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Résumé

Dans les turbomachines récentes, la simulation des cas d’interaction engendrés par des contacts entre le sommet
des aubes et le carter environnant requiert des formulations complexes qui peuvent être coûteuses en temps de
calculs lorsque la méthode des éléments finis classique est utilisée. Habituellement, le calcul de modèles réduits
à l’aide de méthodes de synthèse modale permet d’optimiser les temps de simulations et ainsi envisager des
études paramétriques pouvant amener une meilleure connaissance des phénomènes étudiés.

Dans ce contexte hautement non-linéaire, l’étude présentée a pour but de déterminer les capacités des
méthodes de synthèse modale dites à interfaces libres et interfaces fixes pour la simulation des phénomènes
d’interaction sur des modèles 2D réalistes. L’objectif est également de compléter des résultats obtenus précédemment
avec des méthodes de projection modale qui impliquaient de fortes restrictions cinématiques.

Les équations du mouvement sont résolues l’aide d’un schéma d’intégration temporelle explicite combiné à
la méthode des multiplicateurs de Lagrange; le frottement est également pris en compte. Les résultats présentés
nous amènent à discuter les notions de convergence en déplacement et de convergence en mouvement ainsi que
la faisabilité d’études paramétriques rapides avec une base de réduction pertinente. Par ailleurs, il est montré
que les restrictions cinématiques favorisent artificiellement la détection de régimes d’interaction modale.

Mots-clés

Interaction modale, réduction modale, méthode de synthèse modale, dynamique non-linéaire, dynamique du
contact, multiplicateurs de Lagrange.

Version française résumée

La volonté des concepteurs d’optimiser le rendement des turbomachines implique une meilleure étanchéité des
différents étages de pression. Cette étanchéité étant essentiellement déterminée par les jeux entre les parties
fixes et les parties tournantes de la turbomachine, la réduction du jeu aube/carter est un objectif majeur des
concepteurs. La contrepartie de la réduction de ce jeu est la plus grande probabilité de contacts entre les aubes
et le carter environnant. Parmi les phénomènes que peuvent engendrés ces contacts, mentionnons les contacts
localisés (rubbing en anglais) et l’interaction modale. De nombreux travaux théoriques et expérimentaux ont été
publiés sur le phénomène de contacts localisés [1, 2, 3] alors que l’interaction modale est encore peu connue [4,
5, 6, 7]. L’étude présentée porte sur ce phénomène.

Seules les structures axi-symmétriques sont susceptibles de connâıtre des cas d’interaction modale. Les
conditions d’apparition de ce phénomène peuvent être résumées ainsi :

1. Les deux structures vibrent selon un mode propre avec un même nombre de diamètres nodaux;

2. Les deux structures vibrent à la fréquence de résonance de ce mode;

3. Les vitesses de propagation des modes tournants dans le repère fixe cöıncident.
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Ces conditions ont été résumées dans [8] avec la formule :

fc =
kΩ

2π
− fra (1)

Ω est la vitesse de rotation de la roue aubagée, et fc, fra et k sont respectivement les fréquences propres du
carter, de la roue aubagée et le nombre de diamètres nodaux des modes associés.

Des travaux précédents [5] ont permis d’identifier trois types de régimes d’interaction : (1) un régime dit
amorti pour lequel les amplitudes de vibration de la roue aubagée et du carter faiblissent après contact jusqu’à
revenir à la position d’équilibre, (2) un régime entretenu pour lequel le niveau de vibration des deux structures
se maintient après contact sans qu’aucune sollicitation extérieure ne vienne entretenir le phénomène et (3) un
régime bloqué similaire au régime entretenu mais pour lequel un nombre pair d’aube reste en contact permanent
avec le carter.

Des méthodes de synthèse modale sont utilisées pour obtenir des modèles réduits de chaque structure et
ainsi diminuer les temps de calculs. Plus précisément, les méthodes dites de Craig-Bampton [9] et de Craig-
Martinez [10] sont appliquées sur des modèles 2D de roue aubagée et de carter avec un schéma d’intégration
temporelle explicite reposant sur la méthode des différences finies centrées combinée à la méthode des multi-
plicateurs de Lagrange pour le traitement du contact. En plus des deux méthodes de synthèse modale, des
modèles réduits sont obtenus par simple projection modale, similaires à ceux calculés dans [5]. La comparaison
des résultats obtenus avec chaque méthode permet de mettre en évidence le rôle des restrictions cinématiques
inhérentes à la projection modale.

La modélisation des deux structures repose sur l’utilisation d’éléments finis poutres droite et courbe comme
le montre la figure 2. Les équations associées à la méthode de résolution sont données tout au long de la
section 3.1. Enfin, le principe de réduction modale est brièvement rappelé dans la section 3.2.

Les résultats sont présentés en fonction de la méthode de réduction utilisée. Tout d’abord, la section 4.1
donne les résultats relatifs à la méthode de projection modale. En accord avec les résultats de [5], trois types
de régimes d’interaction sont identifiés et représentés sur les figures 9(a), 9(c) et 9(b). Ces trois régimes
correspondent à ceux mentionnés précédemment.

La section 4.2 permet de mettre en évidence la convergence des modèles réduits calculés grâce aux méthodes
de synthèse modale en montrant la convergence des fréquences propres des modèles réduits vers celles du modèle
éléments finis (voir les figures 10(a) et 10(b)). Il est ensuite montré que les méthodes de synthèse modale
permettent de détecter des modes d’interaction et les trois régimes détectés avec la méthode de projection
modale sont également identifiés avec les méthodes de Craig-Bampton (figures 11(a), 11(b) et 11(c)) et la
méthode de Craig-Martinez.

La grande sensibilité des simulations numériques réalisées amène à considérer deux types de convergence : (1)
une convergence en déplacements pour laquelle on observe la convergence des déplacements en extrémité d’aube
et leur superposition avec les déplacements obtenus pour le modèle éléments finis lorsque la base de réduction
est enrichie et (2) une convergence en mouvement pour laquelle on s’intéresse au type de régime détecté (amorti,
entretenu, bloqué ou divergent) avec les méthodes de réduction. Ce dernier type de convergence est évaluée
asymptotiquement (c’est-à-dire en enrichissant progressivement la base de réduction car une solution de référence
avec le modèle éléments finis ne peut pas être obtenue compte-tenu du nombre de simulations à réaliser et des
temps de calculs engendrés).

L’objectif des sections 4.3 et 4.4 est d’évaluer respectivement les convergences en déplacement et en mouve-
ment. La section 4.3 permet de mettre en évidence, pour chaque méthode considérée, la délicate convergence
des simulations réalisées vers les résultats obtenus avec le modèle éléments finis. La grande sensibilité des
simulations rélaisées est due à la difficutlé de détecter avec précision le moment et le lieu du premier contact
aube/carter. Une différence infime en temps ou en espace peut modifier l’aube qui, dans le cas d’un mode bloqué,
va être en contact permanent avec le carter. De ce fait, les déplacements obtenus sur la roue aubagée seront
très différents de ceux obtenus avec le modèle éléments finis sans que cela ne modifie le régime obtenu. Cette
hypothèse est confirmée par les cartes 15(a), 15(b), 15(c), 15(d), 16(a), 16(b), 16(c) et 16(d) dessinées dans la
section 4.4 pour les deux méthodes de synthèse modale avec différentes valeurs du paramètre de réduction. En
effet, ces cartes sont très similaires les unes aux autres et attestent de la grande stabilité des résultats obtenus
avec les méthodes de Craig-Bampton et de Craig-Martinez.

Un autre résultat important est que les cartes obtenues à l’aide de chaque méthode de synthèse modale se
superposent relativement bien (ce qui est mis en évidence sur les figures 17(a) et 17(b)) et montre ainsi que les
résultats obtenus ne sont pas dépendants de la méthode de synthèse modale utilisée.

Enfin, la comparaison des cartes obtenues avec synthèse modale et de la carte obtenue par simple projection
modale (figure 14) montre que la zone des mouvements divergents est probablement sous-estimée avec les
méthodes de projection modale. Autrement dit, les restrictions cinématiques associées à la projection modale
favorise artificiellement la détection de régimes d’interaction (bloqués ou entretenus).
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Le fait que la combinaison de l’algorithme de contact utilisé avec des méthodes de synthèse modale donne
des résultats cohérents en termes de détection d’interaction modale est très encourageant pour envisager des
simulations sur des modèles 3D.

Abstract

Interactions through direct contact between blade-tips and outer casings in modern turbomachines require
complex formulations and subsequent expensive computational efforts when the classical finite element method
is considered. The construction of reduced-order models through component mode synthesis techniques usually
improves the computational efficiency and may be used for fast parameter studies yielding a better knowledge
of the phenomena of interest.

In this highly nonlinear framework, the present study is dedicated to the investigation of the capabilities
of fixed- and free-interface reduction strategies to handle accurately such problems through a realistic two-
dimensional model and complements former results involving a direct modal projection with respective strong
kinematic restrictions.

The equations of motion are solved using an explicit time integration scheme together with the Lagrange
multiplier method where friction is accounted for. The presented work discusses the notions of both displacement
and motion convergences and the possibility to conduct fast parameter studies with the use of relevant reduction
bases. It also shows that kinematic restrictions artificially enhance the detection of modal interactions.

Keywords

Modal interaction; modal reduction; component mode synthesis; nonlinear dynamics; contact dynamics; La-
grange multiplier.

Nomenclature

D damping matrix

Fc vector of contact forces

Fext vector of external forces

K stiffness matrix

M mass matrix

q modal DoFs vector

u physical Dofs vector

Φ coordinate transformation matrix (modal, Craig-Bampton and Craig-Martinez)

η number of constrained modes of the Craig-Bampton transformation

µ friction coefficient

Ω angular velocity of the bladed disk

Ωcrit(k) critical angular velocity due to a k-nodal diameter load

φ number of free-interface modes of the Craig-Martinez transformation

b subscript referring to boundary DoF

c subscript standing for correction

i subscript referring to internal DoF

p subscript standing for prediction

fbd eigenfrequency of the bladed disk

fc eigenfrequency of the casing
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g gap function

h time step of the time integration scheme

k number of nodal diameters

CB Craig-Bampton

CM Craig-Martinez

DoF degree of freedom

1 Introduction

In modern turbomachines such as aircraft jet engines, improved energy efficiency is achieved by controlling the
clearance between the blade-tips and stationary surrounding casings so that aerodynamic leaks are minimized.
This strategy inherently leads to more frequent occurrences of direct contacts between the blades and the casings
that may originate nonlinear vibrations and subsequent structural damages. Rubbing has been investigated in
several related studies [1, 2, 3], but only a few have focused on the modal interaction mechanism [4, 5, 6, 7]
that stands as the phenomenon of interest in the present work. This very specific kind of interaction peculiar
to structures featuring cyclic and axi-symmetry can arise under certain conditions:

1. Both structures must vibrate with modes having the same number of nodal diameters (see Fig. 1).

2. Both structures must vibrate at the eigenfrequency of that mode.

3. The backward rotating modes in the bladed disk must travel at the same absolute speed as the forward1

rotating mode in the casing.

These conditions have been summarized in [8] in a very simple formula

fc =
kΩ

2π
− fbd (2)

where Ω is the angular velocity of the bladed disk and quantities fc, fbd and k respectively stand for the
eigenfrequency of the casing, the eigenfrequency of the bladed disk, and the number of diameters of the associated
vibration modes. The solution Ωcrit of Equation (2) is a critical speed of the system that may lead to an
unfavorable configuration due to the simultaneous nonlinear modal resonance of the contacting components. As

Figure 1: Both the casing and the bladed disk are vibrating along a 3-nodal diameter free vibration mode.

a matter of fact, depending on k, three kinds of interaction motion were detected in [5]:

1. A damped motion for which the vibrations of both structures tend to decrease to the equilibrium position
after a few contacts.

2. A sustained motion in which one the vibration amplitudes of the casing and the bladed disk remain
constant without any external sollicitation.

3. A locked motion similar to the sustained motion, in which an even number of blades stays permanently in
contact with the casing. This type of interaction was detected when the number of blades can be divided
by k.

1This study is conducted with the assumption that the angular velocity of the bladed disk is higher than any travelling wave
velocity (such as in [5]), meaning that only forward waves can be observed in a stationary reference frame.
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Due to the complexity and size of such formulations discretized through the usual finite element approach,
computational times may be prohibitive. Accordingly, it is proposed in the present study to extend the work
introduced in [5] by building reduced-order models through two different component mode synthesis techniques
and conduct a comparison analysis concerning the detection of specific interacting motions.

Among the variety of available component mode synthesis methods [11, 9, 12, 13], only those allowing for a
direct treatment of the contact constraints in the reduced-order space should be considered. In other terms, the
methods which define physical displacements as interface degrees-of-freedom (DoFs) are actually eligible for this
study. The Craig-Bampton (CB) method [9] and the Craig-Martinez (CM) method [10] are the most popular
techniques that meet this criteria. They are here adapted to 2D planar models of the bladed disk and the casing
in an explicit time-stepping procedure based on the finite-difference scheme with Lagrange multipliers in order
to account for contact constraints [14, 15]. In this context, a convergence study, with respect to the number of
component modes within the reduction basis, introduces the notions of displacement convergence and motion
convergence.

In the first section of this paper the modeling of the bladed disk and the casing is described. Then, the
contact algorithm and the computation of reduced order model with the different reduction techniques are
detailed. Finally, in the last section, results obtained for each type of reduced order model are exposed: modal
convergence of the reduced order models computed with component mode synthesis is assessed, the detection of
interaction motion is presented and convergences in terms of displacement and motion are extensively revealed
for each component mode synthesis method.

2 Modeling

The presented model involves a two-dimensional representation of the structures of interest very similar to the
ones introduced in [5]. It can be regarded as realistic since both normal contact and friction forces treatment
between the casing and the tips of the curved blades are accounted for. Moreover, as a first approach the shaft
supporting the bladed disk is assumed to be perfectly rigid. Accordingly, the axis of rotation is fixed. This
assumption is commonly accpeted in the linear kinematic framework (small displacements and small strains).

2.1 Bladed disk

As depicted in Fig. 2, a two-dimensional bladed disk comprising N = 22 blades, typical of modern fans in civil
aircraft turbomachines, is considered. Blade geometry and respective displacement field are discretized with
the usual Euler-Bernoulli straight beam finite element which has no shear deformation. The global curvature
of the blade is achieved through an angle ai between adjacent finite elements. The inter blade phase angle is
β = 2π/N .

In this context, any out-of-plane motion of the structure is neglected. It is assumed that cyclic symmetry of
the bladed disk is a key-feature to detect modal interaction and that in-plane motions are sufficient to initiate
this phenomenon. The structural connection between adjacent blades, namely the disk part, is implemented with
curved beam finite elements. The bladed disk is clamped on its rotating shaft. Modal damping is introduced
in a general fashion. The total number of DoFs for the bladed disk is 748.

A few free vibration modes of the bladed disk are described in Fig. 3 which explicitly depicts the no-
tion of nodal diameter denoted by k in the present study and specific to structures featuring axi- and cyclic-
symmetry [16].

2.2 Casing

The casing is modeled as a ring and is discretized using 40 two-noded curved beam finite elements, as pictured
in Fig. 4. A few free-vibration modes are pictured in Fig. 5 on which the nodal diameters are also represented.

A polar coordinate system with unit vectors erc and eθc is assigned to the casing for the displacement field
and geometry definitions. The initial location of node i is given by the point (Rc,θ

i
c), where Rc stands for the

radius of the casing and lc the length of the element. The finite element description involves four DoFs per
node uc, uc,s, vc and vc,s. This choice is motivated by [17] which showed that such formulation is locking free2.

Table 1 summarizes the geometrical and mechanical properties of the model.

2The term “locking free” refers to the “membrane locking” phenomenon described in [17] leading to the underestimation of
bending deformations as well as the overestimation of natural frequencies.
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Figure 2: Two-dimensional model used in the study

k = 0, (f = 42.31 Hz) k = 1, (f = 42.29 Hz) k = 3, (f = 42.32 Hz) k = 4, (f = 42.33 Hz)

Figure 3: First vibration modes of the bladed disk

3 Solution method

3.1 Time-stepping strategy

After discretization of the weak formulation of the equations of motion, the general problem to be solved is
stated as follows for the bladed disk

Mmüm +Dmu̇m +Kmum = Fm
ext + Fc

um(t = t0) = um
0

u̇m(t = t0) = u̇m
0

(3)

where the superscript m stands for master surface and for the casing

Msüs +Dsu̇s +Ksus = Fs
ext − Fc

us(t = t0) = us
0

u̇s(t = t0) = u̇s
0

(4)

where the superscript s stands for slave surface. In each equation, M, K and D respectively stand for the
mass matrix stiffness and damping matrices, and Fc, Fext and u for the contact forces, any external load and
the solution vector. The discretized contact forces Fc arise from the contact conditions, referred to as the
Kuhn-Tucker optimality conditions, in the following form

tN(x) > 0, g(x) > 0, tN(x)g(x) = 0, ∀ x ∈ Γm
c (5)

where Γm
c stands for the master surface, meaning the bladed disk. Conditions (5) specify that the gap g(x)

separating the two contacting components cannot be negative along the common interface Γm
c . This gap function

may be defined as
∀x ∈ Γm

c , g(x) = g0(x) + (um(x) − us(ŷ(x))) · n (6)
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Figure 4: Detail of a curved beam on the casing between node i and i+ 1

k = 2, (f = 2.45 Hz) k = 1, (f = 3.46 Hz) k = 3, (f = 26.75 Hz) k = 4, (f = 75.53 Hz)

Figure 5: First vibration modes of the casing

where g0(x) is the initial positive gap between the structures, n the outward normal to the casing and ŷ(x) the
closest counterpart of x on the casing.

The Kuhn-Tucker theorem states that there exists a normal pressure tN, assumed positive and acting on
the common contact interface in order to enforce the non-penetration condition. Simultaneously, the friction
evolution law has to be accounted for. Its simplest formulation lies in the Coulomb model, that is

‖tT‖ ≤ µtN,

‖tT‖ < µtN ⇒ vT = 0,

‖tT‖ = µtN ⇒ ∃α > 0 such as vT = α
tT

‖tT‖
,

(7)

for which µ is the coefficient of friction, vT, the tangential slip rate and tT, the tangential contact force.
At convergence, coupled conditions (5) and (7) give rise to the construction of Fc. In this work, the

assumption of high rotational velocities forbids sticking situations between the blade-tips and surrounding
casing and greatly simplifies the final solution strategy [5].

This problem is solved using explicit central differences scheme together with an adapted version of the
forward increment Lagrangian method [15, 14, 5]. In this section, u refers indistinctly to um or us respectively
mentioned in Eq. (3) and Eq. (4).

The solution method is divided into three steps:

1. Prediction of the displacements un+1 of the ongoing time-step n by ignoring the contact reactions. These
predicted displacements un+1,p are expressed as

un+1,p =

[

M

h2
+

D

2h

]

−1((
2M

h2
−K

)

un +

(

D

2h
−

M

h2

)

un-1 + Fext,n

)

. (8)

2. Determination of the gap function vector gn+1,p between these structures following Eq. (6). A search
algorithm identifies all contactor nodes that have penetrated the target domain. Satisfying the impene-
trability conditions implies that the final gap functions gn+1 (linearized when necessary) must be positive
or vanish, meaning

gn+1 = CN
Tun+1,c + gn+1,p ≥ 0, (9)

where the corrected displacements un+1,c are being calculated. CN is the contact constraint matrix in the
normal direction. Eq. (9) is rewritten in an equivalent form

CN
Tun+1,c + g−

n+1,p = 0, (10)

where g−

n+1,p = Proj
R

Sg
−

(

gn+1,p

)

and Sg = size(gn+1,p). In other words, only the negative terms of gn+1,p,

meaning that a penetration has been detected, are kept in g−

n+1,p in order to calculate the corresponding
corrected displacements un+1,c.
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Casing Bladed disk

Y.Modulus Ec = 2.8 · 103 Eb = 8.3 · 106

density ρc = 2800 ρb = 7800

thickness hc = 5 hb = 5

width wc = 50 wb = 50

radius Rc = 250.5 Rb = 250

d.o.f nc = 160 nb = 748

modal damping ξc = 0.03 ξb = 0.005

number of blades N = 22

Table 1: Normalized mechanical characteristics of the model

3. Correction of the displacements through the calculation of normal contact and friction forces (due to
high relative velocities between the casing and the blade-tips, it is assumed that only sliding occurs). It
yields the addition of the unknown Lagrange multipliers λ (or identically tN when using this method) in
the governing equations such as

un+1 = un+1,p + un+1,c

= un+1,p −

[

M

h2
+

D

2h

]

−1

CNTλ.
(11)

The new matrix CNT contains the normal and the pure sliding friction constraints. Ultimately, Eqs. (10)
and (11) can be recast in such a form that the Lagrange multipliers are solution of

λ =

(

CN
T

[

M

h2
+

D

2h

]

−1

CNT

)

−1

g−

n+1,p. (12)

Explicit time integration schemes usually require very small time steps specially for stiff problems such as
unilateral contact. In addition, the detection of contact for large finite element formulations dramatically slows
down the whole process. This legitimates the use of condensation approaches such as modal projections [5] or
more elaborated component mode synthesis techniques.

3.2 Reduction techniques

In most industrial applications, finite element models involve a high number of DoFs leading to cumbersome
computation times. Numerical techniques such as component mode synthesis procedures allow for a dramatic
size condensation of the problem to be solved. The latter are usually coupled with substructuring approaches [11]
but only the reduction aspect is considered in the present study.

Reduction from the original full size space u of size n to the reduced order space general coordinates q of
size m, with m ≪ n can be achieved by selection of any suitable rectangular transformation matrix of size n×m
such as:

u = Φq (13)

resulting in a much smaller number of generalized displacements.
The content of matrix Φ is prone to discussion here regarding the different criteria of interest: (1) the type of

interaction detected, (2) computational times (3) treatment of contact constraints directly in the reduced-order
space. Equation (3) thus becomes

M̂q̈+ D̂q̇+ K̂q = ΦT(Fext + Fc) (14)

with Â = ΦTAΦ and A ≡ M, D or K.

3.2.1 Modal projection

By assuming that restricting the kinematics of the blades to a limited motion will help in detecting a specific
type of interaction [5], displacement vector u is first developed over two k-nodal diameter modes allowing only
those travelling waves having k nodal diameters to propagate in the structure. Accordingly, the coordinate
transformation matrix reduces to:

Φ = [φk1 φk2] (15)
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where φk1 and φk2 are two k-nodal diameter free vibration modes. Both the casing and the bladed disk reduced
models become 2 × 2 systems of differential equations. Eventhough the very small size of the models implies
a significant system condensation, contact forces can not be computed directly in the reduced-order space and
require a backward and forward mapping with the finite element space at each time step.

By strongly limiting the motion of the two interacting components, it is expected that the detection of
an interaction involving k-nodal diameter modeshapes will be possible. Nevertheless, the treatment of the
contact forces is not straightforward. The main advantage of the above mentioned component mode synthesis
methods lies in their formulation that preserves a few physical DoFs in the reduced order model. The kinematics
restrictions offered by the modal projection are lost but the contact treatment is possible directly in the reduced
space.

3.2.2 Component mode synthesis

These physical DoFs are chosen so that they match all the DoFs on which contact forces may be applied over
time. By doing so the contact algorithm is significantly improved since, at each time step, both the detection of
penetrations and the computation of the induced correction on the predicted displacements can be done directly
in the reduced space.

Craig-Bampton (CB) and Craig-Martinez (CM) methods are applied considering each structure as indepen-
dent substructure connected to each other through a highly nonlinear contact interface.

CB and CM methods first require the distinction of the DoFs of the structure within two groups: the
internal DoFs and the boundary DoFs. In general, the definition of these groups is closely related to the
loadings applied on the structures. As mentioned above, the boundary is chosen so that it contains any DoF
that might be supporting contact force during the simulation, i.e. the two DoFs u and v at the tip of each
blade for the bladed disk and the u and v DoFs for each node of the casing. As a result, the boundary of the
bladed disk contains 44 DoFs. No component mode synthesis method is applied on the casing since all the u
and v DoFs of the structure would be kept in the boundary leading to a reduced order model very close from
the finite element model in terms of number of DoFs. One may observe that rotational DoF θ is not kept within
the boundary. Indeed, this rotational DoF is not required for managing contact. Moreover, component modes
associated with θ may be mathematically redundant with component modes associated with u and v and lead
to numerical errors or ill-conditioned reduced matrices.

A reorganization of the general problem (3) to be solved is necessary by separating the DoFs in two groups:
the internal DoFs (qi) and the external DoFs (or boundary: qb). This yields

[

Mii Mbi

Mib Mbb

](

üi

üb

)

+

[

Dii Dbi

Dib Dbb

](

u̇i

u̇b

)

+

[

Kii Kbi

Kib Kbb

](

ui

ub

)

=

(

Fext,i

Fext,b

)

+

(

Fc,i

Fc,b

)

(16)

By definition of the boundary DoFs Fc,i = 0.

Craig-Bampton method By definition, the transformation matrix Φ of the CB method stores the following
modes [9]:

1. Ψ, a truncated set of eigenmodes of the structure where the boundary DoFs are fixed (see Fig.6(a)),
commonly named component modes. The number of component modes is controlled via η;

2. ΦL, a full set of static deformations where, for each boundary DoF, a unitary displacement is applied
while the other ones are fixed (see Fig.6(b)). Those are usually called constrained modes.

These notations yield:
Φ = [Ψ ΦL] (17)

By construction and due to reorganization (16), Eq. (17) can be expanded as follows:

Φ =

[

Ψ,i ΦL,i

0 I

]

(18)

Craig-Martinez method This technique generalizes the usual modal projection defined in subsection 3.2.1
by giving access to some physical displacements directly in the reduced space through an approximated partici-
pation of the removed high frequency content modes. The theoretical description given in the paper focuses on
the impact of the pseudo-static approximation on the expression of the internal DoFs but the Craig-Martinez
change of variable may be obtained faster by using explicitly the generalized force vector.
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(a) (b)

u
v

Figure 6: Craig-Bampton method: (a) component modes; (b) constrained modes.

Displacements vector u is first projected onto free mode coordinates of the structure by separating low and
high frequency content contributions:

u = Ψ1q1 +Ψ2q2 (19)

where Ψ1 represents the φ first free vibration modes kept in the reduction basis and Ψ2, high frequency modes
that will be replaced by a static approximation.

Let denote

Ψ =
[

Ψ1Ψ2

]

and Ω =

[

Ω1 0

0 Ω2

]

(20)

where Ω1 and Ω2 are the diagonal matrices containing the square of the angular eigenfrequencies associated
with modes Ψ1 and Ψ2 such as ΨTKΨ = Ω which leads to

K−1 = ΨΩ−1ΨT (21)

Reading Eq. (21), it yields
K−1 = Ψ1Ω

−1
1 ΨT

1 +Ψ2Ω
−1
2 ΨT

2 (22)

The pseudo-static approximation neglects the dynamical contribution q̈2 of the high frequency modes Ψ2, in
other words

Ω2q2 = ΨT
2 F (23)

Equation (23) is multiplied by Ψ2Ω
−1
2 and yields

Ψ2u2 = Ψ2Ω
−1
2 ΨT

2 F (24)

which, combined to Equation (22) leads to

Ψ2u2 = (K−1 −Ψ1Ω
−1
1 ΨT

1 )F (25)

Finally, by plugging Eq. (25) in Eq. (19), we find

u = Ψ1u1 + (K−1 −Ψ1Ω
−1
1 ΨT

1 )F (26)

or, in a contracted form:
u = Ψ1u1 +RF (27)

where R is called the residual flexibility matrix.
The key feature of CM method is to insert the boundary DoFs in the unknowns of the reduced system by

modifying the transformation of Eq. (27). This is achieved by expressing the external forces F as a function of
ub of Eq. (16) and q1 of Eq. (19). Consequently, Eq. (27) becomes

(

ui

ub

)

=

[

Ψ1i

Ψ1b

]

q1 +

[

Ri

Rb

]

F (28)

The notations is simplified here, Rb and Ri are blocks of the square matrix R. However, since F only has
coordinates on the boundary DoFs (the boundary DoFs are chosen to be the only one being loaded) the
equation can be simplified

[

Ri

Rb

]

F =

[

Ri1 Ri2

Rb1 Rb2

](

0

F1

)

(29)
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and from now on: Rb = Rb1, Ri = Ri1 and F = F1. Equation (28) becomes then

(

ui

ub

)

=

[

Ψ1i Ri

Ψ1b Rb

](

q1

F

)

(30)

The second block of Eq. (30) is
F = R−1

b (ub −Ψ1bq1) (31)

This finally leads to the change of variable

Φ =

[

Ψ1i −RibR
−1
bbΨ1b RibR

−1
bb

0 Ibb

]

(32)

The component modes of the CM method are the free vibration modes. Some of them are depicted in Fig. 7.

free vibration modes

Figure 7: Craig-Martinez method component modes

4 Results

The bladed disk is rotating and its angular velocity remains constant during each simulation. The initial blade
tip/casing distances is 1 mm for all blades. Between time t = 0 s and t = 2 · 10−4 s a short external k-nodal
diameter impulse is applied on the casing in order to initiate contact. Simulations are conducted for k = 2 and
k = 3 pictured in Fig. 8 and increasing angular velocities. Friction coefficient is set to µ = 0.2.

k = 2 k = 3

Figure 8: Deformation of the casing for k = 2 and k = 3

4.1 Modal projection

Note: in the following, most of the results associated with the detection of interaction motions are pictured
with blade-tip/casing distances such as in Fig. 9(a). Each blue plot stands for the distance between the casing
and one of the 22 blades of the bladed disk. When parameter k = 2 only 11 plot are visible due to the symmetry
of the contact simulation. Contact between the casing and the blade occurs when the blade-tip/casing distance
is equal to zero. Consequently, each interaction motion may be easily observed from these figures. The black
dashed line stands for the initial clearance between the bladed disk and the casing. All figures are plotted using
the same scale in order to ease comparison. Displacements and time have been normalized.
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Even though modal projection leads to two-DoFs systems of equations, simulations remain costly because
displacements must be projected back to the physical space at each time step to be correctly corrected when
penetrations are detected. On the other hand, it offers the opportunity to detect the expected motion for further
investigations.

In agreement with previous results [5], three kinds of motions are observed, namely damped (Fig. 9(a)),
sustained (Fig. 9(c)) and divergent motions. Among the different sustained motions observed, a specific kind
named “locked motion” was detected: a few blades come in permanent contact with the casing, as illustrated
in Fig. 9(b), and push a forward travelling wave. The latter is connected to the divisibility of the number
of blades N by the number of diameters k of the load exerted on the casing [5]. It means that a 3-diameter
configuration might lead to locked sustained motions with a geometry of 30 blades while it could only lead to
unlocked sustained motions with 29 blades. As a direct consequence, the contact locations will remain at the
same blade tips for all times.
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Figure 9: Blade tip/casing distances, initial clearance ( ). (a) damped motion: Ω = 0.4, k = 2; (b) locked
motion: Ω = 0.96, k = 2; (c) sustained motion: Ω = 1.68, k = 3.
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4.2 Component mode synthesis methods

4.2.1 Modal convergence

Before carrying out time simulations based on the reduced order model computed with each component mode
synthesis method, their convergence toward the finite element model must be checked. In order to do so the
focus is made on the eigenfrequencies of the reduced order model and their evolution while the parameters
of reduction of each component mode synthesis technique η and φ are increased. The evolution of the error
between some eigenfrequencies of the finite element model and the eigenfrequencies of each reduced order model
in function of η for the CB method and φ for the CM method are respectively depicted in Fig. 10(a) and 10(b).
It is noticeable that the eigenfrequencies of two reduced order model converge toward the ones of the finite
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Figure 10: Convergence of the reduced order models obtained with each component mode synthesis method
toward the finite element model: (a) CB reduced order model; (b) CM reduced order model.

element model in a very different way. While the eigenfrequencies of the CB reduced order model converge
smoothly toward the finite element ones, the error between the eigenfrequencies of the CM reduced order model
and the finite element model is either very high (superior to 1 %, from 20 % to 90 %) either zero.

Each type of convergence is associated with the nature of the reduction basis used to compute the reduced
order model. Indeed, in the case of the CM reduced order model, component modes are precisely the normal
modes of the finite element model. Consequently, a CM reduced order model computed with n component
modes possesses exactly the n first eigenfrequencies of the finite element model.

4.2.2 Detection of interaction motions

CB and CM methods are computationally very efficient since contact forces are computed directly with the
reduced models. Anyway, the kinematic restrictions on the displacements of the bladed disk are dropped off
leading to difficulties in the detection of k-nodal diameter coincidence.

The results presented in this section are limited to the CB method since, for the sake of brevity, the similar
results obtained with the CM method are not detailed. The computed reduced order model of the bladed disk
implies η = 88 constraint modes. The modal projection of the casing over its two first k-nodal diameter free
vibration modes is considered with k = 2 and k = 3. Consequently, the model of the casing is the same as
in section 4.1, it is obtained by modal projection and contains two DoFs associated with each free vibration
mode used. Similarly to the previous results, three kinds of motion are detected: damped motions such as
the one pictured in Fig. 11(a), sustained motions as displayed in Fig. 11(c) and locked motions depicted in
Fig. 11(b). As expected, the frequency content of the vibrations is much richer in the current configuration
since the reduced space is spanned by more basis vectors. Consequently, during a locked motion, the non-
contacting blades feature independent vibratory patterns in Fig. 11(b) in opposition to a constrained modal
projection. During a sustained motion, the amplitudes of vibration are larger as shown in Fig. 11(c).

The previous observations may also be analyzed as follows: a vibration of the casing on a k-nodal shape may
be a necessary condition for a k-nodal travelling wave coincidence with the facing bladed-disk to occur. One
should notice that results presented in this section are dependant on the reduction parameter η as opposed to
the results associated with modal projection given in the previous section. Consequently, it is of great interest
to assess the convergence of the given results with respect to a variation of parameter η on which focuses the
next section.
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Figure 11: Blade tip/casing distance for the interaction motions detected, initial clearance ( ). (a) damped
motion : Ω = 1.2 (k=2); (b) locked motion : Ω = 1.56 (k=2); (c) sustained motion : Ω = 1.38 (k=3).

4.3 Convergence in displacement

The primary challenge in constructing accurate reduced order model is the selection of the basis vectors. Captur-
ing the dynamics of a system is usually achieved through a truncated set of specific shapes. Unfortunately, the
latter may be inadequate for nonlinear problems since uniform convergence of coordinate transformation (13)
for m → n is proved for linear analyses but does not hold for non-linear analyses especially for stiff systems
such as the one investigated here. It is therefore mandatory to perform a convergence analysis in an empiric
fashion by comparing the results to the direct finite element formulation with an increasing number (η or φ) of
basis vectors.

Even though convergence in time and space are connected, we assume here a constant time step h = 2.5·10−7 s
for all simulations. Convergence of reduced order model computed with CB and CM techniques is studied for
each of the three interaction motions detailed above with k = 2 and k = 3 (for sustained motions). Reduction
parameters η and φ are chosen in such a way that they remain multiples of 22. This condition ensures the
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consistency of the enrichment of the reduction basis with the number of harmonics of the system3.

4.3.1 Craig-Bampton method

(a)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

time

b
la
d
e
ti
p
/
c
a
si
n
g
d
is
ta

n
c
e

(b)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

time

b
la
d
e
ti
p
/
c
a
si
n
g
d
is
ta

n
c
e

(c)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

time

b
la
d
e
ti
p
/
c
a
si
n
g
d
is
ta

n
c
e

Figure 12: Convergence of the results obtained with CB method η = 0 ( ); η = 44 ( ); η = 88 ( );
η = 220 ( ); ufe(t) ( ). (a) damped motion, blade 10, Ω = 0.56, k = 2; (b) locked motion, blade 9,
Ω = 1.12, k = 2; (c) sustained motion, blade 2, Ω = 1.28, k = 3.

Convergence is fast in the case of a damped motion as pictured in Fig. 12(a) but one may clearly observe the
great sensitivity of the results to the reduction basis in the case of locked and sustained motions in Figs. 12(b)
and 12(c). Indeed, the quality of the approximation of blade tip displacements directly depends on the selected
reduction basis vectors. As a consequence, the dimension of the reduced-order model will have an influence on
the blades locking on the casing and will also impact the vibration levels the other blades. That is the reason
why different vibration levels can be observed in Figs. 12(b) and 12(c). However, results obtained with a large
reduction basis (η = 220) are comparable with the finite element results.

3More details about the harmonic notion for cyclic symmetric systems may be found in [16]. In the case of our 2D model, the
22 blades imply that the total number of harmonics is 12, harmonic 0 and 11 are simple while harmonics 1 to 10 are double.
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4.3.2 Craig-Martinez method
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Figure 13: Convergence of the results obtained with CM method φ = 0 ( ); φ = 44 ( ); φ = 88 ( );
φ = 220 ( ); ufe(t) ( ). (a) damped motion, blade 10, Ω = 0.56, k = 2; (b) locked motion, blade 9,
Ω = 1.12, k = 2; (c) sustained motion, blade 2, Ω = 1.28, k = 3.

Results of the convergence of the reduced order model are shown for damped, locked and sustained motions
respectively in Fig. 13(a), 13(b) and 13(c). These results are similar to the ones obtained with the CB method.
As previously observed, a large number of modes is required to ensure convergence in terms of blade tip
displacements in the cases of locked and sustained motions. This is particularly true for the locked motion for
which displacement convergence seems slower than with the CB model.

Results obtained for the two component mode synthesis methods show a slow convergence of the solution
with respect to the finite element reference solution with an increasing number of basis vectors.

For the CM method, it is noticeable that for a small φ (φ = 0 and φ = 44) the results are completely different
from the reference solution. In comparison, for similar η, the CB method leads to better results.

A lower threshold for accurate results is η = φ = 88 for damped motions, in the case of sustained or locked
motions, even η = φ = 220 do not lead to satisfying results. Comparatively to the size of the finite element
model, the condensation ratio for η = φ = 88 – about 18 % – required for displacement convergence may appear
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too large. It is then worthy to note that this ratio actually reflects that only four families of 22 original bladed
disk vibration modes are required for displacement convergence. The ratio between the number of modes of
each family of original bladed disk vibration modes in 2D is about 3%4 while the same ratio for typical 3D
industrial models approximately is 0.005%. As a consequence, the condensation ratio for 3D industrial models
is expected to be considerably smaller and the combination of component mode synthesis methods with the
contact algorithm shall be more efficient. However, it should be underlined that 3D models do not provide –
due to inconceivable computation times – access to a reference solution as mentioned in [18].

The conclusion of this convergence study is the extreme sensitivity of the results toward the choice of the
reduction basis. Since a typical displacement convergence requires very high reduction parameters, it may be of
great interest to assess the component mode synthesis methods used with another criterion such as the motion
convergence introduced in the next section.

4.4 Convergence in motion

As underlined in the previous section, a convergence in terms of displacement is not easily reached due to the
inherent difficulties brought by the contact formulation. The fact that the structural displacement field is not
exactly retrieved because of the reduction process, due to a phase shift of the blades in contact with the casing,
does not mean that a more global convergence with respect to the type of motion detected cannot be obtained.
This more global convergence is defined as motion convergence and is now inspected. No finite element solution
is calculated for reference because of its prohibitive computation times. Iterations along Ω and µ imply about
700 simulations in order to draw a motion map such as the one depicted in Fig. 14 which is extremely time-
consuming. As a consequence, only the case k = 2 is investigated in this section and only one type of interaction
motion may occur: the locked motion.

All the motion maps depicted in this section are obtained with identical simulation parameters and the
critical speed defined in (2) is the same for every map and is represented with a red line. The only variable is
the type of reduction technique and its associated reduction parameter. Results are presented for both modal
projection and component mode synthesis methods for which the convergence is asymptotically assessed by
increasing η and φ, η = φ = [22, 44, 66, 88].
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Figure 14: Motions detected with respect to µ and Ω with modal projection: divergent motions ( ); locked
motions ( ) and damped motions ( ).

First, the map pictured in Fig. 14 highlights the interaction motions detected with modal projection. Three
distinct areas may be seen: (1) a damped motion area for low rotational velocities, (2) a locked motion area
and a (3) divergent motion area. The boundary between the interaction motion area and the divergent motion
area is clearly dependant on the friction coefficient µ. On the contrary, the limit between damped motion area
and interaction motion area is unclear in Fig. 14. Although, it is noticeable that the critical speed appears as
a higher threshold of the damped motion area.

Figures 15(a), 15(b), 15(c) and 15(d) show the motion maps obtained with the CB method for different
values of the reduction parameter η.

From η = 22 to η = 88, one may observe the great similarity of the four motion maps. This similarity is
highlighted by the superposition of the boundaries between interaction motion and divergent motion areas in
Fig. 17(a). For each of these four motion maps, the critical speed defines quite precisely the boundary between
damped motion and interaction motion areas. The stability of the motion map while η increases highlights that
motion convergence is easily reached with the CB method and contrasts with the sensitivity of the displacement
convergence observed in the previous section.

4This estimation stems from the number of blades of the model divided by the number of DoFs.
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Figure 15: Motions detected with respect to µ and Ω with the CB reduced order model: divergent motions ( );
locked motions ( ) and damped motions ( ): (a) η = 22; (b) η = 44; (c) η = 66; (d) η = 88.

Figures 16(a), 16(b), 16(c) and 16(d) show the motion maps obtained with the CM method for different
values of the reduction parameter φ.

Motion maps obtained with the CM component mode synthesis method are comparable to the ones obtained
with the CB method: the boundary between divergent motion and interaction motion areas is very stable –
which appears clearly in Fig. 17(b) – and only few differences are observable around the critical speed, meaning
the boundary between damped motion and interaction motion areas. Same as for the CB method, these maps
show that motion convergence is easily reached with the CM method.

Both motion maps obtained with the CB and the CM methods underline that modal projection tends to
artificially favor the detection of modal interaction [19]. On the contrary, the matching of motion maps obtained
with two different component mode synthesis methods – implying two different reduction bases and reduced
spaces – lend weight to the capacity of reduced order models to be used for detecting modal interaction.

5 Concluding remarks

A combination of component mode synthesis methods with a contact algorithm based on the Lagrange multiplier
technique has been introduced in this paper. The use of three types of reduction methods – modal projection
over the two first k-nodal diameter free vibration modes and two component mode synthesis methods namely
the Craig-Bampton and the Craig-Martinez methods – emphasized the consistency of interaction detection
since results presented in this paper show that two different component mode synthesis methods lead to similar
results.

It was also pointed out that displacements obtained for each DoF of the reduced order models are extremely
sensitive to the modal reduction basis considered due to the highly non linear contact case. Consequently, the
notion of motion convergence was introduced in addition to the well-known notion of asymptotic convergence
in terms of displacements.

For 2D planar finite element models, it was shown that only a few modes in the modal reduction basis are
necessary to determine accurately the different interaction motions. However, in order to get a good accuracy
in terms of displacements, the size of the modal reduction basis has to be increased. Results show that Craig-
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Figure 16: Motions detected with respect to µ and Ω with the CM reduced order model: divergent motions ( );
locked motions ( ) and damped motions ( ): (a) φ = 22; (b) φ = 44; (c) φ = 66; (d) φ = 88.
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Figure 17: Superimposition of the boundaries between interaction and divergent motions areas for each reduced
order model: η, φ = 22 ( ), η, φ = 44 ( ), η, φ = 66 ( ), η, φ = 88 ( ). (a) Craig-Bampton reduced
order model; (b) Craig-Martinez reduced order model.

Martinez component mode synthesis method gives better results with a smaller reduction basis. Finally, it was
highlighted that strong kinematic restrictions induced by modal projection artificially enhances the detection
of modal interaction.

The fact that a combination of the contact algorithm with component mode synthesis methods lead to
consistent results in terms of modal interaction detection is promising for 3D contact simulations to come.
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[4] M. Legrand, Modèles de prédiction de l’interaction rotor/stator dans un moteur d’avion (models of ro-
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