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Abstract

This project proposes to use the analysis of

physiological signals, such as the electroencephalo-

gram (EEG), electromyogram (EMG) electrocardio-

gram (ECG) and electro-oculogram (EOG), to control

sound synthesis algorithms in order to build a biologi-

cally driven musical instrument. This project took place

during the eNTERFACE’05 summer workshop in Mons,

Belgium. Over four weeks specialists from the fields of

brain-computer interfaces and sound synthesis worked

together to produce biologically controlled musical in-

struments playable in real-time.

1. Introduction

Advances in computer science and specifically in

Human-Computer Interaction (HCI) have now enabled

musical performance using sensor-based instruments in

real-time computer synthesis systems [1]. Musicians

can now use positional, cardiac, muscle and other sensor

data to control sound synthesis [2, 3].

Simultaneously, advances in Brain-Computer Inter-

face (BCI) research have proven that cerebral patterns

can be used as a source of communication and con-

trol [4]. Indeed, cerebral and conventional sensors can

be used together with the object of producing a ‘body-

music’ controlled according to the musician’s cognitive

and proprioceptive processes. Research is already being

done toward integrating BCI and sound synthesis [5, 6].

One salient approach aims to sonify the data derived

from physiological processes by mapping the data di-

rectly to sound synthesis parameters [7, 8, 9]. Another

approach aims to build a musical interface where infer-

ence based on complex feature extraction enables the

musician to intentionally control sound production [6].

In the following, we present: a short history of

biologically-controlled instruments; the architecture we

designed to acquire, process and play music based on bi-

ological signals; strategies for signal acquisition; a dis-

cussion of signal processing techniques; the sound syn-

thesis implementation and the instruments we built; and

conclude with a presentation of some future directions.

2 History

Brainwaves are a form of bioelectricity, or electri-

cal phenomena in animals or plants. Human brainwaves

were first measured in 1924 by Hans Berger. He termed

these electrical measurements the electroencephalogram

(EEG), which means literally ‘brain electricity writing’.

Berger first published his brainwave results in 1929 as

“Über das Elektrenkephalogramm des Menschen” [10].

The English translation did not appear until 1969. His

results were verified by Adrian and Matthews in 1934

who also attempted to listen to the brainwave signals via

an amplified speaker [11].

This was the first attempt to sonify human brainwaves

for auditory display. The first instance of the intentional

use of brainwaves to generate music did not occur until

1965, when Alvin Lucier [12], who had begun work-

ing with physicist Edmond Dewan, composed a piece of

music using brainwaves as the sole generative source.

Music for Solo Performer was presented, with encour-

agement from John Cage, at the Rose Art Museum of

Brandeis University in 1965.

In the late 1960s, Richard Teitelbaum was a mem-

ber of the innovative Rome-based live electronic music

group Musica Elettronica Viva (MEV). In performances

of Spacecraft (1967) he used various biological signals

including brain (EEG) and cardiac (ECG) signals as con-

trol sources for electronic synthesisers. Over the next

few years, Teitelbaum continued to use EEG and other
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biological signals in his compositions and experiments

as triggers for the nascent Moog electronic synthesiser.

Then, in the late 1960s, another composer, David

Rosenboom, began to use EEG signals to generate

music. In 1970-71 Rosenboom composed and per-

formed Ecology of the Skin, in which ten live EEG

performer-participants interactively generated immer-

sive sonic/visual environments using custom-made elec-

tronic circuits. Around the same time, Rosenboom

founded the Laboratory of Experimental Aesthetics at

York University in Toronto, which encouraged pioneer-

ing collaborations between scientists and artists. For

the better part of the 1970s, the laboratory undertook

experimentation and research into the artistic possibil-

ities of brainwaves and other biological signals in cy-

bernetic biofeedback artistic systems. Many artists and

musicians visited and worked at the facility during this

time including John Cage, David Behrman, LaMonte

Young, and Marian Zazeela. Some of the results of the

work at this lab were published in the book “Biofeed-

back and the Arts” [13]. A more recent monograph by

Rosenboom, “Extended Musical Interface with the Hu-

man Nervous System” [14], remains the definitive theo-

retical aesthetic document in this area.

In France, scientist Roger Lafosse was doing re-

search into brainwave systems and proposed, along with

musique concrète pioneer Pierre Henry, a sophisticated

live performance system known as Corticalart (art from

the cerebral cortex). In a series of free performances

done in 1971, along with generated electronic sounds,

one saw a television image of Henry in dark sunglasses

with electrodes hanging from his head, projected so that

the content of his brainwaves changed the colour of the

image according to his brainwave patterns.

Starting in the early 1970s, Jacques Vidal, a com-

puter science researcher at UCLA, simultaneously be-

gan working to develop the first direct brain-computer

interface (BCI) system using a IBM mainframe com-

puter and other custom data acquisition equipment. In

1973, he published “Toward Direct Brain-Computer

Communication” [15] based on this work.

In 1990 Jonathan Wolpaw et al [16] at Albany devel-

oped a system to allow a user to exercise rudimentary

control over a computer cursor via the alpha band of

their EEG spectrum. Around the same time, Christoph

Guger and Gert Pfurtscheller also began researching and

developing BCI systems along similar lines in Graz,

Austria [19].

In the early 1990s two scientists, Benjamin Knapp

and Hugh Lusted [17], began working on a human-

computer interface called the BioMuse. It permitted a

human to control certain computer functions via bio-

electric signals. In 1992, Atau Tanaka [1] was commis-

sioned by Knapp and Lusted to compose and perform

music using the BioMuse as a controller. Tanaka contin-

ued to use the BioMuse, primarily as an EMG controller,

in live performances throughout the 1990s. In 1996,

Knapp and Lusted wrote an article for Scientific Ameri-

can about the BioMuse entitled “Controlling Computers

with Neural Signals” [18].

In 2002, the principal BCI researchers in Albany and

Graz published a comprehensive survey of the state of

the art in BCI research, “Brain-computer interfaces for

communication and control” [4]. Then, in 2004, an issue

dedicated to the broad sweep of current BCI research

was published in IEEE Biomedical Transactions [20].

3 Architecture

Our intention was to build a robust, reusable frame-

work for biosignal capture and processing geared to-

wards musical applications. To maintain flexibility,

signal acquisition, processing and sound synthesis are

performed on different physical machines linked via

ethernet. Data are acquired via custom hardware

which is linked to a host computer running a Mat-

lab/Simulink [21] real-time blockset. Data are analysed

before being sent - via OpenSoundControl [22] - to the

visualisation, software sound synthesis and spatialisa-

tion nodes. The sound synthesis and spatialisation are

performed using the Max/MSP [23] programming envi-

ronment.

3.1 Software

3.1.1 Matlab and Simulink

We are using various biosignal analysis methods includ-

ing the wavelet transform and spatial filters. All of the

signal processing algorithms are written in Matlab [21].

Because signal acquisition from the EEG cap is done

using custom C++ code, we must use a method in C++

to send the data stream to Matlab directly. We imple-

mented our signal processing code as a Simulink [21]

blockset using Level-2 M file S-functions with tuneable

method parameters. This allows us to dynamically adapt

to the incoming signals. Subsequently, we proceed with

a real-time, adaptive analysis.

3.1.2 Max/MSP

Max/MSP [23] is a software programming environment

optimised for flexible real-time control of music sys-

tems. It was first developed at IRCAM by Miller Puck-

ette as a simplified front end controller for the 4X se-

ries of mainframe music synthesis systems. It was fur-
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ther developed as a commercial product by David Zi-

carelli [24] and others at Opcode Systems and Cycling

74 [?]. It is currently the most popular environment

for programming of real-time interactive music perfor-

mance systems.

There are other open-source environments which

could be more interesting in the long-term especially in

an academic context: Pure Data and jMax are both open-

source work-alike software implementations which al-

though not as mature as Max/MSP are nonetheless very

usable. SuperCollider would be another potential open-

sourced programming environment. It is also very pow-

erful and expressive, if somewhat more arcane and diffi-

cult to program, largely due to its proprietary text-based

programming paradigm.

3.2 Data Exchange

Data transmission between machines is implemented us-

ing UDP/IP protocol over ethernet. We chose this for

best real-time performance. Reliability of UDP on an

ethernet LAN is not an issue from experience. Specific

musical messages were encoded using the OpenSound-

Control [22] protocol which sits on top of UDP.

3.2.1 Open Sound Control (OSC)

OSC was conceived as a protocol for the real-time con-

trol of computer music synthesisers over modern het-

erogeneous networks. Its development was informed

by shortcomings experienced with the established MIDI

standard and the difficulties in developing a more flexi-

ble protocol for effective real-time control of expressive

music synthesis.

OSC was first proposed by Matthew Wright and

Adrian Freed in 1997, since which time it has become

very widely implemented in software and hardware de-

signs (although, its use is still not as widespread as

MIDI). Although it can function in principle over any

appropriate transport/physical layer such as WiFi, se-

rial, USB etc., current implementations of OSC are op-

timised for UDP/IP transport over Fast Ethernet in a Lo-

cal Area Network. For our project, we used OSC to

transfer data from Matlab (running on a PC with either

Linux or Windows OS) to Macintosh computers running

Max/MSP.

4 Data Acquisition

ECG, EMG and EOG were captured on one computer

with a multipurpose acquisition system and EEG was ac-

quired on another system specialised for brainwave data

capture.

4.1 EEG

EEG data are sampled at 64 Hz on 19 channels with a

DTI cap. Data are filtered between 0.5 and 30 Hz. Elec-

trodes are positioned following the 10-20 international

system and Cz is used as reference. The subject sits in

a comfortable chair and is asked to concentrate on dif-

ferent tasks. The recording is done in a normal working

place: a noisy room with people working, talking and

other ambient sounds. The environment is not free of

electrical noise as there are many computers, speakers,

monitors, microphones and lights nearby.

4.2 EMG, ECG and EOG

To record the EMG and ECG, three Biopac MP100 am-

plifiers were used. The amplification factor for the EMG

was 5000 and the signals were filtered between 0.05-35

Hz. The microphone channel has a gain factor of 200

and DC-300 Hz bandwidth.

Another 2 channel amplifier is used to collect the

EOG signals. This amplifer has gain factor of 4000 and

0.4-60Hz passband. For real time capabilities, these am-

plified signals are fed to a National Instruments DAQPad

6052e analog-digital converter card that uses the IEEE

1394 port.

Disposable ECG electrodes were used for both EOG

and EMG recordings. The sounds were captured using

the Biopac BSL contact microphone.

5 BioSignal Processing

We tested various parameter extraction techniques in

search of those which could give us the most meaningful

results.

We focused mostly on EEG signal processing as it

is the richest and most complex bio-signal. The un-

trained musician normally has less conscious control

over brain biosignals as opposed to other biosignals and

therefore sophisticated signal processing was reserved

for the EEG which needed more processing to produce

useful results. The data acquisition program samples

blocks of EMG or EOG data in 100 ms frames. Soft-

ware then calculates the energy for the EOG and EMG

channels, and sends this information to the related in-

struments. The heart sound itself is sent directly to the

instruments to provide a rhythmic motif.

Two kinds of EEG analysis are done. The first one

attempts to determine the user’s intent based on tech-

niques recently developed in the BCI community [4]. A

second approach looks at the origin of the signal and at

the activation of different brain areas. The performer has
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less control over results in this case. There are more de-

tails on both of these EEG analysis methods at the end

of this section.

5.1 Detection of Musical Intent

To detect different brain states we measured spatial dis-

tribution and temporal rhythms present.

Three main rhythms are of interest:

1. Alpha rhythm: usually between 8-12 Hz, this

rhythm describes the state of awareness. If we cal-

culate the energy of the signal using the occipital

electrodes, we can evaluate the state of awareness

of the musician. When he closes his eyes and re-

laxes the signal increases. When the eyes are open

the signal is low.

2. Mu rhythm: This rhythm also ranges from 8 to 12

Hz but can vary from one person to another, some-

times between 12-16 Hz. The mu rhythm corre-

sponds to motor tasks like moving the hands or

legs, arms, etc. We use this rhythm to distinguish

movements of the left or right hands.

3. Beta rhythm: Comprised of energy between 18-26

Hz. Beta is linked to motor tasks and higher cogni-

tive functions.

The wavelet transform [25] is a technique of time-

frequency analysis prefectly suited for task detection.

Individual tasks can be detected by looking at specific

frequency bands on specific electrodes.

This operation, implemented using sub-band filters,

provides us with a filter bank tuned to the frequency

ranges of interest. We tested our algorithm on two sub-

jects with different kinds of wavelets: Meyer wavelet,

9-7 filters, bi-orthogonal spline wavelet, Symlet 8 and

Daubechy 6 wavelets. We finally chose the symlet 8

which gave better overall results.

At the beginning we focused on eye blink detection

and α band power detection because both are easily con-

trollable by the musician. We then wanted to try more

complex tasks such as those used in the BCI commu-

nity. These are movements and imaginations of move-

ments, such as hand, foot or tongue movements, 3D spa-

tial imagination or mathematical calculation. The main

problem is that each BCI user must be trained to improve

his control over the task signal. Therefore we decided to

use only right and left hand movements first and not the

more complex tasks which would have been harder to

detect. Two other techniques were also used: Asymme-

try Ratio and Spatial Decomposition.

5.1.1 Eye blinking and α band

Eye blinking is detected on Fp1 and Fp2 electrodes in

the 1-8Hz frequency range by looking at increase of the

band power. We process the signals from electrodes O1

and O2 -occipital electrodes- to exctract the power of the

alpha band.

5.1.2 Asymmetry Ratio

Consider we want to distinguish left from right hand

movements. It is known that motor tasks activate the

cortex area. Since the brain is divided in two hemi-

spheres that control the two sides of the body it is possi-

ble to recognise when a person moves on the left or right

side. Let C3 and C4 be the two electrodes positioned on

the cortex, the asymmetry ratio can be written as:

ΓFB =
PC3,FB − PC4,FB

PC3,FB + PC4,FB
(1)

where PCx,FB is the power in a specified frequency

band (FB), i.e. the mu frequency band. This ratio has

values between 1 and -1. Thus it is positive when the

power in the left hemisphere (right hand movements) is

higher than the one in the right hemisphere (left hand

movements) and vice-versa.

The asymmetry ratio gives good results but is not

very flexible and cannot be used to distinguish more than

two tasks. This is why it is necessary to search for more

sophisticated methods which can process more than just

two electrodes simultaneously.

5.1.3 Spatial Decomposition

Two spatial methods have proven to be accurate: The

Common Spatial Patterns (CSP) and the Common Spa-

tial Subspace Decomposition (CSSD) [26, ?]. We will

shortly describe here the second one (CSSD): This

method is based on the decomposition of the covariance

matrix grouping two or more different tasks. It is impor-

tant to highlight the fact that this method needs a learn-

ing phase where the user executes two tasks.

The first step is to compute the autocovariance matrix

for each task. Given one signal X of dimension N × T

for N electrodes and T samples, we decompose X in

XA and XB , A and B. By using two different tasks, we

can obtain the autocovariance matrix for each task:

RA = XAXT
B and RB = XBXT

B (2)

We now extract the eigenvectors and eigenvalues from

the R matrix that is the sum of RA and RB :

R = RA + RB = U0λUT
0

(3)
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We can now calculate the spatial factors matrix W and

the whitening matrix P :

P = λ−1/2UT
0

and W = U0λ
1/2 (4)

If SA = PRAPT and SB = PRBPT , these matrices

can be factorised:

SA = UAΣAUT
A SB = UBΣBUT

B (5)

Matrix UA et UB are equals and the sum of their eigen-

value is equal to 1, ΣA + ΣB = I . ΣA et ΣB can be

written thus:

ΣA = diag[ 1...1
︸︷︷︸

ma

σ1...σmc

︸ ︷︷ ︸

mc

0...0
︸︷︷︸

mb

] (6)

ΣB = diag[ 0...0
︸︷︷︸

ma

δ1...δmc

︸ ︷︷ ︸

mc

1...1
︸︷︷︸

mb

] (7)

Taking the first ma eigenvector from U , we obtain Ua

and we can now compute the spatial filters and the spa-

tial factors:

SPa = WUa (8)

SFa = UT
a P (9)

We proceed identically for the second task, taking

care this time with the last mb eigenvectors. Specific

signal components of each task can then be extracted

easily by multiplying the signal with the corresponding

spatial filters and factors. For the task A it gives:

X̂a = SPaSFaX (10)

A support vector machine (SVM) with a radial basis

function was used as a classifier.

5.1.4 Results

The detection of eye blinking during off-line and real-

time analysis was higher than 95%, with a 0.5s time

window. For hand movement classification with spatial

decomposition, we chose to use a 2s time window. A

smaller window significantly decreases the classification

accuracy. The CSSD algorithm needs more training data

to achieve a good classification rate so we decided to

use 200 samples of both right hand and left hand move-

ments, each sample being a 2s time window. Thus, we

used an off-line session to train the algorithm. However

each time we used the EEG cap for a new session, the

electrode locations on the subject’s head changed. Per-

forming a training session one time and a test session

another time gave poor results so we decided to develop

new code in order to do both training and testing in one

session. This had to be done quite quickly to ensure the

user’s comfort.

We achieved an average of 90% good classifications

during off-line analysis, and 75% good classifications

during real-time recording. Real-time recording accu-

racy was a bit less than expected. (This was probably

due to a less-than-ideal environment - with electrical and

other noise - which is not conducive to accurate EEG

signal capture and analysis.) The asymmetry ratio gave

somewhat poorer results.

5.2 Spatial Filters

EEG is a measure of electrical activities of the brain

as measured from the external skull area. Different

brain processes can activate different areas. Discover-

ing which areas are active is difficult as many different

source configurations can lead to the same EEG record-

ing. Noise in the data further complicates this problem.

In the following, we present the methods - based on

forward and inverse problems - and the hypothesis we

propose to solve the problem in real time.

5.2.1 Forward Problem, head model and solution

space

If X is a Nx1 vector containing the recorded potential

with N representing the number of electrodes. S is an

Mx1 vector of the true source current with M the un-

known number of sources. G is the leadfield matrix

which links the source location and orientaion to the

electrodes location. G depends of the head model. n

is the noise. We can write

X = G S + n (11)

X and S can be extended to more than one dimension

to take time into account. S can either represent few

dipoles (dipole model) with M ≤ N or represent the full

head (image model - one dipole per voxel) with M ≫
N . In the following we will use the latter model.

The forward problem is to try and find the potentials

X on the scalp surface knowing the active brain sources

S. This approach is far simpler than the inverse ap-

proach and its solution is the basis of all Inverse problem

solutions.

The leadfield G is based on the Maxwell equations.

A finite element model based on the true subject head

can be use as lead field but we prefer to use a 4-spheres

approximation of the head. It is not subject dependent

and less computationally expensive. A simple method

consists of seeing the multi-shell model as a composition

of single-shells -much as Fourier uses functions as sums
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of sinusoid [27]. The potential v measured at electrode

position r from a dipole q in position rq is

v(r, rq, q) ≈

v1(r, µ1rq, λ1q) + v1(r, µ2rq, λ2q) + v1(r, µ3rq, λ3q) (12)

λi and µi are called Berg’s parameters [27]. They

have been empirically computed to approximate three

and four-shell head model solution.

When we are looking for the location and orientation

of the source, a better approach consists of separating

the non-linear search for the location and the linear one

for the orientation. The EEG scalar potential can then

be seen as a product v(r) = kt(r, rq)q with k(r, rq) a

3x1 vector. Therefore each single shell potential can be

computed as [28]

v1(r) = ((c1 − c2(r.rq))rq + c2‖rq‖
2r).q

with

c1 ≡
1

4πσ‖rq‖2

(

2
d.rq

‖d‖3
+

1

‖d‖
−

1

‖r‖

)

(13)

c2 ≡
1

4πσ‖rq‖2

(
2

‖d‖3
+

‖d‖ + ‖r‖

‖r‖F (r, rq)

)

(14)

F (r, rq) = ‖d‖(‖r‖‖d‖ + ‖r‖2 − (rq.r)) (15)

The brain source space is limited to 361 dipoles lo-

cated on an half-sphere just below the cortex in a per-

pendicular orientation to the cortex. This is done be-

cause the activity we are looking at is concentrated on

the cortex, the activity recorded by the EEG is mainly

cortical activity and the limitation of the source space

considerably reduces the computation time.

5.2.2 Inverse Problem

The inverse problem can be formulated as a Bayesian

inference problem [29]

p(S|X) =
p(X|S)p(S)

p(X)
(16)

where p(x) stands for probability distribution of x.

We thus look for the sources with the maximum prob-

ability. Since p(X) is independent of S it can be con-

sidered as an normalizing constant and can be omitted.

p(S) is the prior probability distribution of S and repre-

sents the prior knowledge we have about the data. This

is modified by the data through the posterior probabil-

ity distribution p(X|S). This probability is linked to the

noise. We assume the noise is gaussian, with zero mean

and covariance matrix Cn

ln p(X|S) = (X − GS)t C−1

n (X − GS) (17)

where t stands for transpose. If the noise is white, we

can rewrite equation (17) as

ln p(X|S) = ‖X − GS‖2 (18)

In case of zero mean gaussian prior p(S) with vari-

ance CS , the problem becomes

argmax(ln p(S|X))

= argmax(ln p(X|S) + ln p(S))

= argmax((X − GS)t C−1

n (X − GS) + λStCSS

where the parameter λ gives the influence of the prior

information. And the solution is

Ŝ = GtC−1

n (GtC−1

n G + λC−1

S )−1X (19)

For a full review of a method to solve the Inverse

Problem see [29, ?, 30].

Methods based on different priors were tested. Pri-

ors ranged from the simplest - no prior information -

to classical prior such as the laplacian and to a spe-

cific covariance matrix. The well-know LORETA ap-

proach [30] showed the best results on our test set. The

LORETA [30] looks for a maximally smooth solution.

Therefore a laplacian is used as a prior. In (19) Cs is

a laplacian on the solution space and Cn is the identity

matrix.

To enable real time computation, leadfield and prior

matrices in (19) are pre-computed. Then we only mul-

tiply the pre-computed matrix with the acquired signal.

Computation time is less than 0.01s on a typical personal

computer.

5.2.3 Results and Application

In the present case of a BCMI, the result can be used for

three potential applications: the visualisation process, a

pre-filtering step and a processing step.

The current of the 361 dipoles derived using the in-

verse method is directly used in the visualisation pro-

cess. The current on every point of the half-sphere is

interpolated from the dipole currents. The result is pro-

jected on a screen.

6 Sound Synthesis

6.1 Introduction

At the end of the workshop, a performance of mu-

sic was presented with two bio-musicians and various

equipment and technicians on stage orchestrating a live

bio-music performance before a large audience. The

first instrument was a midi instrument based on additive
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synthesis and controlled by the musician’s electroen-

cephalogram along with an infrared sensor. The second

instrument, driven by electromyograms of the second

bio-musician, processed recorded accordion samples us-

ing granulation and filtering effects. Furthermore, bi-

ological signals managed the spatialized diffusion over

eight loudspeakers of the sound produced by two musi-

cians. We here present details of each of these instru-

ments.

6.1.1 Sound Synthesis

Artificial synthesis of sound is the creation, using elec-

tronic and/or computational means, of complex wave-

forms, which, when passed through a sound reproduc-

tion system can either mimic a real musical instrument

or represent the virtual projection of an imagined musi-

cal instrument. This technique was first developed using

digital computers in the late 1950s and early 1960s by

Max Matthews at Bell Labs. It does have antecedents,

however, in the musique concrète experiments of Pierre

Schaeffer and Pierre Henry and in the TelHarmonium of

Thaddeus Cahill amongst others. The theory and tech-

niques of sound synthesis are now widely developed and

are treated in depth in many well-known sources.

The chosen software environment, Max/MSP, makes

available a wide palette of sound synthesis techniques

including: additive, subtractive, frequency modulation,

granular etc. With the addition of 3rd party code li-

braries (externals) Max/MSP can also be used for more

sophisticated techniques such as physical modelling

synthesis.

6.1.2 Mapping

The commonly used term mapping refers, in the instance

of virtual musical instruments, to mathematical trans-

formations which are applied to real-time data received

from controllers or sensors so that they may be used as

effective control for sound synthesis parameters. This

mapping can consist of a number of different mathemat-

ical and statistical techniques. To effectively implement

a mapping strategy, one must well understand both the

ranges and behaviours of the controllers or sensors and

the nature of the data stream produced along with the

synthesis parameters which are to be controlled.

A useful way of thinking about mapping is to con-

sider its origin in the art of making cartographic maps

of the natural world. Mapping thus is forming a flat,

virtual representation of a curved, spherical real world

which enables that real world to be effectively navigated.

Implicit in this is the process of transformation or pro-

jection which is necessary to form the virtual represen-

tation.

Thus, to effectively perform a musically satisfying

mapping, we must understand well the nature of our data

sources (sensors and controllers) and the nature of the

sounds and music we want to produce (including intrin-

sic properties and techniques of sound synthesis, sam-

pling, filtering and DSP)

This poses significant problems in the case of biolog-

ically controlled instruments in that it is not possible to

have an unambiguous interpretation of the meanings of

biological signals whether direct or derived. There is

some current research in cognitive neuroscience which

may indicate directions for understanding and interpret-

ing the musical significance of encephalographic sig-

nals, but this is just beginning.

A simple example of a mapping is the alpha rhythm

spectral energy to musical intensity. It is well known

that strong energy in the frequency band (8-12 Hz) in-

dicates a state of unfocused relaxation without visual at-

tention in the subject. This has commonly been used

as a primary controller in EEG-based musical instru-

ments - such as in Alvin Lucier’s “Music for Solo Per-

former” - where strong Alpha EEG directly translate into

increased sound intensity and temporal density. If this is

not the desired effect then consideration has to be given

to how to transform the given data to produce the desired

sound or music.

6.2 Instrument 1 : an interface between

brain and sound

For this instrument, we used the following controls

• right or left body movement (Mu bandwidth)

• eyes open or closed (Alpha bandwidth)

• average brain activity (Alpha bandwidth)

This MAX/MSP patch is based upon these parameters.

The sound synthesis is done with a plug-in from Ab-

synth which is software controlled via the MIDI proto-

col. This patch creates MIDI events which control this

synthesis. This synthesis is in particular composed of

three oscillators, three Low Frequency Oscillators, and

three notch filters. There are two kinds of note trigger:

• a cycle of seven notes

• a trigger of single note

Pitch is not controlled continuously.

Regarding the first kind of note trigger, the cycle of

notes begins when the artist opens his eyes for the first
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time. Right or left body movements can control the di-

rection of cycle rotation and the panning of the result.

The resultant succession of notes is subjected of two ran-

domised variations of the note durations and the delta

time between each note.

In the second note trigger, alpha bandwidth is con-

verted to a number between 0 and 3, which is then di-

vided into three parts:

• 0 to 1 : this part is divided into five sections, one

note is attributed to each section and the time pro-

prieties are given by the dynamics of the alpha vari-

ations

• 1 to 2 : represents the variation of the Low Fre-

quency Oscillator (LFO) frequency

• over 2 : the sound is stopped

The EEG analysis for these controls happens over time.

To have an instantaneous controller, an infrared sensor

controller was added. Based on the distance between his

hand and the sensor, the artist can control:

• the rotation speed of the cycle, using the right hand

• the frequency of the two other LFO, using the left

hand

The performer decides the harmony before playing,

which, in the case of live performance, has proved to be

a good solution.

6.2.1 Results

The aim of this work was to create an instrument con-

trolled by electroencephalogram signals. Musical rela-

tionships are usually linked with gestures, yet, here no

physical interaction is present. Further, the possibility

for complex interactions between a traditional musical

instrument, like a guitar, and the performer, retains a

great power. To be interesting from an artistic point of

view, a musical instrument must provide a large expres-

sive palette to the artist.

The relationship between the artist and the music acts

in two directions: the musician interacts with sound pro-

duction by means of his EEGs but the produced sound

also interacts via a feedback influence on the mental

state of the musician. Future work could turn toward

the biofeedback potential for influencing sound.

6.3 Instrument 2 : Real-time granulation

and filtering on accordion samples

In the second instrument, sound synthesis is based on

the real-time granulation and filtering of recorded accor-

dion samples. During the demonstration, the musician

starts his performance by playing and recording a few

seconds of accordion which he will then process in real-

time. Sound processing was controlled by means of data

extracted from electromyograms (EMGs) in measuring

muscle contractions in both arms of the musician.

6.3.1 Granulation

Granulation techniques split an original sound into very

small acoustic events called grains and reproduce them

in high densities of several hundred or thousand grains

per second. A lot of transformations on the original

sound are made possible with this technique and a large

range of very strange timbres can be obtained. In our

instrument, three granulation parameters were driven by

the performer : the grain size, the pitch shifting, and the

pitch shifting variation (that controls the random varia-

tions of pitch).

In terms of mapping, the performer selected the syn-

thesis parameter he wanted to vary thanks to an addi-

tional midi foot controller and this parameter was then

modulated according to the contraction of his arm mus-

cles, measured as electromyograms. The contraction of

left arm muscles allowed choosing either to increase or

decrease the selected parameter, whereas the variation of

the parameters were directly linked to right arm muscle

tension.

6.3.2 Flanging

In addition to granulation, a flanging effect was imple-

mented in our instrument. Flanging is created by mix-

ing a signal with a slightly delayed copy of itself, where

the length of the delay, less than 10 ms, is constantly

changing. The performer had the ability to modulate

several flanging parameters (depth, feedback gain) sepa-

rately via his arm muscle contractions much as was done

to control the granulation parameters.

6.3.3 Balance dry/wet sounds

During the performance, the musician had the possibil-

ity to control the intensities of dry and wet sounds with

the contraction of his left and right arm respectively.

This control gave the musician the ability to cross-fade

original sound with the processed one by means of very

expressive gestures.

6.3.4 Results

Very interesting sonic textures, near or far from orig-

inal accordion sound, have been created by this instru-

ment. Granulation gave the sensation of clouds of sound,
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whereas, very strange sounds, reinforced by spatialisa-

tion effects on eight loudspeakers, were obtained using

certain parameter configurations of the flange effect.

As with any traditional musical instrument, the first

thing going forward will be to practice the instrument in

order to properly learn it. These training sessions will

aim to improve the mapping between sound parameters

and gestures. Data gloves and EMGs measuring muscles

contraction in other body parts (legs, shoulders, neck),

along with new kinds of sound processing could bring

interesting results.

6.4 Spatialization and Localization

The human perception of the location of sound sources

within a given sound environment are due to a complex

series of cues which have evolved according to the phys-

ical behaviour of sound in real spaces. These cues can

include: intensity, including right-left balance, relative

phase, early reflections and reverberation, Doppler shift,

timbral shift and many other factors which are actively

studied by researchers in auditory perception.

The term ‘spatialisation’ refers to the creation of a

virtual sound space using electronic techniques (ana-

logue or digital) and sound reproduction equipment (am-

plifiers and speakers) to either mimic the sound-spatial

characteristics of some real space or present a virtual

representation of an imaginary space reproduced via

electronic means. The term ‘localisation’ refers to the

placement of a given sound source within a given spa-

tialised virtual sound environment using the techniques

of spatialisation. Given the greatly increased real-time

computational power available in todays personal com-

puters, it is now possible to perform complex and sub-

tle spatialisation and localisation of sounds using mul-

tiple simultaneous channels of sound reproduction (four

or more).

The implementation of a system for the the locali-

sation of individual sound sources and overall spatial-

isation in this project was based around an 8-channel

sound reproduction system. Identical loudspeakers were

placed equidistant about a centre point to form a circu-

lar pattern around the listening space. All speakers were

elevated approximately to ear level.

Sounds were virtually placed within the azimuth of

this 360 degree circular sound space by the use of mix-

ing software which approximates an equal-power pan-

ning algorithm. The amplitude of each virtual sound

source can be individually controlled. Artificial reverb

can be added to each sound source individually in order

to simulate auditory distance. Finally, each individual

sound source can be placed at any azimuth and panned

around the circle in any direction and at any speed.

Future implementations of this software will take into

account some more subtle aspects of auditory localisa-

tion including timral adjustments and Doppler effects.

6.5 Visualization

In a traditional concert setting, the visual aspect of

watching the musicians play is an important part of the

overall experience. With an EEG driven musical instru-

ment, the musician must sit very still and immobile. By

adding a visual dimension to this, we can enhance the

spectator’s appreciation of the music.

We studied different ways of visualising the EEG and

finally chose to present the signal projected on the brain

cortex as explained in section 5.2. While the musician

is playing, EEG data are processed once per second us-

ing the inverse solution approach and then averaged. A

half sphere with the interpolation of the 361 solution is

projected on the screen.

7 Conclusion

During this workshop, two musical instruments

based on biological signals were developed. One was

based on EEG and the other on EMG. We chose to

make an intelligent musical instrument rather than to just

sonify the data. The same biosignals were also used to

spatialise the sound and visualise the biodata.

We have built an architecture for communication be-

tween data acquisition, signal processing and sound syn-

thesis nodes. Our software is based on Matlab and

Max/MSP and thus new signal processing and sound

synthesis algorithms can be easily implemented.

The present paper reflects the work of seven people

over four weeks. This work did not stop at the end of

the workshop - it is ongoing and there is much still to be

done. The signal processing and musical instrument de-

signs can be improved. The musicians need to achieve

better control of their instruments using biological sig-

nals. Mapping algorithms need to be improved and the

software implementations must be made more robust.

Going forward, the members of this team, together and

individually, are committed to pursuing the dream of a

Music which springs eternal from human biological sig-

nals.
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