1.1.

Appendix A. Modulation theory

This appendix is devoted to the proof of Lemmas 3.1 and 3.3. The arguments are standard in the
framework of modulation theory and we briefly sketch the main computations.

A.1. Proof of Lemma 3.1. First note that the bounds

|∇(PB1 −Q)|L2 + b|ΛPB1 − b(1− χB1)ΛQ|L2 . b|logb|
ensure that our initial data are of the form

u0 = Q+ η̃0, u1 = η̃1

for a small excess of energy in the sense that:

‖∇η̃0, η̃1‖L2×L2 . b0|logb0|, ‖∇2η̃0,∇η̃1‖L2×L2 . b0, (A.1)

Hence the continuity of the flow associated to (1.1) ensures the existence of a time T0 > 0 (uniform
in η̃0, η̃1) for which the solution u to (1.1) (u0, u1) satisfies on [0, T0]:

sup
[0,T0]

‖∇(u−Q), ∂tu‖L2×L2 . b0|logb0|, . (A.2)

Step 1 : Modulation near Q.
The non degeneracy (ΛQ,Φ) 6= 0 ensures11 that u admits on [0, T0] a decomposition

u(t) = (Q+ ε̃(t))λ(t) (A.3)

with:
(ε̃(t), χMΦ) = 0. (A.4)

11as a direct consequence of the implicit function theorem and the smoothness of the flow (1.1)
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Moreover, λ ∈ C2([0, T0];R
∗
+) and noting that η̃0 satisfies

|(η̃0, χMΦ)| . b20
|logb0|

,

we obtain the bound:

|λ(0)− 1| . b20
|logb0|

. (A.5)

We then let b(t) = −λt(t) on [0, T0].

Step 2 : Positivity of b.
Straightforward computations yield:

∂tε̃(t) =

(
∂tu− b(t)

λ(t)
Λu

)

1
λ(t)

.

Taking the scalar product with χMΦ, we obtain at the initial time:

b(0) = λ(0)
((u1) 1

λ(0)
, χMΦ)

((Λu0) 1
λ(0)

, χMΦ)
, (A.6)

where (2.5) together with (A.5) imply:

((u1) 1
λ(0)

, χMΦ) = b0(ΛQ,χMΦ) +O

(
b20

|log(b0)|

)
, (A.7)

((Λu0) 1
λ(0)

, χMΦ) = (ΛQ,χMΦ) +O
(
b20|log(b0)|

)
. (A.8)

This yields the positivity of b(0) and moreover, the positivity of b(t) for small time together with:

b(t) = b0 +O

(
b20

|log(b0)|

)
(A.9)

As b > 0, we may introduce the decomposition:

u(t) = (Q+ ε̃)λ(t) = (PB1(b(t)) + ε)λ(t) ie ε(t) = ε̃(t)− (PB1(b(t)) −Q). (A.10)

Observe from (2.4), (A.4) that

∀ t ∈ [0, T0], (ε(t), χMΦ) = 0. (A.11)

The uniqueness of such a decomposition is guaranteed by the (local) uniqueness of (λ, ε̃).

Step 3 : Smallness of ε.
To complete the proof, we obtain the smallness of ε in Ḣ1 and Ḣ2. To this end, we note that:

ε(0) = (u0) 1
λ(0)

− PB1(b(0)) =

[(
PB1(b0)

)
1

λ(0)

− PB1(b(0))

]
+ (η0 + d+ψ) 1

λ(0)
.

Simple computations based on the estimates of Proposition 2.1 yield the expected result :

‖∇ε(0)‖L2 . b0|log(b0)|
∥∥∥∥
ε(0)

1 + y4

∥∥∥∥
L2

+ ‖∇2ε(0)‖L2 .
b20

|log(b0)|
. (A.12)
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A.2. Proof of Lemma 3.3. The proof of this lemma is divided into two steps. First, given
(η0, η1, d+) satisfying smallness condition (3.1) for small b0, we prove that b, bs and w satisfy (3.31)–
(3.34). Then, we show that, given (b0, η0, η1), we can apply the inverse mapping theorem to
d+ 7→ κ+(0) close to 0. The arguments are standard and we refer to [5] for a detailed proof in
a similar setting.

Step 1: Smallness of initial modulation given (η0, η1, d+).
Given (η0, η1, d+) satisfying smallness condition (3.1) we can apply Lemma 3.1 this yields T0 and
b, ε, w such that (3.31) holds and

‖∇w(t)‖L2 . b0|log(b0)| ‖∇2w(t)‖L2 .
b20

|log(b0)|2
(A.13)

We emphasize in particular that Lemma 3.1 implies b0/2 < b(0) < 2b0 for sufficiently small b0.
As previously, we focus now on bounds satisfied initially. We first compute bs(0) using (1.1)

and the orthogonality condition (A.11). Recalling that (∂kb PB1 , χMΦ) = (∂k−1
s ε, χMΦ) = 0 for any

integer k, we get like for (4.10):

bs [(ΛPB1 , χMΦ) + 2b(Λ∂bPB1 , χMΦ) + (Λε, χMΦ)]

= −(ΨB1 , χMΦ)− (ε,H∗
B1

(χMΦ)) + b(∂sε,Λ(χMΦ)) + (N(ε), χMΦ)

where, denoting LHS and RHS the left-hand and right-hand side at initial time, we compute, for
sufficiently small b0 w.r.t. M :

|RHS| ≤ C(M)

(
b20

|log(b0)|
+ ‖∂sε‖L2(y<M)

)
,

|bs(0)|
2

(ΛQ,χMΦ) ≤ |LHS|. (A.14)

On the other hand, after time-differentiation, we obtain :

∂sε(0) = λ(0)∂tε(0) = −bs(0)∂bPB1(b(0)) − b(0)Λu0 + λ(0)
(
b0ΛPB1(b0)

)
1

λ(0)

. (A.15)

Observe now from (2.8) that
∥∥∂bPB1(b0)

∥∥
L2(y≤2M)

. C(M)b0 ≤
√
b0

which together with (A.5), (A.9) and (3.1) yields:

‖∂sε(0)‖L2(y≤2M) = λ(0)‖∂tε(0)‖L2(y≤2M) .
b20

|logb0|
+ |bs(0)|

√
b0, (A.16)

which together with (A.14) concludes the proof of the initial bound (3.26) on bs.
Then, we compute :

∂tw(0) = u1 −
(
bs(0)

λ(0)
∂bPB1(b(0)) +

b(0)

λ(0)
ΛPB1(b(0))

)

λ(0)

so that, introducing (A.15) and previous estimates on b(0), we compute :

‖∂tw(0) +
b(0)

λ(0)
((1− χB1(b(0)))ΛQ)λ(0)‖L2 . b0| ln(b0)| ≤

√
b0.

and

‖∇∂tw(0)‖L2 .
b20

|logb0|
, (A.17)

Together with (A.13), this yields (3.27) and (3.28).
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Finally, straightforward computations yield:

κ− =
1

2
(ε, ψ)− 1

ζ
(∂sε, ψ)−

bs
2ζ

(∂bPB1 , ψ) ,

Consequently, we apply (3.28), noting that w(t) = (ε(t))λ(t), and (A.15) because of the exponential
decay of ψ to compute

|κ−(0)| .
b20

|logb0|
(A.18)

Step 2: Computation of d+.
We now claim from an explicit compuation that given a+, the initialization (3.24) can be reformulated
in the form

F (d+) = a+ with
∂F

∂d+
|d+=0 =

‖ψ‖2L2

2
+O(b0) (A.19)

which from the implicit function theorem concludes the proof of Lemma 3.3.
Let us briefly justify (A.19). We want to study the mappping

V → R
4

d+ 7−→ [b(t), bs(t), (ε(0), ψ), (∂sε(t), ψ)]

where V is a neighborhood of 0. To this end, it is necessary to study the dependencies of all initial
parameters on d+. For conciserness, we denote by d differentiation w.r.t. d+ in what follows
Computation of (λ(0), ε̃(0)). As a first step in the modulation theory, we proved that (λ(0), ε̃(0)) =

Φ(u0) where Φ is a smooth mapping Ḣ1(RN ) → R× Ḣ1(RN ) defined in a neighborhood of Q. Due
to the exponential decay of ψ ∈ C∞(RN ) we thus have that λ(0) is a smooth function of d+ with

differential dλ(0) = dλ ∈ R. We have the same result for ε with differential dε̃(0) = dε̃ ∈ Ḣ1(RN ).
By definition, we have

ε̃(0) = u0 −Q 1
λ

so that:

dε̃ = ψ +
dλ

λ(0)
(ΛQ) 1

λ(0)
.

Computation of b(0): From (A.6), b(0) is a C1 mapping with:

db(0) = dλ




((u1) 1
λ(0)

, χMΦ)

((Λu0) 1
λ(0)

, χMΦ)
+

((Λ2u0) 1
λ(0)

, χMΦ)− ((Λu1) 1
λ(0)

, χMΦ)

((Λu0) 1
λ(0)

, χMΦ)2




− λ(0)
((u1) 1

λ(0)
, χMΦ)((Λψ) 1

λ(0)
, χMΦ)

((Λu0) 1
λ(0)

, χMΦ)2

where (A.6) and (A.7) ensure that, for some db ∈ R, there holds :

db(0) = db+O(b0).

Computation of ε(0): Next,

ε(0) = ε̃(0)− (PB1(b(0)) −Q)

Consequently, (ε(0), ψ) is also a smooth function of d+ with derivative dps1(0) satisfying

dps1(0) = (dε̃, ψ)− db(0)(∂bPB1(b(0)), ψ)

Replacing dε̃ by its values, and applying that (ΛQ,ψ) = 0 together with |λ(0)− 1| . b20/|log(b0)|, we
get:

(dε̃, ψ) = ‖ψ‖2L2 +O(b0)
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so that:

dps1(0) = ‖ψ‖2L2 +O(b0).

Computation of ∂sε(0) + bs(0)∂bPB1(b(0)): From (A.15),

∂sε(0) = −bs(0)∂bPB1(b(0)) − b(0)Λu0 + λ(0)
(
b0ΛPB1(b0)

)
1

λ(0)

so that (∂sε(0) + bs(0)∂bPB1(b(0)), ψ) is a smooth function of d+ with derivative :

dps2(0) = −db(0)(Λu0, ψ) + dλ

([(
b0ΛPB1(b0)

)
1

λ(0)

+
(
b0Λ

2PB1(b0)

)
1

λ(0)

]
, ψ

)
− b(0)(Λψ,ψ),

where, for the same orthogonality reason (ΛQ,ψ) = 0, we have:

(Λu0, ψ) = (ΛQ,ψ) +O(b0) = O(b0)

Consequently dps2(0) = O(b0).
Conclusion: Finally, there holds

κ+(0) =
1

2

[
(ε(0), ψ) +

1√
ζ
(∂sε(0) + bs(0)∂bPB1(b(0)), ψ)

]
.

and κ+(0) = a+ reduces to a simple 1D equation F (d+) = a+ with F computed as combination of
the above functions so that it is smooth in a neighborhood of 0. Moreover, there holds:

dF =
1

2

[
dps1(0) +

1√
ζ
dps2(0)

]
=

‖ψ‖2L2

2
+O(b0),

and (A.19) is proved. This concludes the proof of Lemma 3.3.

Appendix B. Coercivity estimates

The aim of this section is a proof of the coercivity properties of the quadratic form:

B(η, η) = (Bv, v) =
∫

R4

|∂rη|2 +
∫

R4

Wη2

where

W (r) = 2V +
3

2
rV ′ =

6

(1 + r2/8)2
− 9

4

r2

(1 + r2/8)3

We use the elementary method developed in [8]. The coercitivity property of Lemma 4.7 is a

consequence of the two following facts. First the index of B on Ḣ1
r = {u radial with

∫
|∇u|2+

∫
u2

r2
<

+∞} is at most 2. From standard Sturm Liouville oscillation theorems, see Theorem XIII.8 [33],
this is equivalent to counting the number of zeroes of

{ BU = 0 on (0,∞),

U(0) = 1 U ′(0) = 0,
(B.1)

and this can be analytically reduced to counting the number of zeroes of a Bessel function. Then
we need to show that the orthogonality conditions (η, ψ) = (η,Φ) = 0 are enough to treat the
two negative directions. Arguing exactly as in [8], see also [13], this is equivalent to first invert

the operator B on Ḣ1
rad, and then show that B restricted to Span{B−1ψ,B−1Φ} is definite nega-

tive, which is an elementary numerical check. We shall check these two facts below and refer to
[8] for the proofs that this implies the claimed coercitivity property. Note that the proofs in [8] are
given for exponentiallly decaying functions and potentials, but one checks easily that the decay of the
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Figure 1. Solution to (B.1) computed by MAPLE

potential |W (r)| ∼ 1
r4

at infinity and |Φ(r)| ∼ 1
r4

are more than enough to have all proofs go through.

B.1. Computation of the index of B. We claim:

Lemma B.1 (Derivation of the index). The index of B on Ḣ1
r is at most 2..

Proof. First, we note that W (r) ≥ Ŵ (r) where:

Ŵ (r) = −3

2

r2

(1 + r2/8)3
.

Hence, classical Sturm-Liouville theory ensures that U has less zeros than Û the unique solution to :




− 1

r3
d

dr

[
r3

d

dr
Û

]
+ Ŵ Û = 0 on (0,∞),

Û(0) = 1 Û ′(0) = 0,

(B.2)

Second, we look for Û of the form:

Û(r) =
2

r2
U(r2/2),

with U a sufficiently smooth function. Denoting by s the new variable r2/2, straightforward calcu-
lations yield that U is a solution to :





− d2

ds2
U +W U = 0 on (0,∞),

U(0) = 0 U
′
(0) = 1,

(B.3)
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where:

W (s) = −3

2

1

(1 + s/4)3
.

Setting then U(s) =
√

1 + s/4 Ũ(1/
√
1 + s/4), we obtain that U is a solution to (B.3) if and only

if Ũ is a solution to




τ2
d2

dτ2
Ũ + τ

d

dτ
Ũ + (96τ2 − 1)Ũ = 0 on (0, 1),

Ũ(1) = 0 Ũ ′(1) = −8,

Hence, Ũ is a combination of Bessel functions:

Ũ(τ) = C1J(1, 4
√
6τ) + C2Y (1, 4

√
6τ)

We compute (C1, C2) and draw the explicit combination with MAPLE. We obtain Figure 2. The

computed solution Ũ has two zeros on (0, 1). Moreover, it diverges in 0 so that Ũ(τ) ∼ K/τ close to
0 with K 6= 0 As a consequence

Û(r) ∼ K

4
6= 0 when r → ∞,

and thus the index of −∆ + Ŵ on Ḣ1
rad is exactly two. Hence the index of B is at most 2. This

completes the proof of Lemma B.1. �

Figure 2. Solution to (B.3) computed by MAPLE
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B.2. Choice for the orthogonality conditions. We now invert B. We first check numerically
that the solution U does not vanish at infinity ie

lim
r→+∞

U(r) > 0,

see Figure 1.
Hence U is not a resonance -note that if U had been a resonance, we could have removed the

resonance by diminishing a bit the potential and getting a potential with index 2 and no resonance-,

and thus from standard ODE arguments, [8], there exists unique smooth solution in Ḣ1
rad of:





BU = − 1

r3
d

dr

[
r3

d

dr
U

]
+WU = ψ on (0,∞),

U ′(0) = 0,

with (1 + r2)U ∈ L∞ (B.4)

and 



BU = − 1

r3
d

dr

[
r3

d

dr
U

]
+WU = Φ on (0,∞),

U ′(0) = 0,

with (1 +
r2

logr
)U ∈ L∞ (B.5)

We denote B−1ψ and B−1Φ the respective solutions to these systems. We recall the explicit formula

Φ(r) = DΛQ(r) =
2− 3r2/4

(1 + r2/8)3
.

In the remainder of this section we, check numerically that the restriction of B to Span(B−1ψ,B−1Φ)
is definite negative, or equivalently:

Lemma B.2 (Numerical check of the orthogonality conditions). The symmetric matrix

B =

[
(B−1ψ, ψ) (B−1Φ, ψ)
(B−1Φ, ψ) (B−1Φ,Φ)

]

satisfies:

(B−1ψ, ψ) < 0 and detB > 0, (B.6)

and is thus definite-negative.

Numerical proof of Lemma B.2 We use standard MATLAB routines for the computation of
solutions to (B.4,B.5). We note that we only fixed the initial value for U ′(0). The value U(0) is left
open in order to achieve the expected decay at infinity which characterizes the inverse. In order to
obtain B−1ψ, we first compute ψ.We obtain that the corresponding eigenvalue is approximatively l =
−0.5860808922. Because ψ decays exponentially, we only need to obtain an approximation on a short
time-range. We computed our solutions until Tψ,max = 30.We emphasize here that we use an explicit
scheme. As a drawback, the accumulation of errors tends to make the numerical solution to become
negative when the exact solution is exponential small. Hence, our scheme becomes unstable after
time T̃ψ,max = 18. Nevertheless, we extend our numerical solution with 0 after this time. This induces
an exponentially small error. The pictures in Figure 3 illustrate this computation. On the left-hand
side is drawn the obtained solution. On the right-hand side, we draw ψtest(r) = ψ(r)exp(

√
−lr). We

observe here that our solution enters the exponential asymptotic regime before the instability comes
into play.

The solution B−1ψ is computed with the extension of ψ. Straightforward ode analysis shows that
the unique solution decaying fast at infinity behaves like 1/r2 asymptotically. The choice of U(0) is
made with respect to this criterion. Figure 4 illustrates that we obtained a solution with the suitable
decay. As previously, on the left-hand side is a picture of the numerical solution. On the right-hand
side we plot B−1ψtest(r) = r2B−1ψ(r). In the latter computations, this solution is involved in scalar
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Figure 3. Numerical simulations for ψ

products with ψ. Hence even if drawn until Tmax = 300, we only need a precise computation of this
solution until TB−1ψ,max = 18.

Figure 4. Numerical simulations for B−1ψ

The last solution B−1Φ is computed with the same method. In this second case, the expected
decay of the solution is log(r)/r2. Figure 5 illustrates that we obtained a solution with the suitable
decay. The picture on the right-hand side restricts to the time-interval r = 0..100 because this is the
significant region. In the latter computations, this solution is involved in integrals which converge
slowly. Hence, we compute this solution until TB−1Φ,max = 1000.

We now compute numerically the entries of the matrix B. We first compute (B−1Φ, ψ) = (B−1ψ,Φ).
The exponential decay of ψ implies that we need to compute the first integral (B−1Φ, ψ) on a shorter
time-interval. Hence, we prefer this computation to the second one. We compute the L2-scalar
products with a standard trapezoidal method. Changing the time-interval and the time-step, the
computations are stable up to an error of 10−2.We get the following approximations for the integrals
involving ψ.

(B−1ψ,ψ) = −4.63± 10−2 (B−1Φ, ψ) = 32.65± 10−2.

The last integral is a more involved computation. Indeed, standard real analysis implies that there
holds :

I(M) :=

∫ M

0
B−1ΦQ(r)Φ(r)r3dr = (B−1Φ,Φ) + err(M)
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Figure 5. Numerical simulations for B−1Φ

with a remainder satisfying err(M) = (K + o(1)) ln(M)/M2 for some constant K. This remainder
going slowly to 0, we see numerically that our computations has not converged even when integrating
until TB−1Φ,max = 1000 (see Figure 6, red crosses). In order to improve the rate of convergence we
compute an approximation of coefficient K and substract the estimated error term of our computa-
tions. This yields Figure 6, blue circles. On this second computation we obtain a very good rate of
convergence. Hence, we provide the approximation

(B−1Φ,Φ) = −574.25± 10−2

Hence

det(B) = 1591± 10

which concludes the numerical proof of Lemma B.2.

Appendix C. Some linear estimates

We start by recalling some obvious integration-by-part results :

Lemma C.1. For any N ≥ 3, there exists a constant C for which there holds, for any v ∈ H1
rad(R

N )

[∫

RN

|v(y)|2
|y|2

] 1
2

+ sup
y∈RN

(
|y|N−2

2 |v(y)|
)
≤ C

[∫

Rn

|∇v(y)|2
] 1

2

. (C.1)

Looking for control on further derivatives, we prove:

Lemma C.2 (Hardy inequalities). Let N = 4. Then ∀R > 2, ∀v ∈ H2
rad(R

N ), there holds the

following controls: ∫ |∂yv|2
y2

.

∫
(∆v)2, (C.2)

∫

y≤R

|v|2
y4(1 + |logy|)2 .

∫

y≤R

|∂yv|2
y2

+

∫

y≤2
|v|2. (C.3)

∫

R≤y≤2R

|v|2
y4

. logR

∫

y≤R

|∂yv|2
y2

+

∫

y≤2
|v|2. (C.4)



45

Figure 6. Computations for (B−1Φ,Φ)

Proof. Let v smooth. (C.2) follows from the explicit formula after integration by parts

∫
(∆v)2 =

∫
(∂yyv +

N − 1

y
∂yv)

2 =

∫
(∂yyv)

2 + (N − 1)

∫ |∂yv|2
y2

.

To prove (C.3), let

a ∈ [1, 2] such that |v(a)|2 ≤
∫

1≤y≤2
|v|2. (C.5)

Let f(y) = − ey

y3(1+log(y))
so that ∇ · f = 1

y4(1+|logy|)2
, and integrate by parts to get:

∫

a≤y≤R

|v|2
y4(1 + logy)2

=

∫

a≤y≤R
|v|2∇ · f

= −
[ |v|2
1 + log(y)

]R

a

+ 2

∫

y≤R

v∂yv

y3(1 + logy)

. |v(a)|2 +
(∫

y≤R

|v|2
y4(1 + |logy|)2

) 1
2
(∫

y≤R

|∂yv|2
y2

) 1
2

. (C.6)
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similarly, using f̃(y) =
ey

y3(1−log(y))
, we get:

∫

ε≤y≤a

|v|2
y4(1− logy)2

=

∫

a≤y≤R
|v|2∇ · f̃

=

[ |v|2
1− log(y)

]a

ε

+ 2

∫

y≤a
v∂yv

1

y3(1− logy)

. |v(a)|2 +
(∫

y≤R

|v|2
y4(1 + |logy|)2

) 1
2
(∫

y≤R

|∂yv|2
y2

) 1
2

. (C.7)

(C.5), (C.6) and (C.7) now yield (C.3). The last inequality (C.4) is a straightforward variant of [31,
Lemma B.1, (B.4)] and is left to the reader. �

Lemma C.3 (Coercitivity estimates with H). Let ψ be the first eigenvector of H. Then there exists

c > 0 and M0 ≥ 1 such that for M ≥ M0, there exists δ(M) > 0 such that given u ∈ H1
rad(R

N ),
there holds

(Hu, u) ≥ c

∫
(∂yu)

2 − 1

c

[
(u, ψ)2 + (u, χMΦ)2

]
(C.8)

∫
(Hu)2 ≥ δ(M)

[∫
(∂yu)

2

y2
+

∫
u2

y4(1 + |logy|)2
]
− 1

δ(M)
(u, χMΦ)2. (C.9)

Proof. (C.8) is a standard consequence of the coercitivity of the linearized energy which admits
exactly ψ as bound state and ΛQ as resonance at the origin, the good enough localization of Φ (2.1)
and the nondegeneracy (2.2). The detailed proof is left to the reader.
To prove (C.9), we first observe the key subcoercivity property:

∫
(Hu)2 =

∫
(∆u+ V u)2 =

∫
(∆u)2 − 2

∫
V (∂yu)

2 +

∫
(∆V + V 2)u2

≥ c

[∫
(∆u)2 +

∫
u2

1 + y6

]
− 1

c

[∫
(∂yu)

2

1 + y4
+

∫
u2

1 + y8

]
. (C.10)

where we used the asymptotic value

V (y) =
N(N + 2)(N − 2)

y4

[
1 +O(

1

y2
)

]
as y → +∞.

(C.9) now follows by contradiction. Let M > 0 fixed and consider a sequence un such that
∫

(∂yun)
2

y2
+

∫
u2n

y4(1 + |logy|)2 = 1 (C.11)

and ∫
(Hun)

2 ≤ 1

n
, (un, χMΦ) = 0. (C.12)

Then by semicontinuity of the norm, un weakly converges on a subsequence to u∞ ∈ H1
loc solution

to Hu∞ = 0. u∞ is smooth away from the origin and hence the explicit integration of the ODE and
the regularity assumption at the origin u∞ ∈ H1

loc implies

u∞ = αΛQ.

On the one hand, the uniform bound (C.11) together with the local compactness of Sobolev embed-
dings ensure up to a subsequence:

∫
(∂yun)

2

1 + y4
+

∫ |un|2
1 + y8

→
∫

(∂yu∞)2

1 + y4
+

∫ |u∞|2
1 + y8

and (un, χMΦ) → (u∞, χMΦ)
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thanks to the χM localization. We thus conclude that

α(ΛQ,χMΦ) = (u∞, χMΦ) = 0 and thus α = 0.

On the other hand, the subcoercivity property (C.10), the Hardy control (C.2), (C.3) and (C.11),
(C.12) ensure ∫

(∂yun)
2

1 + y4
+

∫
u2n

1 + y8
≥ C > 0

from which

α2

[∫
(∂yΛQ)2

1 + y4
+

∫ |ΛQ|2
1 + y8

]
=

∫
(∂yu∞)2

1 + y4
+

∫ |u∞|2
1 + y8

≥ C > 0 and thus α 6= 0.

A contradiction follows. This concludes the proof of (C.9) and Lemma C.3. �

Straightforward computations show that the coercitivity estimates with H can be adapted to any
of the operator Hλ yielding, for any λ > 0 and u ∈ H1

rad(R
N ),

(Hλu, u) ≥ c

∫
(∂yu)

2 − 1

cλ4
[
(u, (ψ)λ)

2 + (u, (χMΦ)λ)
2
]

(C.13)

for the same c and δ(M) as in Lemma C.3.
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[26] Merle, F.; Raphaël, P., Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, J.
Amer. Math. Soc. 19 (2006), no. 1, 37–90.
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[32] Raphaël, P.; Szeftel, J. Existence and uniqueness of minimal blow up solutions to an inhomgeneous mass critical
NLS, arXiv:1001.1627 (2009).

[33] Reed, M.; Simon, B., Methods of modern mathematical physics, vol I-IV, Academic Press, New York, 1972-1979.
[34] Rodnianski, I., Sterbenz, J., On the formation of singularities in the critical O(3) σ-model, to appear Ann. Math.
[35] Sogge, C.D., Lectures on nonlinear wave equations, Monographds in Analysis, II, International Press, Boston,

MA, 1995.
[36] Shatah, J.; Tahvildar-Zadeh, A. S., On the Cauchy problem for equivariant wave maps, Comm. Pure Appl. Math.

47 (1994), no. 5, 719–754.
[37] Strauss, W. A., Nonlinear wave equations, CBMS Regional Conference Series in Mathematics, 73, AMS, Provi-

dence, RI, 1989.
[38] Struwe, M., Globally regular solutions to the u5 Klein-Gordon equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)

15 (1988), no. 3, 495–513.
[39] Struwe, M., Equivariant wave maps in two space dimensions. Dedicated to the memory of Jürgen K. Moser, Comm.

Pure Appl. Math. 56 (2003), no. 7, 815–823
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